Policy with Dispersed Information

George-Marios Angeletos Alessandro Pavan

June 2007
Motivation
Motivation

- Economies with **dispersed** information about **common** fundamentals
Motivation

- Economies with **dispersed** information about **common** fundamentals
 - investment in new technologies/sectors
Motivation

- Economies with dispersed information about common fundamentals

 - investment in new technologies/sectors

 - pricing in large market games
Motivation

- Economies with **dispersed** information about **common** fundamentals
 - investment in new technologies/sectors
 - pricing in large market games
 - consumption + production decisions over business cycle
Motivation

- Inefficiency can emerge in
Motivation

- Inefficiency can emerge in
 - way agents use available information (payoff externalities)
Motivation

- Inefficiency can emerge in
 - way agents use available information (payoff externalities)
 - way equilibrium reacts to noise (volatility and dispersion)
Motivation

- Inefficiency can emerge in
 - way agents use available information (payoff externalities)
 - way equilibrium reacts to noise (volatility and dispersion)
 - way information is endogenously aggregated (info externalities)
Motivation

- Inefficiency can emerge in
 - way agents use available information (payoff externalities)
 - way equilibrium reacts to noise (volatility and dispersion)
 - way information is endogenously aggregated (info externalities)

- **Policy question:** can government increase welfare even *without* communicating information to the agents?
Motivation

• Inefficiency can emerge in
 • way agents use available information (payoff externalities)
 • way equilibrium reacts to noise (volatility and dispersion)
 • way information is endogenously aggregated (info externalities)

• **Policy question:** can government increase welfare
 even *without* communicating information to the agents?

• **Answer:** yes, through contingency of taxes on aggregate activity
Motivation

- Traditional policy analysis
Motivation

- **Traditional policy analysis**
 - complete, or common, information
Motivation

- **Traditional policy analysis**
 - complete, or common, information
 - correct market distortions (Pigou)
Motivation

- **Traditional policy analysis**
 - complete, or common, information
 - correct market distortions (Pigou)
 - smooth tax distortions (Ramsey)
Motivation

- **Traditional policy analysis**
 - complete, or common, information
 - correct market distortions (Pigou)
 - smooth tax distortions (Ramsey)

- **New public finance** (following Mirrless)
Motivation

- **Traditional policy analysis**
 - complete, or common, information
 - correct market distortions (Pigou)
 - smooth tax distortions (Ramsey)

- **New public finance** (following Mirrless)
 - private information on *private* values (e.g., one’s own productivity or tastes)
Motivation

- **Traditional policy analysis**
 - complete, or common, information
 - correct market distortions (Pigou)
 - smooth tax distortions (Ramsey)

- **New public finance** (following Mirrless)
 - private information on *private* values (e.g., one’s own productivity or tastes)
 - social insurance (redistribution) subject to incentive constraints
Motivation

Traditional policy analysis
- complete, or common, information
- correct market distortions (Pigou)
- smooth tax distortions (Ramsey)

New public finance (following Mirrless)
- private information on **private** values (e.g., one’s own productivity or tastes)
- social insurance (redistribution) subject to incentive constraints
- costless communication between the agents and a “center” (the planner)
Motivation

- **Traditional policy analysis**
 - complete, or common, information
 - correct market distortions (Pigou)
 - smooth tax distortions (Ramsey)

- **New public finance** (following Mirrless)
 - private information on *private* values (e.g., one’s own productivity or tastes)
 - social insurance (redistribution) subject to incentive constraints
 - costless communication between the agents and a “center” (the planner)

- **This paper**
Motivation

- **Traditional policy analysis**
 - complete, or common, information
 - correct market distortions (Pigou)
 - smooth tax distortions (Ramsey)

- **New public finance** (following Mirrless)
 - private information on *private* values (e.g., one’s own productivity or tastes)
 - social insurance (redistribution) subject to incentive constraints
 - costless communication between the agents and a “center” (the planner)

- **This paper**
 - *dispersed* information on *common* values
Motivation

- **Traditional policy analysis**
 - complete, or common, information
 - correct market distortions (Pigou)
 - smooth tax distortions (Ramsey)

- **New public finance** (following Mirrless)
 - private information on *private* values (e.g., one’s own productivity or tastes)
 - social insurance (redistribution) subject to incentive constraints
 - costless communication between the agents and a “center” (the planner)

- **This paper**
 - *dispersed* information on *common* values
 - policies that boost welfare *without communication* through the government
Roadmap
Roadmap

1. Baseline model (simple static game)
Roadmap

1. Baseline model (simple static game)

2. Equilibrium use of information
Roadmap

1. Baseline model (simple static game)
2. Equilibrium use of information
3. (Decentralized) efficient use of Information
Roadmap

1. Baseline model (simple static game)
2. Equilibrium use of information
3. (Decentralized) efficient use of Information
4. Implementation \rightarrow optimal policy
Roadmap

1. Baseline model (simple static game)
2. Equilibrium use of information
3. (Decentralized) efficient use of Information
4. Implementation \rightarrow optimal policy
5. Dynamic economies
Roadmap

1. Baseline model (simple static game)
2. Equilibrium use of information
3. (Decentralized) efficient use of Information
4. Implementation → optimal policy
5. Dynamic economies
6. Informational externalities
Baseline Model
Baseline Model

- Static game with large number of players and continuous actions
Baseline Model

- Static game with large number of players and continuous actions

- Reduced-form payoffs with external and strategic effects
 Baseline Model

- Static game with large number of players and continuous actions
- Reduced-form payoffs with external and strategic effects
- Unique and well-behaved equilibrium and first-best allocations
Baseline Model

- Static game with large number of players and continuous actions
- Reduced-form payoffs with external and strategic effects
- Unique and well-behaved equilibrium and first-best allocations
- Incomplete information on common values
Actions and Payoffs

\[u_i = U(k_i, \{k_j\}_{j \neq i}, \theta) - \tau_i \]
Actions and Payoffs

\[u_i = U(k_i, K, \sigma, \theta) - \tau_i \]

\[\theta \in \Theta: \text{exogenous fundamental} \]

\[K \text{ and } \sigma: \text{mean and dispersion of activity} \]

\[\tau_i: \text{tax paid to the government} \]
Actions and Payoffs

\[u_i = U(k_i, K, \sigma, \theta) - \tau_i \]

\(\theta \in \Theta \): exogenous fundamental

\(K \) and \(\sigma \): mean and dispersion of activity

\(\tau_i \): tax paid to the government

Assumptions:

