Information Sales and Insider Trading *

Giovanni Cespa †

June 15, 2005

Abstract

Fundamental information resembles in many respects a durable good. Hence, the effects of its incorporation into stock prices depend on who is the agent controlling its flow. Similarly to a durable goods monopolist, a monopolistic analyst selling information intertemporally competes against herself. This forces her to partially relinquish control over the information flow to traders. Conversely, an insider solves the intertemporal competition problem through vertical integration, thus exerting a tighter control over the flow of information. Comparing market patterns I show that a dynamic market where information is provided by an analyst is thicker and more informative than one where an insider trades.

Keywords: Information Sales, Analysts, Insider Trading, Durable Goods Monopolist.

JEL Classification Numbers: G100, G120, G140, L120.

*I thank Giacinta Cestone, Antoine Faure-Grimaud, Diego Garcia, Piero Gottardi, Stefano Lovo, Eugene Kandel, Masako Ueda, Xavier Vives, Lucy White as well as the seminar participants to the INSEAD-HEC-Delta-PricewaterhouseCoopers Workshop on Information and Financial Markets, the 2004 CEPR European Summer Symposium in Financial Markets (Gerzensee) and Università degli Studi di Napoli for valuable comments. Financial support from Fundación BBVA, Ministerio de Ciencia y Tecnología (BEC2002-00429 and Programa Ramón y Cajal) and Ministero dell’Istruzione, dell’Università e della Ricerca is gratefully acknowledged.

†CSEF-Università di Salerno, CEPR, and Universitat Pompeu Fabra.
1 Introduction

Organized stock markets facilitate the exchange of assets among traders hence allowing a firm’s fundamental information to be impounded into prices. There are mainly two ways by which this occurs: either traders acquire information from a specialized provider (e.g., an analyst), or they obtain it thanks to a particular relationship they have with the firm (i.e. they are insiders). Far from being irrelevant, the way through which information is gathered to the market dramatically affects the characteristics of stock prices. This paper shows that the dynamic properties of a market closely depend on who is the agent exerting control over the flow of information.

Fundamental information resembles in many respects a durable good. Indeed, a trader holding a signal on a firm’s pay-off can use it during several trading rounds. Also, as most durable goods, the value of such a signal depreciates as a result of its use, due to price information transmission. However, differently from a durable good, information cannot be rented. Therefore, the ability of its provider (be it an analyst or an insider) to overcome the traditional self-competition problem (see Bulow 1982, 1986, Coase 1972, and Waldman 1993), directly impacts the properties of the underlying asset market.

Consider an analyst selling information.1 As the durable goods monopolist – who in order to extract consumer surplus may artificially shorten the life of the product she sells – the analyst, after distributing a signal of a given quality is tempted to increase the quality of the signals she sells in the periods to come. In particular, in a two-period market, I show that once the first signal has been sold to competitive traders, the analyst distributes a new signal which, in order to be palatable to potential buyers, must render partially “obsolete” the signal sold in the first period. The seller thus impoverishes the quality of the first period information she sells (so to reduce the level of its durability and weaken future self-competition), while consistently enhancing the one sold in the second period (so to force the first period signal obsolescence). This, in turn, attenuates the severity of the market makers’ adverse selection problem along the two periods, implying a pattern of increasing market depth.

Consider now the case of an insider. Being the end-user of the information he possesses enables him to choose the rate at which the market learns it. In particular, as he directly exploits his informational advantage, he avoids the effect of intertem-

1There is an ongoing debate as to whether analysts provide or not relevant information to their clients. Brennan, Jegadeesh, and Swaminathan (1993), Brennan and Subrahmanyam (1995), and Womack (1996) present evidence showing that analysts’ forecasts are indeed informative.
poral self-competition, fully internalizes the negative effect of aggressive speculation, and trades less intensely.

The analyst thus acts in a way that is much akin to the durable goods monopolist that, being forced to sell rather than rent, handles her intertemporal self-competition problem strategically choosing the quality of the goods she markets; the insider, on the other hand, attenuates competition through vertical integration: the producer and the final user of the information good, in his case, coincide. 2

Comparing market patterns, the insider’s tighter control over the information flow makes the market in the second period thinner and prices less informative than those that obtain in the analyst’s market. In a dynamic market, therefore, trading by an insider worsens stock price accuracy and impairs market depth compared to a market where information is provided by an analyst.

Several papers analyze dynamic trading in markets with asymmetric information and assess the relevance of information flows in determining the behavior of market patterns. Yet, in all of these works the information flow is either exogenously given, as if traders were born endowed with their private signals, or determined by traders’ endogenous decisions to acquire signals of a given constant precision. 3 However, as information is a valuable good, its distribution is likely to depend on the decisions of agents who, given traders’ time-varying desire to become informed, optimally set the quality of the signals they release. If this is the case, then the dynamic properties of a market should be analyzed by explicitly modeling such decisions.

In this paper I take a first step at addressing this issue by studying a dynamic market where control over the information flow is exerted by a monopolistic analyst selling long-lived information. I then investigate how this affects traders’ competitive behavior and the dynamic properties of the market. This has an independent interest since, to the best of my knowledge, this is the first paper that provides such an analysis within a discrete-time, dynamic rational expectations equilibrium model.

The paper also contributes to the literature on insider trading that, starting with the pioneering work of Kyle (1985), has devoted attention to gauge the impact of trad-

1 Alternatively, it may be useful to think of the insider as of the monopolistic producer that rents instead of selling. Indeed, the monopolistic renter by keeping the ownership of the goods she markets, fully internalizes the negative effect of overproduction and thus cuts back on the quantities she releases; conversely, the insider, by holding on to his informational advantage, directly bears the negative effects of an excessively aggressive behavior, and speculates less intensely.

2 Examples of the first type include He and Wang (1995), Vives (1995a, 1995b) and Cespa (2002); examples of the second type include Admati and Pfleiderer (1988b) and Holden and Subrahmanyam (1996).
ing by a strategic agent on price efficiency. Leland (1992) shows that insider trading accelerates the resolution of fundamental uncertainty. Fishman and Hagerty (1992), in a model where the insider is not the only agent possessing fundamental information, argue that the presence of a better informed insider may discourage costly research from market professionals and, under some parameter configurations, lead to a less informative stock price. The present paper questions whether, given a certain piece of information, trading by an insider accomplishes its incorporation into asset prices in the most “effective” way.

This work also adds to the literature on financial markets information sales which has mainly focused on the static problem faced by a monopolistic information provider selling signals either directly, as in the case of an investment advisor, or indirectly, as in the case of a mutual fund (see Admati and Pfleiderer 1986, 1988a, and 1990). Fishman and Hagerty (1995) show that a strategic agent can use information sales as a commitment device to trade aggressively against his symmetrically informed peers. Allen (1990) shows that the credibility problem faced by an information seller needing to prove his access to superior information, may leave room for financial intermediaries to appropriate part of the seller’s information value. Little attention has been devoted to study the dynamics of the information sales problem. A notable exception is represented by Naik (1997) who studies the single-shot problem of an analyst selling a flow of information in a continuous time model. However, as in Naik the analyst’s decision is made “once-and-for-all,” no intertemporal competition problem arises.

The paper is organized as follows. In the next section I present the static benchmark where I review the results of Admati and Pfleiderer (1986) and prove that in a static setup a market where information is sold by a monopolistic analyst and one where an insider trades generate the same patterns. In section 3 I present the dynamic 2-period model with long-lived information and in section 4 I study the analyst’s optimal sales policy. Finally, in section 5 I compare patterns of depth and price informativeness across the two markets and analyze numerically the properties of the general $N > 2$-period model. A final section contains concluding remarks while most of the proofs are relegated to the appendix.

4 Other authors have emphasized the effects that insider trading has on the welfare of market participants (see e.g., Bhattacharya and Nicodano 2001 and Medrano and Vives 2004).
2 The Static Benchmark

Consider a market where a single risky asset with liquidation value \(v \sim N(\bar{v}, \tau_v^{-1}) \) and a riskless asset with unitary return are traded. In this market competitive speculators or an insider trade along with noise traders against a competitive, risk-neutral market making sector.

In the former case there is a continuum of informed traders in the interval \([0, 1]\). Every informed trader \(i \) (potentially) receives a signal \(s_i = v + \epsilon_i \), where \(\epsilon_i \sim N(0, \tau_{\epsilon_i}^{-1}) \), \(v \) and \(\epsilon_i \) are independent and errors are also independent across agents. Let the informed traders’ preferences over final wealth \(W_i \) be represented by a CARA utility function \(U(W_i) = -\exp\{-W_i/\gamma\} \), where \(\gamma > 0 \) denotes the coefficient of constant absolute risk tolerance and \(W_i = X_i(v - p) \) indicates the profit of buying \(X_i \) units of the asset at price \(p \).

In the market with the insider, a risk-neutral, strategic agent holds a perfect signal about the liquidation value \(v \) and trades a quantity \(X_I \) to maximize his expected final wealth.

In both markets noise traders submit a random demand \(u \) (independent of all other random variables in the model), with \(u \sim N(0, \tau_u^{-1}) \). Finally, assume that in the competitive market, given \(v \), the average signal \(\int_0^1 s_i \, di \) equals \(v \) almost surely (i.e. errors cancel out in the aggregate: \(\int_0^1 \epsilon_i \, di = 0 \)).

2.1 The Equilibrium in the Competitive Market

In this section I present a version of the traditional large-market noisy rational expectations equilibrium market, as studied by Admati (1985), Grossman and Stiglitz (1980), Hellwig (1980), and Vives (1995a).

