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1 Introduction
This paper provides a synthesis of two major views on economic fluctuations. One view

maintains that expansions and recessions arise from the interchange of positive and nega-

tive persistent exogenous shocks to fundamentals. This is the conventional view that gave

rise to the proliferation of shocks used in modern dynamic stochastic general equilibrium

models. A second view, which we call the inherent instability view, holds that business cy-

cle fluctuations are due to forces that are internal to the economy and that endogenously

favor recurrent periods of boom followed by a bust. In this environment, cycles can occur

even in absence of shocks to fundamentals. Conclusive evidence in favor of either view is

hard to find. One reason may be that a complete representation of the economy is one in

which both views coexist.

We make three contributions. First, we uncover a cyclicality conundrum in the data:

while unconditional moments reveal the presence of a strong systemic cyclical compo-

nent in line with the inherent instability view, there is virtually no evidence of boom-bust

dynamics in response to identified fundamental shocks. Second, we build a theory that

rationalizes the conundrum and proposes non-fundamental shocks to expectations as the

key source of boom-bust cycles. Third, we identify expectation shocks using survey data

and verify that, indeed, expectations shocks generate boom-bust dynamics in all the key

variables and account for a sizeable fraction of business cycle fluctuations.

In the first part of the paper, we show that the spectral densities of a number of U.S.

macroeconomic and financial variables display a peak at periodicities of around 8 to 10

years. A hump-shaped spectral density signals the presence of periodic motions that repeat

themselves in a regular cycle. In addition, we show that the probability of a recession peaks

about two years after an expansion – findings that are inconsistent with the predictions

of standard DSGE models. Next, we argue that the responses to identified fundamental

shocks almost always deliver mean-reverting responses more aligned with the conven-

tional view. We take a temporary shock to utilization-adjusted TFP as the leading case. A

positive TFP shock leads to a temporary expansion that is not systematically followed by

a recession. By comparing the conditional spectral densities implied by a TFP shock with

their unconditional counterparts, we show that these shocks cannot be responsible for the

cyclical properties of the data.
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In the second part of the paper, we propose a general equilibrium model that rational-

izes the conundrum. Given the particularly robust evidence on boom-bust cycles among

financial variables, financial frictions play a central role in our theory. The structure of

the model echoes Jermann and Quadrini (2012) in that firms borrow from households by

issuing short and long-term debt. Short-term debt is useful to satisfy a working capital

requirement, whereas firms use long-term debt to smooth out dividends. The central inno-

vation of the model is a borrowing constraint that ensures no default in equilibrium, and

depends positively on firms’ market value but negatively on their end of period revenues.

This type of endogenous borrowing limit generates a strong financial amplification mecha-

nism that causes boom-bust dynamics in response to shifts in agents’ expectations, but not

in response to technology shocks.

Boom-bust dynamics arise from the interaction between the accumulation of long-term

debt and firms’ failure to internalize the effects of their choices on the borrowing con-

straint. The intuition is as follows. Suppose that households become more optimistic

regarding firms’ future value so that equity prices increase. Increased equity prices relax

borrowing constraints and allow firms to increase both short and long-term debt. Because

short-term debt is useful to finance production, looser borrowing constraints reduce the

labor wedge and raise the demand for labor. The resulting higher wages and labor in-

crease households’ desire to save which, in turn, raises equity prices and further relaxes

borrowing constraints. Yet, as the economy evolves, firms’ long-term debt expands causing

a contraction of their market value ceteris paribus. Eventually, firms reduce their short-

term borrowing to meet the payments on their long-term debt. In doing so, they do not

internalize the adverse effects on equity prices stemming from the increase in the labor

wedge and the decrease of labor demand. Thus borrowing constraints tighten, production

and equity prices fall while the labor wedge increases: a recession.

Intuitively, the amplification channel should deliver similar boom-bust responses after

shocks to technology, but it does not. The reason is that while a technology improvement

increases equity prices, it also raises end of period revenues which ceteris paribus tighten

the borrowing constraint. As a result, financial frictions dampen the response of output and

debt to a technology shock, thereby leading to an impact increase in the labor wedge. Thus,

during a technology-driven expansion the economy is less exposed to the severe incentive

problems that arise from excessive accumulation of long-term debt and that characterize
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expectation-driven expansions.

We argued that changes in expectations disconnected from technology can rationalize

the boom-bust features of the data, but what triggers such changes? The model’s answer

is that equilibrium outcomes are the product of self-fulfilling shifts in agents’ expecta-

tions, and when these changes are unrelated to fundamentals they generate boom-bust

dynamics. The intuition is that boom-bust dynamics obtain when the internal financial

amplification channel is sufficiently strong, but this happens only in the case in which the

dynamic equilibrium is indeterminate, that is, the economy is subject to self-fulfilling shifts

in expectations (a.k.a. sunspots).

In the third part of the paper, we empirically identify expectation shocks and test the

predictions of the model. Specifically, we construct an indicator that summarizes the revi-

sions of expectations on the future economic outlook using quarterly data on expectations

from the Survey of Professional Forecasters and the Survey of Consumers. We use the indi-

cator to identify exogenous shifts in expectations that are uncorrelated with past, present

and future realizations of TFP. In addition, we control for a number of leads and lags of

shocks to expectations of TFP in order to isolate shifts in expectations that are pure senti-

ments from those originating from beliefs on future TFP. Using local projections, we find

that expectation shocks generate significant boom-bust dynamics in all the aggregate vari-

ables that we examine, and explain up to 40% of real GDP at business cycle frequencies,

consistent with the findings of Angeletos et al. (2018) and Chahrour and Ulbricht (2019).

Finally, we show that the mechanism of the model is consistent with many features of

the data. First, we find that the model is able to reproduce the empirical impulse responses

to both expectation and TFP shocks. As in the model, expectation shocks bring about a

countercyclical movement of the labor wedge, while the labor wedge increases after TFP

improvements. Second, we show that the model can replicate the reduced-form evidence

on boom-bust cycles that motivated our analyses. Unlike standard business cycle models,

our theory can explain both the hump in the spectral densities of macroeconomic and fi-

nancial variables, and the rising probability of a recession following an expansion.

Related literature. This paper lies at the intersection between the strand of the finance

literature that focuses on credit cycles and the broad macroeconomic literature that aims

at understanding the sources of business cycles.
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The idea that the financial system is prone to generate economic instability through en-

dogenous credit booms traces back at least to Kindleberger (1978) and Minsky (1975,1986).

Minsky (1986) provides groundbreaking insights on the relation between the economic

and the financial system. Of particular interest for this paper is his distinction between

“periods of tranquility,” defined as situations during which the economy is not subject to

disruptive changes, and “unstable times" during which market forces lead to a rise of fi-

nancial instability which culminates in “speculative frenzies”. Through the lenses of our

model and empirical evidence, we view such “periods of tranquility” as moments during

which technological changes are the major contributor to economics fluctuations, whereas

“unstable times" are characterized by economic fluctuations primarily driven by changes

in market expectations.

