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ABSTRACT

Entrepreneurs who seek financing for projects typically do so in decentralized mar-

kets where they need to approach investors sequentially. We study how well such

sequential markets allocate resources when investors have expertise in evaluating in-

vestment opportunities, and how surplus is split between entrepreneurs and financiers.

Contrary to common belief, we show that the introduction of a credit registry that

tracks the application history of a borrower leads to more adverse selection, quicker

market break down, and higher rents to investors which are not competed away even

as the number of investors grows large. Although sequential search markets lead to

substantial investment inefficiencies, they can nevertheless be more efficient than a cen-

tralized exchange where excessive competition may impede information aggregation.

We also show that investors who rely purely on public information in their lending

decisions can out-compete better informed investors with soft information, and that

an introduction of interest rate caps can increase the efficiency of the market.
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The main role of primary financial markets is to channel resources to firms with worth-

while projects. This process requires information about investment opportunities, tech-

nological feasibility, management ability, current industry and macroeconomic con-

ditions, as well as expertise in using such information. No single investor typically

possesses all relevant pieces of information. Therefore, the efficiency of the capital

allocation process depends on how well markets aggregate this information, which in

turn depends on how they are organized.

At least until very recently, the majority of primary capital markets for small- and

medium sized firms operate as decentralized search markets in which firms approach

potential investors sequentially (one-by-one). This is true whether firms are seeking

capital from banks or from equity investors such as business angels and venture cap-

italists. Historically, transparency of these markets has been limited but advances

in technology over the last decades have made these markets more transparent. In

particular, most developed markets now have central credit registries, which not only

collect information about credit worthiness of firms and individuals, but also track the

application history of borrowers. Recently, innovations in financial technology have

even brought some market activity to centralized market places such as peer-to-peer

and crowdfunding platforms.

In this paper, we ask which markets are socially optimal and which markets are

better for entrepreneurs? Do more transparent markets lead to better investment

decisions and a lower cost of capital for entrepreneurs? What are the implications for

regulation? We develop a general but tractable decentralized search model of credit

markets to study these questions, and contrast the results with the ones we have

developed in a companion paper on centralized markets (Axelson and Makarov (2016)).

We show that contrary to common intuition, decentralized search markets can be more

efficient at aggregating information than centralized markets. Even more surprisingly,

we show that increased transparency can lead to worse lending decisions and lower

surplus for entrepreneurs. Finally, policies such as interest rate caps can lead to more

efficient decentralized markets but higher rent for investors.

We consider a setting in which an entrepreneur with a project idea searches for

credit by approaching potential financiers sequentially. There is uncertainty about

whether the project is worthwhile or not. Each investor, if approached, can do due

diligence which results in a private signal about the prospects of the project. The

search continues until the entrepreneur either finds an investor who is willing to accept

her terms for financing the project or runs out of options and abandons the project.

In this paper, we want to abstract from the friction introduced by the cost of find-

ing a counterparty and therefore assume that the entrepreneur is infinitely patient and
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has no search cost. Instead, we focus on the friction introduced by dispersed infor-

mation and sequential interactions. There are two problems that impede information

aggregation. First, whenever the entrepreneur comes to an agreement with an investor,

information aggregation stops although there is potentially valuable information held

by investors who have not yet been approached. Second, when the entrepreneur does

not come to an agreement with an investor and continues her search, not all of the

information held by the investor is passed on to the next investor she meets. In partic-

ular, each new investor faces an adverse selection problem created by the fact that the

entrepreneur failed to receive financing in previous interactions with informed investors.

This adverse selection depends on what is observed by investors. We study two

cases of market transparency: with and without a credit registry. A credit registry

in our model performs two functions. First, it may produce hard information about

credit quality of the project. Second, it records how many credit checks have been

performed on the entrepreneur in the past. This information allows investors to deduce

how many times the borrower has applied for financing previously. We refer to the

case where the sequence is observable as the “credit registry” case. In the “no credit

registry” case, an investor does not know how many other investors an applicant has

visited before. This is commonly the case in less developed countries, in informal

lending markets, and in non-bank markets such as when an entrepreneur seeks angel-

or venture capital financing. Importantly and consistent with practice, irrespective of

whether there is a credit registry or not, investors do not observe financing terms at

which the entrepreneur was rejected.

As a result, the impact of a rejection on the beliefs of remaining investors depends

on the terms at which they believe the entrepreneur was rejected. If investors believe

the entrepreneur asked for financing at favorable terms (a low interest rate), a rejection

is not such bad news. But if investors believe the entrepreneur offered a high interest

rate, a rejection is bad news, and can locked out the entrepreneur of the market—a

situation when the entrepreneur cannot get financing because even an investor with

the most optimistic signal will think that the project is negative NPV.

In equilibrium, beliefs should be consistent with actual financing offers. This puts

constraints on the offers that can be supported in equilibrium. We show that with

a credit registry in place, the entrepreneur cannot credibly ask for favorable terms.

Because financing terms are not observable, the entrepreneur cannot affect the beliefs

of investors and improve her prospects in future rounds by asking for more favorable

terms in the current round. Asking for favorable terms without the ability to affect

the beliefs of future investors, however, is costly for the entrepreneur because it means

high probability of rejection. As a result, the entrepreneur is biased towards offering
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less favorable terms.

When there is no credit registry, an investor cannot verify how many times an

applicant has been rejected previously. This is potentially bad for an entrepreneur

who has not been rejected, since she might be pooled with rejected entrepreneurs with

worse credit quality. A first-time applicant therefore has an incentive to signal her

type, and we show that she will always be able to do so by asking for more favorable

financing terms. This is a credible signal, because a request for more favorable terms

has a higher probability of rejection, and rejection is less costly for a first-time applicant

who has many investors left to visit. This logic extends to all rounds, leading to a fully

separating equilibrium, in which the need for signalling creates a credible way for the

entrepreneur to ask for favorable terms.

Asking for favorable financing terms has two consequences. First, it reduces the

rents to investors. We show that as the number of potential investors grows large,

investors’ rent is competed away in the case of no credit bureau. In contrast, with a

credit registry, investors continue to earn significant rents even though the entrepreneur

has all bargaining power. The rent can be so high that uninformed investors who can

commit to use only public information are sometimes able to out compete investors

with both public and private information. The reason is that uninformed investors

never earn any rents, which for high credit quality entrepreneurs can make them more

attractive despite the lower surplus created.

Second, asking for favorable financing terms leads to more financing rounds relative

to the case with a credit registry because credit quality deteriorates slower with each

rejection. In the case of no credit registry, the entrepreneur can visit all available

investors. In contrast, in the case of a credit registry, the entrepreneur might get

locked out of the market even after a single rejection.

The benefits of having extended search depend on the informational content of the

signal distribution. The way many financing rounds are sustained is by asking for offers

that only the most optimistic investor would accept, while less optimistic information

is never incorporated in the financing decision. As a result, extended search is desirable

in situations where the informational content of the signal distribution is concentrated

towards the top. We show that for these situations, as the number of potential investors

grows large, the social surplus without a credit registry approaches that attained in a

large first-price auction, which is also the maximal possible one.

However, extended search can lead to less informative financing decisions in situ-

ations where the informational content of the signal distribution is not concentrated

towards the top. In these situations, the market with a credit registry and few financing

rounds is more efficient and can dominate even a centralized auction market.
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We show that a centralized auction market with an optimally chosen number of

investors is always better than a sequential market. However, it may not always be

easy to commit to limit the number of participants in an auction. In the market with

a credit registry, there is no need for such a commitment—the market breaks down

endogenously after a limited set of rounds. Hence, the market with a credit registry

can lead to higher social surplus than a large auction market because it restricts the

competition among investors, allowing them to utilize their information more efficiently.