- \(U(\cdot) \) quadratic in \((k, K, \theta) \) and linear in \(\sigma^2 \)
- concavity restrictions s.t. equilibrium and FB are unique and bounded
- \(\tau_i = T(k_i, K, \sigma, \theta, ...) \)
Stage 1: government announces policy rule $T(\cdot)$
Timing

Stage 1: government announces policy rule $T(\cdot)$

Stage 2: agents receive information ω_i and choose $k_i(\omega_i)$
Stage 1: government announces policy rule $T(\cdot)$

Stage 2: agents receive information ω_i and choose $k_i(\omega_i)$

Stage 3: taxes $\tau_i = T(k_i, K, \sigma, \theta)$ paid
Information

- General information structure
Information

- General information structure
 - Agent i's information: $\omega_i \in \Omega$
Information

- General information structure

- Agent i's information: $\omega_i \in \Omega$

- First nature draws $(\theta, \phi) \in \Theta \times \Phi$ from some distribution \mathcal{F}

 Φ is a family of distributions over Ω

 \mathcal{F} is the common prior
Information

- General information structure

 - Agent i's information: $\omega_i \in \Omega$

 - First nature draws $(\theta, \phi) \in \Theta \times \Phi$ from some distribution \mathcal{F}
 - Φ is a family of distributions over Ω
 - \mathcal{F} is the common prior

 - Then each agent i is assigned a type $\omega_i \in \Omega$ from distribution ϕ
General information structure

- Agent i's information: $\omega_i \in \Omega$

- First nature draws $(\theta, \phi) \in \Theta \times \Phi$ from some distribution \mathcal{F}
 - Φ is a family of distributions over Ω
 - \mathcal{F} is the common prior

- Then each agent i is assigned a type $\omega_i \in \Omega$ from distribution ϕ

- ω_i encodes a belief about both θ and ϕ

- **Common prior:**

\[\theta \sim N(\mu_\theta, \sigma^2_\theta) \]
Information
Gaussian example

- Common prior:
 \[\theta \sim N(\mu_\theta, \sigma_\theta^2) \]

- Private signals:
 \[x_i = \theta + \sigma_x \xi_i \]
 \[\xi_i \sim N(0, 1) \]
Information
Gaussian example

- Common prior:
 \[\theta \sim N(\mu_\theta, \sigma^2_\theta) \]

- Private signals:
 \[x_i = \theta + \sigma_x \xi_i \]
 \[\xi_i \sim N(0, 1) \]

- Public signals:
 \[y = \theta + \sigma_y \epsilon \]
 \[\epsilon \sim N(0, 1) \]
Information
Gaussian example

- Common prior:
 \[\theta \sim N(\mu_\theta, \sigma_\theta^2) \]

- Private signals:
 \[x_i = \theta + \sigma_x \xi_i \quad \xi_i \sim N(0, 1) \]

- Public signals:
 \[y = \theta + \sigma_y \varepsilon \quad \varepsilon \sim N(0, 1) \]

- Type: \(\omega_i = (x_i, y) \in \Omega = \mathbb{R}^2 \)
Examples and Applications
Examples and Applications

- **Investment spillovers** (Angeletos & Pavan, 2004)

 \[u_i = (\theta + aK) k_i - \frac{1}{2} k_i^2 \]
Examples and Applications

- **Investment spillovers** (Angeletos & Pavan, 2004)
 \[u_i = (\theta + aK)k_i - \frac{1}{2}k_i^2 \]

 \[u_i = -(1-r)(k_i - \theta)^2 - (1-r)\int (k' - k_i)^2 d\Psi(k') + r\int \int (k' - k)^2 d\Psi(k')d\Psi(k) \]
Examples and Applications

- **Investment spillovers** (Angeletos & Pavan, 2004)
 \[u_i = (\theta + aK) k_i - \frac{1}{2} k_i^2 \]

 \[u_i = -(1-r) \cdot (k_i - \theta)^2 - (1-r) \int (k' - k_i)^2 d\Psi(k') + r \int \int (k' - k)^2 d\Psi(k')d\Psi(k) \]

 \[u_i = (a_0 + a_1 \theta - bK) k - c k^2 \quad \text{(Cournot)} \]
Examples and Applications

- **Investment spillovers** (Angeletos & Pavan, 2004)

 \[u_i = (\theta + aK) k_i - \frac{1}{2} k_i^2 \]

 \[u_i = - (1 - r) \cdot (k_i - \theta)^2 - (1 - r) \int (k' - k_i)^2 d\Psi(k') + r \int \int (k' - k)^2 d\Psi(k') d\Psi(k) \]

 \[u_i = (a_0 + a_1 \theta - bK) k - ck^2 \quad \text{(Cournot)} \]

 \[u_i = \pi^* - (k_i - k^*)^2, \text{ with } k^* = (1 - \alpha) \theta + \alpha K \]
Complete-information benchmarks
Complete-information benchmarks

- Equilibrium:

\[k_i = \kappa(\theta) \text{ with } U_k(\kappa, \kappa, 0, \theta) = 0 \]
Complete-information benchmarks

- Equilibrium:

 \[k_i = \kappa(\theta) \text{ with } U_k(\kappa, \kappa, 0, \theta) = 0 \]

- First best:

 \[k_i = \kappa^*(\theta) \text{ with } W_K(\kappa^*, 0, \theta) = 0 \]

 \[W(K, \sigma, \theta) \equiv U(K, K, \sigma, \theta) + \frac{1}{2} U_{kk} \sigma^2. \]
Complete-information benchmarks

- Equilibrium:
 \[k_i = \kappa(\theta) \text{ with } U_k(\kappa, \kappa, 0, \theta) = 0 \]

- First best:
 \[k_i = \kappa^*(\theta) \text{ with } W_K(\kappa^*, 0, \theta) = 0 \]

\[W(K, \sigma, \theta) \equiv U(K, K, \sigma, \theta) + \frac{1}{2} U_{kk} \sigma^2. \]

- Quadratic payoffs: \(\kappa(\theta) = \kappa_0 + \kappa_1 \theta \) and \(\kappa^*(\theta) = \kappa_0^* + \kappa_1^* \theta \)
Complete-information benchmarks

- Equilibrium:

\[k_i = \kappa(\theta) \text{ with } U_k(\kappa, \kappa, 0, \theta) = 0 \]

- First best:

\[k_i = \kappa^*(\theta) \text{ with } W_K(\kappa^*, 0, \theta) = 0 \]

\[W(K, \sigma, \theta) \equiv U(K, K, \sigma, \theta) + \frac{1}{2} U_{kk} \sigma^2. \]