More recently, the idea that an increase in credit associated with a decrease in borrowing

costs can be a powerful predictor of future economic crises has been empirically tested

and verified using both macro and micro level data. For example, Schularick and Taylor

(2012) and Jordà et al. (2013), using data on 14 developed countries from 1870 to 2008,

demonstrate that rapid credit expansions forecast declines in real activity.1 Using data on

the credit quality of corporate debt issuers, Greenwood and Hanson (2013) find that a

high share of risky loans tends to forecast low corporate bond returns. Krishnamurthy and

Muir (2017) show that crises are preceded by a period of high credit to GDP growth and

leverage, and low spread and risk premium. We complement this literature by providing

conditional evidence on the link between a credit boom and the ensuing recession. We

show that positive expectation shocks - but not TFP shocks - are systematically followed by

a recession. Our evidence on expectation shocks also relates to López-Salido et al. (2017)

who focus on credit market sentiment identified using credit spreads and find that high

credit market sentiments are a predictor of future negative output growth. We complement

their analysis by showing that sentiment shocks not only predict a negative output growth

but also prolonged periods during which the level of output is below trend.

We relate to the literature that aims at rationalizing boom-bust phenomena. For exam-

ple, Boissay et al. (2016) rationalize boom-bust episodes in a model where the increase

1 Other examples include Demirgüç-Kunt and Detragiache (1998), Hardy and Pazarbasioglu (1998), Kaminsky
and Reinhart (1999), Gourinchas et al. (2001), Goldfajn and Valdes (2006), Borio and Drehmann (2009),
Reinhart and Rogoff (2009), Claessens et al. (2011), Gourinchas and Obstfeld (2012), and Laeven and
Valencia (2013).
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in households’ savings during a boom exacerbates adverse selection problems in the in-

terbank market. In our model, the increase in savings brings about a recession because

it reflects an increase in firms’ debt which tightens financial markets. A subset of this lit-

erature builds model of chaos and limit cycles. Boldrin and Woodford (1990) survey the

literature and analyze the conditions under which limit cycles can emerge. In a recent

paper, Beaudry et al. (2019) revisit the reduced-form evidence on the spectral densities of

a series of economic variables. They build a model of limit cycles where small exogenous

shocks give rise to perpetual economic cycles. While our model can also exhibit limit cycles

for regions of the parameter space that imply a sufficiently tight financial constraint, our

aim is rather to rationalize the fact that only a subset of shocks trigger oscillatory dynam-

ics while other shocks do not. Gorton and Ordonez (2016) distinguish between “good"

and “bad" credit booms depending whether or not they end up in a crisis. They find that

shocks in the trend of productivity are associated with “good" credit booms, whereas “bad"

booms are typically associated with a decline in productivity. We differ from them in at

least two aspects. First, we look at cycles at short and medium-run frequencies while their

focus is on booms that last ten years on average. Second, we emphasize that the shocks

responsible for boom-bust episodes are orthogonal to movements of TFP.

Furthermore, we relate to the class of models that generate self-fulfilling rational expec-

tations equilibria due to credit market amplification. Examples of this class are Benhabib

and Wen (2004), Benhabib and Wang (2013), Liu and Wang (2014), and Azariadis et al.

(2015). While their emphasis is on a single shock, our model is built to capture the impor-

tant different responses to fundamental and sunspot shocks.

Lastly, our theoretical framework shares some similarities with models of stock market

bubbles as in Miao and Wang (2018), in that, debt limits depend upon firms’ market value

and sentiment shocks can be interpreted as bubbles. However, models of stock market

bubbles formalize the burst of a bubble as an exogenous event. In contrast, in our model

sentiment shocks rationalize both the formation of a bubble and its subsequent burst.

2 The cyclicality conundrum
Boom-bust cycles are a recurrent feature of the data. Yet, there is virtually no evidence of

boom-bust dynamics conditional on shocks. We refer to such empirical incoherence as the

cyclicality conundrum. This section documents the conundrum by showing that there is a
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systemic cyclical component in the data which does not manifest in the dynamics induced

by shocks to fundamentals.

2.1 Unconditional evidence of cycles

In a recent article, Beaudry et al. (2019) provide evidence in favor of U.S. business cycles

being characterized by cyclical forces. In particular, they show that the spectral densities

of a number of economic aggregates exhibit a common local peak at periodicities of 32 to

50 quarters. The spectral density is a useful diagnostic tool of cyclicality for two reasons.2

First, a peak in the spectral density signals the presence of oscillatory dynamics in the

autocovariance function of the data. Second, it tells us whether these oscillatory dynamics

happen at business cycle frequencies or they reflect lower frequency forces unrelated to

business cycles.

Figure 1 reports the spectral density of a series of macroeconomic and financial vari-

ables.3 We use quarterly data from 1967:q1 to 2018:q4 and detrend variables using a

band pass filter that removes fluctuations with periodicities longer than 100 quarters.4,5

Two patterns emerge. First, results point at the presence of a strong common cyclical com-

ponent. With the exception of utilization-adjusted TFP, all variables exhibit a peak in the

spectral density in the interval between 32 and 50 quarters. Furthermore, the fact that

there are no notable differences in the shape of the spectral density across variables, sug-

gests the presence of an underlying mechanism responsible for the cyclical patterns rather

than idiosyncrasies in the variables examined. Second, financial variables exhibit a more

pronounced peak relative to macroeconomic variables suggesting that the cyclical features

of the data might originate from shocks propagating through the financial sector, whereas

shocks that primarily hit the real sector of the economy generate less oscillatory dynamics.

Importantly, a hump-shaped spectral density is a finding inconsistent with the predic-

tions of standard business cycle models. In Figure 13 in appendix B we run a Monte Carlo

simulation on the spectral density of output using a textbook Real Business Cycle model

and the New-Keynesian model by Smets and Wouters (2007). We find that the spectral

2 The notion of cyclicality that we use is analogous to Beaudry et al. (2019), that is a series is cyclical if its
autocovariance function displays oscillations.

3 The spectral density is computed using the Schuster’s periodogram.
4 Because filtering the series could induce a spurious hump in the spectral density, we check that results are

robust to various detrending techniques and frequency bands.
5 The choice of the data sample does not affect the results. We start from 1967 as it is consistent with the

longest data sample available for the analyses carried in Section 4.
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density of output from model simulated data is counterfactually increasing in the period-

icity.

Figure 1: Unconditional spectral densities of quarterly U.S. signal systemic cyclicality

Note: Data from 1967:q1 to 2018:q4. TFP is utilization-adjusted total factor productivity. GDP is real gross
domestic product. Investment is real consumption of durables plus real gross private domestic investment.
Hours is hours of all persons in non-farm business sector. Change in debt is the flow of nonfinancial business
debt securities and loans. GZ Credit Spread is the measure of credit spread described in Gilchrist and
Zakrajšek (2012). Financial Conditions Index is provided by Chicago Fed. BAA T-Bill Spread is the difference
between the yield of BAA corporate bonds and the treasury note at 10-year horizon. Series are detrended
using a quadratic trend (circle-solid line), a filter that excludes fluctuations of period greater than 100 (black
line), or from 101 to 200 (dark grey lines).

