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Abstract
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general equilibrium model. In the model, firms face idiosyncratic productivity risks and
are subject to partial capital irreversibility and financing constraints. Partial capital
irreversibility generates selling delays. I show that financing constraints interact with
irreversibility and prolong the delays. As a result, reallocation activity is slowed down
during recessions when financing constraints are tighter.
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1 Introduction

The reallocation of input factors from less productive to more productive firms is necessary

for the efficient usage of these factors in production, especially after an economy is hit by

adverse shocks. Unfortunately, during the past three recessions, the level and the turnover

activity of capital reallocation appear to have been lower than in normal times. In fact,

reallocation of existing productive capital is highly procyclical (Figure 1).1 This observation

is in sharp contrast with Schumpeter (1942)’s “creative destruction” view2: more capital

stock should be liquidated and more restructuring should take place in recessions.

While the business cycle literature has studied the role of aggregate productivity and

financing constraints shocks in explaining some business cycle dynamics such as GDP and

investment,3 the effects of these shocks on capital reallocation are rarely explored. This is

an important oversight because capital reallocation is of the same magnitude of investment,4

and is actually more volatile (the ratio of standard deviations to that of GDP are 10.91 and

3.86 respectively). The dynamics of reallocation can potentially provide us information on

the sources of business cycles.

I construct a tractable general equilibrium model in which firms face aggregate pro-

ductivity and aggregate financing constraint shocks, in addition to persistent idiosyncratic

productivity risks. Firms also face fixed costs of operating and partial capital irreversibility

(assets will be sold at discount in liquidation).5,6 The financing constraints interact with ir-

reversibility and generate capital reallocation delays from unproductive to productive firms.

After credit crunches, the delays are prolonged and the TFP dispersion among firms expands.

In this economy, idiosyncratic productivity shocks generate the benefits from reallocat-

ing capital stock. Productive firms expand by borrowing, but in the presence of collateral

1Following Eisfeldt and Rampini (2006), capital reallocation includes sales of property, plants, and equip-
ment and acquisitions from the COMPUSTAT database. Jovanovic and Rousseau (2002) also use this
measure to study the purchase of used assets.

2In general, “creative destruction” is essential for long-run productivity growth (see e.g., Caballero and
Hammour (1994) and the reference therein), its role in recessions are controversial. For example, restructuring
activity typically declines during recessions as shown in Caballero and Hammour (2000, 2005).

3See, for example, King and Rebelo (1999) and Nolan and Thoenissen (2009).
4In 2011, for example, the reallocation from COMPUSTAT is about $0.65 trillion whereas the total U.S.

fixed investment is about $1.6 trillion. Non-listed firms probably buy more used assets according to Eisfeldt
and Rampini (2007). In sum, capital reallocation is comparable to new investment.

5Shleifer and Vishny (1992) summarize two usual reasons for resale costs. First, when firms are liqui-
dating, the potential buyers with the highest valuation are often those in the same industry who generally
also have financial troubles. Assets may not go to the highest valuation users. Second, because of antitrust
reasons, assets may need to be sold to industry outsiders, causing lower values for assets.

6Ramey and Shapiro (2001) provide empirical evidence of investment specificity and selling costs. They
estimate the wedge between purchase price and resale price for different types of capital. Machine tools are
sold at about a 69% discount off the purchase value, and structural equipment is sold at a 95% discount.
These estimates suggest a large degree of specificity.
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Figure 1: Capital reallocation over cycles
The series plotted are cyclical components of HP-filtered log data (quarterly frequency) normalized by
standard deviations. Solid line represents seasonally adjusted reallocation. Following Eisfeldt and Rampini
(2006) who use data with annual frequency, capital reallocation includes the sum of sales of property, plant,
and equipment (SPPE) and acquisition (AQC) in 2005 dollars. Dashed line represents the turnover of
reallocation as percentage of total assets. Dashed dotted line represents real GDP in 2005 dollars. Shaded
regions denote NBER recessions. See Tables 3 and 4 in the Appendix for more detailed statistics. The ratio
of standard deviation of capital reallocation to that of GDP is 10.91, which is much higher than the standard
deviation of investment to that of GDP (3.86). Note that the standard deviation of GDP fluctuation is 1.42%.

constraints not all of the capital stock can necessarily be reallocated. Firms with falling

productivity, are hesitant to sell assets because of the resale discount, and might gamble

on the hope that they will regain higher productivity soon. But once these firms have low

productivity today, they are likely to have low productivity tomorrow because of persistence.