Surprisingly, the increased surplus can more than compensate for the higher rent left to

investors, so that the entrepreneur can also be better off than in an auction market. In

fact, if credit registries were to collect information not only on the number of rejections,

but also on the terms at which an applicant was rejected, a sequential market would in

fact always produce higher surplus and higher entrepreneurial rents than a free entry

auction.

Finally, we show that the sequential market with a credit registry can have multiple

equilibria, due to the feedback effect of equilibrium beliefs. When investors believe that

rejected borrowers have low credit quality, rejection is more costly for entrepreneurs.

Therefore, entrepreneurs will be more likely to ask for unfavorable financing terms

in early rounds to avoid rejection, which means that rejection is a signal of worse

quality—a self-fulfilling prophesy. Hence, equilibria with few financing rounds and

equilibria with more financing rounds can coexist. The equilibria with few financing

rounds are often worse for entrepreneurs because of the unfavorable financing terms,

but can be good for social surplus. This gives the surprising implication that social

welfare can be improved if the government imposes an interest rate cap. An interest

rate cap will eliminate “sub-prime” markets for rejected borrowers, and hence will

eliminate the socially inefficient equilibria with many financing rounds.

Our paper is related to several bodies of work. The efficiency of investment deci-

sions in our model depends on the extent to which information is aggregated. Starting

with Hayek (1945) and Grossman (1976) there is a large literature that studies infor-

mation aggregation in financial markets. The closest papers in this literature are those

that study herding and informational cascades in sequential decision making, see e.g.,

Bikhchandani, Hirshleifer and Welch (1992), Welch (1992), and Avery and Zemsky

(1998). Bikhchandani, Hirshleifer and Welch (1992) and Welch (1992) consider non-

tradable assets, while Avery and Zemsky (1998) focus on tradable assets. Thus, our

setup is closer to that in Bikhchandani, Hirshleifer and Welch (1992) and Welch (1992).

Unlike Bikhchandani, Hirshleifer and Welch (1992) and Welch (1992) who assume the

same exogenous offers in all rounds, we allow the entrepreneur to adjust her offers in

different rounds. Therefore, in our setup, herding does not always occur in equilibrium
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as in Bikhchandani, Hirshleifer and Welch (1992) and Welch (1992), and whether it

exists or not depends on the signal distribution.

Similar to us, Bulow and Klemperer (2009), Roberts and Sweeting (2013), and

Glode and Opp (2017) study relative efficiency of sequential and centralized markets.

However, the economic mechanism in our paper is very different from those in the

above papers. First, all three papers study selling mechanisms of an existed asset.

Because information generated in a selling mechanism has no value for production

information aggregation plays no role in their models. In their settings, having as

many potential buyers as possible is always good for a seller, which is not necessarily

the case in our setup. Second, Bulow and Klemperer (2009) and Roberts and Sweeting

(2013) assume nonzero participation costs, and Glode and Opp (2017) assume nonzero

costs of information acquisition. These cost are the main sources of inefficiency in their

models. In contrast, these costs are not present in our model, in which the main cause

of inefficiency is imperfect information aggregation.

Another related work is Lauermann and Wolinsky (2016), who study a decentral-

ized search setup with a seller searching for buyers. Lauermann and Wolinsky (2016)

consider the case of an infinite number of buyers and assume that search history is not

observable. In their analysis, Lauermann and Wolinsky (2016) focus on pooling equi-

libria and conclude that search markets are worse at aggregating information than the

centralized markets. In contrast, we show that with finite but arbitrary large number

of buyers there is a separating equilibrium, which can be as efficient at aggregating

information as centralized markets. In addition, we consider the case in which search

history is observable and show that search markets with a credit registry can be more

efficient than centralized markets. Our work is also related to Zhu (2012) who considers

a model of opaque over-the-counter markets. In his model, it is buyers and not the

seller who make take-it-or-leave it offers. Similar to Lauermann and Wolinsky (2016),

Zhu (2012) considers a sale of an existing asset, assumes that search history is not ob-

servable, and studies only pooling equilibria. As a result, both the focus and analysis

of Zhu (2012) are significantly different from those in our paper.

More broadly, we also relate to large literature on search markets. Many papers in

this literature focus on the friction introduced by the cost of finding a counter-party

in private value environments (see, e.g., Duffie, Garleanu and Pedersen (2005), Lagos

and Rocheteau (2009), Vayanos and Weill (2008), Weill (2008)). We differ from this

literature by focusing on the consequences of sequential interactions in the common-

value environment, where the entrepreneur is infinitely patient and has no search cost.

Our paper is also related to the literature on relationship lending started with

a seminal paper by Rajan (1992). In common with papers in this literature, when

5



an informed lender refuses credit in our model he creates adverse selection for other

borrowers, but in the context of a first-time borrower rather than an existing borrower.

Similar to Fishman and Parker (2015) we show that there could be multiple equilib-

ria with different amounts of screening. However, the economic mechanism that leads

to multiple equilibria in our paper is different from theirs. Fishman and Parker (2015)

assume that information acquisition is costly and that informed investors have full bar-

gaining power. Higher amounts of screening lead to lower average prices of rejected and

unscreened projects, and therefore, to greater returns to screening, making it possible

for multiple equilibria to exist. In our setting, there are no costs of information acqui-

sition and it is the entrepreneur who has full bargaining power. Multiple equilibria can

exit because of the feedback effect of equilibrium beliefs of investors about financing

terms offered by the entrepreneur.

1. Model

We consider a penniless entrepreneur seeking outside financing for a new project

from a set of N < ∞ investors. All agents are risk neutral. The project requires

one unit of investment, and can be of two types: good (G) and bad (B), where the

unconditional probability of the project being good is π. If the project is good it pays

1 +X. Otherwise, it pays 0. We denote the net present value, or NPV, of the project

by V , a random variable that takes value X if the project is good and value −1 if the

project is bad.

No one knows the type of the project but investors have access to a screening

technology. When an investor makes an investigation, he gets a privately observed

informative signal s ∈ [0, 1] drawn from a distribution FG(s) with density fG(s) in case

the project is good and from a distribution FB(s) with density fB(s) in case the project

is bad. We make the following assumption about the signal distribution:

ASSUMPTION 1: Signals satisfy the monotone likelihood ratio property (MLRP):

∀s > s′,
fG(s)

fB(s)
≥ fG(s′)

fB(s′)
.

Both fG(s) and fB(s) are continuously differentiable at s = 1, fB(1) > 0, and λ ≡
fG(1)/fB(1) > 1.

Without loss of generality, we will also assume that fG(s) and fB(s) are left-

continuous and have right limits everywhere. Assumption 1 ensures that higher signals
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are at least weakly better news than lower signals. Assuming that densities are con-

tinuously differentiable at the top of the signal distribution simplifies our proofs, but

is not essential for our results.

We denote the likelihood ratio at the top of the distribution by λ, a quantity that

will be important in our asymptotic analysis. Assuming λ > 1 ensures that MLRP

is strict over a set of non-zero measure, which in turn implies that as N → ∞, an

observer of all signals would learn the true type with probability one. Therefore, for

large enough N , the aggregate market information is valuable for making the right

investment decision.

To exclude trivial cases, we assume that the signal of a single investor i can be

sufficiently optimistic for the expected value of the project to be positive:

ASSUMPTION 2: E(V |Si = 1) > 0.

The entrepreneur contacts investors sequentially in a random order indexed by

i ∈ {1, ..., N}. When contacting investor i the entrepreneur makes an exclusive take-it-

or-leave-it offer, in which she asks for the loan size of one in exchange for the repayment

of 1 + ri in case the project is successful. Based on the signal, the investor decides

whether to accept the offer or not. If the offer is rejected the entrepreneur goes to

investor i + 1. If the offer is accepted, the entrepreneur forfeits the right to contact

other investors, so the project is financed and production starts.