To find the equilibrium in this market, assume that each informed trader submits a generalized limit order \(X_i(s_i, p) \) specifying the desired position in the risky asset for any price \(p \) and restrict attention to linear equilibria where \(X_i(s_i, p) = as_i - bp \). Competitive, risk-neutral market makers observe the aggregate order flow \(L(p) = \int_0^1 X_i(s_i, p) \, di + u = av + u - bp \) and set a semi-strong efficient price. If we let \(z_C = av + u \) denote the informational content of the order flow, then the following result applies:

Proposition 1 In the competitive market there exists a unique linear equilibrium. It is symmetric and given by \(X_i(s_i, p) = a(s_i - p) \) and \(p = E[v|z_C] = \lambda_C z_C + (1 - \lambda_C a)\bar{v} \), where \(a = \gamma \tau_v, \lambda_C = a \tau_u/\tau_C \) and \(\tau_C = (\text{Var}[v|z_C])^{-1} = \tau_v + a^2 \tau_u \).

Intuitively, an informed speculator’s trading aggressiveness a increases in the precision of his private signal and in the risk tolerance coefficient. Market makers’ reaction to the presence of informed speculators $\lambda_C = a\tau_u / \tau$ is captured by the OLS regression coefficient of the unknown payoff value on the order flow. As is common in this literature, λ_C measures the reciprocal of market depth (see e.g., Kyle 1985 and Vives 1995a), and its value determines the extent of noise traders’ expected losses: $E[u(v - p)] = -\lambda_C\tau_u^{-1}$. The informativeness of the equilibrium price is measured by the reciprocal of the payoff conditional variance given the order flow: $(\text{Var}[v|z_C])^{-1} = \tau_C$. The higher τ_C, the smaller the uncertainty on the true payoff value once the order-flow has been observed.

2.2 The Equilibrium in the Strategic Market

The linear equilibrium of the strategic market is given by the well known result due to Kyle (1985). Assume the insider submits a linear market order $X_I(v) = \alpha + \beta v$ to the market making sector indicating the desired position in the risky asset. Upon observing the aggregate order flow $z_I = x_I + u$, market makers set the semi-strong efficient equilibrium price. Restricting attention to linear equilibria, the following result holds:

Proposition 2 In the strategic market there exists a unique linear equilibrium given by $X_I(v) = \beta(v - \bar{v})$ and $p = E[v|z_I] = \lambda_I z_I + \bar{v}$, where $\beta = \sqrt{\tau_v / \tau_u}$, $\lambda_I = (1/2)\sqrt{\tau_u / \tau_v}$, and $\tau_I = (\text{Var}[v|z_I])^{-1} = 2\tau_v$.

Owing to camouflage opportunities, the insider’s aggressiveness β is larger (smaller), the more (less) dispersed is the distribution of noise traders’ demand. Conversely, market makers’ reaction to the presence of the insider (λ_I) is harsher (softer) the more concentrated is the demand of noise traders. A noisier market thus spurs a more aggressive insider’s trading; owing to the insider’s risk-neutrality, these two countervailing effects exactly cancel out. As a consequence, price informativeness does not depend on τ_u and is given by $\tau_I = 2\tau_v$. 6

6As shown by Rochet and Vila (1994), assuming that the insider submits a limit order does not change the equilibrium result.

6Subrahmanyam (1991) shows that if the insider is risk-averse, this result does not hold.
2.3 The Information Market

Suppose now as in Admati and Pfleiderer (1986) that the private signal each trader observes in the competitive asset market is sold by a monopolistic analyst who has perfect knowledge of the asset pay-off realization, and does not trade on such information. Suppose further that the analyst truthfully provides the information she promises to traders. Given that the analyst holds all the bargaining power, in order to receive such a signal each trader pays a price that makes him indifferent between observing it or not. Indicating by ϕ such a price

$$E[E[U(W_i - \phi)|\{s_i,p\}] = E[E[U(W_i)|p]].$$

Standard normal calculations show that

$$\phi = \frac{\gamma}{2} \ln \frac{\tau_{iC}}{\tau_C}.$$ \hspace{1cm} (2.1)

where $\tau_{iC} = (\text{Var}[v|s_i,p])^{-1} = \tau_C + \tau$. Thus, each trader pays a price which is a monotone transformation of the informational advantage he acquires over market makers by observing the signal. As traders are ex-ante symmetric, the analyst then chooses the precision of the private signal in such a way as to maximize (2.1) and finds

$$\hat{\tau}_\epsilon = \frac{1}{\gamma} \sqrt{\tau_u \tau_v}.$$ \hspace{1cm} (2.2)

Hence, the analyst sells a signal that is more (less) informative the higher (lower) is the unconditional noise-to-signal ratio and the more risk-averse the traders are.

Note that $\hat{\tau}_\epsilon$ minimizes λ_C^{-1}. The intuition is straightforward: the analyst seeks to extract the maximum aggregate surplus from informed traders. Such surplus, in turn, increases in the informational advantage traders have vis-à-vis market makers.

7Admati and Pfleiderer (1986) also consider the case in which the analyst is not perfectly informed. While the static case can be easily handled under such assumption, the dynamic extension I consider in section 4 quickly becomes intractable.

8Assuming that the analyst does not trade on the information she has and truthfully provides it to buyers clearly simplifies the analysis. Indeed, one may argue that the analyst’s ability to trade would seriously distort her incentives to honestly provide her information to traders. However, recent regulation introduced in the US substantially alleviates such a problem (the new NASD and NYSE rules the SEC introduced in the summer of 2002 mandate separation of research and investment banking and prohibit analysts’ compensation through specific investment banking deals; the Sarbanes-Oxley act in its title v also introduced rules aimed at fostering analysts’ research objectivity). Furthermore, the empirical evidence cited in the introduction supports the view that analysts’ investment advice do contain fundamental information. In this paper, I therefore concentrate on the analysis of the intertemporal self-competition problem faced by the analyst. For a study of the incentive problem between providers and buyers of information see Morgan and Stockey (2003).
When such advantage is maximal, market depth is at its minimum, and traders are also willing to pay the highest price.

Furthermore, according to (2.2), the equilibrium market parameters replicate those obtained in the strategic market of the previous section. Indeed, the aggregate trading aggressiveness $a = \int_0^1 a \, di = \sqrt{\tau_v/\tau_u}$; thus, price informativeness $\tau_C = \tau_o + a^2 \tau_u = 2\tau_v = \tau_I$, and the reciprocal of market depth $\lambda_C = (1/2)\sqrt{\tau_u/\tau_v} = \lambda_I$.

Summarizing:

Proposition 3 In the static information market, the analyst sells a signal with precision $\hat{\tau}_e = (1/\gamma)\sqrt{\tau_v/\tau_u}$; such information quality minimizes market depth replicating the equilibrium properties of an asset market with a single, risk-neutral insider.

The equivalence between the analyst’s and the insider’s problems can be best understood by rewriting (2.1) as follows:

$$\phi = \frac{\gamma}{2} \ln \left(1 + \frac{1}{\gamma} \frac{\lambda_C}{\tau_u} \right).$$

The analyst who wishes to maximize her expected profits chooses a signal quality $\hat{\tau}_e$ such that the stock market is as thin as possible. In this way she maximizes the aggregate rents she extracts from competitive traders which, given the “zero-sum” nature of the market game, are just the flip side of the coin of noise traders’ expected losses. However, this is the same result obtained in a market with a risk-neutral insider that in equilibrium sees his ex-ante profits (i.e. the expected losses of noise traders) maximized when the impact of his trades (as measured by λ_I) is as large as possible. Therefore, in a static information market, the way in which a perfectly informed agent conveys fundamental information to the market does not matter.

This is immediate as in any linear equilibrium noise traders’ ex-ante expected losses are given by $E[u(v-p)] = -\lambda_I \tau_u^{-1}$, and, owing to the semi-strong efficiency of the market, when the insider trades with aggressiveness β, $\lambda_I = \beta \tau_u / (\beta^2 \tau_u + \tau_v)$. The insider, thus, sees his equilibrium ex-ante profits (i.e. the losses of noise traders) maximized when choosing β such that λ_I is as large as possible.

This provides a different interpretation to Admati and Pfleiderer’s (1986) result showing the superiority of “personalized” information allocations over “newsletters.” Indeed, it is only by selling diverse signals that the information provider exerts the same control over the information leakage obtained by an insider.
3 A Dynamic Asset Market with Long Lived Information

Consider now a 2-period extension of the market analyzed in the previous section. In particular, assume that assets are traded for two periods and that in period 3 the risky asset is liquidated and the value \(v \) collected (thus, \(p_3 = v \)).

In the competitive market, every informed trader \(i \) in each period \(n \) (potentially) receives a private signal \(s_{in} = v + \epsilon_{in} \), where \(\epsilon_{in} \sim N(0, \tau_{\epsilon_{in}}^{-1}) \), \(v \) and \(\epsilon_{in} \) are independent, and errors are also independent across agents and periods (therefore private information is “long lived”). Assume that a trader \(i \)’s preferences over final wealth \(W_i^3 \) are represented by a CARA utility function \(U(W_i^3) = -\exp\{W_i^3/\gamma\} \), where \(W_i^3 = \sum_{n=1}^{3} \pi_{in} = \sum_{n=1}^{3} X_{in}(p_{n+1} - p_n) \) indicates the profit of buying \(X_{in} \) units of the asset at price \(p_n \).