They thus face a cost of borrowing that is much higher than the expected return from cap-

ital. Hence, these firms let their capital stock depreciate while paying down existing debt

by shrinking dividends (modelled as entrepreneurs’ consumption). If these firms keep draw-

ing low productivity, profitability stays low and the firm gradually shrink. Eventually, they

give up capital when the option value of maintaining the depreciated capital is too low to

compensate for the fixed costs of operation.

The key finding is that shocks to financing constraints are necessary to reduce capital

reallocation in recessions, while aggregate TFP shocks are needed for the dynamics of other

macro variables. A negative aggregate TFP shock reduces the value of staying in business

for all firms and counterfactually increases liquidation i.e., capital reallocation. In contrast,
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a negative credit shock that reduces firms’ ability to borrow has a different impact on pro-

ductive and unproductive firms. Productive firms would like to invest but can borrow less

due to the credit crunch. Unproductive firms are not credit unconstrained but face reduced

costs of borrowing and hiring labor due to less competition from productive ones (a general

equilibrium effect on reducing wages and interest rates). Therefore, these unproductive firms

further delay their liquidation decisions. Finally, only a mild correlation between the two

aggregate shocks is required to match the aggregate dynamics.

Because capital reallocation slows down during recessions, the idiosyncratic TFP dis-

persion across firms expands and aggregate TFP declines with the tightened financing con-

straints, thus leading to a deeper recession. Therefore, capital irreversibility cause delay in

selling and tightened financing constraints interact with this irreversibility and generate an

even longer delay, which helps explain why capital reallocation slows down in spite of larger

potential benefits to reallocate during recessions. A major credit crunch after a banking

crisis, such as the one in the U.S. in 2008, exemplifies these interactions.7

Finally, I discuss the effect of uncertainty shocks in the spirit of Bloom (2009) which can

be interpreted as an increase in cross-sectional idiosyncratic productivity dispersion. In my

model, firms can save or borrow risk-free assets. The value after liquidation is endogenous

because of the endogenous rate of return on bonds. Then, a mean preserving spread shock to

idiosyncratic productivity will have an ambiguous impact on capital reallocation, as the value

after liquidation can be either higher or lower. However, if uncertainty shocks in recessions

also generate tighter financing constraints, capital reallocation will likely to decline. Recent

work by Gilchrist, Sim, and Zakrajsek (2010) and Christiano, Motto, and Rostagno (2014)

show how financing constraints could become tighter when dispersions among firms are larger

using costly-state-verification contracts as in Bernanke, Gertler, and Gilchrist (1999).

The contribution is to consider the interaction of financing constraints and capital irre-

versibility. Without irreversibility, there will not be a delay of selling used capital. Without

financing constraints, productive firms can borrow freely and push up both the interest rate

and the wage rate, leaving a very small incentive for unproductive firms to delay selling.

The technical innovation might be of some independent interest. Solution to a macro

model with capital irreversibility are usually complex and sometimes infeasible with aggre-

gate shocks (not to mention estimation), since the evolving distribution of firms is a high

dimension object.8 I simplify individual firm’s problem by deriving a closed-form portfolio

7U.S. economy after 2008 experiences similar massive deleveraging in Japan after 1990, summarized in
Shirakawa (2012). Koo (2011) calls this type of recessions “balance sheet recessions”. Meanwhile, Japanese
corporate sector has substantial less restructuring found by Hoshi, Koibuchi, and Schaede (2011). Thus,
linking financing constraints and capital reallocation sheds some light on corporate balance sheet adjustments.

8See, for example, Bloom, Bond, and Reenen (2007), Bloom (2009), and Khan and Thomas (2011), who
use piece-wise functions to approximate individual value functions.
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choice between bonds and capital stock with (real) “option values”, using finance portfolio

choice theory as in Campbell and Viceira (2002).9 Individuals’ decision rules are easily aggre-

gated and the evolving distribution of firms are tractable, which leads to exact aggregation

and avoids the approximation method such as the one in Krusell and Smith (1998).