We do not allow an entrepreneur to “shop around” an accepted offer by showing it

to other investors in the hope of getting better financing terms. This assumption of ex-

clusivity is important. If the entrepreneur could take accepted offers to other investors

without losing them the resulting mechanism would be similar to an ascending-price

auction, where the entrepreneur gradually reduces the interest rate offers until only

one investor is willing to finance. We study the auction case in more detail in Axelson

and Makarov (2016) and contrast it with the sequential market case further down.

If the project is financed at interest rate r and is successful, the entrepreneur gets

X−r of the project cash flows while the investor gets 1+r. If the project is unsuccessful,

neither the entrepreneur nor the investor get anything. An important implication of

the fact that the entrepreneur earns nothing unless the project is good is that her

optimal strategy is independent of her information about the success probability—she

will always act to maximize her pay off conditional on the project being successful.

We assume that the entrepreneur commits not to visit the same investor twice. It

is clearly in the interest of the entrepreneur to commit not to re-visit the same investor

when there is only one investor available. With many investors the situation is less

clear. We will show that our main results hold if we allow multiple contacts.
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If there is no credit registry in place, investors do not observe whether the en-

trepreneur has approached other investors for credit previously, and so rely purely on

their own signal and any information volunteered by the entrepreneur when making

the credit decision.

If there is a credit registry in place, investors can access any information collected by

the registry by performing a credit check. A credit registry in our model performs two

functions. First, it may produce hard information about credit quality of the project,

which we model as a signal S0 which satisfies MLRP and is conditionally independent

of other signals. Second, consistent with practice, we assume that the credit registry

records how many credit checks have been performed on the entrepreneur in the past.

This information allows investors to deduce how many times the borrower has applied

for financing previously.

2. Maximal social surplus

In any of the information environments we study, a strategy for the entrepreneur

is a set of interest rate offers {ri}Ni=1 offered in sequence to investors i ∈ {1, ..., N}
until an investor accepts. As a benchmark, we first derive the maximal social surplus

achievable by a social planner who can publicly commit to a set of interest rate offers

and a sequence in which investors are approached.

We first make the observation that picking a vector of offers {ri}Ni=1 is equivalent to

picking a set of screening thresholds {s∗i }Ni=1 such that the project gets started only if

there is an investor i with a signal Si above the threshold s∗i . To see this, consider an

investor i who is approached with an offer of financing the project at interest rate ri.

The investor conditions on the history Ωi, which contains the information that each

previous investors j < i has rejected the project at interest rate rj. His expected profit

from accepting to finance the project given his own signal Si = s is then given by

Pr(G|Ωi, Si = s)ri − Pr(B|Ωi, Si = s).

The investor accepts the offer if and only if

ri ≥
Pr(B|Ωi, Si = s)

Pr(G|Ωi, Si = s)
=

Pr(B|Ωi)

Pr(G|Ωi)

fB(s)

fG(s)
, (1)

where the last equality follows from Bayes’ rule and the independence of signal Si and

history Ωi conditional on the true state of the project. MLRP implies that the right-

hand side decreases in s. Therefore, the project is either rejected for any signal, or
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there is a unique screening level s∗i such that the offer is accepted if and only if Si ≥ s∗i .

Define s∗i−1 = {s∗j}i−1
j=1 as the screening thresholds used prior to round i. Equation (1)

then implies that the interest rate offer in round i that implements a screening threshold

si is given by

ri(si, s
∗
i−1) =

1− π
π

fB(si)

fG(si)
Πi−1
j=1

FB(s∗j)

FG(s∗j)
. (2)

We will use this relation repeatedly below. We can now write the social planner’s sur-

plus maximization problem as a choice of screening thresholds {s∗i }Ni=1, which amounts

to trading off rejection of good projects versus acceptance of bad projects:

max
{s∗i }Ni=1

πX

(
1−

N∏
i=1

FG(s∗i )

)
− (1− π)

(
1−

N∏
i=1

FB(s∗i )

)
. (3)

Note that not every choice of screening thresholds {s∗i } is implementable with feasible

interest rates ri ≤ X, but we show below that the optimal solution to (3) is always

implementable:

PROPOSITION 1: The socially optimal screening policy is to use the same screening

threshold s∗ < 1 for n ≤ N rounds and set the screening level at 1 for remaining rounds.

The optimal screening threshold is an increasing function of n and is the lowest signal

at which investor n breaks even at the maximal interest rate X:

Pr(G|Sn = s∗, S1, ..., Sn−1 ≤ s∗)×X − Pr(B|Sn = s∗, S1, ..., Sn−1 ≤ s∗) ≥ 0. (4)

The social surplus is the same as that generated in a first-price auction where n in-

vestors bid with interest rates for the right to finance the entrepreneur.

If FG(s)
FB(s)

fB(s)
fG(s)

is a strictly decreasing function of s then n = N and the expected surplus

strictly increases with the number of screenings. If FG(s)
FB(s)

fB(s)
fG(s)

is a strictly increasing

function for s ∈ [s∗, 1] then the maximal expected surplus is achieved with no more than

n screenings.

Proof: See the Appendix.

Proposition 1 shows that it is optimal to use the same screening threshold for the

first n ≤ N investors, and completely ignore the rest of the signals. The screening

thresholds correspond to a set of interest rate offers as defined in Equation (2) that

increase in each round until they reach the maximal feasible rate X in the nth round.

The screening threshold s∗ is set such that the project just breaks even when

max{s1, s2, . . . , sn} = s∗. The project is financed if and only if the maximal of n
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signals is higher than s∗. In Axelson and Makarov (2016) we show that this is also the

investment outcome realized in a first-price auction with n bidders. Thus, no sequential

credit market can generate higher surplus than a first-price auction if the number of

investors in the auction is chosen to maximize social surplus.

Note that the investment outcome is equivalent to the decision of a social planner

who observes only the first-order statistic of n signals when making his investment

decision. Hence, there is a potentially substantial loss of efficiency relative to the

first-best setting where all signals are used in the decision making. If there were no

investment mistakes then the expected surplus would be πX. Lemma 1 provides an

upper bound on the maximal expected surplus that can be achieved with a screening

technology with finite λ. It shows that there is always a loss of at least (1 − π)/λ

compared to the first-best case.

LEMMA 1: The maximal expected social surplus in a sequential market with a screen-

ing technology that satisfies fG(1)/fB(1) = λ is no larger than max(πX−(1−π)/λ), 0).

Proof: See the Appendix.

Notice that Proposition 1 and Lemma 1 still hold if the entrepreneur can visit

the same investor multiple times. One can show that with repeated visits, the accep-

tance/rejection decision is still a threshold policy. Define s∗mi as the screening threshold

used in the mth contact with investor i. Clearly, for any i the threshold s∗mi can only

decrease with m. Therefore, there is a limit s∗i = limm→∞ s
∗m
i (the limit is just the last

value if the set of repeated contacts is finite). Thus, the project is financed if there is

an investor i with a signal Si above the threshold s∗i , which leads to the problem (3).

Proposition 1 shows that the social planner may find it optimal to restrict the

number of screening rounds—smaller markets can be more efficient than large markets.

This surprising result is due to the fact that the investment decision is based only

on the information contained in the first-order statistic of signals. For some signal

distributions, as outlined in the conditions of the proposition, it is more informative to

rely on the highest signal in a small sample rather than a large sample.