The presence of a systemic cyclical component in the data implies that the probability that

a recession occurs should increase after an expansion. To verify whether this is true, we

estimate a simple linear probability model and compute the probability that the economy

enters in a recessions after k quarters since the previous expansion. We define expansions

as periods in which real GDP growth is above the top quintile for at least two consecutive

quarters. Likewise, we construct a recession indicator that takes value equal one if the

real GDP growth falls into the bottom quintile for at least two consecutive quarters. Figure

2 plots the probability that the economy will be in a recession in a two-quarter window

around time t+ k given an expansion at time t. Results confirm the evidence of cyclicality
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described above. The probability of a recession increases after an expansion and peaks

approximately two years after the expansion. The picture also shows the prediction from

data simulated using standard business cycle models such as the one described in Smets

and Wouters (2007), and the textbook Real Business Cycle model. Both models predict

that recessions are essentially unforecastable, so that the probability of a recession quickly

converges to its unconditional mean after an expansion. To see this, we plot the results

from simulating a random walk process in levels and show that the results from both the

New Keynesian model, and the RBC model are indistinguishable from those obtained by

simulating a random walk.
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Figure 2: Probability of a recession peaks two years after an expansion

Note: Probability of recession in a two-quarter window after k quarters since expansion. Confidence intervals
are 68%, 80%,and 90% (shaded areas) around the point estimate (solid black line).

2.2 Conditional rejection of cycles

Ultimately, we are interested in understanding the sources of the oscillatory behaviour doc-

umented above. To this end, we ask whether technology shocks account for these empiri-

cal regularities. We use quarterly utilization-adjusted TFP (Basu et al., 2006) and identify

technology shocks as the innovation of detrended TFP after regressing it on its own lags,

lags of the first principal component of a large dataset of aggregate economic variables
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and news shocks estimated following Barsky and Sims (2011).6 We estimate impulse re-

sponses using the method of local projections proposed by Jordà (2005). Specifically, we

estimate the h-th coefficient of the impulse response function by regressing each variable

at time t+ h on the shock at time t.7 We choose to implement the method of local pro-

jections because unlike vector autoregressions (VAR), it does not require to specify the lag

structure of the data generating process.
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Figure 3: Impulse responses and spectral densities of a TFP shock.

Note: Technology shocks are the innovation of detrended TFP after regressing it on its own lags, lags of the
first principal component of a large dataset of aggregate economic variables and news shocks estimated as
in Barsky and Sims (2011). Impulse responses (top panel) are estimated using local projections method.
Confidence intervals are computed using the block-bootstrap method described in Kilian and Kim (2011).
Conditional spectral densities (bottom panel) are computed from the Fourier transform of the estimated MA.

The top panel of Figure 3 shows the impulse responses of real GDP, investment and the

change in nonfinancial corporate debt as a fraction of GDP, to a positive transitory tech-

nology shock. An unanticipated improvement of TFP leads to a hump-shaped response of

real GDP and investment, aggregate debt rises during the initial build-up and decreases

while the economy returns to its long run trend. To verify whether these impulse responses

6 Results are robust to different detrending techniques, additional controls, and different number of lags and
principal components. See Appendix C for results and additional details.

7 Details on local projections are in the Appendix E.
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can account for the spectral properties of the data, we compute the spectral densities im-

plied by the estimated coefficients of the moving averages. The bottom panel of Figure 3

shows that the spectral densities of real GDP and investment conditional to a TFP shock

are monotonically increasing over business cycle periodicities. This poses a challenge to

TFP-based explanations of boom-bust cycles.

Conditional test for the presence of a local peak The lack of a local peak in the spec-

tral density of output, investment, and TFP observed in Figure 3 suggests that technology

shocks cannot account for spectral properties of the data shown in Figure 1. To make the

point, we construct a test for the presence of a significant local peak in the spectral density

conditional to a structural shock. The test procedure echoes Canova (1996) and Reiter and

Woitek (1999) who design a test for the presence of a peak for the unconditional spectral

density. Details of our procedure are presented in the Appendix G. The idea is to test if the

shape of the conditional spectral density around a particular frequency range is not statisti-

cally different from the spectral density implied by an autoregressive process of order one.

More specifically, define D1 the average estimated spectral density over a range around 34

quarters, and D2 the average estimated spectral density over a range around 45 quarters.

The test statistic is the ratio D ≡ D1/D2. A value of D bigger than one indicates the spectral

density is decreasing in the range 34 to 45 quarters. The spectral density associated to

an AR(1) process, in contrast, is monotonically increasing in the periodicity. Therefore

we test the null hypothesis H0 : D = D∗ where D∗ is the value implied by an AR(1) with

persistent parameter estimated from the data, against the alternative H1 : D > D∗. Results

for the technology-implied spectral density are reported in Table 2. We fail to reject the

null hypothesis of absence of a local peak for GDP, investment, and TFP.

Taken together our reduced form and conditional evidence points at the presence of os-

cillatory properties of the data that do not appear to be captured by movements in TFP.

In the next section we build a model that helps us rationalizing the findings and propose

“pure" sentiment shock - defined as shifts in expectations unrelated to fundamental - as a

natural candidate to explain the spectral properties of the data. In section 4 we construct

novel empirical evidence in favor of this hypothesis and show that the model can repro-

duce the responses to sentiment and technology shocks together with the unconditional

spectral densities of the data.
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3 A model of conditional cycles
In this section we show that a standard Real Business Cycle model augmented with finan-

cial frictions can rationalize the cyclicality conundrum. Azariadis et al. (2015) document

that unsecured firm credit is procyclical whereas collateralized debt is acyclical. Building

on their findings, we assume a type of solvency constraint that allows firms to borrow up

to a fraction of their market value. Furthermore, we introduce short and long term debt as

in Jermann and Quadrini (2012). This form of financial friction combined with procyclical

fluctuations of long-term debt generate strong internal amplification and cyclical dynamics

in response to serially uncorrelated shifts in expectations. For plausible parametrizations of

the financial constraint, we find that the model displays dynamic multiplicity of equilibria

due to self-fulfilling changes in expectations (a.k.a sunspots). In this environment, waves

of optimism unrelated to present and future fundamentals, generate temporary expansions

followed by recessions.

Importantly, our model stands in stark contrast to the class of models of self-fulfilling

business cycle that provide microfoundations to the aggregate increasing returns to scale

economy described in Benhabib and Farmer (1994).8 Amplification in the form of increas-

ing returns would strongly influence the transmission of technology shocks, thus, while

these models can generate endogenous oscillatory dynamics, they cannot simultaneously

account for the empirical evidence on technology shocks.

For expositional reasons, we present first a benchmark model featuring intertemporal debt

as the only state variable. In the next section we identify sentiment shocks in the data

and augment the model with capital and external consumption habit to match empirical

responses. We further validate model’s performance by showing that it does a good job in

matching the spectral properties of the data.

3.1 Firm sector

There is a continuum i ∈ [0,1] of firms with a gross revenue function F(zt,kt,nt)= ztkθt n1−θ
t .

The variable zt is the stochastic level of productivity common to all firms, nt is the labor

input, kt is the capital input which we assume to be constant and equal to one for now.

8 Examples of this class are Benhabib and Wang (2013) and Liu and Wang (2014).
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Firms issue noncontingent bonds bt+1 at a price bt+1/Rt. We assume that firms receive

a tax advantage such that given the interest rate r t, the effective gross interest rate for

the firm is Rt = 1+ r t(1− τ) where τ is the tax benefit. Thus, firms are effectively more

impatient than households so that if financial markets are not too tight the equilibrium

stock of debt will be positive. In addition to the intertemporal debt, firms raise funds with

an intraperiod loan, `t, to finance working capital. Because revenues are realized at the

end of the period, working capital is required to cover the intraperiod cash flow mismatch.