Literature Review. Dixit and Pindyck (1994) and Caballero and Engel (1999) focus on

the timing of irreversible investment. This paper focuses on asset selling. Since assets may

turn to be productive, running unproductive firms has an option value which may exceed

the resale value. I show how to directly quantify the option value which is history dependent

and summarized in firms’ leverage ratios.

This paper shows how standard credit crunches can increase the dispersion endoge-

nously through general equilibrium. Implication of shocks to the dispersion of firm-specific

conditions can be found, for example, in Bloom (2009), Gilchrist, Sim, and Zakrajsek

(2010), Panousi and Papanikolaou (2012), and Christiano, Motto, and Rostagno (2014).

But Bachmann and Bayer (2012a,b) show that large dispersion shocks are difficult to rec-

oncile with other observations such as the investment rate dispersion. Similarly, Bachmann

and Moscarini (2011) study endogenous dispersion through firms’ risk-taking behaviors.

Further literature of macroeconomic implications of asset illiquidity and implications of

financing constraints can be found in surveys by Caballero (1999) for capital illiquidity,10

and Brunnermeier, Eisenbach, and Sannikov (2012) for financing constraints. Whether asset

illiquidity or financing constraints can quantitatively amplify TFP and output losses is a

matter of some debate.11,12 Buera and Moll (2012) shows that how a credit crunch can

distort the margin of efficiency, investment, and labor supply altogether.

Finally, innovation of this paper is to consider the interactions between capital irre-

versibility and financing constraints, which is related to Kurlat (2011) and Khan and Thomas

(2011). Kurlat (2011) shows analytically why the secondary market for existing capital may

9I follow and extend previous works by Angeletos (2007), Kiyotaki and Moore (2011), and Buera and Moll
(2012). Under the class of CRRA preferences, if individual production functions feature constant returns to
scale, the wealth spent on capital and bonds is simplified to a portfolio choice between the two.

10Partial irreversibility is important. Previous work on investment irreversibility focuses on zero resale
value, or completely irreversible investment, such as in Abel and Eberly (1996, 1999) and Thomas (2002).
With zero resale value, firms only consider when to buy instead of when to sell.

11Thomas (2002) and Veracierto (2002) argue that irreversibility is not important in general equilibrium
since idiosyncratic adjustments will be smoothed out. However, Kashyap and Gourio (2007) show that
whether lumpy investment is important in aggregate depends on production function of firms and the distri-
bution of fixed costs. Recently, Kiyotaki and Moore (2011) study the illiquidity shocks and the amplification.
Eisfeldt (2004) and Kurlat (2011) model the illiquidity through asymmetric information.

12See financial constraints’ impact on long-run output and TFP losses in Buera, Kaboski, and Shin (2011),
Moll (2010), and Midrigan and Xu (2012). For example, Midrigan and Xu (2012) argue that financing
frictions cannot generate the misallocation observed in Hsieh and Klenow (2009). Moll (2010) suggests that
as firms have persistent idiosyncratic productivity shocks, they save enough to undo financial frictions. See
also financing constraints’ effect on short-run output and TFP fluctuations in Kocherlakota (2000), Cordoba
and Ripoll (2004) and more recently Chen and Song (2012).
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shut down and its macroeconomic implications through adverse selection. He focuses on

the resale prices by simplifying outside financing: entrepreneurs are not allowed to borrow.

Instead, I focus on different degrees of borrowing constraints. Khan and Thomas (2011)

quantitatively examine reallocation efficiency for given degrees of resale costs and financing

frictions, focusing mainly on numerical aspects. I extensively use analytical methods (by

focusing on a more specific process of idiosyncratic shocks) to explain the interaction of the

two frictions on the capital reallocation delays through changes in interest rates and wages.13

More importantly, in contrast to both papers, I look at the firms’ capital structure through

the portfolio choice perspective.14

2 The Model

Time is discrete and the horizon is infinite. There are two types of agents: entrepreneurs

and households. Both are with measure 1. Households supply labor, consume, and save in

bonds. Entrepreneurs own production technology and some of them run firms.