In the strategic market, before the first period, the insider observes \(v \) and then chooses \(X_{In} \), in every period \(n \) to maximize his expected final wealth.

In both markets noise traders demand follows an independently and identically normally distributed process \(\{u_n\}_{n=1}^{2} \) (independent of all other random variables in the model), with \(u_n \sim N(0, \tau_u^{-1}) \) in every period \(n \). Finally, assume that in the competitive market given \(v \) and for every \(n \), the average signal \(\int_0^1 s_{in}di \) equals almost surely \(v \) (i.e. errors cancel out in the aggregate: \(\int_0^1 \epsilon_{in}di = 0 \)).

3.1 The Equilibrium in the Dynamic Competitive Market

Let us indicate with \(s^n_i \) and \(p^n \) respectively, the sequence of private signals and prices a trader has observed up to period \(n \). In every period \(n = 1, 2 \) an informed trader submits a generalized limit order \(X_{in}(s^n_i, p^{n-1}, \cdot) \) indicating the position desired in the risky asset at every price \(p_n \). Restricting attention to linear equilibria it is possible to show that the strategy of an agent \(i \) in period \(n \) depends on \(\tilde{s}_{in} = (\sum_{t=1}^{n} \tau_{\epsilon_{in}})^{-1}(\sum_{t=1}^{n} \tau_{\epsilon_{in}} s_{it}) \) and on the sequence of equilibrium prices:

\[X_{in}(\tilde{s}_{in}, p^n) = a_n \tilde{s}_{in} - \varphi_n(p^n), \]

where \(\varphi_n(p^n) \) is a linear function of the sequence \(p^n \). Market makers in every period observe the net aggregate order flow: \(L_n(\cdot) = \int_0^1 X_{in}di - \int_0^1 X_{in-1}di + u_n = z_{Cn} + \varphi_n(p^n) - \varphi_{n-1}(p^{n-1}) \), where \(z_{Cn} = \Delta a_n v + u_n \) indicates the informational content of period \(n \) net order flow, and set a semi-strong efficient equilibrium price conditional on past and current information \(p_n = \)]
Proposition 4 In the 2-period competitive market, there exists a unique linear equilibrium. The equilibrium is symmetric and given by \(E \) \(\text{Proposition 4} \)

\[
\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right) = 0
\]

\[E[v|z_{Cn}^n, z_{Cn}]. \]

In every period \(n \) an informed trader speculates according to the sum of the precisions of his private signals weighted by the risk tolerance coefficient; market makers observe the (net) aggregate order flow and set the semi-strong efficient price \(p_n \) attributing weight \(\lambda_n = \Delta a_n \tau_u / \tau_C \) to its informational content \(z_{Cn} = \Delta a_n v + u_n \). The information impounded in the equilibrium price is thus reflected in the public precision \(\tau_C = (\text{Var}[v|z_{Cn}^n])^{-1} = \tau_v + \tau_u \sum_{t=1}^n (\Delta a_n)^2 \).

3.2 The Equilibrium in the Dynamic Strategic Market

Assume that in every period \(n \) the insider submits a linear market order \(X_{In}(v) = \alpha_n + \beta_n v \) indicating the position desired in the risky asset. Market makers observe the (sequence of) aggregate order flow(s) \(z_{In} = x_{In} + u_n (z_{In}) \) and set the semi-strong efficient equilibrium price \(p_n = E[v|z_{In}^n, z_{In}] \). Restricting attention to linear equilibria the following result holds:

Proposition 5 In the 2-period strategic market there exists a unique linear equilibrium given by \(X_{In}(v, p_{n-1}) = \beta_n(v - p_{n-1}) \) and \(p_n = \lambda_n z_{In} + p_{n-1}, n = 1, 2, \) where \(z_{In} = x_{In} + u_n \)

\[\beta_1 = \frac{2K - 1}{\lambda_I (4K - 1)}, \quad \beta_2 = \frac{1}{2 \lambda_{I2}}, \]

\[\lambda_{I1} = \frac{1}{4K - 1} \sqrt{\frac{2\tau_u K (2K - 1)}{\tau_v}}, \quad \lambda_{I2} = \frac{1}{2} \sqrt{\frac{\tau_u}{\tau_{I1}}}, \]

\[\tau_{I1} = (\text{Var}[v|z_{I1}])^{-1} = (4K - 1) \tau_v / 2K, \quad \tau_{I2} = (\text{Var}[v|z_{I1}, z_{I2}])^{-1} = 2 \tau_{I1} \text{ and } \]

\[
\frac{\lambda_{I2}}{\lambda_{I1}} = K = \frac{1}{6} \left(1 + 2\sqrt{7} \cos \left(\frac{1}{3} \left(\pi - \arctan \left(3\sqrt{3} \right) \right) \right) \right) \approx 0.901.
\]

\[\text{11} \text{It can be shown that in every linear equilibrium, the sequences } p^n \text{ and } z^n_C \text{ are observationally equivalent (see Vives, 1995a).} \]
Proof. See Huddart, Hughes, and Levine (2001). QED

As more information is impounded in the price, the severity of the adverse selection problem decreases, and market makers set a less steep price schedule: \(\lambda_{I2} < \lambda_{I1} \). As a consequence, profit opportunities decline, and the insider turns to a more aggressive trading behavior: \(\beta_2 > \beta_1 \).

4 A Dynamic Market for Information

In this section I use the results of section 3.1 to determine the optimal policy of the information provider. This is done in two steps: first, I obtain a trader \(i \)'s value for the sequence of signals \(\{s_{i1}, s_{i2}\} \); second, I solve for the analyst’s optimal information sales policy.

4.1 The Value of Long Lived Information

As done in section 2, assume now that the signal each trader receives in every period \(n \) is sold by a monopolistic analyst who has perfect knowledge of the asset pay-off realization \(v \), and does not trade on such information. Furthermore, assume the analyst truthfully provides the information she promises to each trader. As in every period \(n \) she extracts all the surplus, the analyst sets the price \(\phi_n \) for the signal \(s_{in} \) equal to value that leaves the trader indifferent between acquiring or not the signal:

Proposition 6 In the 2-period information market, the maximum price a trader \(i \) is willing to pay to buy a signal \(s_{in} \) in each period \(n = 1, 2 \) is given by \(\phi_1, \phi_2 \), where

\[
\phi_1 = \phi(s_{i1}|p_1) + \phi(s_{i1}|p_1, p_2) = \frac{\gamma}{2} \ln \frac{\tau_{iC1}}{\tau_{C1}} + \frac{\gamma}{2} \ln \frac{\tau_{C2} + \tau_{\epsilon_1}}{\tau_{C2}},
\]

\[
\phi_2 = \frac{\gamma}{2} \ln \frac{\tau_{C2}}{\tau_{C2} + \tau_{\epsilon_1}},
\]

where \(\tau_{iCn} = (\text{Var}[v|s^n_{i}, p^n])^{-1} = \tau_{Cn} + \sum_{t=1}^{n} \tau_{\epsilon_t} \).

Proof. See the appendix. QED

The first period signal price is the sum of two components capturing the trader’s informational advantage vis-à-vis market makers that the signal allows in the first
and in the second period. The intuition is as follows. In period 1 a trader buys s_{i1} and establishes a position in the risky asset $X_{i1}(s_{i1}, p_1)$. The expected utility of his final wealth then depends on the position $X_{i1}()$ (times the return from buying/selling the asset at p_1 and liquidating it at v) plus the change in the first period position he will eventually make at time two (times the return from changing the position at p_2 and liquidating such change at v). However, the latter component depends on the change in price which, in turn, depends on the arrival of private information in period two. As the trader cannot anticipate such “new” information in period one, his expected utility from acquiring s_{i1} depends only on the informational advantage the signal gives him in that period:

$$E\left[U\left(X_{i1}(s_{i1}, p_1) (v - p_1) + \Delta X_{i2} \left(s_2^2, p_2^2\right) (v - p_2)\right)\right] = -\left(\frac{\tau_{C1}}{\tau_{C1}}\right)^{1/2}.$$

The price the trader is willing to pay to use s_{i1} in period one is thus the one that makes him indifferent between having and not having the signal:

$$\phi(s_{i1}||p_1) = \frac{\gamma}{2} \ln \frac{\tau_{C1}}{\tau_{C1}}.$$

The signal s_{i1} has however an added value, as it allows the trader to keep an informational advantage in the second period as well when the analyst sells the second signal (without having to buy a second signal). Such added value is given by the price the trader would be ready to pay in order to have s_{i1} and observe $\{p_1, p_2\}$:

$$\phi(s_{i1}||p_1, p_2) = \frac{\gamma}{2} \ln \frac{\tau_{C2} + \tau_{\epsilon_1}}{\tau_{C2}}.$$

In the second period, as a signal has already been sold, the trader compares the precision of the forecast she obtains from buying one additional signal to the one she gets from not buying it and using both period’s prices and the first period signal.

Remark 1 The solution proposed in proposition 6 generalizes Admati and Pfleiderer (1986). In particular, if $\tau_{\epsilon_2} = 0$, then $\phi_1 = \phi$ as no new information is released by the analyst in period two, and thus the first period signal has no “added” value.

4.2 The Analyst’s Optimal Policy

As argued in section 2.3 in order to make information sales profitable, the analyst “adds” some noise to the information she possesses. Thus, in a dynamic setup, in

\[12\] Indeed, absent a price change that informed traders cannot anticipate in period one, it would be suboptimal to establish a position X_{i1} and already plan to change it in period two.
every period n the analyst chooses the precision τ_{n} of the normal random variable ϵ_{n} from which the error term is drawn.

