Real Estate Collateral and Labor Demand

Thomas Chaney David Sraer David Thesmar
Toulouse School of Economics Princeton HEC Paris

August 26, 2013
Business and Asset Cycles are Related

Source: Claessens et al. (2011); see also Liu et al. (2013)

Correlation or causality?
Real estate price fluctuations *cause* movements in economic activity

- Real estate is collateral, it affects ability to borrow (Bernanke and Gertler (1986), Kiyotaki and Moore (1997))
- Its price conditions investment, consumption (already known)...
Real estate price fluctuations cause movements in economic activity

- Real estate is collateral, it affects ability to borrow (Bernanke and Gertler (1986), Kiyotaki and Moore (1997))
- Its price conditions investment, consumption (already known)...
- ... and labor demand (this paper):
 1. Labor and capital are complement.
 2. Employment has adjustment costs (regulatory, firm-specific human capital).
Our story

- This paper: real estate collateral → labor demand
Our story

- This paper: real estate collateral \rightarrow labor demand
- Main challenge: Endogeneity
 - Economic booms boost real estate prices and labor demand

We deal with this using administrative French firm data:
- Allows to adopt a "diff-in-diff-in-diff" strategy
- Compares labor demand in high- vs low-price growth regions.
- Looks at how this depends on firm-level real estate ownership.
- Controls for local economic shocks
 - In doing this, we construct a proxy of actual market value of real estate collateral
 - Helps to make calibrations.
Our story

- This paper: real estate collateral \rightarrow labor demand
- Main challenge: Endogeneity
 - Economic booms boost real estate prices and labor demand
- We deal with this using administrative French firm data:
 - Allows to adopt a “diff-in-diff-in-diff” strategy
 - Compares labor demand in high- vs low-price growth regions.
 - Looks at how this depends on firm-level real estate ownership.
 - Controls for local economic shocks
 - In doing this, we construct a proxy of actual market value of real estate collateral
 - Helps to make calibrations.
Take-Away

Finding # 1: Sizable macro effects.

- 2002-2006 real estate inflation → 10% of aggregate job creation.
- Comparable figure for investment: 12.5%

Finding # 2: Labor responds less than capital to RE shocks

- 10 ppt increase in collateral → capital increases by 2%
- 10 ppt increase in collateral → labor increases by 0.2%

Inconsistent with CRS & zero labor adjustment cost...

...but consistent with average firm behavior

⋆ Investment rate > employment growth rate

⋆ In our French data, but also in the US

⋆ Reflects labor adjustment costs (Benmelech et al. (2010)).
Take-Away

- Finding # 1: Sizable macro effects.
 - 2002-2006 real estate inflation \rightarrow 10% of aggregate job creation.
 - Comparable figure for investment: 12.5%

- Finding # 2: Labor responds less than capital to RE shocks
 - 10 ppt increase in collateral \rightarrow capital increases by 2%
 - 10 ppt increase in collateral \rightarrow labor increases by 0.2%

... but consistent with average firm behavior...
Take-Away

- **Finding # 1: Sizable macro effects.**
 - 2002-2006 real estate inflation → 10% of aggregate job creation.
 - Comparable figure for investment: 12.5%

- **Finding # 2: Labor responds less than capital to RE shocks**
 - 10 ppt increase in collateral → capital increases by 2%
 - 10 ppt increase in collateral → labor increases by 0.2%
 - Inconsistent with CRS & zero labor adjustment cost...

- Reflects labor adjustment costs (Benmelech et al. (2010)).

- Chaney/Sraer/Thesmar (TSE/Pton/HEC)
Take-Away

- Finding # 1: Sizable macro effects.
 - 2002-2006 real estate inflation \rightarrow 10% of aggregate job creation.
 - Comparable figure for investment: 12.5%

- Finding # 2: Labor responds less than capital to RE shocks
 - 10 ppt increase in collateral \rightarrow capital increases by 2%
 - 10 ppt increase in collateral \rightarrow labor increases by 0.2%
 - Inconsistent with CRS & zero labor adjustment cost...
 - ... but consistent with average firm behavior
 - Investment rate $>$ employment growth rate
 - In our French data, but also in the US
 - Reflects labor adjustment costs (Benmelech et al. (2010)).
Existing literature

- Credit constraints and labor demand
 - We have administrative data
 - We explore “normal times”, not a credit crisis
 - We focus on collateral, not credit supply shocks.
Existing literature

- Credit constraints and labor demand
 - We have administrative data
 - We explore “normal times”, not a credit crisis
 - We focus on collateral, not credit supply shocks.