2.1 Entrepreneurs

Preferences. At time t, a typical entrepreneur j has preferences over the consumption stream

cjt, cjt+1, cjt+2..., and leisure stream (1− hjt), (1− hjt+1), (1− hjt+2)..., given by

Et
∞∑
s=t

βs−t[u(cjs) + η(1− hjs)] (1)

where β ∈ (0, 1) is the discount factor, Et is the conditional expectation operator, and

u(c) = c1−σ−1
1−σ . σ is the relative risk-aversion parameter. To simplify, I use σ = 1 i.e.,

u(c) = log(c). If j runs the firm, hjt = 1; if j does not run the firm, hjt = 0, and there is η

extra leisure utility. Though a utility costs, η represent the fixed costs to run the business.

Modeling this way enable me to solve the exit conditions in closed-form.15

Production. In the beginning of time t, j’s firm uses capital stock kjt (installed in t− 1)

13The interactions in the model occur through general equilibrium. Credit crunches reduce wage rates
because of a frictionless labor market. Empirically, despite wage rigidities, real wage rates decline during
recessions, as found by Solon, Barsky, and Parker (1994) and Haefke, Sonntag, and Van Rens (2012). The
decline of real wages is a consequence of lower wages of newly hired workers, in spite of moderate wage
rigidity for longer term employees. Caggese and Cunat (2008) show firms can substitute flexible employment
contracts for permanent employment contracts to reduce efficiency wages.

14Recently, Guerrieri and Lorenzoni (2011) look at households’ deleveraging and balance sheet after credit
crunches. These households face durable consumption goods illiquidity and financing constraints.

15Alternatively, one can think of the case in which an entrepreneur’s engagement produces output that
are the fixed costs necessary for production.
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and hire labor ljt at a competitive wage rate wt, to produce output:

yjt = z̃jtk
α
jt(Atljt)

1−α = (zjtkjt)
α(Atljt)

1−α,

where α ∈ (0, 1), zjt is the idiosyncratic productivity, and At is aggregate productivity. Both

zjt and At are realized at the beginning of t. For convenience, z̃h = (zh)α and z̃h = (zh)α

denote the “measured” idiosyncratic productivity levels. The idiosyncratic productivity

follows a two state Markov process where the transition probabilities are16

Prob(zjt+1 = zl | zjt = zh) = phl, Prob(zjt+1 = zh | zjt = zl) = plh.

There is no insurance market for idiosyncratic productivity risks.

Capital Accumulation. Capital depreciates at a rate δ. Firms can invest in new capital

stock, buy, or sell existing assets. Inactive investment decisions are also allowed i.e., j can

choose to neither buy nor sell capital. One unit of efficient used assets, after being installed,

is the same as one unit of new assets. Thus, j’s capital stock evolves according to

kjt+1 = (1− δ)kjt + ijt,

where ijt > 0, ijt < 0 and ijt = 0 denote buying, selling, and inaction in investment.

As in a neoclassical growth model, a buyer pays one unit of consumption goods for

investment goods. But for each unit of used assets, only (1 − d) fraction is useful for other

buyers. This transaction lost implies that sellers receive a payment of (1− d) for each unit

of asset sold from them. d represents the reallocation costs, the partial irreversibility of the

capital stock due to capital specificity or adverse selection problems.

In sum, it costs 1 to invest (new or old capital) and (1− d) to retire a unit of old capital.

If the firm changes its quantity of capital from k to k′, the cost of doing so is

ψ(k′, k) =


k′ − (1− δ)k, if k′ > (1− δ)k

0, if k′ = (1− δ)k
−(1− d)[(1− δ)k − k′], if k′ < (1− δ)k

Budget and Collateral Constraints. Entrepreneur j has access to the financial market.

Denote the bond position as bjt at the beginning of t and the interest rate from t− 1 to t as

Rt. The budget constraint of j can be written as

cjt + bjt+1 + ψ(kjt+1, kjt) = yjt − wtljt +Rtbjt.