Using the expressions for the price of information obtained in proposition 6 and starting from the second period, given any τ_{1}

$$\tau^{*}_{2} \in \arg \max_{\tau_{2}} \int_{0}^{1} \phi_{2} \, \mathrm{d}i,$$

which gives as a unique positive solution

$$\tau^{*}_{2} = \frac{1}{\gamma} \sqrt{\frac{\tau_{iC1}}{\tau_{u}}},$$

Note that τ^{*}_{2} has the same functional form as $\hat{\tau}_{e}$. However, $\tau^{*}_{2} > \hat{\tau}_{e}$. Indeed, given any τ_{1}, the analyst’s second period profit maximization problem is similar to the one she faces in the static market. However, as the precision of the information traders hold before buying the second period signal (i.e. τ_{iC1}) is strictly higher than the one they hold prior to acquiring information in a static market (i.e. τ_{v}), the signal quality the analyst chooses in the former case must be strictly higher than the one she sets in the latter.

In the first period the analyst then chooses τ_{1} to solve

$$\max_{\tau_{1}} \int_{0}^{1} \frac{1}{2} \left(\ln \frac{\tau_{iC1}}{\tau_{C1}} + \ln \frac{\tau_{C2}^{2}(\tau^{*}_{2}) + \tau_{1}}{\tau_{C2}^{2}(\tau^{*}_{2}) + \tau_{1}} \right) \, \mathrm{d}i$$

$$= \max_{\tau_{1}} \int_{0}^{1} \frac{1}{2} \left(\ln \frac{\tau_{iC1}}{\tau_{C1}} + \ln \frac{2\tau_{iC1} + \tau^{*}_{2}}{\tau_{C1} + \tau^{*}_{2}} \right) \, \mathrm{d}i.$$

The next proposition characterizes the solution to (4.5), comparing it with the static benchmark.

Proposition 7 In the 2-period information market, there exists a unique sequence of optimal signal precisions $\{\tau^{*}_{1}, \tau^{*}_{2}\}$ that solves the analyst’s profit maximization problem, where

1. τ^{*}_{1} is the unique positive solution to (4.5), $\tau^{*}_{1} = (1/\gamma) \sqrt{\tau_{iC1}/\tau_{u}}$, where $\tau_{iC1} = \tau_{iC1}(\tau^{*}_{1})$;

2. $\tau^{*}_{1} < \hat{\tau}_{e} < \tau^{*}_{2}$.

Proof. See the appendix. QED
In a dynamic market an analyst is faced with two problems: first, and similarly to the one-shot information sales case, she needs to take into account the negative effect that the price externality induced by the sale of information has on both period profits.\footnote{In this case the problem is actually worsened by the compound negative effects that the first period signal sale has on first and second period profits.} Second, and differently from the one-shot case, she faces an intertemporal self-competition problem. As a durable goods monopolist (Bulow [1982, 1986] and Coase [1972]) once the first signal has been sold to informed traders, in order to make a new signal palatable to potential buyers, she must render partially obsolete the first period signal. The analyst thus scales down the quality of the first period information, and increases the quality of the information sold in the second period.

To describe this in more detail, when the analyst chooses the second period signal quality she solves

$$\max_{\tau_2} \int_0^1 \gamma \ln \left(\frac{\tau C_2}{\tau C_2 + \tau_1} \right) d\tau_2 \Leftrightarrow \max_{\tau_2} \int_0^1 \gamma \left(\ln \left(\frac{\tau_1 C_2}{\tau C_2} - \ln \left(\frac{\tau C_2 + \tau_1}{\tau C_2} \right) \right) d\tau_2, $$

for any given first period signal quality τ_1. Thus, the price traders are willing to pay in order to get s_1 captures the informational advantage they have in the second period vis-à-vis market makers net of the informational advantage they would have holding s_1 and observing both period equilibrium prices $\{p_1, p_2\}$. To maximize her profit, the analyst has thus an incentive to market a signal that in a way “kills-off” the second-hand market for the first period signal.\footnote{The expression “second-hand” market here is used by way of analogy with the durable goods monopolist literature. Actually, traders do not resell their signals. However, we can always interpret the fact that traders are able to use in period two the signal they acquired in period one, as a second-hand market in which each trader resells to himself the signal previously acquired.} She does so by selling a signal whose precision τ_2^* is strictly higher than the precision of the first period signal.

Going back to period one, the analyst now faces the following problem:

$$\max_{\tau_1} \int_0^1 \gamma \left(\ln \left(\frac{\tau C_1}{\tau C_1} + \ln \left(\frac{2\tau C_1 + \tau_2^*}{\tau C_1 + \tau C_1} \right) \right) d\tau_1 \Leftrightarrow \max_{\tau_1} \int_0^1 \gamma \left(\ln \left(1 + \frac{1}{\gamma} \frac{\lambda C_1}{\tau u} \right) + \ln \left(1 + \frac{1}{\gamma} \frac{\lambda C_2}{\tau u} + \frac{1}{\gamma} \frac{\lambda C_2}{\tau u} \right) \right) d\tau_1,$$

As in the static case, she is interested in choosing a signal that makes the first period market as thin as possible. However, she must now take into account two additional contrasting effects. Increasing the first period signal precision allows traders to grab a higher share of second period noise traders’ losses and this, in turn, increases the price they are willing to pay to get s_1. On the other hand, a higher first period signal
precision inevitably increases second period market depth, thus reducing the size of the second period rents the analyst can extract from traders. As the second effect is stronger than the first, the analyst chooses $\tau^*_e < \hat{\tau}_e$.\(^{15}\)

Therefore, the analyst sells a pair of signals that impoverishes first period information quality while consistently enhancing second period private information. As long lived information is a durable good that cannot be rented, the analyst needs to force the obsolescence of her first period signal. She does so combining a low first period signal quality (hence, reducing the product durability as in Bulow 1986) and introducing high second period signal quality (hence, marketing a new product that makes the old one obsolete as in Waldman 1993).\(^{16}\)

Remark 2 While the analyst's and the durable goods monopolist's problem share various common features, they also display a number of differences. First, note that as opposed to the durable goods producer, the analyst does not produce the fundamental information on which the signals she sells are based. In other words, she only transforms a raw-material whose production is located at the upstream level. As a consequence, the strategy of accelerating the first period signal decay also impacts on her ability to sell further signals in the future.\(^{17}\)

Also, differently from a durable goods monopolist, the analyst finds it optimal to serve the whole market in both periods. Indeed, segmenting the first period information market relaxes second period competition but also reduces the profits the analyst reaps from first period traders. Numerical simulations show that the latter effect is always stronger than the former.\(^{18}\)

Denote by $\phi_1(\tau^*_e),\phi_2(\tau^*_e)$, respectively the optimal price of the first and second period signal and with $\phi(\hat{\tau}_e)$ the optimal price in the static market. The next propo-

\(^{15}\)An alternative intuition for this result is the following one. When setting τ^*_e, the analyst tries to extract as much surplus as possible from traders but at the same time she also tries to limit the competition she expects to face in the second period owing to the information traders bought in period one. As a result, she scales down the quality of the first period signal.

\(^{16}\)The signal durability here refers to the need that traders have to acquire additional information over time. To be sure, a fully revealing signal is infinitely durable (as it kills traders’ need to receive further information in the future), while an infinitely noisy signal is infinitely perishable (as it does not affect traders’ demand for additional information).

\(^{17}\)This is in contrast with the effects of a software producer’s strategy of strategically releasing new versions of a spreadsheet. The value that final users attach to the spreadsheet per-se does not change across new releases. Conversely, the value that traders attribute to a new signal on an unchanged fundamental does decrease.

\(^{18}\)This result thus strengthens Admati and Pfleiderer’s (1986) conclusion that in a single period information market vertical differentiation is never profitable.
sition derives the implications of the optimal solution for the price of information and the depth of the market.

Proposition 8 The information allocation chosen by the analyst prescribes that

1. $\phi_1(\tau_{e_1}^*) > \phi(\hat{\tau}) > \phi_2(\tau_{e_1}^*)$;
2. $\lambda_C(\hat{\tau}_e) > \lambda_{C_1}(\tau_{e_1}^*) > \lambda_{C_2}(\tau_{e_1}^*)$.

Therefore, while the price of private information decreases across trading periods, depth increases.

Proof. See the appendix. QED

As the analyst kills-off the second-hand market for the first period signal, traders’ net informational advantage vis-à-vis market makers decreases and the price they are willing to pay to buy s_{i_2} ends up being lower than the one they pay to get s_{i_1}. The flip side of the coin is that the adverse selection problem faced by market makers becomes less severe and market depth increases.