The loan `t is paid at the end of the period with no interest.9

The timing of the events is the same as in Jermann and Quadrini (2012). Shocks realize

at the beginning of the period. Firms enter the period with outstanding debt equal to bt

and choose labor nt, the new intertemporal debt bt+1 and distribute dividends dt. Since

payments are made before producing, the intraperiod loan is

`t = wtnt +φ(dt)+bt −bt+1/Rt,

where φ(dt)= dt+κ(dt−d̄)2 includes a convex distribution cost of dividends which captures

documented evidence of preferences for dividend smoothing (Lintner, 1956). The end of

period firm’s budget constraint is

bt+1/Rt +F(zt,nt)= wtnt +φ(dt)+bt. (1)

It follows that firm’s revenues are equal to the intraperiod loan, that is `t = F(zt,nt).

Incentive constraint. When production is complete, firms decide whether or not repay

the intraperiod loan they owe to the household. Consistent with recent evidence on the

procyclicality of unsecured debt (see Azariadis et al., 2015), we assume that contract

enforcement is imperfect so that firms have incentives to default. If a firm defaults it can

divert its end of period revenues yt ≡ F(zt,nt). However, a defaulting firm can be caught

with probability γ, in which case its assets will be liquidated and the firms will cease to

operate. If a firm is not caught, it continues to retain access to credit in future periods.10

9 The assumption of two types of debt is made for analytical convenience. In particular the intratemporal debt
can be replaced with cash that firms carry from the previous period. Cash would then be used to finance
working capital and pay part of dividends.

10 Assuming that in the case of being caught a firm would also loose its revenues does not quantitatively alter
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Specifically, a firm defaults if

yt + (1−γ)E tmt,t+1Vt+1 > E tmt,t+1Vt+1,

where mt,t+1 is the households’ stochastic discount factor, Vt+1 is the firm’s future value

defined as the net present value of future dividends.

Because shocks realize at the beginning of period, there is no intraperiod uncertainty.

Thus we can write the following incentive constraint that deters default in equilibrium,

γE tmt,t+1Vt+1 ≥ yt. (2)

It is easy to show that firms’ market value depends negatively from the intertemporal debt

bt+1. Thus the incentive constraint in eq. (2) is effectively limiting both types of firms’

debt. An increase in intraperiod debt l t increases production and therefore raises the right

hand side of the constraint. Conversely, an increase in interperiod debt bt+1 decreases the

left hand side. Importantly, in making their optimal choices of short and long-term debt,

firms understand that an increase in bt+1 tightens their borrowing constraint, but they do

not internalize the effects that a change in production have on their market value through

movements in the discount factor mt,t+1. This type of externality is crucial to generate

both amplification and boom-bust phenomena.

The problem of the individual firm can be written recursively as

Vt = max
dt,nt,bt+1

{
dt +E t

[
mt,t+1Vt+1

]}
(3)

subject to (1) and (2).

Firm’s first order conditions are

(1+µtγ)RtE t

[
mt,t+1

φ′(dt)
φ′(dt+1)

]
=1 (4)

(1−θ)
yt

nt
= wt

1−µtφ′(dt)
(5)

our results.
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where µt is the Lagrange multiplier associated to the incentive constraint. Equation (4)

is the first order condition of new intertemporal debt bt+1. It states that the marginal

cost of debt increases with the tightness of the credit limit µt and the effective firm’s dis-

count factor which is the household’s discount factor times the expected decrease in the

adjustment cost of dividends. From the first order condition of labor input (5), looser bor-

rowing constraint increases labor demand and allows firms to borrow more intra-period.

The resulting increase in labor income and dividends increases households’ asset demands

further relaxing the borrowing constraint.

Furthermore, looser credit constraints also increase the intertemporal loan. To see this,

combine the budget constraint of the firms with the optimality condition for labor:

bt+1/Rt −bt

yt
= φ(dt)

yt
+ (1−θ)(1−µtφ

′(dt)).

As credit market relaxes, that is µt decreases, for a given dividend to output ratio, the

intertemporal debt rises.

3.2 Households sector and general equilibrium

There is a continuum of homogeneous utility-maximizer households. Households are the

owners of firms. They hold equity shares and noncontingent bonds issued by firms. House-

holds’ instantaneous utility function is

U(ct,nt)=
c1−ω

t −1
1−ω +α log(1−nt).

The household’s budget constraint is

ct + st+1 pt + bt+1

1+ r t
= wtnt +bt + st(dt + pt)−Tt (6)

where st is the equity shares and pt is the market price of shares. The government finances

the tax benefits to firms through lump-sum taxes equal to Tt = Bt+1/[1+r t(1−τ)]−Bt+1/(1+
r t). The first order conditions with respect to nt,bt+1, and st are

wt =− Un(ct,nt)
Uc(ct,nt)

(7)

Uc(ct,nt)=β(1+ r t)E tUc(ct+1,nt+1) (8)
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pt =βE t

{
Uc(ct+1,nt+1)

Uc(ct,nt)
(dt+1 + pt+1)

}
(9)

Given the aggregate states s, that are productivity z and aggregate bonds B we can define

the general equilibrium as follows:

Definition: A recursive competitive equilibrium is defined as a set of functions for (i) house-

holds’ policies ch(s,b), nh(s,b) and bh(s,b); (ii) firms’ policies d(s,b), n(s,b), and b(s,b); (iii)

firms’ value V (s,b); (iv) aggregate prices w(s), r(s), and m(s′,s); (v) law of motion for the ag-

gregate states s′ =ψ(s). Such that: (i) household’s policies satisfy conditions (7) and (8); (ii)

firm’s policies are optimal and V (s,b) satisfies the Bellman’s equation (3); (iii) the wage and

the interest rate clear the labor and bond markets; (iv) the law of motion ψ(s) is consistent

with individual decisions and stochastic processes for productivity.

3.3 Inspecting the mechanism

The key externality in the model is that households do not take into account the effects

of their savings decisions on the financial constraint. Likewise, firms only partly inter-

nalize the effects of their production decisions on their market value. In particular, they

understand that a higher level of debt reduces their market value by limiting their ability

to distribute dividends, but they do not internalize the effects of their decisions on their

market value due to changes in the present and future stochastic discount factor. This

generates a positive feedback loop between firms’ market value and households’ income.

Absent of adjustment cost of dividends, i.e. κ = 0, credit market amplification depends

upon the elasticity of firms’ production to the households’ stochastic discount factor. This

elasticity is equal to

∂log(yt)
∂log(mt,t+1)

= βτ

γ(1−µ)(1−τ+τβ)2

[
(1−n)(1−θ)

(ω−1)(1−n)(1−θ)+1

]
≡ ξ,

where µ= τ(1−β)/γ(1−τ+τβ).

If credit market frictions are severe, that is the probability of being excluded from fi-

nancial market γ is low or the tax advantage on debt τ is high, firms are more responsive

to changes in their continuation value reflected by changes in the stochastic discount fac-

tor. Sufficiently high values of ξ give rise to self-fulfilling equilibria. Suppose lenders and

borrowers are optimistic regarding firms’ market value, this relaxes the financial constraint
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and implies an increase in the credit supply. As a consequence, production and households’

labor income increase which raise firms’ market value through an increase in the stochastic

discount factor mt,t+1 validating the initial shift in expectations.

Formally, take a first order approximation around the steady state, aggregate output can

be expressed as

ŷt = ωξ

ωξ−1
E t ŷt+1 − 1

ζ(ωξ−1)
ẑt (10)

where ζ≡ (ω−1)(1−n)(1−θ)+1.