16Note that, 0 < phl < 1, 0 < plh < 1, and phl + plh < 1.
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j earns profits and interests, which are spent on dividends (consumption), new bonds, and

paying the capital adjustment costs. Note that one can simplify profits further: because of

a constant return to scale (CRS) production technology, the instantaneous profits of j are

linear in kjt
17

Π(zjt, kjt;wt) = max
ljt
{(zjtkjt)α(Atljt)

1−α − wtljt} = (zjtπt)kjt,

where labor demand and aggregate profit rate is

l∗jt = zjtkjt

[
(1− α)A1−α

t

wt

]1/α

, πt = α

[
(1− α)At

wt

] 1−α
α

. (2)

Thus, the budget constraint can be rewritten as

cjt + bjt+1 + ψ(kjt+1, kjt) = zjtπtkjt +Rtbjt. (3)

Entrepreneur j can short bonds (borrow), but not capital stock. Borrowing is bounded

because j faces collateral constraints similar to those in Kiyotaki and Moore (1997) and

Hart and Moore (1994).18 The collateral constraint here includes resale frictions and an

extra degree of financing frictions θt:

Rt+1bjt+1 ≥ −θt(1− d)(1− δ)kjt+1 (4)

Collateral constraint (4) says that debt value cannot exceed θt fraction of the resale value

of the residual capital at t + 1. In addition, (4) implies that the investing entrepreneur

only needs to pay 1 − θt(1 − d)(1 − δ)/Rt+1 as down payment. θt fluctuates and measures

the external financing difficulties. For example, a permanently higher θt represents a better

financial development, whereas a temporary θt decline indicates a sudden banking problem.

17To see this, the first-order condition for labor is A1−α
t (zjtkjt)

α(1 − α)l−αjt = wt, so that the optimal

labor demand is l∗jt = zjtkjt

[
(1−α)A1−α

t

wt

]1/α
, from which profits are

Π(zjt, kjt;wt) = (zjtkjt)
α(Atljt)

1−α − wtljt = A1−α
t zjtkjt

[ (1− α)A1−α
t

wt

] 1−α
α

− wt
[

(1− α)A1−α
t

wt

] 1
α


= A

1−α
α

t zjtkjt

[
(1− α)

wt

]1/α
[
wt

1− α
− wt] = zjtπtkjt.

The total output produced by entrepreneur j can be written as yjt =
zjtπtkjt

α . To interpret this result, α
fraction of the output becomes j’s profits while the 1− α fraction is paid through wages.

18This is a consequence of the fact that the human capital of the agent who is raising outside funds is
inalienable. To ensure no “run away” default, the lender should be able to seize the tangible assets.
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θt of (4) constrains capital stock allocation efficiency. Without (4), zh owners can obtain

any funds needed to invest in capital stock. The economy would reach the efficient production

frontier, and as many entrepreneurs as possible can enjoy leisure.

A Summary. Each entrepreneur j maximizes (1) subject to (3) and (4), by choosing

consumption cjt, leisure hjt, labor input ljt, capital kjt+1, and bonds bjt+1, while taking the

wage rate wt and the interest rate Rt+1 as given.

2.2 Households

A representative household has preferences over the consumption stream cht, cht+1, cht+2...,

and labor supply lht, lht+1, lht+2..., given by

Et
∞∑
s=t

βs−th [
c1−γ
h,s − 1

1− γ
− κ(lh,s)

1+ν

1 + ν
],

where βh ∈ (β, 1) is household’s discount factor, γ is the relative risk-aversion, ν is the inverse

Frisch elasticity of labor supply, and 0 ≤ lht ≤ 1. The household do not have production

technology and therefore do not own physical capital. They can save in bonds so that the

budget constraint is

ch,t + bh,t = wtlh,t +Rtbh,t.

That is, labor income and return from bonds are used to finance new consumption and new

bonds. The household problem is standard and the optimal solution is (assuming interior

solution for labor supply)

κcγhtl
ν
ht = wt, Et

βh (cht+1)−γ

(cht)
−γ Rt+1 = 1.

2.3 Recursive Equilibrium

I rewrite the entrepreneur’s problem recursively and then define recursive equilibrium. De-

note aggregate state as X = (Γ(k, b, z), θ, A) where Γ(k, b, z) is the distribution of individu-

als’ capital stock, bonds, and productivity at the beginning of each period. To emphasize,

financial disturbances θ and aggregate productivity fluctuations A are exogenous shocks.