Remark 3 Increasing patterns of market depth have been documented at the inter-daily level by the empirical finance literature (see Foster and Viswanathan 1993). Theoretical explanations of this phenomenon have always been related to the strategic trading of insiders facing some form of competitive pressure, that speeds-up the market makers’ learning process. Foster and Viswanathan (1990) show that a single insider is forced to spend his informational advantage at a faster pace than he would otherwise do, owing to the presence of impending public information. Holden and Subrahmanyam (1992) consider a market where the competition among symmetrically informed insiders forces more aggressive trading and a faster unfolding of the underlying uncertainty. According to this paper, in contrast, increasing levels of depth may be entirely compatible with an asset market where no trader has market power, and forthcoming public information poses no threat to informed traders’ speculative abilities. In such a market, instead, the information flow is controlled by a monopolistically informed agent who, owing to the nature of the information she sells, intertemporally competes against herself.\(^{19}\)

\[^{19}\text{Therefore, as in the literature on vertical control (Tirole 1988) – where consumers may face a competitive industry controlled by a monopolistic supplier of the intermediate good influencing the price of the final good – here we can think of liquidity traders as facing a sector of competitive traders whose behavior is controlled by a monopolistic supplier of information exerting a (partial) control over market depth.}\]
5 Insider Trading and Information Sales

We are now ready to contrast the dynamic properties of the competitive market where information is sold with those of the market with a strategic trader. An immediate consequence of proposition 5 is the following:

Proposition 9 In the 2-period asset market:

1. \(\beta_2 < \gamma \tau^*_C \);
2. \(\lambda_{I2} > \lambda_{C2} \);
3. \(\tau_{I2} < \tau_{C2} \).

Proof. See the appendix. QED

Therefore, as opposed to the static market result, in a dynamic market an insider induces different patterns for second period depth and price informativeness. In particular, as he directly uses his informational advantage, he avoids the effect of intertemporal self-competition, fully internalizes the negative effect of aggressive speculation, and trades less intensely. This, in turn, makes the second period market thinner and its price less informative.

The insider’s second period problem is akin to the problem he faces in the static market. The equilibrium solution prescribes that he trades in a way to minimize second period market depth. The information monopolist, instead, chooses the second period information quality to minimize second period depth but, as argued above, also to minimize the second period value competitive traders attach to their first period signal. To see this, rewrite (4.4) as follows

\[
\phi_2 = \frac{\gamma}{2} \ln \left(1 + \frac{\tau C_2}{\tau C_2 + \tau e_1} \frac{1}{\gamma \tau u} \right).
\]

Therefore, \(\tau_{e2} \) must make noise traders’ second period expected losses as large as possible while slashing the information advantage traders have in the second period thanks to the signal they bought in period 1. As \((\tau_{C2}/(\tau_{C2} + \tau_{e1})) \) is strictly decreasing

\[20\text{A simple intuition for this result – although only partially correct since trading aggressiveness differ across the equilibria in the two markets – is the following one. Owing to intertemporal competition, the informativeness of the second period price induced by the analyst is given by } \tau_{C2} = 2\tau C_1(\tau^*_e) + \tau^*_e \text{ while, according to proposition 5 an insider trades in a way that second period public precision is “only” twice as high as in the first period.} \]
in τ_{e1}, this forces the analyst to sell a signal whose precision is strictly higher than
the one minimizing $(1/\lambda C 2)$.

According to proposition 9 and differently from proposition 3, in a dynamic market
the way through which a monopolistically informed agent conveys information about
the fundamentals to the market does matter. In particular, whether such information
is exploited directly or sold to competitive traders changes the patterns of depth and
price efficiency. In contrast to the view according to which insider trading improves
the accuracy of stock prices (see e.g., Carlton and Fischel 1983, and Manne 1966), the
above result shows instead that a single insider can exploit his monopolistic position
in such a way as to choose the rate at which the market learns the fundamental, in
this way impairing second period liquidity and price efficiency.

Conversely, a monopolistic analyst, owing to intertemporal competition, loses con-
trol over the information flow and speeds up the market learning process. In the spirit
of the durable goods monopolist interpretation, the insider thus acts in a way that is
much akin to the monopolistic producer that rents instead of selling. Indeed, the mo-
nopolistic renter fully internalizes the negative effect of overproduction by keeping the
ownership of the goods he markets and thus cuts back on the quantities he releases.
The insider, on the other hand, by holding on to his informational advantage, directly
bears the negative effects of an excessively aggressive behavior, and speculates less
intensely.

Remark 4 As noted in proposition 7 in the first period the analyst reduces the
quality of the information she sells. It is easy to show that this makes first period
depth and price informativeness in the competitive market lower than in the strategic
market. As I will argue in the next section, this result only affects the first period:
when $N > 2$ numerical simulations show that starting from the second round of trade,
the competitive market is always deeper than the strategic market; furthermore,
price informativeness in the competitive market is always higher than in the strategic
market for all $n = 1, 2, \ldots N$.

5.1 The General N-Period Information Market

The intuition gained in the previous section shows that in a dynamic market an insider
is able to retain strong control over the information leakage produced by his trades.
Conversely, an analyst facing intertemporal competition, is forced to give up most
of such control to information buyers. If that is the case, as the number of trading
rounds increases this lack of control should be exacerbated.

In this section, I compare the multiperiod versions of the 2-period market of section 3.2. As is well known, both the results in propositions 4 and 5 can be generalized to an arbitrary number of periods \(N \geq 2 \) (see, respectively Vives 1995a and Kyle 1985). Building on these extensions, consider now the general, \(N \geq 2 \)-period case and suppose that in every period \(n \) the analyst sells a signal of a different (conditional) precision \(\tau_n \), charging a price \(\phi_n \). The next proposition gives an explicit expression for \(\phi_n \), generalizing proposition 6.

Proposition 10 In the \(N \geq 2 \)-period information market, the maximum price \(\phi_n \) an agent \(i \) is willing to pay to buy a signal \(s_n \) in each period \(n \) is given by

\[
\phi_n = \gamma \left(\ln \frac{\tau_{iCN}}{\tau_{CN} + \sum_{t=1}^{n-1} \tau_t} + \sum_{n+1 \leq t \leq N} \ln \frac{\tau_{Ct} + \sum_{k=1}^{n} \tau_k}{\tau_{Ct} + \sum_{k=1}^{n} \tau_k} \right),
\]

where \(\tau_{CN} = (\text{Var}[v|p^n])^{-1} = \tau_v + \tau_u \sum_{t=1}^{n} (\Delta a_n)^2 \), and \(\tau_{iCN} = (\text{Var}[v|s_i^n,p^n])^{-1} = \tau_{CN} + \sum_{t=1}^{n} \tau_t \).

Proof. See the appendix. QED

According to (5.6), \(\phi_n \) can be decomposed as follows:

\[
\phi_n = \gamma \left(\ln \frac{\tau_{iCn}}{\tau_{CN}} - \ln \frac{\tau_{CN} + \sum_{t=1}^{n-1} \tau_t}{\tau_{CN}} \right) + \\
\gamma \left(\sum_{n+1 \leq t \leq N} \left(\ln \frac{\tau_{Ct} + \sum_{k=1}^{n} \tau_k}{\tau_{Ct} + \sum_{k=1}^{n} \tau_k} - \ln \frac{\tau_{Ct} + \sum_{k=1}^{n-1} \tau_k}{\tau_{Ct} + \sum_{k=1}^{n-1} \tau_k} \right) \right).
\]

Thus, in the \(N \)-period market, in every period \(n \) a signal is useful both because of the increase in informational advantage it allows a trader to hold in the same period \(n \) (the first term in the above expression) and because of the increase in the informational advantage it determines in every future period \(k = n + 1, n + 2, \ldots, N \) (the second term).

Given any trading length \(N \), the last period optimal precision is thus given by \(\tau_{\epsilon^*_N} = (1/\gamma) \sqrt{\tau_{iCN}/\tau_u} \). Recursive substitution of \(\tau_{\epsilon^*_N} \) into every period \(n \)'s profit function, shows that the analyst solves a sequence of maximization problems such
that at every time \(n = 1, 2, \ldots, N - 1 \) she chooses

\[
\tau^*_n \in \arg \max_{\tau_n} \left(\sum_{t=n}^{N-1} \phi_t + \phi^*_N \right)
\]

\[
\equiv \frac{\gamma}{2} \left(\sum_{k=n}^{N-1} \ln \frac{\tau_{ck}}{\tau_{ck} + \sum_{j=1}^{n-1} \tau_{cj}} + \ln \frac{2\tau_{CN-1} + \tau^*_N}{\tau_{CN-1} + \sum_{j=1}^{n-1} \tau_{cj} + \tau_{CN-1}} \right),
\]
given the sequence \(\{\tau^*_t\}_{t=n+1}^{N-1} \).

Using the above expression for the value of information I run numerical simulations for the case \(N = 4 \). The aim is to verify that the results obtained in proposition [9] still hold when the number of trading rounds increases. Letting \(\tau_v, \tau_u, \gamma \in \{.2, .4, .6, .8, 1, 4, 6\} \), in all of the simulations the analyst induces a more aggressive traders’ behavior than that displayed by the insider. Hence, the effect of intertemporal competition leads the analyst to lose control over the information flow, whereas the insider, lacking competitive pressure, can trade less aggressively. As a result from the second trading round onwards, the competitive market is more liquid than the strategic market (see figure 1).

As to price informativeness, the numerical simulations show that the competitive market leads to a more rapid resolution of the fundamentals’ uncertainty than the strategic market starting from the first trading round. The intuition is straightforward: as the number of trading rounds increases, traders are willing to pay a higher price for the first period signal. This, in turn, shifts upwards the information quality supplied by the analyst, thus increasing competitive traders’ aggressiveness (see figure 2).

6 Conclusions

In this paper I have argued that as fundamental information resembles in many respects a durable good, the effects of its incorporation into stock prices are strictly related to the agent controlling its flow. A monopolistic analyst selling information tackles an intertemporal self-competition problem that leads her to partially release the control over the information flow to traders. Conversely, an insider acts “as if” he
would rent the information he possesses to the market, thus securing a tighter control over the information flow. As a result, for a given piece of information, a market where information is provided by an analyst is deeper and more efficient than one where information is transmitted by an insider.