The following section will show that a sequential market without a credit registry

will always lead to a maximum number of screenings, which is optimal when the social

planner prefers large markets but reduces social surplus when the planner prefers small

markets. In Section 4, we show that the introduction of a credit registry endogenously

limits the size of the market, which can increase surplus when the social planner prefers

small markets. However, the introduction of a credit registry will always reduce the

fraction of surplus going to the entrepreneur.
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3. Equilibrium without a credit registry

We now turn to the least transparent case in which neither previous offers nor

rejections are observed by an investor who is approached for financing. The only

information available to an investor in this case is the interest rate he is being offered.

However, since it is the entrepreneur who makes the offer, the interest rate she asks may

provide useful information about how many times the entrepreneur has been rejected

previously and on which terms.

Our main result in this section is to show that under suitable restrictions on out-of-

equilibrium beliefs, only fully separating equilibria exist. In any such equilibrium the

entrepreneur increases her interest rate offer after each rejection, so the offer perfectly

reveals the entrepreneur’s application history to the investor. Furthermore, as the

number of investors increases, the entrepreneur extracts all the surplus, and the surplus

converges to the maximal surplus realized in the social planner’s problem when large

markets are optimal.

Separation obtains because entrepreneurs with few rejections would like to separate

from entrepreneurs with more rejections. They do this by asking for a low interest rate

which has a low probability of being accepted by the investor. The low probability

of acceptance makes this strategy costly to mimic for an entrepreneur with many

rejections who has only few investors left to visit.

Consider a candidate separating equilibrium in which {ri}Ni=1, ri 6= rj for i 6= j is

a set of interest rate offers made by the entrepreneur. In a separating equilibrium,

investors will infer how many times the entrepreneur has been rejected from the in-

terest rate offer, and will also correctly conjecture what interest rates where offered in

previous rounds. Hence, equilibrium screening thresholds {s∗i }Ni=1 must be consistent

with Equation (2).

We now formulate the incentive compatibility constraints that must hold so that

the entrepreneur will not find it profitable to deviate in round i and ask for interest

rate rj, j 6= i. We show that these constraints require the interest rates to increase and

screening thresholds to decrease after each rejection.

The entrepreneur maximizes her expected profit conditional on the project being

successful. Hence, let Vi denote the expected surplus of the entrepreneur in the begin-

ning of financing round i conditional on the project being good. If the entrepreneur

visited N−1 investor and was rejected by all of them then he has only one last investor

to visit. The offer rN(sN , s
∗
N−1) is accepted with probability (1 − FG(sN)) and gives
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the entrepreneur a payoff of
(
X − rN(sN , s

∗
N−1)

)
. Thus,

VN = (1− FG(sN))
(
X − rN(sN , s

∗
N−1)

)
.

The vector of expected surpluses is then defined recursively as

Vi = (1− FG(si))
(
X − ri(si, s∗i−1)

)
+ FG(si)Vi+1, i = N − 1, ..., 1. (5)

To be incentive compatible, a set of interest rate offers must be such that the en-

trepreneur in financing round i would not be tempted to deviate and quote a different

interest rate:

Vi ≥ (1− FG(sj))
(
X − rj(sj, s∗j−1)

)
+ FG(sj)Vi+1, j 6= i. (6)

For ease of notation, define Ui as

Ui ≡ (1− FG(si))
(
X − ri(si, s∗i−1)

)
.

The incentive compatibility constraints (6) imply that for any i > j

(FG(sj)− FG(si))Vj+1 ≥ Ui − Uj ≥ (FG(sj)− FG(si))Vi+1. (7)

Since Vi+1 < Vj+1, for inequalities (7) to hold it must be that sj > si. In other words,

the probability of receiving financing must increase with the number of rejections.

Because the entrepreneur always prefers lower interest rate for a given probability of

being financed, interest rate offers must increase with the number of rejections.

Further inspection of (7) reveals that if the incentive compatibility constraints (6)

hold for all adjacent financing rounds i and j = i + 1 then they hold for any rounds

i and j. Finally, since entrepreneurs with few rejections would like to separate from

entrepreneurs with more rejections the entrepreneur in round i is never tempted to ask

for the interest rate ri+1. Thus, the only IC constraints that matter are the ones that

make sure that the entrepreneur in round i + 1 is not tempted to ask for the interest

rate ri. We can now state our main result in this section.

PROPOSITION 2: Any equilibrium that survives the Cho and Kreps intuitive criterion

must be separating. In any separating equilibrium, interest rates strictly increase and

screening thresholds strictly decrease with the number of rejections. The screening
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thresholds s∗i solve

VN ≡ max
sN

(1− FG(sN))
(
X − rN(sN , s

∗
N−1)

)
,

Vi ≡ max
si

(1− FG(si))
(
X − ri(si, s∗i−1)

)
+ FG(si)Vi+1, i = N − 1, ..., 1 (8)

s.t. (1− FG(si))
(
X − ri(si, s∗i−1)

)
+ FG(si)Vi+2 ≤ Vi+1, (9)

where interest rates ri(si, s
∗
i−1) are given by (2). If MLRP holds strictly then as N goes

to infinity the entrepreneur extracts all the surplus and the surplus converges to that

generated in a first-price auction with N investors.

Proof: See the Appendix.

We show in Proposition 1 that the maximal surplus is the same as that generated

in a first-price auction with optimal number of investors. Therefore, an immediate

consequence of Proposition 2 is that in the case without a credit registry the surplus

converges to the social planner’s surplus when large markets are optimal, and otherwise

is strictly lower.

To prove that the surplus converges to that generated in a first-price auction we

show that the interest rate offer in the last round converges to the maximal interest

rate X. Suppose this is indeed the case. By giving up all the project’s cash flows to the

last investor the entrepreneur has no surplus left for himself. Hence, she will offer X in

the last round only even an investor with the most optimistic signal cannot break even

with an offer less than X. With the strict MLRP this can only happen if the screening

threshold in the last round goes to one. Since the last round has the lowest threshold,

this proves that screening thresholds in all rounds converge to one. Equation (2) for

the interest rate in the last round implies that

πλX

N−1∏
i=1

FG(s∗i ) = (1− π)
N−1∏
i=1

FB(s∗i ),

while Equation (4) for the screening threshold s∗ in a first-price auction with N in-

vestors implies that

πλXFG(s∗)N−1 = (1− π)FB(s∗)N−1.

The above two equations imply that the probabilities of financing the project in the

two setups converge to each other:

N−1∏
i=1

FG(s∗i )→ FG(s∗)N−1 and
N−1∏
i=1

FB(s∗i ))→ FB(s∗)N−1,

13



which in turn imply the convergence of surplus values.

Suppose now that the last round interest rate does not converge to X. This can

only happen if the screening threshold in the last round does not converge to one.

Otherwise, the entrepreneur is always better off lowering the screening threshold by

offering a slightly higher interest rate. Because after each rejection the perception of

the project’s quality deteriorates, for the entrepreneur to have a chance of obtaining

financing in the last round only a bounded number of screening thresholds can stay

away from one as N goes to infinity. Therefore, if the last round interest rate does

not converge to X, there will exist an i such that the screening threshold in round

i converges to one but the screening threshold in round i + 1 stays bounded away

from one. Notice that the screening threshold in round i can go to one only if the IC

constraint (9) binds. Otherwise, the entrepreneur again would be better off lowering the

screening threshold by offering a slightly higher interest rate. The binding constraint

means that

(1− FG(si))
(
X − ri(si, s∗i−1)

)
− (1− FG(si+1)) (X − ri+1(si+1, s

∗
i )) (10)

= (FG(si+1)− FG(si))Vi+2.

The right-hand side of Equation (10) is positive. But the left-hand side is negative

since (X − ri+1(si+1, s
∗
i )) is bounded away from zero. Thus, the IC constraint cannot

bind, which shows that the last round interest rate must converge to X.