When ωξ> 1/2, current aggregate output is a convex function of future output which is

sufficient to generate indeterminacy.

Note that the impact of technology shocks on aggregate output is ambiguous. By increas-

ing end of period revenues, a positive technology shock raises firm’s incentives to divert

funds thereby increasing the right-end-side of the incentive constraint in eq. (2). Whether

firm’s market value increases more than firm’s revenue depends upon firm’s willingness to

distribute dividends. We find that for plausible parametrizations, the Lagrange multiplier

µt increases in response to a positive technology shock.

A current loosening of financial constraints leads firms to borrow more and hinge upon

their ability to borrow in the future. In fact, firm’ s value depends upon the amount of

intertemporal debt bt+1 which in turn depends positively upon the outstanding debt bt

at the beginning of the period. The resulting dynamic subsitutatibility between current

and future production allows for the possibility of boom-bust dynamics. The following

proposition lists the necessary conditions under which boom-bust fluctuations may obtain

in response to perturbations from the economy’s steady state.

Proposition 1 Boom-bust phenomena obtain only if

i. The equilibrium is indeterminate.

ii. Adjustment costs are non zero, that is κ> 0.

Proof is relegated in Appendix H.

Condition (i) states that if the credit market amplification channel is strong enough, so that

indeterminacy obtains, then the economy can also be subject to oscillatory dynamics.11

11 This property is not specific to the environment described here. Gu et al. (2013) discuss the link between
indeterminacy and cycles in the context of financial frictions of different forms.
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The intuition is that after an initial expansion, firms have accumulated large amount of

debt which limits their ability to borrow and produce. As firms decrease production they do

not internalize the adverse effects on their market value. The stronger are the effects of this

externality the larger is the drop in current production. The reason why adjustment cost

of dividends is necessary to obtain cycles is more subtle. Besides the static amplification

mechanism described above, the model displays dynamic substitutability between current

and future production generated by movements in firms’ net worth. An increase in new

debt brings about higher current production but it decreases future firms’ net worth which

negatively affects the subsequent level of production. Absent dividend adjustment costs,

firms with a high level of outstanding debt would finance production by decreasing the

amount of distributed dividends, therefore limiting the impact that changes of net worth

on their production decisions, thus preventing the large accumulation of debt after the

expansion to generate a recession.

3.4 Parametrization and theoretical impulse responses

The sunspot shock is defined as an i.i.d. expectation error of firm’s value that is not corre-

lated with fundamentals

Vt −E t−1Vt = ut

where ut = εs,t +ψzεz,t.

The terms εs,t and εz,t are respectively the sunspot shock and the technology shock.12 The

natural logarithm of technology is assumed to follow an AR(1) process as

ẑt = ρz,t ẑt−1 +εz,t.

We calibrate the model to a quarterly frequency consistent with the frequency of the data.

We set β in order to match a 3% annual interest yield on bonds. Following Jermann and

Quadrini (2012) tax shield τ and capital’s share of income θ are set equal to 0.35 and 0.36,

respectively. With the aim of emphasizing the difference between the two shocks, we set

12 Note that inserting the sunspot on output would not alter our results. It is easy to show that

Vt −E t−1Vt =ω(Yt −E t−1Yt).
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Figure 4: Model impulse responses to a technology shock and to sunspot shock

the inverse of households’ intertemporal elasticity of substitution ω to 1.2, the probability

of being caught in case of default γ to 0.1 and the degree of adjustment cost to dividends

κ to 2.3. The parameter ρz governs the persistence of the technology process and is set

equal to 0.93 consistent with the law of motion of detrended TFP estimated in the data.

We assume the expectation error ut and the technology shock to be uncorrelated, so that

ψz is equal to zero.13

Figure 4 shows the theoretical impulse responses of the model to a sunspot shock and

to a technology shock.

In response to the sunspot shock the economy experiences an initial boom characterized

by an increase output, consumption and hours. The associated increase in debt has two

effects. On the one hand, it reflects an increase in households’ savings which increases

the supply of credit generating a decrease in the real rate and an increase in firms’ market

value. On the other hand, larger outstanding debt hinders firms’ ability to pay current

and future dividends which deteriorates their market value. Which of these two forces

prevails depends upon the level of firms’ profitability. As production increases firms’ prof-

13 Note that ψz equal zero implies a zero-impact response of output and firm’s value after a technology shock.
While this is an implausible restriction that will be relaxed in the quantitative exercise, it allows to generate
a starker difference between the dynamics induced by the two shocks.
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itability decreases so that firms’ market value decreases, the financial constraint tightens

and output starts declining. During the contraction phase, households are less willing to

lend which results in an increase in the real rate, a decrease in firm’s value and a further

tightening of the financial market. This negative vicious circle reinforces as households’

savings decline, ultimately bringing about a recession. Importantly, even though agents

know about the incoming recession their actions magnifies the decline in output.

A positive technology shock generates hump-shaped dynamics in all the main macroe-

conomic variables. By increasing incentives to divert funds, a positive technology shock

tightens the financial constraint which dampens the impact response of output. Impor-

tantly, the response of debt and output is comparable to the ones after a sunspot shock,

suggesting that looking at measures of firms’ indebtedness such as the debt to GDP ratio

may not be the best predictor of a crisis.

Importantly, expectation-driven fluctuations arise also in an economy where fundamen-

tals, that is technology, preferences, or government policies, do not change and this is

common knowledge. This distinguishes them from noise shocks arising from ex post er-

roneous beliefs on future changes of technology. Bearing this distinction in mind, in the

next section, we estimate expectation shocks unrelated to fundamentals and to rational

expectations of fundamentals. We find that these shocks generate boom-bust dynamics

consistent with the quantitative prediction of an extended version of the model.

4 Identifying sunspot shocks using survey data
In this section we estimate the sunspot shock as a “pure" sentiment shock, that is a shock

that reflects a change in expectations disconnected from changes in expectations on future

TFP and realizations of TFP. To this end, we use quarterly one-year-ahead expectations

on a number of key macroeconomic variables formed by both professional forecasters and

households. We proceed in three steps.

The Survey of Professional Forecasters and the Survey of Consumer Expectations include

expectation data on a number of variables, such as future real GDP growth, investment,

and consumption. Our theory does not point at a particular variable, rather expectation

shocks should be reflected into a change of expectations common across all variables in the

surveys that capture information upon expected future business conditions. Therefore, as

a first step, we construct an expectation indicator Ŝt from the first principal component of
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all the relevant available expectation data. The sample includes seven quarterly variables

from 1982:Q2 to 2018:Q4.