In contrast to what most of the literature on insider trading traditionally maintains (see e.g., Leland 1992 and Manne 1966), this paper thus shows that in a dynamic context insider trading, far from “accelerating” the resolution of uncertainty, may actually slow down information impounding into prices. Negative efficiency effects of insider trading have already been pointed out by Fishman and Hagerty (1992). In their paper a trader may decide not to pay the cost of acquiring information owing to the presence of an insider that erodes his return from being informed. In some cases this can impair price efficiency. My paper adds to this point, as the compound effect of competition from an insider and a reduced control over the information flow may keep an analyst away from selling long-lived information, leaving open to the insider the possibility of slowly exploiting his informational advantage. This sheds some light on the evidence presented by Bris (2003) according to which most of the insider trading episodes typically occur on information that is long-lived.

In this paper I have focused on the monopolistic analyst case. Intuition suggests, however, that the existence of competition among different information providers can only reinforce the effects I have described. Thus, the qualitative predictions of the model should not be altered by the introduction of competition. Finally, I have restricted the analysis to the single asset case. As traders typically hold portfolios of assets, a natural application of the present work is to the analysis of the multi-security case. I leave this and other extensions to future research.

21Bris (2003) focuses on insiders’ behavior before tender offer announcements, the event at which insider trading is generally considered most profitable.

22Holden and Subrahmanyam (1992) show that competition among insiders speeds up the resolution of uncertainty, implying a pattern of increasing liquidity. In light of this paper’s results competition among analysts should further increase the speed of information impounding and improve market depth.

References

Appendix

Proof of proposition 6

Start from the second period. Owing to the assumption of a CARA utility function and the normality of the random variables, a trader’s expected utility from using the signal she bought in period 1 (together with first and second period equilibrium prices) is given by

\[E[U(X_{i2}(s_{i1}, p_1, p_2) (v-p_2)) | \{s_{i1}, p_1, p_2\}] = -\exp\{-a_i^2 (s_{i1} - p_2)^2/(2\tau^2(\tau_{C2} + \tau_{\epsilon1}))\}. \]

On the other hand if the trader chooses to acquire the second period signal as well, her expected utility is given by

\[E[U(X_{i2}(s_{i1}, s_{i2}, p_1, p_2) (v-p_2)) | \{s_{i1}, s_{i2}, p_1, p_2\}] = -\exp\{-a_i^2 (\bar{s}_{i2} - p_2)^2/(2\tau^2(\tau_{C2} + \tau_{\epsilon1}))\}. \]

Using a standard result from normal theory (see e.g., Danthine and Moresi 1992), prior to deciding whether or not to buy \(s_{i2} \), the expected utility the trader earns in the first case is given by

\[E[U(X_{i2}(s_{i1}, p_1, p_2) (v-p_2)) | \{s_{i1}, p_1, p_2\}] = -(\tau_{C2}/(\tau_{C2} + \tau_{\epsilon1}))^{1/2}, \]

whereas a trader that plans to buy no signal makes zero expected profits (as the information she ends up holding coincides with the one of the market makers that,
under the competitive assumption earn zero profits). Therefore, the maximum price
a trader is willing to pay for using the first period signal in period one is given by
\[\phi(s_i || p_1) = \frac{\gamma}{2} \ln \frac{\tau_{C1}}{\tau_{C1}}. \]

However, the trader can also use the same signal in period two, insofar as it allows
him to have an informational advantage vis-à-vis market makers independently
from buying the second signal. The expected utility the trader expects to earn from ob-

\[E[U(X_{i2}(s_i, p_1, p_2)(v - p_2))] = -\left(\frac{\tau_{C2}}{\tau_{C2} + \tau_{\epsilon_1}}\right)^{1/2} \]

which compared with the expected utility he earns only observing equilibrium prices
gives
\[\phi(s_i || p_1, p_2) = \frac{\gamma}{2} \ln \frac{\tau_{C2} + \tau_{\epsilon_1}}{\tau_{C2}}. \]

QED

Proof of proposition 7

Given traders’ willingness to pay, the analyst is faced with the problem of choosing
the optimal sequence of signals’ precisions \{\tau_{\epsilon_1}^*, \tau_{\epsilon_2}^*\}. Starting from the second period
he solves
\[\max \int_0^1 \phi(s_{i2} || s_{i1}, p_1, p_2) \, di. \]

The first order condition for the second period signal precision is given by
\[\frac{\gamma(\tau_{\epsilon_1} + \gamma^2 \tau_{\epsilon_2} \tau_u + \tau_v - \gamma^2 \tau_{\epsilon_2} \tau_u)}{2\tau_{iC1} \tau_{iC2}} = 0, \] (6.7)

and its unique positive solution gives \(\tau_{\epsilon_2}^* = (1/\gamma)\sqrt{\tau_{iC1}/\tau_u} \). To see that this solution
is a maximum, let \(F_1(\tau_{\epsilon_2}) = \tau_{C2} + \tau_{\epsilon_1} \). Then (6.7) can be rewritten as follows:
\[\psi(\tau_{\epsilon_2}) = (F_1(\tau_{\epsilon_2})(\tau_{\epsilon_2} + F_1(\tau_{\epsilon_2})))^{-1/2}(F_1(\tau_{\epsilon_2}) - 2\gamma \tau_{\epsilon_2} \tau_u). \]

Differentiating the previous expression with respect to \(\tau_{\epsilon_2} \) gives
\[\frac{\partial \psi(\cdot)}{\partial \tau_{\epsilon_2}} \propto (F_1'(\tau_{\epsilon_2}) - 4\gamma^2 \tau_{\epsilon_2} \tau_u) F_1(\tau_{\epsilon_2})(\tau_{\epsilon_2} + F_1(\tau_{\epsilon_2}))
- (F_1(\tau_{\epsilon_2}) - 2\gamma^2 \tau_{\epsilon_2} \tau_u)(F_1'(\tau_{\epsilon_2})(\tau_{\epsilon_2} + F_1(\tau_{\epsilon_2})) + F_1(\tau_{\epsilon_2})(1 + F_1(\tau_{\epsilon_2}))), \]

and evaluating it at optimum \((\partial \psi(\cdot)/\partial \tau_{\epsilon_2})|_{\tau_{\epsilon_2} = \tau_{\epsilon_2}^*} \propto (F_1'(\tau_{\epsilon_2}^*) - 4\gamma^2 \tau_{\epsilon_2} \tau_u) F_1(\tau_{\epsilon_2}^*)(\tau_{\epsilon_2}^* + F_1(\tau_{\epsilon_2}^*)) \). As one can check, the sign of the above expression is always negative, and
the proposed solution is indeed a maximum.
Consider now the first period. Using $\tau_{e_2}^{*}$, the analyst’s objective function becomes
\[
\int_0^1 \phi_1 + \phi_2 \, d\tau = \int_0^1 \gamma \left(\frac{\tau_{C1}}{\tau_{C1}} + \ln \frac{2\tau_{C1} + \tau_{e_2}^{*}}{\tau_{C1} + \tau_{C1}} \right) d\tau.
\]
Let
\[
F(\tau_{e_1}) = \frac{\partial (\phi_1 + \phi_2)}{\partial \tau_{e_1}} = \frac{\gamma}{2} \left(\frac{\tau_v - \gamma^2 \tau_{e_1} \tau_u}{\tau_{C1} \tau_{C1}} - \frac{2\gamma^2 \tau_{e_1} \tau_u (3 + 2\gamma(\gamma \tau_{e_1} \tau_u + \sqrt{\tau_u \tau_{C1}})) + \tau_{e_1} (1 + 4\gamma^2 \tau_u \tau_v) - 4\gamma \tau_v \sqrt{\tau_u \tau_{C1}}}{2\tau_u \tau_{e_2} (\tau_{C1} + \tau_{C1}) (2\tau_{C1} + \tau_{e_2}^{*})} \right).
\]
Then, as one can check, $F(0) = (\tau_v + 2\gamma \sqrt{\tau_u \tau_{e_2}^{*}})^{-1}(1 + 3\gamma \sqrt{\tau_u \tau_v}) > 0$, and $F(\hat{\tau}_{e_1}) < 0$.
Hence, as $F(\tau_{e_1})$ is continuous in τ_{e_1}, there exists a $\tau_{e_1}^{*} \in (0, \hat{\tau}_{e_1})$ such that $F(\tau_{e_1}^{*}) = 0$ and $F'(\tau_{e_1}^{*}) < 0$. To see that such a point is unique indicate with $F_1(\tau_{e_1}) = (\gamma/2)(\partial \ln(\tau_{C1} / \tau_{C1}) / \partial \tau_{e_1})$ and with $F_2(\tau_{e_1}) = (\gamma/2)(\partial \ln((\tau_{C1} + \tau_{C1}))^{-1}(2\tau_{C1} + \tau_{e_2}^{*}) / \partial \tau_{e_1})$. Hence $F(\tau_{e_1}) = F_1(\tau_{e_1}) + F_2(\tau_{e_1})$. Now, both $(\gamma/2)\ln(\tau_{C1} / \tau_{C1})$ and $(\gamma/2)\ln((\tau_{C1} + \tau_{C1})^{-1}(2\tau_{C1} + \tau_{e_2}^{*})$ are unimodal in τ_{e_1}, in particular $F(\tau_{e_1}) > 0 \iff \tau_{e_1} < (1/\gamma) \sqrt{\tau_v / \tau_u}$, while $F_2(\tau_{e_1}) > 0 \iff \tau_{e_1} < (1/\gamma) \sqrt{\tau_v / \tau_u}$. Thus, as $\tau_{e_1}^{*} \in (0, (1/\gamma) \sqrt{\tau_v / \tau_u})$, then for any $\eta > 0$, there is a $\tilde{\tau}_{e_1}^{*} \in (\tau_{e_1}^{*}, \tau_{e_1}^{*} + \eta)$ such that $F_i(\tau_{e_1}^{*}) > F_i(\tilde{\tau}_{e_1})$ for $i = 1, 2$.
Hence $0 = F_1(\tau_{e_1}^{*}) + F_2(\tau_{e_1}^{*}) > F_1(\tilde{\tau}_{e_1}) + F_2(\tilde{\tau}_{e_1})$ and the latter inequality implies that $\tau_{e_1}^{*}$ is unique.