Proposition 2 shows that when large markets are optimal the entrepreneur is able

to extract the maximal surplus in the limit as N goes to infinity even without repeated

contacts with investors. When small markets are optimal the ability to contact the

same investor many times does not help restore efficiency because the entrepreneur is

always better off making an offer to a new investor than to a previously visited investor.

Therefore, she will always make offers to all available investors. But this is the main

source of inefficiency in the first place. We now consider the case of a credit registry.

4. Equilibrium with a credit registry

With a credit registry in place investors learn how many times the entrepreneur has

been rejected previously but not the terms on which she has been rejected. Therefore,

as in the case of no credit registry studied in Section 3, investors have to form beliefs

about the terms at which the entrepreneur has been rejected previously. However, now

there is no need for the entrepreneur to signal how many times she was rejected. As a

result, there is no reason for an investor to change his beliefs about previous offers if
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he is offered an out-of-equilibrium interest rate offer.

Proposition 3 characterizes an equilibrium. The equilibrium screening thresholds

solve the same maximization problem as in the case without a credit registry but

without the incentive compatibility constraints (9). The proposition shows that with-

out the need to signal her application history the entrepreneur cannot credibly make

low interest rate offers and this biases her towards asking for higher interest rates in

equilibrium.

PROPOSITION 3: Suppose rejections are publicly observable. Then equilibrium screen-

ing thresholds solve

VN ≡ max
sN

(1− FG(sN))
(
X − rN(sN , s

∗
N−1)

)
,

Vi ≡ max
si

(1− FG(si))
(
X − ri(si, s∗i−1)

)
+ FG(si)Vi+1, i = N − 1, ..., 1, (11)

where interest rates ri(si, s
∗
i−1) are given by (2). If MLRP holds strictly then there is an

ε > 0 such that for any number of investors the screening threshold in the first round

is less than 1− ε.

Proof: Consider the maximization problem of the entrepreneur in the first round:

max
s1

(1− FG(s1)) (X − r1(s1)) + FG(s1)V2,

where V2 is the entrepreneur’s continuation value. Because the entrepreneur cannot

affect investors’ beliefs with his choice of s1 she takes V2 as given. Because FG(s) is

an increasing function of s the equilibrium choice of s∗1 is an increasing function of V2.

Lemma 1 provides an upper bound on the value of V2. It shows that V2 is less than

X−(1−π)/(πλ). In the proof of Lemma 1 we actually show that if MLRP holds strictly

then the bound is strict, that is there exists δ > 0, such that V2 = X−(1−π)/(πλ)−δ.
Using Equation (2) for r1(s1) we can rewrite the maximization problem as

max
s1

(1− FG(s1))

(
δ − 1− π

π

(
fB(s1)

fG(s1)
− 1

λ

))
+ V2.

It is clear that the solution s∗1 to the above problem is strictly less than one. �

With the strict MLRP, the first contacted investor breaks even if he finances the

project with the signal equal to s∗1 and makes a positive expected profit if the signal

is above s∗1. Proposition 3 shows that s∗1 does not go to one with N . Therefore, the

expected profit does not vanish in the limit as N goes to infinity. We have:
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Corollary 1: Suppose that MLRP holds strictly. Then in equilibrium with a credit

registry investors earn strictly positive rent, which is not competed away even as the

number investors grows large.

The rent collected by investors can be so large that it can outweigh the benefits of

informed lending. To illustrate, suppose that X = 1, N = 100, fB(s) ≡ 1, and fG(s) =

2s. In addition, suppose that a credit registry may also produce hard information

that is relevant for assessing the credit quality of the entrepreneur. We model this

as a public signal S0 which satisfies MLRP and is conditionally independent of other

signals. Suppose also that there are investors who can commit not to use any private

signals and base their decisions solely on the public signal. Denote the likelihood ratio

Pr(G|S0)/Pr(B|S0) conditional on realization of the public signal as z.

Figure 1 shows the entrepreneur’s expected surplus as a function of z in two cases:

(1) if she obtains financing from investors that use only public signal (blue line) and

(2) if she obtains financing from investors who use both public and private signals

(red line). We can see that if the quality of the project after public signal is high

enough then the entrepreneur is better off applying to investors who use only public

information. Uninformed investors are able to outcompete informed agents because

they do not earn rent. While using both public and private information results in

better investment decisions the benefits for high quality projects are not sufficient to

compensate the rent that must be surrendered to privately informed investors.

The immediate consequence of Proposition 3 and Proposition 2 is that in the case in

which it is best to have as large markets as possible the introduction of a credit registry

can actually reduce market efficiency and lead to a lower surplus for the entrepreneur.

Consider next the case when there are many potential investors but it is best to have

small markets. Proposition 2 shows that without a credit registry the entrepreneur is

never excluded from the market and can visit all available investors, which is inefficient.

Proposition 3 shows that with a credit registry, screening thresholds in the first rounds

are lower than they would be if there was no credit registry. While low interest rate

offers mean that some rent is left for investors, they also mean that the negative impact

of rejections is stronger and can lead to the exclusion of the entrepreneur from the

market. When small markets are efficient restricting the competition among investors

and allowing them to utilize their information more efficiently can lead to higher social

surplus. The next example shows that the increased surplus can more than compensate

for the higher rent left to investors, so that the entrepreneur can also be better off in

a sequential market with a credit registry than in a sequential market without a credit

registry, or even in a centralized auction market with N investors.

Suppose π = 1/2, X = 1, and fB(s) = 1 for all s ∈ [0, 1], and fG(s) = 0 for
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s ∈ [0, 1/2] and fG(s) = 2 for s > 1/2. We show in Axelson and Makarov (2016) that

surplus in the first-price auction is maximized with a single investor with a screening

threshold set to 1/2. It is not difficult to see that the same surplus can also be achieved

in a sequential market with a credit registry. Suppose the entrepreneur asks in the first

round for the interest rate that corresponds to the threshold s∗1 = 1/2. This generates

the maximal surplus, and all surplus is captured by the entrepreneur. There will be

no second round, because if the project is rejected by the first investor, the updated

credit quality is so low that no investor would be willing to finance the project at any

interest rate. Thus, the market with a credit registry creates more social surplus and

more profits for the entrepreneur than the market without a credit registry and the

auction market.

Proposition 4 shows that the above example is not a coincidence. It shows that when

it is best to have small markets a credit registry endogenously restricts the number of

investors the entrepreneur can visit. This contrasts with the case of no credit credit in

which the entrepreneur can always visit all potential investors.

PROPOSITION 4: If FG(s)
FB(s)

fB(s)
fG(s)

is a strictly decreasing function of s then the en-

trepreneur can visit all available investors. If FG(s)
FB(s)

fB(s)2

fG(s)2
is a strictly increasing function

at some neighborhood of s = 1 then for large N the entrepreneur visits strictly less than

N investors.

Proof: See the Appendix.

We conclude this section by noticing that the negative effect of the credit registry

comes from the fact that it reveals only partial information about the application his-

tory of the entrepreneur. By revealing how many times the entrepreneur was rejected

but not the interest rates at which she was rejected, a credit registry eliminates in-

centives for the entrepreneur to use low interest rates as a signal of her quality and

encourages “signal-jamming”, in a similar spirit to the papers by Holmstrom (1982)

and Stein (1989).

Although it might not be feasible for a credit registry to record terms on which an

entrepreneur is rejected, the next proposition shows that doing so would generally lead

to more efficient sequential markets:

PROPOSITION 5: Suppose a credit registry registers both rejections and interest rate

offers. Then the entrepreneur always prefers the market with a credit registry over one

without. For large enough N , social surplus and the entrepreneur’s profit are no less

in the sequential market than those in a first-price auction with free entry.