Second, we regress the indicator Ŝt on a battery of controls in order to capture variations

in expectations that are “extrinsic", that is, exogenous to fundamentals and to changes

in expectations on future fundamentals. Formally, let the process of detrendend TFP be

represented by the following news representation

log(TFP)t = A(L) logTFPt−1 +εz
t +

∞∑
k=1

εk
t−k

where εk
t−k is a news shock on TFP k-period ahead which is part of time t agents’ in-

formation set, and εz
t is the surprise shock of technology. Let SK

t be the indicator that

summarizes revision of agents expectations on the economic activity K-period ahead. We

assume that these revisions depend upon current technology shocks, expectations on fu-

ture technology, and expectation shocks. Specifically,

SK
t =λ0 logTFPt +

K∑
k=1

αkε
k
t +εs

t

where expectations on future technology are a linear combination of news upon technol-

ogy up to K horizons. Hence, in order to identify extrinsic expectation shocks one needs

to cleanse changes in expectations, proxied by Ŝt, from the realized level of TFP and ex-

pectations about future TFP up to the horizon K . In other words, we want the estimated

expectation shock to satisfy two conditions: (i) the estimated shock must be uncorrelated

with future TFP realizations; (ii) the shock has to be uncorrelated with noise shocks, de-

fined as ex-post wrong beliefs on future TFP. 14

We proxy expectations on future TFP with TFP news shocks identified as in Barsky and

Sims (2011). However, this controlling set may no be large enough to satisfy the two

conditions above. To overcome this issue we add two additional set of controls. First,

we control for future realizations of TFP so as to guarantee that the estimated shock has

no impact on future TFP. Second, as shown by Chahrour and Jurado (2018), one can

14 As shown by Beaudry and Portier (2004) noise shocks in the form of ex-post wrong beliefs on future TFP
can give rise to Pigouvian cycles and therefore are a competing candidate to the explanation of the reduced
form evidence presented in Section 1. However, we find that controlling for this particular type of beliefs has
small quantitative changes on the variance explained by the expectation shock, suggesting that noise shocks
play only a minor role in shaping expectations.
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recover noise shocks by adding future news and realizations of TFP to the econometrician’s

information set. Thus, we further control for future realizations of the identified news

shock. Specifically, expectation shocks are estimated from the following equation:

ε̂s
t = Ŝt −

k̄∑
k=0

λ̂kTFPt+k +
k̄∑

k=0
α̂kε

BS
t −Xtβ̂

where εBS
t is the news shock estimated using the procedure in Barsky and Sims (2011),

and Xt is a vector of additional control variables, including past realizations of TFP and

news, other shocks to fundamentals such as monetary policy and fiscal shocks, and past

values of the first two principal components from a large data set of U.S. aggregate vari-

ables. Interestingly, even after controlling for virtually all available sources of fundamental

fluctuations, estimated expectation shocks explain approximately half of the changes in the

expectation indicator Ŝt.

In the last step, we estimate the impulse response to an expectation shock using Local

Projections as in Jordà (2005). Specifically, for each variable of interest Y , we run the

following series of regressions

Yt+h = θhε̂s
t +

J∑
j=1

[
δ jε̂

s
t− j +λ jYt− j +PCt− jΓ j

]
+νt+h for h = 0,1, . . . ,H (11)

where θh is the response of Y to an expectation shock after h periods, and PC is a vector

including the first two principal component from a set of U.S. aggregate variables. We use

four lags, that is J = 4, in the baseline specification.

Figure 5 shows the responses of real GDP, real investment, and the change of non-

financial corporate debt divided by real GDP to a one standard deviation expectation

shock. Real GDP, investment and debt flow exhibit significant oscillatory dynamics. In

particular, after a positive expectation shock, the economy enters an expansion followed

by a recession after about two years. Importantly, the conditional spectral densities exhibit

a peak associated to periodicities of 8 to 10 years, in line with the reduced form evidence

presented earlier. Table 2 in Appendix G reports the p-values for the test of a local peak

in the spectral density implied by expectation shocks. The null hypothesis of absence of a

local peak is rejected for all variables, with the exception of TFP.
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Figure 5: Impulse responses and conditional spectral densities to an expectation shock

Note: Expectation shocks are estimated as the innovations in St orthogonal to present, past, and future
realization of TFP and expectations on TFP. Impulse responses (top panel) are estimated using local projec-
tions method. Confidence intervals are computed using the block-bootstrap method described in Kilian and
Kim (2011). Conditional spectral densities (bottom panel) are computed from the Fourier transform of the
estimated MA.

4.1 Robustness checks

In this section we show that the results in Figure 5 are robust to different detrending tech-

niques, additional controls, and the expectation variables used to construct the indicator

St. Given that our endogenous variables are non-stationary, in the baseline specification

we detrend the variables using a Band-Pass filter which excludes periodicities above 100

quarters. In order to argue that the oscillatory dynamics implied by an expectation shock

is not specific to the detrending technique, in Figure 6 we show robustness checks where

endogenous variables are detrended using (i) first differences (and the cumulated), (ii)

linear time trend, (iii) quadratic time trend, and (iv) Hodrick-Prescott filter. Results are in

line with the baseline specification and most of the estimates lie between the confidence

intervals of the main specification.
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Figure 6: Impulse responses and conditional spectral densities to an expectation shock

Note: Point estimates (continuous line) are from the baseline specification presented in Figure 5. The figure
shows the robustness of the point estimate to various detrending techniques.

Figure 7 reports results for four additional variations of the baseline specification. First,

we increase the number of lags and the number of principal components in the regression

equation of the expectation shock. Second, we control for the present and the past of

other shocks to fundamentals such as oil shocks, fiscal shocks, military spending news

shocks and monetary policy shocks. Third, we check whether results are sensitive to the

choice of the indicator for the revisions of expectations. Specifically, we use only revisions

on one-year-ahead output growth from the SPF and find results that are not significantly

different from the baseline. Finally, we check that results are robust to the number of lags

and principal components used in the LP.
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Figure 7: Impulse responses and conditional spectral densities to an expectation shock

Note: Point estimates (continuous line) are from the baseline specification presented in Figure 5. The figure
shows the robustness of the point estimate to various controls (see text).

5 Model with capital and external consumption habit
In this section we augment the model with variable capital, investment-adjustment costs

and external consumption habit. The equilibrium equations of the extended model are:

wtUc(ct, ct−1,nt)=−Un(ct, ct−1,nt) (12)

βE t[mt,t+1(Rt −τ)]= 1−τ (13)

wtnt +bt − bt+1

Rt
+dt = ct (14)

[
1−µtφ

′(dt)
]
Fn(zt,kt,nt)= wt (15)

kt+1 = (1−δ)kt +
[ ς1

1−ν
( i t

kt

)1−ν
+ς2

]
kt (16)
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E t

{
mt,t+1

φ′(dt)
φ′(dt+1)

(1+µtγ)
{(

1−φ′(dt+1)µt+1
)
Fk(zt+1,kt+1,nt+1)+

+ 1
ς1

( i t+1

kt+1

)ν[
1−δ+ ς1ν

1−ν
( i t+1

kt+1

)1−ν
+ς2

]}}
= 1
ς1

( i t

kt−1

)ν
+E t

[
mt,t+1φ

′(dt)µtγ
] (17)

(1+µtγ)E t

[
mt

φ′(dt)
φ′(dt+1)

Rt

]
= 1 (18)

yt −wtnt −bt + bt+1

Rt
− i t =φt(dt) (19)

γE t
[
mt,t+1Vt+1

]= yt (20)

where yt = F(zt,kt,nt) = ztkθt n1−θ
t and φ(dt) = dt +κ(dt − dss)2. Moreover, the stochas-

tic discount factor is mt,t+1 = β(Uc,t+1/Uc,t) and value of the firm is defined as vt = dt +
E t

[
mtvt+1

]
. Finally, Uc(ct, ct−1,nt)= (ct − ιct−1)−ω and Un(ct, ct−1,nt)=−α(1−nt)−ω2.