The second part of the proposition is immediate as $(\gamma \tau_{e_1}^{*})^2 \tau_u < \tau_{C1}^{*}$. QED

Proof of proposition

For the first part, notice that $\phi_1 - \phi_2 \geq 0 \iff G(\tau_{e_1}) \equiv 4\tau_{C1}^3 - \tau_{C1}(\tau_{C1} + \tau_{C1})(2\tau_{C1} + \tau_{e_2}^{*}) \geq 0$. Evaluating $G(0) = -(2\tau_{e_2}^{*} / \gamma) \sqrt{\tau_v / \tau_u} < 0$, while $G((1/\gamma) \sqrt{\tau_v / (3\tau_u)}) > 0$.
Hence as $G(\cdot)$ is continuous in τ_{e_1}, there is a $\tilde{\tau}_{e_1} \in (0, (1/\gamma) \sqrt{\tau_v / (3\tau_u)})$ such that $G(\tilde{\tau}_{e_1}) = 0$ and $G'(\tilde{\tau}_{e_1}) > 0$. Furthermore as one can check $G(\tau_{e_1}) = \tau_{e_2}^{*}(\tau_{C1} + \tau_{C1})(2\gamma \tau_{e_1} \sqrt{\tau_u \tau_{C1} - \tau_{C1}}) + 2\gamma \tau_{C1} \tau_{e_1}$ and as all of the terms of the previous expression are increasing in τ_{e_1}, the point $\tilde{\tau}_{e_1}$ is unique. Now, evaluating $F((1/\gamma) \sqrt{\tau_v / (3\tau_u)}) > 0$, hence it must be that $\tilde{\tau}_{e_1} < (1/\gamma) \sqrt{\tau_v / (3\tau_u)} < \tau_{e_1}^{*}$ and as for any $\tau_{e_1} > \tilde{\tau}_{e_1}$, $G(\tau_{e_1}) > 0$, the result follows.

To see that $\phi_1(\tau_{e_1}^{*}) > \phi(\tilde{\tau}_{e_1})$, notice that
\[
\phi_1 = \frac{\gamma}{2} \left(\ln \frac{\tau_{C1}}{\tau_{C1}} + \ln \frac{2\tau_{C1}}{\tau_{C1} + \tau_{C1}} \right),
\]
and its unique maximum coincides with the one of the static information market, i.e.
\[\hat{\tau}_e = (1/\gamma)\sqrt{\tau_v/\tau_u}. \]
Now, \((1/\gamma)\sqrt{\tau_v/3\tau_u} < \tau^*_{\epsilon_1} < \hat{\tau}_e\), hence to prove that \(\phi_1(\tau^*_{\epsilon_1}) > \phi(\hat{\tau}_e)\) it is sufficient to show that \(\phi(\hat{\tau}_e) < \phi_1((1/\gamma)\sqrt{\tau_v/3\tau_u})\). Evaluating, \(\phi(\hat{\tau}_e) < \phi_1((1/\gamma)\sqrt{\tau_v/3\tau_u})\) if and only if
\[\frac{2\gamma\tau_v(3\sqrt{3} - 4) + \sqrt{\tau_v/\tau_u}(3 - \sqrt{3})}{2\gamma\tau_v(\sqrt{3} + 8\sqrt{\tau_v/\tau_u})} > 0, \]
a condition which is always satisfied. Next, to see that \(\phi_2(\tau^*_{\epsilon_1}) < \phi(\hat{\tau}_e)\), notice that
\[\phi_2(\tau^*_{\epsilon_1}) = \frac{2}{\gamma} \ln \left(1 + \frac{1}{2\gamma\sqrt{\tau_v\tau_C1(\tau^*_{\epsilon_1})}}\right), \]
and a direct comparison with \(\phi(\hat{\tau}_e)\) gives the desired result.

For the second part, notice that \(\lambda_{C1}(\tau^*_{\epsilon_1}) > \lambda_{C2}(\tau^*_{\epsilon_1})\) if and only if \(a_1\tau_{C2} > \Delta a_2\tau_{C1} \Leftrightarrow a_1^2\tau_u(\tau_{C1} + \tau_{C1})^2 > \tau^2_{C1}\tau_{C1}\). Define \(H(\tau_{\epsilon_1}) = a_1^2\tau_u(\tau_{C1} + \tau_{C1})^2 - \tau^2_{C1}\tau_{C1}\), and notice that \(H(0) = -\tau^3_{v}\), and that \(\lim_{\tau_{\epsilon_1} \to \infty} H(\tau_{\epsilon_1}) = \infty\). Hence, there is a \(\hat{\tau}_{\epsilon_1}\) such that \(H(\hat{\tau}_{\epsilon_1}) = 0\). Furthermore, \(H'(\hat{\tau}_{\epsilon_1}) > 0\), and as \(H'(\tau_{\epsilon_1}) = \gamma a_1\tau_u(18a_1^4\tau_u^2 + 2\tau_v^2 + 4\tau^2_{\epsilon_1} + 15a_1^2\tau_u\tau_{\epsilon_1} + 20a_1^2\tau_u\tau_v + 6\tau_{\epsilon_1}\tau_v - \tau_v^2)\), \(\hat{\tau}_{\epsilon_1}\) is unique. Consider then the point \(\hat{\tau}_{\epsilon_1} = (1/\gamma)\sqrt{\tau_v/3\tau_u}\) and notice that \(F(\hat{\tau}_{\epsilon_1}) > 0\) which implies that \(\tau^*_{\epsilon_1} > \hat{\tau}_{\epsilon_1}\). Evaluating \(H(\hat{\tau}_{\epsilon_1}) = \tau_v^2/(9\gamma^2\tau_u)\), which implies that \(\hat{\tau}_{\epsilon_1} < \hat{\tau}_{\epsilon_1} < \tau^*_{\epsilon_1}\) or, equivalently, that \(\lambda_{C1}(\tau^*_{\epsilon_1}) > \lambda_{C2}(\tau^*_{\epsilon_1})\).

To see that \(\lambda_{C1}(\hat{\tau}_e) > \lambda_{C1}(\tau^*_{\epsilon_1})\), notice that \(\hat{\tau}_e > \tau^*_{\epsilon_1}\) and as for \(\tau_e \leq \hat{\tau}_e\), \(\lambda_{C1}(-)\) increases in \(\tau_e\), the result follows.

QED

Proof of proposition [9]

Given the expressions for the equilibrium parameters, start from the second part of the claim. To see that \(\lambda_{I2} > \lambda_{C2}(\tau^*_{\epsilon_1})\), notice that given \(\tau^*_{\epsilon_2}\), \(\lambda_{C2} = (\tau_{C1} + \tau_{C1})^{1/2}\), hence \((\partial\lambda_{C2}/\partial\tau_{\epsilon_1}) < 0\) and \(\lambda_{C2}(\tau^*_{\epsilon_1}) < \lambda_{C2}((1/\gamma)(\tau_v/3\tau_u))\). Thus, as one can check, \(\lambda_{C2}((1/\gamma)(\tau_v/3\tau_u)) < \lambda_{I2}\). Next, \(\beta_2 = (1/2\lambda_{I2}) < (1/2\lambda_{C2})\), while \(\gamma\tau^*_{\epsilon_2} > (1/2\lambda_{C2})\). Therefore, \(\gamma\tau^*_{\epsilon_2} > \beta_2\). Finally, as \(\lambda_{I2} > \lambda_{C2}(\tau^*_{\epsilon_1})\), and \(\lambda_{I2} = \beta_2\tau_u\tau_{I2}^{-1}\), we have that \(\beta_2\tau_u\tau_{I2}^{-2} > \Delta a_2\tau_u\tau_{C2}^{-1}(\tau^*_{\epsilon_1})\). However, as \(\beta_2 < \Delta a_2\), then it must be that \(\tau_{I2}^{-1} > \tau_{C2}^{-1}(\tau^*_{\epsilon_1})\) or that \(\tau_{I2} < \tau_{C2}(\tau^*_{\epsilon_1})\).