Proof: If rejections and interest rate offers are publicly observable the entrepreneur

in the sequential market with a credit registry can always replicate surplus and profits
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generated in the market without by offering the same sequence of interest rates. In

the limit as N goes to infinity, all surplus goes to the entrepreneur using this strategy.

When using all N rounds does not maximize surplus, the entrepreneur in the market

with a credit registry may be able to earn strictly more profits with a smaller set of

investors as shown in the example above. These profits are higher than the surplus in

the market without a credit registry, and hence surplus with a credit registry (which

is always weakly greater than entrepreneurial profits) is strictly higher. �

5. Multiple equilibria

In this section, we show that there can be multiple equilibria in the case of a credit

registry and provide sufficient conditions for equilibrium existence. Suppose that there

are two potential investors and that X = 1, fB(s) ≡ 1, and fG(s) is given by the

following equation:

fG(s) = 0.25 +
1

exp
(
−100

(
s− 1

3

))
+ 1

+
0.25

exp
(
−100

(
s− 2

3

))
+ 1

. (12)

Panel (a) of Figure 2 plots densities fB(s) and fG(s), which are the continuous

versions of the case when investors’ signals take three values: low, medium and high as

depicted in Figure 2, panel (b). If the project is bad then any of the values is equally

likely. If the project is good then the respective probabilities of low, medium and high

signals are 1/12, 5/12, 1/2.

Figure 3 plots the expected profit of the entrepreneur as a function of the screening

threshold s if there is only one investor. Panels (a), (b), and (c) correspond to the

three initial values of the likelihood ratio z = π/(1− π): z = 0.9, z = 0.95, and z = 1.

We can see that two flat areas of fG(s) lead to two humps in the expected surplus.

At high values of z the entrepreneur’s profit is maximized at low screening thresholds

while at low values of z the profit is maximized at high screening thresholds. There is

a value of z (panel (b), z = 0.95) at which the same expected surplus is achieved at

two different values of s. Even though there is a unique equilibrium in case of a single

investor if z 6= 0.95 two equilibria can realize when there are two potential investors.

In the first equilibrium, the second investor believes that the entrepreneur asks the

first investor for a low screening threshold. This makes it optimal for the entrepreneur

to ask for a low screening threshold because the rejection then is very costly for the

entrepreneur: If she is rejected she can no longer obtain financing from the second

investor even if he receives the most optimistic signal.

In the second equilibrium, the second investor believes that the entrepreneur asks
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the first investor for a high screening threshold. In this case, the cost of rejection is not

so high because even if rejected the entrepreneur has still a chance to obtain financing

from the second investor. As a result, it is optimal for the entrepreneur to try for a

low interest rate and high screening threshold from the first investor.

For the two equilibria to exist the entrepreneur’s choice of screening thresholds must

be consistent with investors’ beliefs. This happens if the likelihood ratio z is such that

z > 0.95 and z(X − V1) < 0.95, where V1 is the expected profit of the entrepreneur in

the second equilibrium after she is rejected by the first investor.

If z is just below 0.95 then only the second equilibrium with two screenings exists

because even with a single investor the entrepreneur is better off with a high screening

threshold. Therefore, no matter what the second investor believes, the entrepreneur

asks the first investor for a high screening threshold. If z is just above 1.03 then

only the first equilibrium with one screening exists because even if the second investor

believes that the screening threshold in the first round is high the entrepreneur finds it

profitable to deviate and ask for a low screening threshold. As a result, the entrepreneur

can no longer take advantage of two investors and therefore can no longer attain a high

expected surplus.

Figure 4, panel (a) plots the entrepreneur’s expected profit in the two equilibria as

a function of her initial likelihood ratio z. Panel (b) plots social surplus. The blue

dashed line corresponds to the first equilibrium with one screening; the red line to the

second equilibrium with two screenings. We can see that the entrepreneur is better off

in the second equilibrium, in which she can be screened twice. Social surplus, however,

is higher in the first equilibrium, in which the entrepreneur is screened only once.

This gives the surprising implication that social welfare can be improved if the

government imposes an interest rate cap. Figure 5 shows interest rates in the two equi-

libria. The blue line shows an interest rate in the first equilibrium with one screening.

The red and magenta lines show interest rates in the second equilibrium. Naturally,

an interest rate increases if the entrepreneur is rejected by the first investor. If there

is an interest rate cap so that the rejected entrepreneur can no longer obtain financing

in the second round then the second equilibrium is no longer sustainable. Thus, an

interest rate cap can eliminate markets for rejected borrowers, and hence can eliminate

the socially inefficient equilibria with many financing rounds.

Panel (a) also illustrates, perhaps surprisingly, that the entrepreneur’s profit can

be non-monotone in the ex-ante project’s quality. This happens because of the en-

trepreneur’s inability to commit to ask for a high screening threshold from the first

investor, or in other words, for a low interest rate. As a result, investors get higher

rent and the entrepreneur is worse off.
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We conclude this section by presenting sufficient conditions for equilibrium exis-

tence. The conditions are the same for both cases: with and without a credit registry.

PROPOSITION 6: Suppose that fB(s)/fG(s) is a continuous function and for any y

(1− FG(s))

(
y − fB(s)

fG(s)

)
(13)

is a quasi-concave function of s. Then there exists a pure-strategy equilibrium in the

game with any number of investors with and without a credit registry.

Proof: First, consider the case of with a credit registry. We can view the optimization

problem in each round i as if it is done by a fictitious agent i. Each fictitious agent i

takes decisions of other agents as given and solves (11), which is the same as maximizing

(13) with respect to s with an appropriately chosen y. By assumption the payoff of each

agent i is quasi-concave in his own action and continuously depends on the actions of

other agents. Therefore, by Theorem 1.2 of Fudenberg and Tirole (1991) there exists

a pure-strategy equilibrium. The proof is similar if there is no credit registry. The

quasi-concavity of the payoff ensures that the action space of every agent that satisfies

the incentive compatibility constraint (9) is a concave set. Therefore, Theorem 1.2 of

Fudenberg and Tirole (1991) still applies. �

6. Conclusion

We have developed a sequential credit market model to analyze the efficiency of

primary capital markets for new projects. We compare three regimes of differing level

of transparency: A sequential market where lenders have no information about the

search history of an entrepreneur, a sequential market where lenders can observe the

search history via a credit registry, and a centralized auction markets. None of these

markets lead to first-best investment decisions, even when the number of potential

investors grows so large that the aggregate information in the market allows for perfect

investment decisions, and even when entrepreneurs are infinitely patient and there are

zero search costs. Moving to a more transparent market via the introduction of a

credit registry tends to increase rents to investors at the expense of entrepreneurs,

leads to shorter search for financing by the entrepreneur, and has ambiguous effects

on the efficiency or resource allocation. A centralized market is more efficient than

decentralized markets if the number of investors who participate in the market can
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be chosen optimally, but may otherwise lead to excessive competition which impedes

efficiency relative to decentralized markets.
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Appendix. Proofs

Proof of Proposition 1:

Consider maximization problem (3). Let n ≤ N be the largest n such that the

expected surplus generated with n screenings is strictly higher than that generated

with n−1 screenings. Then for all i > n, si = 1 and for all i ≤ n, si satisfy the F.O.C.:

πXfG(sj)
∏

i≤n,i 6=j

FG(si) = (1− π)fB(sj)
∏

i≤n,i6=j

FB(si) j = 1, . . . , n. (A1)

Let s∗ = min ({si}ni=1) and s∗ = max ({si}ni=1). Suppose that s∗ 6= s∗. Consider a

change ∆ in the expected surplus if one changes the threshold s∗ (or any if there are

multiple s∗) to s∗:

∆ =
∏
si 6=s∗

FB(si)

[
(1− π)FB(s∗)− πXFG(s∗)

∏
si 6=s∗

FG(si)

FB(si)

]
−

−
∏
si 6=s∗

FB(si)

[
(1− π)FB(s∗)− πXFG(s∗)

∏
si 6=s∗

FG(si)

FB(si)

]
=

=
∏
si 6=s∗

FB(si)

([
FB(s∗)− FG(s∗)

fB(s∗)

fG(s∗)

]
−
[
FB(s∗)− FG(s∗)

fB(s∗)

fG(s∗)

])
,

where we use the F.O.C. (A1). Because of the MLRP the function

FB(s)− FG(s)
fB(s∗)

fG(s∗)

is nondecreasing between s∗ and s∗. Thus, the maximum surplus is achieved when all

si equal to s∗. The F.O.C. (A1) therefore becomes the F.O.C. (4). Equation (4) has a

unique solution because of the MLRP.