5.1 Calibration and impulse response matching

Following Christiano et al. (2005) we divide the model parameters in two different groups.

The first group is calibrated while the remaining parameters are estimated via impulse

response matching. We calibrate the model to a quarterly frequency. The discount factor β,

capital’s share of income θ, and tax shield τ maintain the same values presented in Section

3. The multiplicative parameter which governs the utility of leisure α is chosen such that

the steady state value of n is equal to one third. Moreover, the exponential parameter

which governs the utility of leisure ω2 is set equal to one in order to imply a Frisch labor

supply elasticity equal to 2. Moreover, ς1 and ς2 – additional parameters related to the

investment-adjustment costs – are set such that in the steady state the depreciation rate is

equal to δ and the steady state Tobin’s q is equal to one. In addition, steady state capital

depreciation δ is equal to 0.025. Furthermore, ψz - which governs the response of firm’s

value to a technology shock - is set in order to match the empirical impact response of

technology to output.

The second group includes the vector of parameters Σ = (ω, ι,γ,κ,ρz) includes the inverse

of households’ intertemporal elasticity of substitution, ω; the external consumption habit

parameter, ι; the probability of being caught in case of default, γ; the degree of adjustment

cost to dividends, κ; and the persistence of technology process, ρz. These parameters are
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set to minimize the distance between the empirical and model-implied impulse responses.

In particular, we chose Σ that minimizes the following objective

J =min
Σ

[Ψ̂−Ψ(Σ)]′V−1[Ψ̂−Ψ(Σ)]

where Ψ̂ denotes the empirical impulse responses of GDP, Consumption, hours worked and

TFP to both technology and expectation shocks, Σ is the vector of estimated parameters,

and Ψ(Σ) is the model-implied counterpart of ψ̂. V is a diagonal matrix which gives differ-

ent weights to the target estimates. Table 1 reports the parameter values of the model.

Parameter Interpretation Value
α Disutility of labor 8.785
ω2 CRRA labor 1
β Discount factor 0.9926
τ Tax shield 0.35
θ Capital share 0.36
δ Capital depreciation 0.025
ς1 Capital adj. cost (1) δν

ς2 Capital adj. cost (2) δ−δ/(1−ν)
ψz Technology on Vt 0.29
ρz Technology persistence 0.93
ω CRRA consumption 1.3219
ι Consumption habit 0.699
ν Capital adj. cost (3) 0.59154
κ Dividend adj. cost 0.44606
γ Incentive parameter 0.094009

Table 1: Model’s parameter values.

5.2 Model performance

Figures 8 and 9 plot the theoretical impulse response of the model against their empirical

counterparts. The model does a good job in reproducing the empirical impulses to both

shocks. In particular, we estimate the model consistent measure of labor wedge and find

that the responses are in line with the predictions of the model.

Figure 10 shows the empirical conditional spectral densities against their model coun-

terpart. The theoretical spectral densities implied by the model are within the range of the

confidence bands of the empirical ones.
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Figure 8: Model vs empirical IRFs to an expectation shock

Figure 9: Model vs empirical IRFs to a technology shock
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Figure 10: Model vs empirical spectral densities conditional on shocks

As a last validation exercise of the model, we simulate data and reproduce the results on

the probability of recession presented in Figure 2. Figure 11 shows that the model can

replicate the empirical probability of recession conditional on a previous expansion.
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Figure 11: The model explains the dynamics of the recession probability

Note: Probability of recession in a two-quarter window after k quarters since expansion. Confidence intervals
are 68%, 80%,and 90% (shaded areas) around the point estimate (solid black line).
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6 Conclusion
We provide a simple synthesis of two major approaches to modeling business cycles. Under

the first approach business cycles are driven by exogenous shocks that push the economy

temporarily away from the long-run steady-state or balanced growth path. The second

approach proposes models in which the economy experiences endogenous fluctuations

even in the absence of fundamental shocks. However, both types of models fail to provide a

unified explanation of the unconditional and conditional moments of the data. In the data,

shocks to economic fundamentals induce dynamics that are consistent with the first view.

But unconditional moments and results from expectation shocks, suggest to write models

consistent with the inherent instability class. Taken together, our findings speak in favor

of a theory in which both views coexist. Thus, we provide a model that embeds a strong

financial amplification channel which generates boom-bust dynamics in response to i.i.d.

expectation shocks. Consistent with the data, the financial amplification channel barely

contributes to the propagation of technology shocks which exhibit no systematic relation

between expansions and recessions. In sum, a sizeable part of economic recessions is

due to preceding expansions. More importantly, those expansions that are not generated

by a change in fundamentals are more likely to end in recessions. As a consequence,

policy makers should intervene more decisively during expectation-driven expansions than

during fundamental-driven expansions. Characterizing the optimal policy in light of our

findings is part of our future endeavors.
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A Unconditional Spectral Density

Figure 12: Unconditional spectral density of quarterly and seasonally adjusted U.S.
macroeconomic and financial variables from 1981 to 2018. TFP is utilization-adjusted
total factor productivity. GDP is real gross domestic product. Investment is real consump-
tion of durables plus real gross private domestic investment. Hours is hours of all persons
in nonfarm business sector. Change in debt is the flow of nonfinancial business debt secu-
rities and loans. Credit is total credit for private nonfinancial sector. Financial Conditions
Index is an index of financial condition provided by Chicago Fed. BAA T-Bill Spread is the
difference between the yield of BAA corporate bonds and the treasury bill at 10-year hori-
zon. All variables are stationarized using Band-Pass filter excluding periodicities above 100
quarters. Confidence intervals are computed following the procedure described in Beaudry
et al. (2019).
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B Spectral density from model simulated data
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Figure 13: Mean unconditional spectral density of GDP from a Monte Carlo simulation
using various standard models and our model (red line). Simulated data are deterended
using a band-pass filter that removes fluctuations at periodities greater than 100 quarters.

34



C Robustness checks on technology Shocks
Figure 16 reports impulse responses together with conditional spectral densities implied

by a technology shock for the baseline specification presented in Figure 3 and a series of

robustness checks. In particular, RC 1 and RC 2 are the first and the second robustness

check where variables are linearly and quadratically detrended, respectively. RC 3 is the

third robustness check where TFP is controlled using 8 lags of TFP, the first 2 principal

components and news shocks. RC 4 is the last robustness check where we use different

number of lags and principal component when we estimate LP impulse responses.
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Figure 14: Impulse responses and conditional spectral densities implied by a technology
shock. Point Estimates is the baseline specification presented in Figure 3. RC 1 and RC 2
are the first and the second robustness check where variables are linearly and quadratically
detrended, respectively. RC 3 is the third robustness check where we add more controls
when we estimate a technology shock. RC 4 is the last robustness check where we use
different number of lags and principal component when we estimate LP impulse responses.
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D Robustness checks on expectation shocks

Figure 15: all in LP. S is PC of everything in the baseline. controls are the same as in the
baseline.

Figure 16: all in LP. S is real GDP growth revision. start in 1967. controls are the same as
in the baseline.
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E Local Projections
To estimate LP impulse responses we follow standard techniques as firstly introduced by

Jordà (2005). Given the stationary series yt and shock εt, impulse responses can be esti-

mated as follows,

yt+h = θhεt +
J∑

j=1

[
δ jεt− j +λ j yt− j +γ jxt− j

]
+νt+h for h = 0,1, . . . ,H (21)

where θh represents response of yt to shock εt at horizon h and xt are additional controls

which in our estimation represent principal components from a large dataset of macroeco-

nomic variables.