- Collateral supply and economic activity
 - Household consumption and demand: Mian and Sufi (2011), Mian et al. (2013)
 - Corporate investment: Gan (2007), Chaney et al. (2012)
 - Business creation and survival: Adelino et al. (2013), Schmalz et al. (2013)
 - We focus on labor demand.
Existing literature

- Credit constraints and labor demand
 - We have administrative data
 - We explore “normal times”, not a credit crisis
 - We focus on collateral, not credit supply shocks.

- Collateral supply and economic activity
 - Household consumption and demand: Mian and Sufi (2011), Mian et al. (2013)
 - Corporate investment: Gan (2007), Chaney et al. (2012)
 - Business creation and survival: Adelino et al. (2013), Schmalz et al. (2013)
 - We focus on labor demand.

- We estimate # jobs per m Euro of collateral
 - ...can help calibrating macro models.
Outline

1. Economic Framework & Empirical Strategy
2. Data
3. Results
4. Robustness
Economic Framework

Assume firm is Cobb-Douglas: \(Y = AL^\alpha K^{1-\alpha} \)
Economic Framework

- Assume firm is Cobb-Douglas: $Y = AL^\alpha K^{1-\alpha}$
- Adjustment costs on capital, but not on labor:
 - Then: $L_t = K_t \left(\frac{A\alpha}{w} \right)^{1-\alpha} = K_t \times \left(\frac{L}{K} \right)^*$
 - Dynamic optimization problem \rightarrow path of K_t
Economic Framework

- Assume firm is Cobb-Douglas: \(Y = AL^\alpha K^{1-\alpha} \)
- Adjustment costs on capital, but not on labor:
 - Then: \(L_t = K_t \left(\frac{A^\alpha}{W} \right)^{1-\alpha} = K_t \times \left(\frac{L}{K} \right)^* \)
 - Dynamic optimization problem → path of \(K_t \)
- Imposes a link between the dynamics of \(L_t \) and \(K_t \):
 - Collateral shocks have “same” impact on \(K \) and \(L \).
 - Two alternative (equivalent) formulations:
 - \(\frac{\Delta L_t}{L_{t-1}} = \frac{\Delta K_t}{K_{t-1}} \)
 - \(\frac{\Delta L_t}{K_{t-1}} = \left(\frac{\Delta K_t}{K_{t-1}} \right) \times \left(\frac{K}{L} \right)^* \)
Empirical Strategy

- Firm j, département (i.e. French county) d, date t:

$$ Y_{jdt} = a_j + b_{dt} + \beta \times \text{RE Value}_{jdt} + \text{controls}_{jdt} + \epsilon_{jdt} $$

- $\text{RE Value}_{jdt} =$ firm-level collateral value / K (more later)
- Y_{jdt} change in labor, or investment (see next slide)
- Collateral matters if $\beta > 0$
Empirical Strategy

- Firm j, département (i.e. French county) d, date t:

$$Y_{jdt} = a_j + b_{dt} + \beta \times \text{RE Value}_{jdt} + \text{controls}_{jdt} + \epsilon_{jdt}$$

- RE Value$_{jdt}$ = firm-level collateral value / K (more later)
- Y_{jdt} change in labor, or investment (see next slide)
- Collateral matters if $\beta > 0$

- Identification is sharp, controls for:
 - Firm fixed unobservables a_j
 - b_{dt} capture département (& industry)-level shocks
 - Firm observables \times local house prices
Dependent Variables Definitions

- **Investment** = $\Delta K / K$
 - where K = property, plants and equipment.
 - ΔK = Capital Expenditures
 - $\beta_{\Delta K/K}$ simple to interpret: $\$ \text{of investment per } \$ \text{of collateral.}$
Investment = $\Delta K / K$

- where K = property, plants and equipment.
- ΔK = Capital Expenditures
- $\beta_{\Delta K / K}$ simple to interpret: $\$ of investment per $ of collateral.

Labor demand 1 = $\Delta L / K$

- ΔL = change in employment
- $\beta_{\Delta L / K}$ simple to interpret: # of jobs per $ of collateral.
- Basic framework predicts $\beta_{\Delta L / K} = \beta_{\Delta K / K} \times (L / K)^\ast$.
Dependent Variables Definitions

- **Investment** = $\Delta K / K$
 - where K = property, plants and equipment.
 - ΔK = Capital Expenditures
 - $\beta_{\Delta K/K}$ simple to interpret: $\$$ of investment per $ of collateral.