To prove that the expected surplus strictly increases with the number of screenings

if FG(s)
FB(s)

fB(s)
fG(s)

is a strictly decreasing function of s we need to show that for any N the

solution to the maximization problem (3) is interior. Suppose on the contrary that at

some N it is optimal to set sN to one. Let N be the lowest number of screenings when

this happens. The optimal screening threshold level is the same in all N −1 screenings

and solves the F.O.C.

πXfG(s)FG(s)N−2 = (1− π)fB(s)FB(s)N−2.
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Taking the derivative of the surplus with respect to sN at sN = 1 we have

(1−π)fB(1)FB(s)N−q−πXfG(1)FG(s)N−1 = fB(1)FB(s)N−1

(
1− λFG(s)

FB(s)

fB(s)

fG(s)

)
< 0,

where we have used the F.O.C and where the last inequality follows from the fact that
FG(s)
FB(s)

fB(s)
fG(s)

is a decreasing function of s and therefore takes the lowest value λ−1 at s = 1.

As a result, it is suboptimal to set sN to 1 and the solution must be indeed interior.

Finally, we prove that the maximal expected surplus can be achieved with no more

than n screenings if FG(s)
FB(s)

fB(s)
fG(s)

is a strictly increasing function for s ∈ [s∗n, 1]. We prove

earlier that Equation (4) has a unique solution, s∗n, which is strictly increasing in n. We

now show that the maximand in (3) is higher for si = s∗n, i = 1, 2, . . . , n and sn+1 = 1

than for si = s∗n+1, i = 1, 2, . . . , n + 1. To see this, we start at a point s∗n+1, and move

the first n screening thresholds s down while moving the n + 1’s screening threshold

sn+1 up to hold FB(s)nFB(sn+1) constant:

ds

dsn+1

= − FB(s)fB(sn+1)

nfB(s)FB(sn+1)
.

This changes the maximand with an amount proportional to

−FG(s)nfG(sn+1)− nFG(s)n−1fG(s)FG(sn+1)
dsn
ds

,

which has the same sign as

FG(sn+1)fB(sn+1)

FB(sn+1)fG(sn+1)
− FG(s)fB(s)

FB(s)fG(s)
.

By the assumption of the Proposition, this change is positive for sn+1 > s∗n, and hence

the maximand is increased by setting sn+1 = 1. But at sn+1 = 1, it is optimal to set

all first n screening thresholds to s∗n.

Q.E.D.

Proof of Lemma 1:

We first observe that the maximal expected surplus respects the order induced by

MLPR on the space of signal distributions. Consider two cases of informative signals.

Suppose that in both cases if the project is bad the signal is drawn from the same

distribution FB(s). At the same time, if the project is good then in the first case, the

signal is drawn from a distribution FG1 with density fG1 , and in the second case, from
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a distribution FG2 with density fG2 . Suppose that for all s > s′

fG1(s)

fG2(s)
≥ fG1(s

′)

fG2(s
′)
,

then the maximal surplus in the first case is no less than that in the second case. This

follows from the fact that MLRP implies the monotone probability ratio (Milgrom

(1981)).

Suppose for now that fB(s) ≡ 1. Then given λ, the maximal expected surplus is

achieved with fG(s) = 0 for s ∈ [0, 1− λ−1) and fG(s) = λ for s ∈ [1− λ−1, 1]. Setting

a screening threshold level to 1 − λ−1 ensures that good projects are always financed

and bad projects are financed with probability λ−1. Thus, with a single screening the

expected surplus is πX − (1 − π)/λ. Direct computations show that FG(s)
FB(s)

fB(s)
fG(s)

is an

increasing function for s ∈ [1 − λ−1, 1]. Thus, by Proposition 1, πX − (1− π)/λ is in

fact the maximal expected surplus. Finally, notice that the assumption that fB(s) ≡ 1

is innocuous. For an arbitrary fB(s) the maximal surplus is achieved with fG(s) = 0

for s ∈ [0, s̄) and fG(s) = λfB(s) for s ∈ [s̄, 1], where s̄ is determined by the condition

that
∫ 1

s̄
λfB(s)ds = 1. Hence,

∫ s̄
0
fB(s)ds = 1− λ−1.

Q.E.D.

Proof of Proposition 2:

First, we show that any equilibrium that survives the Cho and Kreps intuitive

criterion must be separating. For this, we need to show that the entrepreneur who

has been rejected i times would always like to separate herself from those who have

been rejected more than i times. Denote the entrepreneur who has been rejected i− 1

times by Ei, and her expected surplus (conditional on the project being good) by Vi,

i = 1, ..., N . Suppose contrary to the statement of the proposition that there is some

pooling in equilibrium. Let i be the first instance such that Ei pools with entrepreneurs

rejected more than i times. Let j = min{k > i : Ek pools with Ei}.
Let s∗ be a screening threshold asked by Ei and Ej. Let π∗ be an investor’s belief

that the project is good if the entrepreneur asks for a screening threshold s∗ before the

investor observes his private signal. We have

Vi = (1− FG(s∗)) (X − r(π∗, s∗)) + FG(s∗)Vi+1,

Vj = (1− FG(s∗)) (X − r(π∗, s∗)) + FG(s∗)Vj+1,

where

r(π∗, s∗) =
1− π∗

π∗
fB(s∗)

fG(s∗)
.
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Let π̂ be the investor’s belief that the project is good if the investor believes that the

entrepreneur is of type Ei. Clearly, π̂ > π∗. Let ŝ be such that

Vj = (1− FG(ŝ)) (X − r(π̂, ŝ)) + FG(ŝ)Vj+1. (A2)

Suppose that investors believe that the entrepreneur is of type Ei if she asks for the

screening threshold ŝ. Then the type Ej entrepreneur is indifferent between asking for

s∗ and ŝ. Note that Vi+1 > Vj+1 because the type Ei entrepreneur can always follow

the strategy of the type Ej entrepreneur. Therefore, Equation (A2) implies that

Vi < (1− FG(ŝ)) (X − r(π̂, ŝ)) + FG(ŝ)Vi+1.

Hence, Ei is better off by deviating and asking a screening threshold, which is slightly

above ŝ. At the same time, Ej is worse off by deviating to this threshold. Thus, no

pooling equilibrium survives the Cho-Kreps intuitive criterion.

Next, we prove that if MLRP holds strictly then as N goes to infinity the en-

trepreneur extracts all the surplus and his surplus converges to that generated in the

first-price auction. The proof is done in two steps. First, we show that if rN(1, s∗N−1)

goes to X as N goes to infinity then the entrepreneur’s surplus converges to that gen-

erated in the first-price auction. Then, we show that in equilibrium rN(1, s∗N−1) must

go to X.