- Quadratic payoffs: \(\kappa(\theta) = \kappa_0 + \kappa_1 \theta \) and \(\kappa^*(\theta) = \kappa_0^* + \kappa_1^* \theta \)

- Incomplete, but common information (\(\omega_i = \omega \forall i \))

\[k_i(\omega) = \mathbb{E}[\kappa(\theta) | \omega] \text{ and } k_i^*(\omega) = \mathbb{E}[\kappa^*(\theta) | \omega] \]
Complete-information benchmarks

- Equilibrium:

\[k_i = \kappa(\theta) \text{ with } U_k(\kappa, \kappa, 0, \theta) = 0 \]

- First best:

\[k_i = \kappa^*(\theta) \text{ with } W_k(\kappa^*, 0, \theta) = 0 \]

\[W(K, \sigma, \theta) \equiv U(K, K, \sigma, \theta) + \frac{1}{2} U_{kk} \sigma^2. \]

- Quadratic payoffs: \(\kappa(\theta) = \kappa_0 + \kappa_1 \theta \) and \(\kappa^*(\theta) = \kappa_0^* + \kappa_1^* \theta \)

- Incomplete, but common information (\(\omega_i = \omega \forall i \))

\[k_i(\omega) = \mathbb{E}[\kappa(\theta) | \omega] \text{ and } k_i^*(\omega) = \mathbb{E}[\kappa^*(\theta) | \omega] \]

- Benchmark economies: \(\kappa(\cdot) = \kappa^*(\cdot) \)
Roadmap

1. Baseline model
2. **Equilibrium** use of information
3. Efficient use of information
4. Implementation → optimal policies
5. Dynamic economies
6. Informational externalities
Equilibrium (without policy)
Definition

Equilibrium is (measurable) strategy \(k : \Omega \rightarrow \mathbb{R} \) s.t.

\[
k(\omega) \in \arg \max_{k' \in \mathbb{R}} \mathbb{E} \left[U \left(k', K(\phi), \sigma(\phi), \theta \right) \mid \omega \right] \quad \forall \ \omega
\]

where \(K(\phi) = \int k(\omega) d\phi(\omega) \) and \(\sigma^2(\phi) = \int [k(\omega) - K(\phi)]^2 d\phi(\omega) \quad \forall \ \phi. \)
Equilibrium (without policy)

Proposition

Equilibrium exists, is unique, and satisfies

\[k(\omega) = \mathbb{E}[\kappa(\theta) + \alpha \cdot [K(\phi) - \kappa(\theta)] | \omega] \quad \forall \omega \]

- \(\kappa(\theta) \rightarrow \) complete-info equilibrium action
- \(K(\phi) \rightarrow \) average action under incomplete info
- \(\alpha \equiv \frac{U_{kK}}{-U_{kk}} \rightarrow \) private value of aligning choices (complementarity)
Equilibrium
Gaussian example
Equilibrium

Gaussian example

- **Complete information:** \(\kappa(\theta) = \kappa_0 + \kappa_1 \theta \)
Complete information: \(\kappa(\theta) = \kappa_0 + \kappa_1 \theta \)

Common information: \(k(y) = \kappa_0 + \kappa_1 [\lambda \mu \theta + \lambda y y] \)
Equilibrium

Gaussian example

- **Complete information:** $\kappa(\theta) = \kappa_0 + \kappa_1 \theta$

- **Common information:** $k(y) = \kappa_0 + \kappa_1 [\lambda \mu \mu \theta + \lambda y y]$

- **Dispersed Information:** $k(x,y) = \kappa_0 + \kappa_1 [\gamma \mu \mu \theta + \gamma y y + \gamma x x]$
Equilibrium

Gaussian example

- **Independence** \((\alpha = 0)\) \(\Rightarrow\) \(\gamma_{\mu} = \lambda_{\mu}\) \(\gamma_{y} = \lambda_{y}\) \(\gamma_{x} = \lambda_{x}\)
Equilibrium

Gaussian example

- **Independence** \((\alpha = 0)\) \(\Rightarrow\) \(\gamma_{\mu} = \lambda_{\mu}\) \(\gamma_{y} = \lambda_{y}\) \(\gamma_{x} = \lambda_{x}\)

- **Complementarity** \((\alpha > 0)\) \(\Rightarrow\) \(\gamma_{\mu} > \lambda_{\mu}\) \(\gamma_{y} > \lambda_{y}\) \(\gamma_{x} < \lambda_{x}\)

(more inertia and volatility, less dispersion!)
Equilibrium
Gaussian example

- **Independence** \((\alpha = 0)\) \(\Rightarrow\) \(\gamma_\mu = \lambda_\mu\) \(\quad \gamma_y = \lambda_y\) \(\quad \gamma_x = \lambda_x\)

- **Complementarity** \((\alpha > 0)\) \(\Rightarrow\) \(\gamma_\mu > \lambda_\mu\) \(\quad \gamma_y > \lambda_y\) \(\quad \gamma_x < \lambda_x\)

 (more inertia and volatility, less dispersion!)

- **Substitutability** \((\alpha < 0)\) \(\Rightarrow\) \(\gamma_\mu < \lambda_\mu\) \(\quad \gamma_y < \lambda_y\) \(\quad \gamma_x > \lambda_x\)

 (less inertia and volatility, more dispersion!)
Summary of key positive properties
Summary of key positive properties

• Impact of information:
Summary of key positive properties

- Impact of information:
 - common noise \rightarrow non-fundamental volatility
Summary of key positive properties

- Impact of information:
 - common noise \rightarrow non-fundamental volatility
 - idiosyncratic noise \rightarrow non-fundamental dispersion
Summary of key positive properties

- Impact of information:
 - common noise \rightarrow non-fundamental volatility
 - idiosyncratic noise \rightarrow non-fundamental dispersion

- Impact of complementarity:
Summary of key positive properties

- Impact of information:
 - common noise \rightarrow non-fundamental volatility
 - idiosyncratic noise \rightarrow non-fundamental dispersion

- Impact of complementarity:
 - higher α \rightarrow more sensitivity to public information
 \rightarrow heightened volatility (but also lower dispersion)
Roadmap

1. Baseline model
2. Equilibrium use of information
3. Efficient use of information
4. Implementation → optimal policy
5. Dynamic economies
6. Informational externalities
Efficient use of information
Efficient use of information

Definition

Efficient strategy is a mapping $k : \Omega \rightarrow \mathbb{R}$ that maximizes ex-ante utility

$$\mathbb{E}u = \int_{\Theta \times \Phi} \int_{\Omega} U (k(\omega), K(\phi), \sigma(\phi), \theta) d\phi(\omega) d\mathcal{F}(\theta, \phi),$$

with $K(\phi) = \int k(\omega) d\phi(\omega)$ and $\sigma^2(\phi) = \int [k(\omega) - K(\phi)]^2 d\phi(\omega) \forall \phi.$
Proposition

Efficient strategy exists, is unique, and satisfies

\[k(\omega) = \mathbb{E}[\kappa^*(\theta) + \alpha^* \cdot (K(\phi) - \kappa^*(\theta)) \mid \omega] \]

for almost all \(\omega \), with \(K(\phi) = \int k(\omega) d\phi(\omega) \).