- **Labor demand 1** = $\Delta L / K$
 - ΔL = change in employment
 - $\beta_{\Delta L/K}$ simple to interpret: # of jobs per $ of collateral.
 - Basic framework predicts $\beta_{\Delta L/K} = \beta_{\Delta K/K} \times (L/K)^*$.

- **Labor demand 2** = $\Delta L / L$
 - $\beta_{\Delta L/L}$ harder to interpret directly.
 - But basic framework directly predicts: $\beta_{\Delta L/L} = \beta_{\Delta K/K}$.

Data Sources

- Firm-level accounting data for *all* French firms who pay income tax
 - From tax files: firms big and small, listed and privately held
 - We exclude construction, finance, real estate.
 - Obtain: Investment, real estate holdings (book value)
Data Sources

- Firm-level accounting data for *all* French firms who pay income tax
 - From tax files: firms big and small, listed and privately held
 - We exclude construction, finance, real estate.
 - Obtain: Investment, real estate holdings (book value)

- Employment data from plant-level data
 - We merge plant-level info on employment with firm-level accounts
 - Focus on mono-plant firms (assume real estate held where the plant is)
Data Sources

- Firm-level accounting data for all French firms who pay income tax
 - From tax files: firms big and small, listed and privately held
 - We exclude construction, finance, real estate.
 - Obtain: Investment, real estate holdings (book value)

- Employment data from plant-level data
 - We merge plant-level info on employment with firm-level accounts
 - Focus on mono-plant firms (assume real estate held where the plant is)

- About 100,000 firms per year, from 1998 to 2007
- Unbalanced; about 1m observations
Data on House Prices - Département-level

Panel A: All 95 Departements

Panel B: 20 Departements

Chaney/Sraer/Thesmar (TSE/Pton/HEC) Real Estate Collateral and Labor Demand August 26, 2013 12 / 29
Constructing Firm-level Collateral Value

- Collateral value = market value of real estate holdings

Step # 1: We estimate average age of real estate holdings
 - Assume linear amortization over 25 years.
 - Age ≈ 25 × cumulative depreciation / gross book value.

Step # 2: We multiply by cumulative house price growth
 - Between $t - \text{age}$ and t
 - At the d´épartement level (95 d´épartements in France)

Equivalent to "diff-in-diff-in-diff" identification:
 - $\Delta \text{Collateral value} \approx \text{book RE holdings} \times \Delta \text{house price}$
 - Can control for $\Delta \text{house price} \times \text{firm observables}$.
Constructing Firm-level Collateral Value

- Collateral value = market value of real estate holdings
- Firm-level data does not provide current market value
 - But it provides *book value*.

Step #1: We estimate average age of real estate holdings
 - Assume linear amortization over 25 years.
 - \[\text{Age} \approx 25 \times \frac{\text{cumulative depreciation}}{\text{gross book value}}. \]

Step #2: We multiply by cumulative house price growth
 - Between \(t - \text{age} \) and \(t \)
 - At the d'export level (95 départements in France)

Equivalent to "diff-in-diff-in-diff" identification:
 - \[\Delta \text{Collateral value} \approx \text{book RE holdings} \times \Delta \text{house price} \]
 - Can control for \(\Delta \text{house price} \times \text{firm observables}. \]
Constructing Firm-level Collateral Value

- Collateral value = market value of real estate holdings
- Firm-level data does not provide current market value
 - But it provides *book value*.
- Step # 1: We estimate average age of real estate holdings
 - Assume linear amortization over 25 years.
 - Age \(\approx 25 \times \text{cumulative depreciation} / \text{gross book value} \).
Constructing Firm-level Collateral Value

- Collateral value = market value of real estate holdings
- Firm-level data does not provide current market value
 - But it provides *book value*.
- Step # 1: We estimate average age of real estate holdings
 - Assume linear amortization over 25 years.
 - Age \(\approx 25 \times \text{cumulative depreciation} / \text{gross book value} \).
- Step # 2: We multiply by cumulative house price growth
 - Between \(t - \text{age} \) and \(t \)
 - At the département level (95 départements in France)

Equivalent to “diff-in-diff-in-diff” identification:
- \(\Delta \text{Collateral value} \approx \text{book RE holdings} \times \Delta \text{house price} \)
- Can control for \(\Delta \text{house price} \times \text{firm observables} \).
Constructing Firm-level Collateral Value

- Collateral value = market value of real estate holdings
- Firm-level data does not provide current market value
 - But it provides book value.
- Step # 1: We estimate average age of real estate holdings
 - Assume linear amortization over 25 years.
 - Age ≈ 25 × cumulative depreciation / gross book value.
- Step # 2: We multiply by cumulative house price growth
 - Between \(t - \text{age} \) and \(t \)
 - At the département level (95 départements in France)