Step 1. Suppose that limN→∞ rN(1, s∗N−1) = X, where rN(1, s∗N−1) is given by Equa-

tion (2). The expression for social surplus (3) implies that if
∏N

i=1 FG(s∗i ) → FN
G (s∗)

and
∏N

i=1 FB(si)→ FN
B (s∗), where s∗ is a screening threshold in the first-price auction,

then surpluses generated in a sequential credit market and in a first-price auction are

asymptotically the same.

Using equation (2) for the interest rate rN(1, s∗N−1) we can see that

lim
N→∞

rN(1, s∗N−1) = X ⇔ lim
N→∞

λX
π

1− π

N−1∏
i=1

FG(si)

FB(si)
= 1. (A3)

If the entrepreneur is rejected N − 1 times then in the last round she solves

VN = max
sN

(1− FG(sN))
(
X − rN(sN , s

∗
N−1)

)
.

If limN→∞ rN(1, s∗N−1) = X and the strict MLRP holds then limN→∞ s
∗
N = 1. Propo-

sition 2 shows that s∗i > s∗N . Therefore for any i, limN→∞ s
∗
i = 1. Let ∆si = 1 − s∗i .
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Taking the Taylor’s series of (A3) we have

N−1∑
i=1

∆si = a1 +O(∆sN), a1 =
ln(λzX)

λ− 1
. (A4)

Therefore,

N∏
i=1

FG(si) = e−λa1 +O(∆sN),

N∏
i=1

FB(si) = e−a1 +O(∆sN).

We show in Axelson and Makarov (2016) that FN
G (s∗) and FN

B (s∗) converge to the same

corresponding limits.

Step 2. We now show rN(1, s∗N−1) goes to X in equilibrium. Suppose to the contrary

that there exists ε > 0 such that for all N rN(1, s∗N−1) < X − ε for some . Note

that only a bounded number of screening thresholds can stay away from one as N

goes to infinity. Otherwise, the entrepreneur would not be able to obtain financing

in the last round. Let M be the maximal index such that lim supN→∞ sN−M = 1 but

lim supN→∞ sN−M+1 < 1. Consider the problem of the entrepreneur who has been

rejected N −M − 1 times. She solves problem (8):

VN−M ≡ max
sN−M

(1− FG(sN−M))
(
X − ri(sN−M , s∗N−M−1)

)
+ FG(sN−M)VN−M+1,

s.t. VN−M+1 ≥ (1− FG(sN−M))
(
X − ri(sN−M , s∗N−M−1)

)
+ FG(sN−M)VN−M=2.

As in the proof of Proposition 3 below, one can show that the unconstrained solution to

the above problem entails sN−M to be bounded away from one. Since by assumption,

sN−M goes to one it must be that the incentive compatibility constraint binds. However,

with sN−M+1 being away from one, sN−M converging to one, and ri(sN−M , s
∗
N−M−1) <

X − ε, the incentive compatibility constraint cannot bind.

Q.E.D.

Proof of Proposition 4:

Consider first the case when FG(s)
FB(s)

fB(s)

fG(s)
is a strictly decreasing function of s. Suppose

that there is a round i < N such that s∗i < 1 and the entrepreneur is unable to contact

another investor after being rejected in round i, that is s∗i+1 ≥ 1. In this round i, the

entrepreneur solves

max
s∗i

(1− FG(s∗i )) (X − ri(si, ŝi−1)) , (A5)
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where ri(si, ŝi−1) is given by (2). Since FG(s)
FB(s)

fB(s)
fG(s)

is a strictly decreasing function of s

we have
FB(s∗i )

FG(s∗i )

fG(s∗i )

fB(s∗i )
<
FB(1)

FG(1)

fG(1)

fB(1)
= λ.

Therefore, there exists s∗i+1 < 1 such that

ri+1(s∗i+1, ŝi) = ri(si, ŝi−1)× fG(s∗i )

fB(s∗i )

FB(s∗j)

FG(s∗j)
×
fB(s∗i+1)

fG(s∗i+1)
< X.

Hence, the entrepreneur has a chance to get financing if she approaches another investor

and therefore, round i cannot be the last round.

Suppose now that FG(s)
FB(s)

fB(s)2

fG(s)2
is a strictly increasing function of s in some neigh-

bourhood of s = 1. We first show that this implies a bound on the derivative of the

likelihood ratio at s = 1. For simplicity, we assume that fB(s) ≡ 1. Note that(
FG(s)

FB(s)

)′
s=1

= λ− 1.

Since (
FG(s)

FB(s)

1

fG(s)2

)′
=

(
FG(s)

FB(s)

)′
1

fG(s)2
+
FG(s)

FB(s)

(
1

fG(s)2

)′
the fact that FG(s)

FB(s)
fB(s)2

fG(s)2
is a strictly increasing function at s = 1 implies that

0 ≤ f ′G(1) <
λ(λ− 1)

2
. (A6)

The idea of the proof is to show that relative flatness of the likelihood ratio leads

to large screening thresholds. The entrepreneur can contacts all available investors

when N goes to infinity only if the number of screening thresholds bounded away from

one is uniformly bounded. Suppose for a moment that round i is the last round. The

entrepreneur then solves problem (A5). To simplify notation, let

z =
π

1− π
Πi−1
j=1

FG(ŝj)

FB(ŝj)
.

Then

ri(si, ŝi−1) =
1

zfG(si)
.

The F.O.C. to the above problem is

− (1− FG(si))

(
1

fG(si)

)′
= fG(si)zX − 1. (A7)
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Let ∆s = 1− s∗i , where s∗i is a solution to (A7). Taking the Taylor’s series of (A7) at

si = 1 we have
f ′G(1)∆s

λ
= λzX − 1− f ′G(1)zX∆s+ o(∆s).

Hence,

∆s =
λ(λzX − 1)

f ′G(1)(1 + λzX)
+ o(λzX − 1). (A8)

Therefore,

FG(s∗i )/FB(s∗i ) = (1−(λ−1)∆s)+o(λzX−1) =

(
1− λ(λ− 1)(λzX − 1)

f ′G(1)(1 + λzX)

)
+o(λzX−1).

Inequality (A6) implies that(
1− λ(λ− 1)(λzX − 1)

f ′G(1)(1 + λzX)

)
<

1

λzX
.

Therefore, if rejected, the entrepreneur is unable to contact another investor.

Q.E.D.
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Figure 1. Hard information screening. The blue dashed line shows the entrepreneur’s profit if

she obtains financing from investors who use only publicly available information. The red line shows

the entrepreneur’s profit if she obtains financing from investors who use both public and private

information.
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Figure 2. Multiple equilibria. Signal densities. Figure 2, panel (a) plots densities fB(s) and

fG(s), where fG(s) ≡ 1 and fG(s) is defined in equation (12). Densities in panel (a) are smoothed

versions of the densities shown in panel (b).
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Figure 3. Entrepreneur’s profit. Panels (a), (b), and (c) show the entrepreneur’s expected profit

when there is only one investor for the three cases: z = 0.9, z = 0.95, and z = 1. Other parameters

are as follows: X = 1, densities fB and fG are displayed in Figure 2, panel (a).
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Figure 4. Multiple equilibria. Entrepreneur’s profit and social surplus. Figure 4 Panel (a)

plots the entrepreneur’s expected profit in the two equilibria described in Section 5 as a function of

her initial likelihood ratio z. Panel (b) plots social surplus. The blue dashed line corresponds to the

first equilibrium with one screening; the red line - to the second equilibrium with two screenings.
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Figure 5. Multiple equilibria. Interest rate. Figure 5 shows interest rate the entrepreneur asks

from investors. The blue dashed line shows the interest rate in the equilibrium with single screening.

The red and magenta lines show the interest rates in the equilibrium with two screenings, with the

highest rate being asked if rejected at the first investor.
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