Let V be the optimal value of an entrepreneur with k, b, and z, given the aggregate state

variable X. The value function V (k, b, z;X) satisfies the Bellman equation:

V (k, b, z;X) = max{W 1(k, b, z;X),W 0(k, b, z;X)} (5)
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W 1(k, b, z;X) = max
k′>0

R′b′≥−θ(1−d)(1−δ)k′
{u(zπk +Rb− ψ(k′, k)− b′) + βEz,X [V (k′, b′, z′;X ′)]}

W 0(k, b, z;X) = max
b′
{u(zπk +Rb+ (1− δ)(1− d)k − b′) + η + βEz,X [V (0, b′, z′;X ′)]}

The first step maximization is over the two actions: (1) to run the firm and get W 1 and (2)

not to run the firm and get W 0. The second step is to choose the optimal consumption and

savings (a portfolio of capital stock and bonds). Note that W 0 has the leisure utility η, as an

entrepreneur who gets W 0 does not run the firm today (and there is no output tomorrow).

Finally, I define the recursive equilibrium to close the model:

Definition 1 (The First Recursive Equilibrium Definition):

The equilibrium consists of households’ policy function {ch(X), lh(X), bh(X)},
entrepreneurs’ policy functions {l(k, b, z;X), k′(k, b, z;X), b′(k, b, z;X)}, a law of motion

Γ(k, b, z)→ Γ(k′, b′, z′), and pricing functions π(X) and R′(X), given an exogenous

evolution of (θ−1, A−1)→ (θ, A) such that:

(i) l, k′ and b′ solve the entrepreneur’s problem in (5) given wages and interest rates.

(ii) ch, lh, and bh solve the household’s problem i.e.,

κcγhl
ν
h = w, EX

βh (c′h)
−γ

(ch)
−γ R′ = 1, ch + bh = wlh +Rbh,−1

(iii) Markets for labor and bonds clear∫
ljtdj = lh,

∫
b′jdj = 0

(iv) The distribution evolution Γ(k, b, z)→ Γ(k′, b′, z′) is consistent with policy functions,

given an initial condition.

Note that I chose to be brief in describing the evolution of firm distribution. The reason

is that I will simplify the firm distribution and rewrite the equilibrium.

3 Equilibrium Characterization

I focus on the interesting equilibrium where there is an active secondary capital market. I

begin by describing the decision rules of entrepreneurs, leaving the mathematical details for

later. Doing so will give readers an idea of where the argument flow is and allow them to

skip the details.
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3.1 Entrepreneurs’ Decision Rules

A Quick Preview. An individual entrepreneur’s policy depends on idiosyncratic productivity

and the leverage ratio i.e., capital stock over equity

λ = k/(k + b)

. The interesting equilibrium features that zh owners buy capital while zl owners hold on to

it before liquidation. This type of equilibrium is the main concern because it has imperfect

capital reallocation and possible binding financing constraints for productive firms.

In steady state, the optimal policy functions can be shown in the following way. Consider

the dynamics of k and b (Figure 2). zh owners always go to z′ = zh line or expand through

the z′ = zh line such that the leverage is λ̄ and the slope k/b is λ̄
1−λ̄ . For example, when

λ̄ is the leverage ratio associated with the borrowing constraint, zh owners reach the credit

limit. zl owners, on the other hand, let the capital depreciate and shrink their debt by

reducing consumption until they reach leverage λ (i.e., k/b ratio is λ
1−λ). Then, their firms

are liquidated.

The region characterized by the two lines with slope λ̄
1−λ̄ and λ

1−λ denote the inaction

region. Inside the region, the reward for changing capital stock is insufficient. From outside

the region (to the right of the λ
1−λ slope line), the optimal policies are such as to proceed

Figure 2: Policy function illustration
Dynamics of k and b. When entrepreneurs draw zh, their firms expand (increase k while decrease b) along the solid line.
Whenever entrepreneurs draw zl, they step on the dashed line (one specific path): let k depreciate while paying back existing

debt (increase b) until k/b = λ
1−λ when they liquidate the firm.
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instantly to the k = 0 line i.e., to liquidate in order to avoid the fixed costs.

The illustration above is in the steady steady state. When there are aggregate shocks, λ̄

and λ will change in response. Now, I show the detail steps to derive the decision rules.

3.1.1 Policy Functions When k′ > 0

First, I explore useful properties of the value function. The value function behaves normally,

differentiable at k > 0, and has a “scale-invariant” property.

Lemma 1 (Properties of the Value Function):

The value function V has the following properties

1. V (k, b, z;X) is increasing in k, b, and z, and concave in (k, b).

2. V satisfies

V (γk, γb, z;X) = V (k, b, z;X) +
log γ

1− β
. (6)

3. V (k, b, z;X) is differentiable at k > 0 and satisfies the envelope condition.

Proof. See the Appendix.