Equivalent to “diff-in-diff-in-diff” identification:
- \(\Delta \) Collateral value ≈ book RE holdings × \(\Delta \) house price
- Can control for \(\Delta \) house price × firm observables.
In aggregate: +26bn Euro of collateral over 2002-2006
Effect of Collateral Shock on Investment

<table>
<thead>
<tr>
<th>RE Value<sub>t</sub></th>
<th>.22***
 (46)</th>
<th>.22***
 (48)</th>
<th>.19***
 (46)</th>
<th>.19***
 (45)</th>
<th>.29***
 (29)</th>
<th>.3***
 (26)</th>
<th>.17***
 (13)</th>
<th>.17***
 (13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. Prices</td>
<td>-.01**
 (-2.1)</td>
<td>.013
 (.99)</td>
<td>-.0059
 (-.46)</td>
<td>-.09***
 (-3.8)</td>
<td>-.054
 (-1.5)</td>
<td>-.13***
 (-3.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(assets)<sub>98</sub> × Dep. Prices</td>
<td>-.0013
 (.95)</td>
<td>.001
 (.85)</td>
<td>.0014
 (1.2)</td>
<td>-.0038
 (.95)</td>
<td>.0058*
 (1.8)</td>
<td>.0066*
 (1.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROA<sub>98</sub> × Dep. Prices</td>
<td>-.099***
 (-10)</td>
<td>-.068***
 (-6.4)</td>
<td>-.071***
 (-6.1)</td>
<td>.022
 (.7)</td>
<td>.15***
 (5.1)</td>
<td>.15***
 (4.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leverage<sub>98</sub> × Dep. Prices</td>
<td>-.059***
 (-10)</td>
<td>-.065***
 (-11)</td>
<td>-.067***
 (-10)</td>
<td>.0066
 (.26)</td>
<td>-.02
 (-.72)</td>
<td>-.023
 (-.83)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash<sub>t</sub> / PPE<sub>t−1</sub></td>
<td>.046***
 (30)</td>
<td>.046***
 (30)</td>
<td>.19***
 (44)</td>
<td>.19***
 (42)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1078211</td>
<td>745680</td>
<td>745680</td>
<td>745680</td>
<td>1078211</td>
<td>745680</td>
<td>745680</td>
<td>745680</td>
</tr>
<tr>
<td>Adj. R-Square</td>
<td>.26</td>
<td>.29</td>
<td>.3</td>
<td>.19</td>
<td>.03</td>
<td>.047</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- +1m Euro of collateral → 170,000 Euro of debt
- +1m Euro of collateral → 190,000 Euro of investment

(our US paper on COMPUSTAT had 60,000)
Effect of Collateral Shock on Employment

<table>
<thead>
<tr>
<th></th>
<th>$\Delta(\text{Employment})$</th>
<th>$\Delta(\text{Emp})$</th>
<th>$\Delta(\text{Emp})$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPE_{t-1}</td>
<td>Emp_{t-1}</td>
<td>Emp_{t}</td>
</tr>
<tr>
<td>RE Value$_t$</td>
<td>2.5***</td>
<td>2.2***</td>
<td>1.5***</td>
</tr>
<tr>
<td></td>
<td>(28)</td>
<td>(23)</td>
<td>(15)</td>
</tr>
<tr>
<td>Dep. Prices</td>
<td>-1.2***</td>
<td>-3.7***</td>
<td>-4.1***</td>
</tr>
<tr>
<td></td>
<td>(-3.8)</td>
<td>(-10)</td>
<td>(-12)</td>
</tr>
<tr>
<td>Log(assets)$_{98} \times \text{Dep. Prices}$</td>
<td>.32***</td>
<td>.37***</td>
<td>.38***</td>
</tr>
<tr>
<td></td>
<td>(5.7)</td>
<td>(7.3)</td>
<td>(7.6)</td>
</tr>
<tr>
<td>ROA$_{98} \times \text{Dep. Prices}$</td>
<td>-5***</td>
<td>-4.2***</td>
<td>-4.3***</td>
</tr>
<tr>
<td></td>
<td>(-14)</td>
<td>(-13)</td>
<td>(-12)</td>
</tr>
<tr>
<td>Leverage$_{98} \times \text{Dep. Prices}$</td>
<td>-0.55***</td>
<td>-0.7***</td>
<td>-0.74***</td>
</tr>
<tr>
<td></td>
<td>(-3.4)</td>
<td>(-4.2)</td>
<td>(-4.4)</td>
</tr>
<tr>
<td>Casht/$PPE{t-1}$</td>
<td>1.1***</td>
<td>1.1***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(28)</td>
<td>(29)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1078211</td>
<td>745680</td>
<td>745680</td>
</tr>
<tr>
<td>Adj. R-Square</td>
<td>.023</td>
<td>.043</td>
<td>.047</td>
</tr>
<tr>
<td>Industry FE \times Dep. Index</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dep. FE \times Dep. Index</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dep. \times Industry \times Year FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- **+1m Euro of collateral \rightarrow 1.5 new job**