- \(\kappa^*(\theta) \rightarrow \) first-best action (complete info)
- \(K(\phi) \rightarrow \) average action (incomplete info)
- \(\alpha^* \rightarrow \) social value of aligning choices
Efficient use of information

- Utilitarian welfare function:

\[W(K, \sigma, \theta) \equiv \int U(k, K, \sigma, \theta) d\Psi(k) \]
Efficient use of information

- Utilitarian welfare function:
 \[W(K, \sigma, \theta) \equiv \int U(k, K, \sigma, \theta) d\Psi(k) \]

- For any given strategy \(k: \Omega \rightarrow \mathbb{R} \), let
 \[\hat{K}(\theta) \equiv \mathbb{E}[k(\omega) | \theta] = \mathbb{E}[K(\phi) | \theta] \]
Efficient use of information

- Utilitarian welfare function:

\[W(K, \sigma, \theta) \equiv \int U(k, K, \sigma, \theta) d\Psi(k) \]

- For any given strategy \(k : \Omega \rightarrow \mathbb{R} \), let

\[\hat{K}(\theta) \equiv \mathbb{E}[k(\omega) | \theta] = \mathbb{E}[K(\phi) | \theta] \]

- Ex-ante utility:

\[\mathbb{E}u = \mathbb{E}W(\hat{K}, 0, \theta) + \frac{W_{KK}}{2} \text{Var}(K - \hat{K}) + \frac{W_{\sigma\sigma}}{2} \text{Var}(k - K) \]
Efficient use of information

- Utilitarian welfare function:

\[W(K, \sigma, \theta) \equiv \int U(k, K, \sigma, \theta) d\Psi(k) \]

- For any given strategy \(k : \Omega \rightarrow \mathbb{R} \), let

\[\hat{K}(\theta) \equiv \mathbb{E}[k(\omega)|\theta] = \mathbb{E}[K(\phi)|\theta] \]

- Ex-ante utility:

\[\mathbb{E}u = \mathbb{E}W(\hat{K}, 0, \theta) + \frac{W_{KK}}{2} \text{Var}(K - \hat{K}) + \frac{W_{\sigma\sigma}}{2} \text{Var}(k - K) \]

- Efficient use of info reflects social aversion to volatility/dispersion:

\[\alpha^* = 1 - \frac{W_{KK}}{W_{\sigma\sigma}} = 1 - \frac{\text{weight to volatility}}{\text{weight to dispersion}} \]
Normative implications

Corollary

Consider economies that are efficient under common info ($\kappa = \kappa^*$)

- *Equilibrium is efficient under incomplete information iff $\alpha = \alpha^*$*
Normative implications

Corollary

Consider economies that are efficient under common info ($\kappa = \kappa^*$)

- Equilibrium is efficient under incomplete information iff $\alpha = \alpha^*$

- When $\alpha > \alpha^*$ equilibrium exhibits

 1. overreaction to public information
 2. excessive non-fundamental volatility

 3. excessive cross-sectional dispersion
Normative implications

Corollary

Consider economies that are efficient under common info ($\kappa = \kappa^*$)

- Equilibrium is efficient under incomplete information iff $\alpha = \alpha^*$

- When $\alpha > \alpha^*$ equilibrium exhibits
 - overreaction to public information
Normative implications

Corollary

Consider economies that are efficient under common info (κ = κ)*

- Equilibrium is efficient under incomplete information iff \(\alpha = \alpha^* \)

- When \(\alpha > \alpha^* \) equilibrium exhibits
 - Overreaction to public information
 - Excessive non-fundamental volatility
Normative implications

Corollary

Consider economies that are efficient under common info \((\kappa = \kappa^*) \)

- Equilibrium is efficient under incomplete information iff \(\alpha = \alpha^* \)

- When \(\alpha > \alpha^* \) equilibrium exhibits
 1. overreaction to public information
 2. excessive non-fundamental volatility

- When \(\alpha < \alpha^* \) equilibrium exhibits
Corollary

Consider economies that are efficient under common info \((\kappa = \kappa^*)\)

- Equilibrium is efficient under incomplete information iff \(\alpha = \alpha^*\)

- When \(\alpha > \alpha^*\) equilibrium exhibits
 1. overreaction to public information
 2. excessive non-fundamental volatility

- When \(\alpha < \alpha^*\) equilibrium exhibits
 1. overreaction to private information
Corollary

Consider economies that are efficient under common info \((\kappa = \kappa^*)\)

- *Equilibrium is efficient under incomplete information iff* \(\alpha = \alpha^*\)

- *When* \(\alpha > \alpha^*\) *equilibrium exhibits*
 1. overreaction to public information
 2. excessive non-fundamental volatility

- *When* \(\alpha < \alpha^*\) *equilibrium exhibits*
 1. overreaction to private information
 2. excessive cross-sectional dispersion
Roadmap

1. Baseline model
2. Equilibrium
3. Efficient use of information
4. Implementation → Optimal policies
5. Dynamic economies
6. Informational externalities
Implementation
Implementation

- Equilibrium with taxes
Implementation

- Equilibrium with taxes
- Optimal tax policy
Implementation
Equilibrium with taxes
Let \(\mathcal{T} \) denote set of policy rules

\[
\tau_i = T(k_i, K, \sigma, \theta)
\]

where \(T(\cdot) \) is quadratic and satisfies budget balance.
Implementation
Equilibrium with taxes

Let \mathcal{T} denote set of policy rules

$$\tau_i = T(k_i, K, \sigma, \theta)$$

where $T(\cdot)$ is quadratic and satisfies budget balance

Given policy $T \in \mathcal{T}$, let

$$\tilde{U}(k,K,\sigma,\theta) \equiv U(k,K,\sigma,\theta) - T(k,K,\sigma,\theta)$$
Let \mathcal{T} denote set of policy rules

$$\tau_i = T(k_i, K, \sigma, \theta)$$

where $T(\cdot)$ is quadratic and satisfies budget balance

- Given policy $T \in \mathcal{T}$, let

$$\tilde{U}(k, K, \sigma, \theta) \equiv U(k, K, \sigma, \theta) - T(k, K, \sigma, \theta)$$

Proposition

Given any $T \in \mathcal{T}$, equilibrium exists, is unique, and satisfies

$$k(\omega) = \mathbb{E}[\tilde{k}(\theta) + \tilde{\alpha} \cdot (K(\phi) - \tilde{k}(\theta)) \mid \omega]$$

for all $\omega \in \Omega$, with $K(\phi) = \int k(\omega) d\phi(\omega)$ for all $\phi \in \Phi$.
Implementation
Optimal tax policies
Proposition

(i) \exists multiple policies in \mathcal{T} that implement efficient strategy.
Proposition

(i) \exists multiple policies in \mathcal{T} that implement efficient strategy.