E.1 Inference

Following Kilian and Kim (2011) we estimate confidence interval using the block bootstrap

procedure. As emphasized by Kilian and Kim (2011), we opt for this approach because the

error term in the local projections regressions is most likely serially correlated. The LP

impulse response estimator for horizon h depends on the tuple,

Th = [yt+h εt εt−1 . . . εt−J yt−1 . . . yt−I] (22)

To preserve the correlation in the data, build the set of all Th tuples for h = 0,1, . . . ,H. For

each tuple Th, employ the following procedure:

1. Define g = T − l+1 overlapping blocks of Th of length l.15

2. Draw with replacement from the blocks to form a new tuple T b
h of length T.

3. Estimate θb
h from T b

h using LP estimator.

4. Repeat 1. to 3. B (≥ 2000) times and select confidence intervals.

F Variance Decomposition
Variance decomposition is estimated following Gorodnichenko and Lee (2017). In partic-

ular, we define the population share of variance explained by the future innovations in εt

15 Notice that l = (T − I − J +2)
1
3 is defined following Berkowitz, Birgean and Kilian (1999). Results are not

sensitive to alternative choices of l.
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to the total variations in the unpredictable component of yt+h as,

vh = σ2
ε

∑h
i=0θi

V ar( f t+h|t−1)
(23)

where V ar(εt)=σ2
εt

and θi are LP estimators. Moreover f t+h|t−1 can be estimated from the

following regression,

yt+h =
J∑

j=1
δ jεt− j +

I∑
i=1

λi yt−i +
Q∑

q=1
γqxt−q + f t+h|t−1 (24)

where xt−q represents a vector of additional controls.

Since the estimator vh does not guarantee estimates to be between 0 and 1, we use the

following estimator,16

ṽh = σ2
ε

∑h
i=0θi

σ2
ε

∑h
i=0θi +V ar(νt+h −∑h−1

i=0 θixt+h−i)
(25)

where νt+h is coming from the LP regression,

yt+h = θhεt +
J∑

j=1
δ jεt− j +

I∑
i=1

λi yt−i +νt+h. (26)

F.1 Inference

To estimate confidence intervals for ṽh, we directly use the non-parametric confidence

intervals estimated for θi. In particular, use simulated θb
i to estimate,

ṽb
h = σ2

ε

∑h
i=0θ

b
i

σ2
ε

∑h
i=0θ

b
i +V ar(νt+h −∑h−1

i=0 θ
b
i xt+h−i)

(27)

and select confidence intervals.

16 See Gorodnichenko and Lee (2017) for a detailed description.
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G Conditional Spectral Density and Cyclicality Test
Consider the case where stationary variable yt is explained by two shocks: ε1,t and ε2,t. In

this case, yt can be represented with the following infinite moving average,

yt =
∞∑

h=0
θ1,hε1,t−h +

∞∑
h=0

θ2,hε2,t−h (28)

Since the estimated impulse responses cannot cover an infinite number of lags consider

the truncate moving average,

yt ≈
H∑

h=0
θ1,hε1,t−h +

H∑
h=0

θ2,hε2,t−h (29)

Since we are interested in the conditional cyclicality implied by the two shocks, we focus

on the conditional moving average,

yk,t ≈
H∑

h=0
θk,hεk,t−h for k = 1,2. (30)

where yk,t represents the realized value of yt only conditional on shock εk,t for k = 1,2.

Conditional spectral densities are parametrically estimated by taking the Fourier trans-

form of the estimated truncated moving average. Estimators are,

sk(ω)≈
[ H∑

h=0
θk,heihω

]
σ2

k

[ H∑
h=0

θk,he−ihω
]

for k = 1,2. (31)

where ω ∈ (0 π] represents frequencies, i =p−1, θk,h is the LP estimator, and σ2
k is a stan-

dard estimator for V ar(εk,t).17

G.1 Inference

Similarly to what we have done for the variance decomposition, to estimate confidence

intervals for sk(ω), we directly use the non-parametric confidence intervals estimated for

17 Notice that for estimating sk(ω) we need to build a grid for ω ∈ (0 π]. Although results are not sensitive
to different grid size, in our main results grid is 0.001 in order to guarantee a precise estimate to ten-year
frequencies.
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θh. In particular, use simulated θb
h to estimate,

sb
k(ω)≈

[ H∑
h=0

θb
k,heihω

]
σ2

k

[ H∑
h=0

θb
k,he−ihω

]
for k = 1,2. (32)

and select confidence intervals.

G.2 Test

1. Filter each variable you want to test using a Band-Pass filter which excludes frequen-

cies below 2 and above 100.

2. Estimate the autoregressive parameter ρ y implied by this stationary variable using

standard regression techniques.

3. Simulate - for each variable y - B (≥ 2000) AR(1) processes with persistence param-

eter ρ y fed with normally distributed random disturbances.18

4. For each simulated series estimate its disturbances, impulse response coefficients

with LP estimator θh and conditional spectral density via sk(ω) where k is the esti-

mated innovation from each simulated AR(1) process.

5. Following Canova (1998) and Beaudry et al. (2019) we test if the estimated con-

ditional spectral densities for shocks εt (ŝε(ω)) are indistinguishable from the ones

derived from the simulated AR(1) process (ŝa(ω)).

• Notice that H0 : D̂ε = D̂a and H1 : D̂ε > D̂a

• D̂k = ŝk(ω1)/ŝk(ω2)

• ω1 ∈ (π/40,π/28) and ω1 ∈ (π/72,π/48)

6. Test statistic is estimated as follows

• Define D̂b
k = ŝb

k(ω1)/ŝb
k(ω2) as the simulation of D̂k from ŝb

k.

• Estimate, for each b, ζ̂b = D̂b
ε − D̂b

a as the difference between the simulation for

D̂b
ε and D̂b

a.

18 This simulated series has the same length of the data used in the empirical section. Since our sample start
slightly after 1980 then we have about 150 observations.
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• P-value is the number of ζ̂b > 0 over the total number of simulations B.

GDP Investment ∆Debt / GDP TFP
Expectation Shock 3.64% 4.82% 2.24% 28.4%
Technology Shock 28.52% 5.54% 0.1% 89.84%

Table 2: P-values for the test of a local peak in the spectral density implied by expectation
shocks (first row) and technology shocks (second row).

H Proof of Proposition 1
Cyclical dynamics obtain if at least two eigenvalues of the reduced form system of the

model are complex and conjugate. Under determinacy this is not possible because there

would be two eigenvalues, one stable and the other one unstable. Indeterminacy is char-

acterized by a system with two stable eigenvalues, possibly complex and conjugate. The

loglinearized deterministic version of the model can be written as,

 2κd τβω

1−τ+τβ
1−β β−ω

d̂t+1

ŷt+1

=
 2κd

1+µγ M

0 1−ω

d̂t

ŷt

 (33)

where

M ≡ τβω

1−τ+τβ −γ 1−µ
1+γµ

(
ω−1+ 1

(1−θ)(1−n)

)
(34)

Notice that when κ is equal to zero then the reduced-form of the system is independent

of d̂t implies that one eigenvalue is equal to zero ruling out the possibility to have two

complex and conjugate eigenvalues.
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