Chaney/Sraer/Thesmar (TSE/Pton/HEC) | Real Estate Collateral and Labor Demand | August 26, 2013
Finding #1: Aggregate Impact is Large

- Small R^2 does not mean small macro impact
- Aggregate increase in collateral value 2002-2006 = 26bn Euro

Job creation effect is large:
- $26,000 \times 1.5 \approx 40,000$ new jobs created
 (compared to about 400,000 jobs created in aggregate)

Same magnitude as investment:
- $26,000 \times 190,000 \approx 5.2$bn Euro additional investment
 (compared to about 30bn increase over 2002-2006)
Finding #1: Aggregate Impact is Large

- Small R^2 does not mean small macro impact
- Aggregate increase in collateral value 2002-2006 = 26bn Euro
- Job creation effect is large:
 - $26,000 \times 1.5 \approx 40,000$ new jobs created
 - (compared to about 400,000 jobs created in aggregate)
Finding #1: Aggregate Impact is Large

- Small R^2 does not mean small macro impact
- Aggregate increase in collateral value 2002-2006 = 26bn Euro
- Job creation effect is large:
 - $26,000 \times 1.5 \approx 40,000$ new jobs created
 - (compared to about 400,000 jobs created in aggregate)
- Same magnitude as investment:
 - $26,000 \times 190,000 \approx 5.2bn$ Euro additional investment
 - (compared to about 30bn increase over 2002-2006)
Finding #2: Labor Reaction “Small”

- L reacts less than K to collateral shocks.
 - Inconsistent with a “pure” complementarity effect.

Mathematical expression:

\[\frac{\beta \Delta L}{L} < \frac{\beta \Delta K}{K} \times \left(\frac{L}{K} \right) \]

Example:

1 m Euro collateral shock → 190k Euro investment

\[\frac{K}{L} = 45k \text{ Euro per job} \]

We expect $\frac{190}{45} = 4.2$ jobs created / m Euro collateral.

But we find, in the regressions, only 1.5 job.

Equivalently:

\[\frac{\beta \Delta L}{L} \ll \frac{\beta \Delta K}{K} \]

\[\frac{\beta \Delta L}{L} = 0.002 = \frac{\beta \Delta K}{K}/10 \]

Discrepancy consistent with average firm behavior

In micro-data, $\frac{\Delta L}{L}$ sensitivity to $\frac{\Delta K}{K} \ll 1$
Finding #2: Labor Reaction “Small”

- L reacts less than K to collateral shocks.
 - Inconsistent with a “pure” complementarity effect.

$$\beta_{\Delta L/K} < \beta_{\Delta K/K} \times \left(\frac{L}{K} \right)^*$$

- 1m Euro collateral shock \rightarrow 190k Euro investment
- $K/L = 45k$ Euro per job
- We expect $190/45 = 4.2$ jobs created / m Euro collateral.
- But we find, in the regressions, only 1.5 job.
Finding #2: Labor Reaction “Small”

- \(L \) reacts less than \(K \) to collateral shocks.
 - Inconsistent with a “pure” complementarity effect.

1. \(\beta_{\Delta L/K} < \beta_{\Delta K/K} \times (L/K)^* \)
 - 1m Euro collateral shock \(\rightarrow \) 190k Euro investment
 - \(K/L = 45k \) Euro per job
 - We expect \(190/45 = 4.2 \) jobs created / m Euro collateral.
 - But we find, in the regressions, only 1.5 job.

2. Equivalently: \(\beta_{\Delta L/L} < < \beta_{\Delta K/K} \).
 - \(\beta_{\Delta L/L} = 0.002 = \beta_{\Delta K/K}/10 \)
Finding #2: Labor Reaction “Small”

- L reacts less than K to collateral shocks.
 - Inconsistent with a “pure” complementarity effect.