(ii) Holding T_{kk} constant, optimal T_{kK} increases with α and decreases with α^*.
Implementation
Optimal tax policies

Two goals:
Implementation
Optimal tax policies

Two goals:

1. manipulate level of activity (overall sensitivity of k to θ)
Two goals:

1. manipulate level of activity (overall sensitivity of k to θ)
2. manipulate volatility-dispersion trade-off (sensitivity to public/private info)
Implementation
Optimal tax policies

Two goals:

1. manipulate level of activity (overall sensitivity of k to θ)
2. manipulate volatility-dispersion trade-off (sensitivity to public/private info)

Three instruments:

1. sensitivity of marginal tax to fundamental ($T_{k\theta}$) → only #1
Implementation

Optimal tax policies

Two goals:

1. manipulate level of activity (overall sensitivity of k to θ)
2. manipulate volatility-dispersion trade-off (sensitivity to public/private info)

Three instruments:

1. sensitivity of marginal tax to fundamental ($T_{k\theta}$) \rightarrow only #1
2. sensitivity of marginal tax to aggregate activity (T_{kK}) \rightarrow both #1 and #2
Optimal tax policies

Two goals:

1. manipulate level of activity (overall sensitivity of k to θ)
2. manipulate volatility-dispersion trade-off (sensitivity to public/private info)

Three instruments:

1. sensitivity of marginal tax to fundamental ($T_{k\theta}$) \rightarrow only #1
2. sensitivity of marginal tax to aggregate activity (T_{kK}) \rightarrow both #1 and #2
3. progressivity or regressivity of the tax system (T_{kk}) \rightarrow both #1 and #2
Implementations with “less information”
Implementations with “less information”

- Government (as well as any other agent) observes only

\[\tilde{k}_i = k_i + \eta + \nu_i \]

(\(\eta\) and \(\nu_i\) are measurement errors)
Implementations with “less information”

- Government (as well as any other agent) observes only

\[\tilde{k}_i = k_i + \eta + \nu_i \]

(\(\eta\) and \(\nu_i\) are measurement errors)

- Fundamental \(\theta\) never revealed
Government (as well as any other agent) observes only
\[\tilde{k}_i = k_i + \eta + \nu_i \]

(\(\eta \) and \(\nu_i \) are measurement errors)

Fundamental \(\theta \) never revealed

\(\mathcal{T} \) denotes set of policies
\[\tau_i = T(\tilde{k}_i, \tilde{K}, \tilde{\sigma}) \]
Implementations with “less information”

- Government (as well as any other agent) observes only
 \[\tilde{k}_i = k_i + \eta + \nu_i \]

 (\(\eta \) and \(\nu_i \) are measurement errors)

- Fundamental \(\theta \) never revealed

- \(\tilde{T} \) denotes set of policies

 \[\tau_i = T(\tilde{k}_i, \tilde{K}, \tilde{\sigma}) \]

Proposition

A policy in \(\tilde{T} \) that implements efficient strategy exists iff

\[Cov(\kappa(\theta), \kappa^*(\theta)) \geq 0 \]
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Baseline Model</th>
<th>Equilibrium</th>
<th>Efficiency</th>
<th>Implementation</th>
<th>Dynamic Economies</th>
<th>Informational Externalities</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

Key policy result
Key policy result

- Any inefficiency in use of information can be corrected with combination of contingency of marginal taxes on aggregate activity and progressivity/regressivity of taxes.
Key policy result

- Any inefficiency in use of information can be corrected with combination of:
 - Contingency of marginal taxes on aggregate activity
 - Progressivity/regressivity of taxes

- In economies in which inefficiency emerges only under dispersed info:
Key policy result

- Any inefficiency in use of information can be corrected with combination of contingency of marginal taxes on aggregate activity

progressivity/regressivity of taxes

- In economies in which inefficiency emerges only under dispersed info:
 - conditional on θ, average marginal tax is zero: $\mathbb{E}[T_k(\tilde{k}, \tilde{K}, \tilde{\sigma})|\theta] = 0$
Key policy result

- Any inefficiency in use of information can be corrected with combination of contingency of marginal taxes on aggregate activity and progressivity/regressivity of taxes.

- In economies in which inefficiency emerges only under dispersed info:
 - conditional on θ, average marginal tax is zero: $\mathbb{E}[T_k(\tilde{k}, \tilde{K}, \tilde{\sigma})|\theta] = 0$
 - when $\alpha > \alpha^*$, optimal tax is procyclical and regressive: $T_{kK} > 0 > T_{kk}$
Key policy result

- Any inefficiency in use of information can be corrected with combination of
 contingency of marginal taxes on aggregate activity
 progressivity/regressivity of taxes

- In economies in which inefficiency emerges only under dispersed info:
 - conditional on θ, average marginal tax is zero: $\mathbb{E}[T_k(\tilde{k}, \tilde{K}, \tilde{\sigma})|\theta] = 0$
 - when $\alpha > \alpha^*$, optimal tax is procyclical and regressive: $T_{kK} > 0 > T_{kk}$
 - when $\alpha < \alpha^*$, optimal tax is countercyclical and progressive: $T_{kK} < 0 < T_{kk}$
Roadmap

1. Baseline model
2. Equilibrium
3. Efficient use of information
4. Implementation → Optimal policies
5. Dynamic economies
6. Informational externalities
Embedding the simple game in a dynamic economy
Embedding the simple game in a dynamic economy

- Each period $t \in \{1, 2, \ldots, T\}$, agents choose
Embedding the simple game in a dynamic economy

- Each period $t \in \{1, 2, \ldots, T\}$, agents choose
 - consumption $c_{i,t}$
Embedding the simple game in a dynamic economy