QED
Proof of proposition [10]

Without loss of generality, the proof is given for the case \(N = 3 \). Starting from \(n = 3 \), an information buyer that has already observed \(\{s_{i1}, s_{i2}\} \), has to decide whether to acquire \(s_{i3} \). If he does so, then according to proposition 4, \(X_{i3}(\tilde{s}_{i3}, p_3) = a_3(\tilde{s}_{i3} - p_3) \), with \(a_3 = \gamma \sum_{t=1}^{3} \tau_{et} \), \(E[U(X_{i3}(v - p_3))|\tilde{s}_{i3}, p_3^3] = -\exp\{-(a_3^2/2\gamma^2)(\tilde{s}_{i3} - p_3)^2\} \), and

\[
E \left[E \left[U \left(X_{i3}(v - p_3) \right) \right] \left(\tilde{s}_{i3}, p_3^3 \right) \right] = - \left(\frac{\tau_{C3}}{\tau_{C3}^3} \right)^{1/2}.
\]

On the other hand, if the trader does not buy \(s_{i3} \), then it is easy to see that

\[
E \left[U \left(X_{i3}(v - p_3) \right) \right] \left(\tilde{s}_{i2}, p_3^2 \right) = -\exp \left\{ - \left(\frac{a_2^2}{2\gamma^2(\tau_{C3}^3 + \sum_{t=1}^{2} \tau_{et})} \right) (\tilde{s}_{i2} - p_3)^2 \right\},
\]

and

\[
E \left[E \left[U \left(X_{i3}(v - p_3) \right) \right] \left(\tilde{s}_{i2}, p_3^2 \right) \right] = - \left(\frac{\tau_{C3}}{\tau_{C3}^3 + \sum_{t=1}^{2} \tau_{et}} \right)^{1/2}.
\]

Therefore, indicating with \(\phi_3(s_{i3}||s_{i2}^2, p_3^3) \) the maximum price the trader is willing to pay in order to acquire \(s_{i3} \) once he has already acquired the first and second period signals, his certainty equivalent for the third period signal is given by the solution to \(\exp\{\phi_2(s_{i3}||s_{i2}^2, p_3^3) / \gamma \} \left(\tau_{C3} / \tau_{C3}^3 \left(\sum_{t=1}^{2} \tau_{et} \right) \right)^{1/2} = (\tau_{C3} / \left(\sum_{t=1}^{2} \tau_{et} \right))^{1/2} \), or

\[
\phi_3 = \phi \left(s_{i3}||s_{i2}^2, p_3^3 \right) = \frac{\gamma}{2} \ln \frac{\tau_{C3}}{\tau_{C3}^3 + \sum_{t=1}^{2} \tau_{et}}.
\]

Stepping back to period 2, the price a trader is willing to pay to acquire \(s_{i2} \) is the sum of the price he would pay to exploit the informational advantage in (i) period two and (ii) in period three. Starting from (ii), as shown above if the trader possesses \(s_{i2} \), then his expected utility from trading in period 3 is given by (6.9). On the other hand if the trader only has \(s_{i1} \), then it is easy to see that \(X_{i3}(s_{i1}, p_3^3) = a_1(s_{i1} - p_3) \) and computing the ex-ante expected utility in this case,

\[
E \left[E \left[U \left(X_{i3}(v - p_3) \right) \right] \left(s_{i1}, p_3^3 \right) \right] = - \left(\frac{\tau_{C3}}{\tau_{C3} + \tau_{e1}} \right)^{1/2}.
\]

Therefore, the value of \(s_{i2} \) in period 3 is given by

\[
\phi \left(s_{i2}||s_{i1}, p_3^3 \right) = \frac{\gamma}{2} \ln \frac{\tau_{C3} + \sum_{t=1}^{2} \tau_{et}}{\tau_{C3} + \tau_{e1}}.
\]
To address point (i), we first need to find the trader’s second period strategy if he observes \(s_{i1}, s_{i2}\) and if he only observes \(s_{i1}\). Start from \(X_{i2}(\bar{s}_{i2}, p^2)\), that by dynamic optimality is the maximizer of

\[
E[U(X_{i2}(p_3 - p_2) + X_{i3}(v - p_3))|\{\bar{s}_{i2}, p^2\}]
\]

\[
= E \left[- \exp \left\{ - \frac{1}{\gamma} \left(X_{i2}(p_3 - p_2) + \frac{a^2_2(\bar{s}_{i2} - p_3)^2}{2\gamma(\tau_{C3} + \sum_{t=1}^2 \tau_{t_i})} \right) \right\} \right| \{\bar{s}_{i2}, p^2\} .
\]

Letting \(F = (2\gamma(\tau_{C3} + \sum_{t=1}^2 \tau_{t_i}))^{-1}a^2_2\), the argument in the above exponential can be rewritten as follows:

\[
F(p_3 - \mu)^2 + ((X_{i2}/\gamma) + 2F(\mu - \bar{s}_{i2}))(p_3 - \mu)
\]

\[
+ ((X_{i2}/\gamma) + F(2\bar{s}_{i2} - \mu))\mu + F\bar{s}_{i2} - (X_{i2}/\gamma)p_2,
\]

where \(p_3 - \mu\) is normally distributed (conditionally on \(\{\bar{s}_{i2}, p^2\}\)) with mean zero and variance \(\Sigma\) (i.e. \(\mu = E[p_3|\bar{s}_{i2}, p^2]\)), where

\[
\begin{align*}
\mu &= \frac{\Delta \tau_{C3}(\sum_{t=1}^2 \tau_{t_i})\bar{s}_{i2} + \tau_{C2}(\tau_{C3} + \sum_{t=1}^2 \tau_{t_i})p_2}{\tau_{C3}\tau_{C2}}, \\
\Sigma &= \frac{\Delta \tau_{C3}(\tau_{C3} + \sum_{t=1}^2 \tau_{t_i})}{\tau_{C2}\tau_{C3}}.
\end{align*}
\]

Using a standard property of normal random variables, it can be shown that (6.11) is equal to \((\Sigma^{-1} + 2F)^{-1/2}\Sigma^{-1/2}\) times

\[
- \exp \left\{ - \left((\mu^2 F + ((X_{i2}/2) - 2F\bar{s}_{i2})\mu + F\bar{s}_{i2}^2 - (X_{i2}/\gamma)p_2) \\
- (1/2)((X_{i2}/\gamma) - 2F(\bar{s}_{i2} - \mu))^2 (\Sigma^{-1} + 2F)^{-1} \right) \right\}
\]

The first order condition to maximize (6.12) with respect to \(X_{i2}\) yields

\[
X_{i2} = \gamma \left((\mu - p_2) (\Sigma^{-1} + 2F) + 2F(\bar{s}_{i2} - \mu) \right),
\]

and using the above expressions for \(\mu\) and \(\Sigma\) one finds that

\[
X_{i2}(\bar{s}_{i2}, p^2) = a^2_2(\bar{s}_{i2} - p_2).
\]

Substituting (6.13) in (6.12), rearranging and using (6.14)

\[
E[U(X_{i2}(p_3 - p_2) + X_{i3}(v - p_3))|\{\bar{s}_{i2}, p^2\}]
\]

\[
= - \left((\Sigma^{-1} + 2F)^{-1/2}\Sigma^{-1/2} \right) \exp \left\{ - \left((1/2)(\mu - p_2)^2(\Sigma^{-1} + 2F) \\
+ 2F(\bar{s}_{i2} - \mu)(\mu - p_2) + F(\bar{s}_{i2} - \mu)^2 \right) \right\}
\]

\[
= - \left((\Sigma^{-1} + 2F)^{-1/2}\Sigma^{-1/2} \right) \exp \left\{ - \frac{a^2_2}{2\gamma^2\tau_{C2}}(\bar{s}_{i2} - p_2)^2 \right\}.
\]
Finally, computing the ex-ante expected utility yields

\[
E \left[E \left[U \left(X_{i2}(p_3 - p_2) + X_{i3}(v - p_3) \right) \mid \{ s_{i2}, p^2 \} \right] \right] = -\left(\frac{\tau C_2}{\tau C_2} \right)^{1/2}.
\]

Analogously one can find that \(X_{i2}(s_{i1}, p_2) = a_1(s_{i1} - p_2) \) and that

\[
E \left[E \left[U \left(X_{i2}(p_3 - p_2) + X_{i3}(v - p_3) \right) \mid \{ s_{i1}, p^2 \} \right] \right] = -\left(\frac{\tau C_2}{\tau C_2 + \tau_{e_1}} \right)^{1/2}.
\]

Therefore, the value of \(s_{i2} \) in period 2 is given by

\[
\phi(s_{i2}||s_{i1}, p^2) = \frac{\gamma}{2} \ln \frac{\tau C_2}{\tau C_2 + \tau_{e_1}}.
\] (6.15)

The price of the second period signal is then obtained summing (6.10) and (6.15):

\[
\phi_2 = \frac{\gamma}{2} \left(\ln \frac{\tau C_3 + \sum_{t=1}^{2} \tau_{e_t}}{\tau C_3 + \tau_{e_1}} + \ln \frac{\tau C_2}{\tau C_2 + \tau_{e_1}} \right).
\]

Along the same lines of what done for \(\phi_2 \) one finds that

\[
\phi_1 = \frac{\gamma}{2} \left(\ln \frac{\tau C_1}{\tau C_1} + \ln \frac{\tau C_2 + \tau_{e_1}}{\tau C_2} + \ln \frac{\tau C_3 + \tau_{e_1}}{\tau C_3} \right).
\]

QED
Figure 1: Comparing depth with a single, risk-neutral insider (continuous line) and with a monopolistic information seller (dotted line), when $\tau_v = \tau_u = \gamma = 1$ and $N = 4$.
Figure 2: Comparing price informativeness with a single, risk-neutral insider (continuous line) and with a monopolistic information seller (dotted line), when $\tau_u = \tau_v = \gamma = 1$ and $N = 4$.