1. $\beta_{\Delta L/K} < \beta_{\Delta K/K} \times (L/K)^*$
 - 1m Euro collateral shock → 190k Euro investment
 - $K/L = 45k$ Euro per job
 - We expect $190/45 = 4.2$ jobs created / m Euro collateral.
 - But we find, in the regressions, only 1.5 job.

2. Equivalently: $\beta_{\Delta L/L} \ll \beta_{\Delta K/K}$.
 - $\beta_{\Delta L/L} = 0.002 = \beta_{\Delta K/K}/10$

- Discrepancy consistent with average firm behavior
 - In micro-data, $\Delta L/L$ sensitivity to $\Delta K/K \ll 1 \rightarrow$
Average reaction of $\Delta L/L$ to $\Delta K/K$

- Regress: $\Delta L/L$ on $\Delta K/K$
- Assume (heroic) that $\Delta K/K$ is exogenous.

<table>
<thead>
<tr>
<th></th>
<th>$\Delta L_t / L_{t-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>French Firms</td>
</tr>
<tr>
<td>$\Delta K_t / K_{t-1}$</td>
<td>(1)</td>
</tr>
<tr>
<td>(26)</td>
<td>.19***</td>
</tr>
<tr>
<td>(15)</td>
<td>(44)</td>
</tr>
<tr>
<td>Observations</td>
<td>28429</td>
</tr>
<tr>
<td>Adj. R-Square</td>
<td>.15</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm FE</td>
<td>No</td>
</tr>
</tbody>
</table>

- 1 ppt increase in $\Delta K/K \rightarrow 0.14$ ppt increase in $\Delta L/L$
- Consistent with $\beta_{\Delta L/L} = \beta_{\Delta K/K} / 10$
- Effect similar in the US (cols 3 and 4)
- ... more work need in this direction.
Robustness #1: Miscellanea

- Attrition not an issue
 - Balanced sample yields same estimate
- Internal capital markets do not interfere
 - Independent firms & group firms \rightarrow same estimate
- Result extends to multi-plant firms
 - Estimate slightly smaller, but still roughly the same
 - RE Value less precisely measured
- Robust to outlier treatment
 - An issue for $\Delta L/K$
- Same effect for large and small firms
Robustness # 2: Sensitivity to local cycle?

- **RE Value** ≈ RE holdings × price shocks
- Problem if RE holdings = exposure to local cycle
- Check how β differs in local vs global industries.

Table: Sample Split by Industry Export Ratios

<table>
<thead>
<tr>
<th></th>
<th>Local (1)</th>
<th>$\Delta(\text{Emp}){PPE{t-1}}$ Interm. (2)</th>
<th>Global (3)</th>
<th>Local (4)</th>
<th>$\Delta(\text{Emp}){\text{Emp}{t} + \text{Emp}_{t-1}}$ Interm. (5)</th>
<th>Global (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE Value$_t$</td>
<td>1.5***</td>
<td>1.8***</td>
<td>2***</td>
<td>.016***</td>
<td>.026***</td>
<td>.026***</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(8.4)</td>
<td>(5.6)</td>
<td>(3.5)</td>
<td>(5.4)</td>
<td>(3)</td>
</tr>
<tr>
<td>Casht/$PPE{t-1}$</td>
<td>.93***</td>
<td>1.1***</td>
<td>1.1***</td>
<td>.017***</td>
<td>.018***</td>
<td>.018***</td>
</tr>
<tr>
<td></td>
<td>(16)</td>
<td>(21)</td>
<td>(8.4)</td>
<td>(13)</td>
<td>(20)</td>
<td>(9.1)</td>
</tr>
<tr>
<td>Log(assets)$_{98} \times$ Dep. Prices</td>
<td>.37***</td>
<td>.41***</td>
<td>.45***</td>
<td>.0012</td>
<td>-.0009</td>
<td>-.0012</td>
</tr>
<tr>
<td></td>
<td>(7.7)</td>
<td>(6)</td>
<td>(3.9)</td>
<td>(1.2)</td>
<td>(-1)</td>
<td>(-.63)</td>
</tr>
<tr>
<td>ROA$_{98} \times$ Dep. Prices</td>
<td>-2.7***</td>
<td>-6.3***</td>
<td>-6.4***</td>
<td>-.02*</td>
<td>-.071***</td>
<td>-.034</td>
</tr>
<tr>
<td></td>
<td>(-4.8)</td>
<td>(-10)</td>
<td>(-3.8)</td>
<td>(-1.7)</td>
<td>(-5.7)</td>
<td>(-1.1)</td>
</tr>
<tr>
<td>Leverage$_{98} \times$ Dep. Prices</td>
<td>- .73***</td>
<td>-.9**</td>
<td>-2.4*</td>
<td>-.029***</td>
<td>-.039***</td>
<td>-.072***</td>
</tr>
<tr>
<td></td>
<td>(-3.7)</td>
<td>(-2)</td>
<td>(-1.7)</td>
<td>(-4.6)</td>
<td>(-5.2)</td>
<td>(-3.4)</td>
</tr>
<tr>
<td>Observations</td>
<td>363093</td>
<td>321440</td>
<td>61147</td>
<td>356977</td>
<td>319821</td>
<td>60886</td>
</tr>
<tr>
<td>Adj. R-Square</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dep. × Industry × Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Chaney/Sraer/Thesmar (TSE/Pton/HEC) Real Estate Collateral and Labor Demand August 26, 2013 21 / 29
Robustness # 3 : Placebo regressions