- Each period $t \in \{1, 2, \ldots, T\}$, agents choose
 - consumption $c_{i,t}$
 - savings in riskless bond $b_{i,t}$
Embedding the simple game in a dynamic economy

Each period $t \in \{1,2,...,T\}$, agents choose

- consumption $c_{i,t}$
- savings in riskless bond $b_{i,t}$
- action $k_{i,t}$ (e.g., effort or investment in a risky technology)
Embedding the simple game in a dynamic economy

Each period $t \in \{1, 2, \ldots, T\}$, agents choose

- consumption $c_{i,t}$
- savings in riskless bond $b_{i,t}$
- action $k_{i,t}$ (e.g., effort or investment in a risky technology)

Investing $k_{i,t}$ units in period t
Embedding the simple game in a dynamic economy

- Each period $t \in \{1, 2, ... T\}$, agents choose
 - consumption $c_{i,t}$
 - savings in riskless bond $b_{i,t}$
 - action $k_{i,t}$ (e.g., effort or investment in a risky technology)

- Investing $k_{i,t}$ units in period t
 - costs $G(k_{i,t})$ in period t
Embedding the simple game in a dynamic economy

- Each period $t \in \{1,2,...,T\}$, agents choose
 - consumption $c_{i,t}$
 - savings in riskless bond $b_{i,t}$
 - action $k_{i,t}$ (e.g., effort or investment in a risky technology)

- Investing $k_{i,t}$ units in period t
 - costs $G(k_{i,t})$ in period t
 - delivers $F(k_{i,t},K_t,\sigma_t,A_{t+1})$ in period $t+1$, with $A_{t+1} \equiv \theta_t$
Embedding the simple game in a dynamic economy

- Budgets:

\[c_{i,t} + G(k_{i,t}) + q_t b_{i,t} = F(k_{i,t-1}, K_{t-1}, \sigma_{t-1}, \theta_{t-1}) + b_{i,t-1} - \tau_{i,t} \]
Embedding the simple game in a dynamic economy

- **Budgets:**
 \[c_{i,t} + G(k_{i,t}) + q_t b_{i,t} = F(k_{i,t-1}, K_{t-1}, \sigma_{t-1}, \theta_{t-1}) + b_{i,t-1} - \tau_{i,t} \]

- **Preferences:**
 \[\mathcal{U}_i = \sum_{t=1}^{T+1} \beta^{t-1} U(c_{i,t}, k_{i,t}) . \]
Embedding the simple game in a dynamic economy

- **Budgets:**

\[c_{i,t} + G(k_{i,t}) + q_t b_{i,t} = F(k_{i,t-1}, K_{t-1}, \sigma_{t-1}, \theta_{t-1}) + b_{i,t-1} - \tau_{i,t} \]

- **Preferences:**

\[\mathcal{U}_i = \sum_{t=1}^{T+1} \beta^{t-1} U(c_{i,t}, k_{i,t}) \]

- **Restrictions:**
Embedding the simple game in a dynamic economy

- Budgets:
 \[c_{i,t} + G(k_{i,t}) + q_t b_{i,t} = F(k_{i,t-1}, K_{t-1}, \sigma_{t-1}, \theta_{t-1}) + b_{i,t-1} - \tau_{i,t} \]

- Preferences:
 \[U_i = \sum_{t=1}^{T+1} \beta^{t-1} U(c_{i,t}, k_{i,t}) \]

- Restrictions:
 - \(U(c, k) = c - h(k) \)
Embedding the simple game in a dynamic economy

- **Budgets:**
 \[c_{i,t} + G(k_{i,t}) + q_t b_{i,t} = F(k_{i,t-1}, K_{t-1}, \sigma_{t-1}, \theta_{t-1}) + b_{i,t-1} - \tau_{i,t} \]

- **Preferences:**
 \[U_i = \sum_{t=1}^{T+1} \beta^{t-1} U(c_{i,t}, k_{i,t}) \]

- **Restrictions:**
 - \(U(c, k) = c - h(k) \)
 - \(G, F, U \) are quadratic in \((k, K, \theta)\) and linear in \(\sigma\) (plus concavity)
Embedding the simple game in a dynamic economy

- **Budgets:**
 \[c_{i,t} + G(k_{i,t}) + q_t b_{i,t} = F(k_{i,t-1}, K_{t-1}, \sigma_{t-1}, \theta_{t-1}) + b_{i,t-1} - \tau_{i,t} \]

- **Preferences:**
 \[\mathcal{U}_i = \sum_{t=1}^{T+1} \beta^{t-1} U(c_{i,t}, k_{i,t}) \]

- **Restrictions:**
 - \(U(c, k) = c - h(k) \)
 - \(G, F, U \) are quadratic in \((k, K, \theta)\) and linear in \(\sigma\) (plus concavity)

- **Exogenous information** \(\omega_{i,t} \in \Omega_t\) cross-section distribution \(\phi_i \in \Phi_t\)
Embedding the simple game in a dynamic economy

- Budgets:

\[c_{i,t} + G(k_{i,t}) + q_t b_{i,t} = F(k_{i,t-1}, K_{t-1}, \sigma_{t-1}, \theta_{t-1}) + b_{i,t-1} - \tau_{i,t} \]

- Preferences:

\[U_i = \sum_{t=1}^{T+1} \beta^{t-1} U(c_{i,t}, k_{i,t}) \]

- Restrictions:
 - \(U(c, k) = c - h(k) \)
 - \(G, F, U \) are quadratic in \(k, K, \theta \) and linear in \(\sigma \) (plus concavity)

- Exogenous information \(\omega_{i,t} \in \Omega_t \) cross-section distribution \(\phi_t \in \Phi_t \)
 - \((\omega_{i,t-1}, \theta_{t-1}, \phi_{t-1}) \) belongs to \(\omega_{i,t} \rightarrow \) nothing to learn from past actions
Embedding the simple game in a dynamic economy

- Linearity of preferences in consumption implies
Embedding the simple game in a dynamic economy

- Linearity of preferences in consumption implies
 - interest rate fixed at discount rate: $q_t = \beta$
Embedding the simple game in a dynamic economy

- Linearity of preferences in consumption implies
 - interest rate fixed at discount rate: $q_t = \beta$
 - bond holdings indeterminate (timing of consumption irrelevant)
Embedding the simple game in a dynamic economy

- Linearity of preferences in consumption implies
 - interest rate fixed at discount rate: \(q_t = \beta \)
 - bond holdings indeterminate (timing of consumption irrelevant)

- Agents’ problem reduces to

\[
\max \mathbb{E}_0\sum_{t=1}^{T}\beta^{t-1}V(k_{i,t}, K_t, \sigma_t, \theta_t)
\]

\[
V(k, K, \sigma, \theta) \equiv -[G(k) + h(k)] + \beta F(k, K, \sigma, \theta)
\]
Equilibrium, efficiency, and policy

Proposition

- Equilibrium strategy exists, is unique, and satisfies

\[
k_{i,t}(\omega_t) = \mathbb{E}_{i,t}[\kappa_t(\theta_t) + \alpha \cdot [K_t(\phi_t) - \kappa_t(\theta_t)]] \quad \forall \omega_t, \forall t
\]
Proposition

- **Equilibrium strategy exists, is unique, and satisfies**

\[
k_{i,t}(\omega_t) = \mathbb{E}_{i,t}\left[\kappa_t(\theta_t) + \alpha \cdot [K_t(\phi_t) - \kappa_t(\theta_t)] \right] \quad \forall \omega_t, \forall t
\]

- **Efficient strategy exists, is unique, and satisfies**

\[
k_{i,t}(\omega_t) = \mathbb{E}_{i,t}\left[\kappa_t^*(\theta_t) + \alpha^* \cdot [K_t(\phi_t) - \kappa_t^*(\theta_t)] \right]
\]
Equilibrium, efficiency, and policy

Proposition

- **Equilibrium strategy exists, is unique, and satisfies**

\[
k_{i,t}(\omega_t) = \mathbb{E}_{i,t} \left[\kappa_t(\theta_t) + \alpha \cdot [K_t(\phi_t) - \kappa_t(\theta_t)] \right] \quad \forall \omega_t, \forall t
\]

- **Efficient strategy exists, is unique, and satisfies**

\[
k_{i,t}(\omega_t) = \mathbb{E}_{i,t} \left[\kappa^*_t(\theta_t) + \alpha^* \cdot [K_t(\phi_t) - \kappa^*_t(\theta_t)] \right]
\]

- **Optimal policies \(\longrightarrow\) as in static benchmark**
Roadmap

1. Baseline model
2. Equilibrium
3. Efficient use of information
4. Implementation → Optimal policies
5. Dynamic economies
6. Informational externalities
Informational externalities
Informational externalities

- Endogenous aggregation of information via
Informational externalities

- Endogenous aggregation of information via
 - indicators of past activity
Informational externalities

- Endogenous aggregation of information via
 - indicators of past activity
 - market prices
Informational externalities

- Endogenous aggregation of information via
 - indicators of past activity
 - market prices

- Additional source of inefficiency:
Informational externalities

- Endogenous aggregation of information via
 - indicators of past activity
 - market prices

- Additional source of inefficiency:
 - agents do not internalize how their decisions affect information of others
Informational externalities

\[\theta_t = \theta \text{ for all } t \]
Informational externalities

- $\theta_t = \theta$ for all t
- public signal: $y_t = \theta + \varepsilon_t$
Informational externalities

- $\theta_t = \theta$ for all t
- public signal: $y_t = \theta + \varepsilon_t$
- private signals: $x_{i,t} = \theta + \xi_{i,t}$
Informational externalities

- $\theta_t = \theta$ for all t
- public signal: $y_t = \theta + \varepsilon_t$
- private signals: $x_{i,t} = \theta + \xi_{i,t}$
- $\tilde{K}_{t-1} = K_{t-1} + \eta_t$
Informational externalities

- $\theta_t = \theta$ for all t
- public signal: $y_t = \theta + \varepsilon_t$
- private signals: $x_{i,t} = \theta + \xi_{i,t}$
- $\tilde{K}_{t-1} = K_{t-1} + \eta_t$
- $\tilde{\sigma}_{t-1} = \sigma_{t-1} + \nu_t$
Informational externalities

- $\theta_t = \theta$ for all t
- public signal: $y_t = \theta + \varepsilon_t$
- private signals: $x_{i,t} = \theta + \xi_{i,t}$
- $\tilde{K}_{t-1} = K_{t-1} + \eta_t$
- $\tilde{\sigma}_{t-1} = \sigma_{t-1} + \nu_t$
- $\tilde{A}_t = \theta + a_t$
Informational externalities

- $\theta_t = \theta$ for all t
- public signal: $y_t = \theta + \varepsilon_t$
- private signals: $x_{i,t} = \theta + \xi_{i,t}$
- $\tilde{K}_{t-1} = K_{t-1} + \eta_t$
- $\tilde{\sigma}_{t-1} = \sigma_{t-1} + \nu_t$
- $\tilde{A}_t = \theta + a_t$
- $\theta, \varepsilon_t, \xi_{i,t}, \eta_t, \nu_t, a_t$: Gaussian noises
Informational externalities

- $\theta_t = \theta$ for all t
- Public signal: $y_t = \theta + \varepsilon_t$
- Private signals: $x_{i,t} = \theta + \xi_{i,t}$
- $\tilde{K}_{t-1} = K_{t-1} + \eta_t$
- $\tilde{\sigma}_{t-1} = \sigma_{t-1} + \nu_t$
- $\tilde{A}_t = \theta + a_t$
- $\theta, \varepsilon_t, \xi_{i,t}, \eta_t, \nu_t, a_t$: Gaussian noises
- Period-t budget

$$c_{i,t} + G(k_{i,t}) + q_t b_{i,t} = F(k_{i,t-1}, \tilde{K}_{t-1}, \tilde{\sigma}_{t-1}, \tilde{A}_t) + b_{i,t-1} - \tau_{i,t}$$
Suppose

\[
k_{t-1} = \kappa_0 + \kappa_1 [\gamma_{t-1} X_{i,t-1} + (1 - \gamma_{t-1}) Y_{t-1},]
\]
Suppose
\[k_{t-1} = \kappa_0 + \kappa_1[\gamma_{t-1}X_{i,t-1} + (1 - \gamma_{t-1}) Y_{t-1}], \]

Then
\[K_{t-1} = \kappa_0 + \kappa_1[\gamma_{t-1} \theta + (1 - \gamma_{t-1}) Y_{t-1}] \]
Informational externalities

Key observation

- Suppose
 \[k_{t-1} = \kappa_0 + \kappa_1 [\gamma_{t-1} X_{i,t-1} + (1 - \gamma_{t-1}) Y_{t-1}], \]

- Then
 \[K_{t-1} = \kappa_0 + \kappa_1 [\gamma_{t-1} \theta + (1 - \gamma_{t-1}) Y_{t-1}] \]