- For each firm-year draw a random RE Value
- Estimate the benchmark regression
- Repeat 50 times.
Robustness # 4 : Dynamics

- Regress Y_{jt+k} on RE Value$_{jt}$, for $k = 0, 1, ..5$
- Most of the action occurs after 1 year.

<table>
<thead>
<tr>
<th></th>
<th>$\Delta(Emp_t)$</th>
<th>$\Delta(Emp_{t+1})$</th>
<th>$\Delta(Emp_{t+2})$</th>
<th>$\Delta(Emp_{t+3})$</th>
<th>$\Delta(Emp_{t+4})$</th>
<th>$\Delta(Emp_{t+5})$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPE_{t-1}</td>
<td>PPE_t</td>
<td>PPE_{t+1}</td>
<td>PPE_{t+2}</td>
<td>PPE_{t+3}</td>
<td>PPE_{t+4}</td>
</tr>
<tr>
<td>Panel A:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE Value$_t$</td>
<td>1.5^{***}</td>
<td>2.7^{***}</td>
<td>2.5^{***}</td>
<td>1.5^{***}</td>
<td>$.54^{**}$</td>
<td>$.22$</td>
</tr>
<tr>
<td></td>
<td>(16)</td>
<td>(23)</td>
<td>(15)</td>
<td>(8.4)</td>
<td>(2.4)</td>
<td>(.81)</td>
</tr>
<tr>
<td>Cash$_t$</td>
<td>1.1^{***}</td>
<td>$.58^{***}$</td>
<td>$.23^{***}$</td>
<td>-.033</td>
<td>-.089*</td>
<td>-.1</td>
</tr>
<tr>
<td>PPE_{t-1}</td>
<td>(29)</td>
<td>(10)</td>
<td>(5.1)</td>
<td>(-.76)</td>
<td>(-1.8)</td>
<td>(-1.6)</td>
</tr>
<tr>
<td>Log(assets)$_{98}$ × Dep. Prices</td>
<td>$.38^{***}$</td>
<td>-.044</td>
<td>$.27^{***}$</td>
<td>$.39^{**}$</td>
<td>$.34</td>
<td>$.37</td>
</tr>
<tr>
<td></td>
<td>(7.6)</td>
<td>(-.48)</td>
<td>(2.7)</td>
<td>(2.4)</td>
<td>(1)</td>
<td>(.86)</td>
</tr>
<tr>
<td>ROA$_{98}$ × Dep. Prices</td>
<td>-4.3^{***}</td>
<td>-3.7^{***}</td>
<td>-3.3^{***}</td>
<td>-1.9^{**}</td>
<td>1.3</td>
<td>5.8^{***}</td>
</tr>
<tr>
<td></td>
<td>(-12)</td>
<td>(-8.2)</td>
<td>(-4.5)</td>
<td>(-2)</td>
<td>(.87)</td>
<td>(2.6)</td>
</tr>
<tr>
<td>Leverage$_{98}$ × Dep. Prices</td>
<td>$-.74^{***}$</td>
<td>$-.57^{**}$</td>
<td>-.47</td>
<td>-.97</td>
<td>-.3</td>
<td>-.89</td>
</tr>
<tr>
<td></td>
<td>(-4.4)</td>
<td>(-2.6)</td>
<td>(-.96)</td>
<td>(-1.6)</td>
<td>(-.45)</td>
<td>(-.72)</td>
</tr>
<tr>
<td>Observations</td>
<td>745680</td>
<td>647107</td>
<td>558582</td>
<td>477668</td>
<td>401642</td>
<td>328702</td>
</tr>
<tr>
<td>Adj. R-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dep. × Industry× Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Panel B:

- $\Delta(Emp_t)$ on common sample

<table>
<thead>
<tr>
<th></th>
<th>$\Delta(Emp_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPE_{t-1}</td>
<td></td>
</tr>
<tr>
<td>RE Value$_t$</td>
<td>1.5^{***}</td>
</tr>
<tr>
<td></td>
<td>(16)</td>
</tr>
<tr>
<td>Observations</td>
<td>745680</td>
</tr>
</tbody>
</table>

Chaney/Sraer/Thesmar (TSE/Pton/HEC) Real Estate Collateral and Labor Demand August 26, 2013 23 / 29
Conclusion

Wrap-up

- Collateral effects explains large fraction job creation
- But at micro-level, labor effect smaller than capital
- This is consistent in aggregate: French firms invest, but hire little...
Conclusion

Wrap-up

- Collateral effects explains large fraction job creation
- But at micro-level, labor effect smaller than capital
- This is consistent in aggregate: French firms invest, but hire little...

Way forward

- Build a simple structural model with labor adjustment costs and financing frictions
- Simulate it
- Run our regressions on the simulated sample, see if we find similar parameters to ours.
- “indirect inference”

References III

Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>median</th>
<th>min</th>
<th>max</th>
<th>sd</th>
<th>p25</th>
<th>p75</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{CAPX_t}{PPE_{t-1}})</td>
<td>0.19</td>
<td>0.08</td>
<td>-0.93</td>
<td>1.09</td>
<td>0.28</td>
<td>0.02</td>
<td>0.23</td>
<td>1,078,211</td>
</tr>
<tr>
<td>(\Delta(Debt))</td>
<td>0.11</td>
<td>0.01</td>
<td>-2.66</td>
<td>2.67</td>
<td>1.05</td>
<td>-0.19</td>
<td>0.35</td>
<td>1,078,211</td>
</tr>
<tr>
<td>(\frac{\Delta(\text{Employment}){t-1}}{PPE{t-1}})</td>
<td>0.60</td>
<td>0.00</td>
<td>-28.55</td>
<td>28.55</td>
<td>13.01</td>
<td>-2.21</td>
<td>3.64</td>
<td>1,078,211</td>
</tr>
<tr>
<td>(\frac{2\Delta(Emp)}{\text{Emp}{t}+\text{Emp}{t-1}})</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.72</td>
<td>0.72</td>
<td>0.23</td>
<td>-0.06</td>
<td>0.08</td>
<td>1,062,435</td>
</tr>
<tr>
<td>(\Delta(Emp)_{t-1})</td>
<td>0.02</td>
<td>0.00</td>
<td>-0.73</td>
<td>0.73</td>
<td>0.23</td>
<td>-0.06</td>
<td>0.08</td>
<td>1,059,840</td>
</tr>
<tr>
<td>RE.Value</td>
<td>0.28</td>
<td>0.00</td>
<td>0.00</td>
<td>1.82</td>
<td>0.49</td>
<td>0.00</td>
<td>0.36</td>
<td>1,078,211</td>
</tr>
<tr>
<td>Dep. Index</td>
<td>1.38</td>
<td>1.24</td>
<td>0.75</td>
<td>3.25</td>
<td>0.46</td>
<td>1.05</td>
<td>1.64</td>
<td>1,078,211</td>
</tr>
<tr>
<td>Cash_{t} (\frac{PPE_{t-1}}{\text{PPE}_{t-1}})</td>
<td>0.85</td>
<td>0.28</td>
<td>-2.67</td>
<td>4.79</td>
<td>1.29</td>
<td>0.05</td>
<td>0.97</td>
<td>1,078,211</td>
</tr>
</tbody>
</table>
Regress: $\Delta L / L$ and $\Delta K / K$ on cash-flows

<table>
<thead>
<tr>
<th></th>
<th>$\Delta K_t / K_{t-1}$</th>
<th>$\Delta L_t / L_{t-1}$</th>
<th>$\Delta K_t / K_{t-1}$</th>
<th>$\Delta L_t / L_{t-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>French Firms</td>
<td>US Firms</td>
<td>French Firms</td>
<td>US Firms</td>
</tr>
<tr>
<td>Cash-Flows$t / K{t-1}$</td>
<td>0.019***</td>
<td>0.0095***</td>
<td>0.022***</td>
<td>0.033***</td>
</tr>
<tr>
<td>Observations</td>
<td>29327</td>
<td>32683</td>
<td>32004</td>
<td>33587</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- In France, $\Delta K / K$ reacts more to cash flows than $\Delta L / L$
- In the US, it is the opposite.
- Needs refinement (extremely endogenous).