- Signal \(\tilde{K}_{t-1} = K_{t-1} + \eta_t \) is informational equivalent to
 \[\tilde{\eta}_t = \theta + \frac{1}{\kappa_1 \gamma_{t-1}} \eta_t \]
Informational externalities

Key observation

- Suppose
 \[k_{t-1} = \kappa_0 + \kappa_1 [\gamma_{t-1}X_{i,t-1} + (1 - \gamma_{t-1})Y_{t-1}], \]

- Then
 \[K_{t-1} = \kappa_0 + \kappa_1 [\gamma_{t-1} \theta + (1 - \gamma_{t-1})Y_{t-1}] \]

- Signal \(\hat{K}_{t-1} = K_{t-1} + \eta_t \) is informational equivalent to
 \[\hat{y}_t = \theta + \frac{1}{\kappa_1 \gamma_{t-1}} \eta_t \]

- Precision of \(\hat{y}_t \) is increasing in sensitivity of \(k_{t-1} \) to private info
Informational externalities

Proposition

- *Equilibrium:* essentially same as with exogenous info
Informational externalities

Proposition

- **Equilibrium**: essentially same as with exogenous info

- **Efficient strategy**

\[
 k_{it}(\omega_t) = \mathbb{E}_{i,t} \left[\kappa_i^*(\theta_t) + \alpha_t^{**} \cdot [K_t(\phi_t) - \kappa_t^*(\theta_t)] \right]
\]

\[
 \alpha_t^{**} < \alpha^* \left(\equiv 1 - \frac{\text{weight on volatility}}{\text{weight on dispersion}} \right)
\]
Proposition

- **Equilibrium**: essentially same as with exogenous info

- **Efficient strategy**

\[
k_{it}(\omega_t) = \mathbb{E}_{i,t}[\kappa^*_i(\theta_t) + \alpha_t^{**} \cdot [K_t(\phi_t) - \kappa^*_t(\theta_t)]]
\]

\[
\alpha_t^{**} < \alpha^* \left(1 - \frac{\text{weight on volatility}}{\text{weight on dispersion}} \right)
\]

- Intuition:
Informational externalities

Proposition

- **Equilibrium:** essentially same as with exogenous info

- **Efficient strategy**

\[
\kappa_{it}(\omega_t) = \mathbb{E}_{i,t} \left[\kappa_t^*(\theta_t) + \alpha_t^{**} \cdot [K_t(\phi_t) - \kappa_t^*(\theta_t)] \right]
\]

\[
\alpha_t^{**} < \alpha^* \left(1 - \frac{\text{weight on volatility}}{\text{weight on dispersion}} \right)
\]

- **Intuition:**
 - only aggregation of private info, not public, induces learning
Informational externalities

Proposition

- **Equilibrium**: essentially same as with exogenous info

- **Efficient strategy**

\[
k_{it}(\omega_t) = \mathbb{E}_{i,t}[\kappa^*_i(\theta_t) + \alpha^{**}_t \cdot [K_t(\phi_t) - \kappa^*_i(\theta_t)]]
\]

\[
\alpha^{**}_t < \alpha^* \left(\equiv 1 - \frac{\text{weight on volatility}}{\text{weight on dispersion}} \right)
\]

- **Intuition**:
 1. only aggregation of private info, not public, induces learning
 2. efficient use of info ensures that social value of info is positive
Informational externalities

Proposition

- Equilibrium: essentially same as with exogenous info

- Efficient strategy

\[
k_{it}(\omega_t) = \mathbb{E}_{i,t}[\kappa_i^*(\theta_t) + \alpha_i^{**} \cdot [K_t(\phi_t) - \kappa_i^*(\theta_t)]]
\]

\[
\alpha_i^{**} < \alpha^* \left(\equiv 1 - \frac{\text{weight on volatility}}{\text{weight on dispersion}} \right)
\]

- Intuition:

 1. only aggregation of private info, not public, induces learning

 2. efficient use of info ensures that social value of info is positive

 3. 1 and 2 \(\Rightarrow\) higher sensitivity to private info \((\alpha_i^{**} < \alpha^*) \)
Proposition

- **Equilibrium**: essentially same as with exogenous info

- **Efficient strategy**

\[
k_{it}(\omega_t) = E_{i,t}[\kappa_t^*(\theta_t) + \alpha_t^{**} \cdot (K_t(\phi_t) - \kappa_t^*(\theta_t))]
\]

\[
\alpha_t^{**} < \alpha^* \left(\equiv 1 - \frac{\text{weight on volatility}}{\text{weight on dispersion}} \right)
\]

- **Intuition**:
 1. only aggregation of private info, not public, induces learning
 2. efficient use of info ensures that social value of info is positive
 3. 1 and 2 ⇒ higher sensitivity to private info (\(\alpha_t^{**} < \alpha^*\))

- **Policy implication**: info externalities contribute to higher \(T_{kK}\)
Social value of information

- Suppose now government can collect and disseminate information
Social value of information

- Suppose now government can collect and disseminate information

Corollary

In general, more precise information can reduce welfare. However, once optimal tax policy is in place, any type of information is welfare-enhancing!
Suppose now government can collect and disseminate information

Corollary

In general, more precise information can reduce welfare. However, once optimal tax policy is in place, any type of information is welfare-enhancing!

- Policies that correct inefficiencies in use of available information are complement to policies that collect / disseminate new information
Conclusions
Conclusions

- Novel role for policy in economies with dispersed info on common values

Government can increase welfare even without communicating info

Key instrument: contingency of taxes on aggregate activity

Extensions:
- redistribution (and insurance)
- limits to information aggregation / dissemination
Conclusions

- Novel role for policy in economies with dispersed info on common values

- Government can increase welfare even without communicating info
Conclusions

- Novel role for policy in economies with dispersed info on common values
- Government can increase welfare even without communicating info
- Key instrument: contingency of taxes on aggregate activity
Conclusions

- Novel role for policy in economies with dispersed info on common values
- Government can increase welfare even without communicating info
- Key instrument: contingency of taxes on aggregate activity

- Extensions:
Conclusions

- Novel role for policy in economies with dispersed info on common values
- Government can increase welfare even without communicating info
- Key instrument: contingency of taxes on aggregate activity
- Extensions:
 - redistribution (and insurance)
Conclusions

- Novel role for policy in economies with dispersed info on common values
- Government can increase welfare even without communicating info
- Key instrument: contingency of taxes on aggregate activity
- Extensions:
 - redistribution (and insurance)
 - limits to information aggregation / dissemination