One can prove properties 1 and 2 of Lemma 1 by contraction mapping, which maps the

space of functions with properties 1 and 2 to itself. Let leverage of a firm be

λ = k/(k + b).

Lemma 1 says that value functions of entrepreneurs with the same pair of (λ, z) are affine

transformations of each other. A firm with γ times of the size as another firm but the same

(λ, z) is simply a scale up version of the latter. More importantly, target leverage of these

entrepreneurs will be the same.19 Notice that the fixed costs η affect the liquidation decision

and the decision is based upon (λ, z) but not the level of k and b.

Because of potential inaction investment decisions, it is useful to work with the marginal

value of capital. Let q(k, b, z;X) be the marginal value of capital that satisfies the envelope

condition:

Vk(k, b, z;X) = u′(c(k, b, a;X))[zπ + q(k, b, z;X)(1− δ)], (7)

for k > 0. q measures the value of capital in consumption goods unit and shows how much

entrepreneurs value their capital internally, particularly when the investment decision is

19Their policies are (k′, b′) and (γk′, γb′) so the target leverages are k′/(k′ + b′) and γk′/(γk′ + γb′).
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inaction. It turns out to be useful in solving policy functions because it only depends on

leverage, keeping everything else fixed:

Lemma 2 (Scale Invariance and Shadow Prices):

The value function V and the shadow value q have the following properties

1. Vk is homogeneous with degree −1 in (k, b).

2. For given z and X, Vk/u
′(c) depends only on k/(k + b), but not on k or b.

3. q(k, b, z;X) can be simplified to q(λ, z;X), where λ = k
k+b

.

Proof. See the Appendix.

q is equivalent to the marginal reward to adjust capital. When the marginal reward to

increase capital reaches 1, a firm buys capital. When the marginal reward to decrease capital

reaches 1 − d, the firm sells it. When there are no active purchases or sales, the marginal

reward to increase or decrease capital is q, which should be less than 1 but greater than

1− d. Therefore, it is not optimal to adjust capital stock when

1− d < q(λ, z;X) =
Vk/u

′(c)− zπ
1− δ

< 1.

Inside the inaction region, q is the option value of staying. Such characterization is similar

to that in Dixit (1997). One may also interpret q(λ, z;X) as the “price” of each share of a

firm with leverage λ = k/(k + b) and productivity pair z. When the firm is investing, each

share of the stock is priced at 1. When sold, each share of the stock is priced at 1−d. When

firms are inactive in investment, each share of the stock is q ∈ (1− d, 1).

The properties of the value function provide useful knowledge to solve entrepreneurs’

policy functions. To see this, let the (internal) rate of return on capital (k′ > 0) r′ be

r′(λ′, z′;X ′|λ, z;X) =
z′π′ + (1− δ)q(λ′, z′;X ′)

q(λ, z;X)
,

let the net worth of an entrepreneur using the shadow value of capital be

n(k, b, z;X) = zπk + q(λ, z;X)(1− δ)k +Rb,

and let φ denote the fraction of net worth spent on capital. We then have the following

analytical solution

12



Proposition 1 (Closed-form Policy Functions):

Consumption c = c(k, b, z;X), capital k′ = k′(k, b, z;X) > 0, and bonds b′ = b′(k, b, z;X)

can be expressed as

c = (1− β)n(k, b, z;X), k′ =
φ

q(λ, z;X)
βn(k, b, z;X), b′ = (1− φ)βn(k, b, z;X).

where φ satisfies 
Ez,X

[
r′−R′

φr′+(1−φ)R′

]
= 0, if Ez,X

[
r′

φr′+(1−φ)R′

]
= 1

φ = 1
1−θ(1−δ)(1−d)/qR′

, if Ez,X
[

r′

φr′+(1−φ)R′

]
< 1.

When entrepreneurs invest, they invest such that they target the same φ.

Proof. See the Appendix.

The above policy function implies the usual Euler equation used in asset pricing. To see

this, notice that portfolio weight on capital stock is φ = qk′/βn then

1

φr′ + (1− φ)R′
= β

n

[z′π′ + (1− δ)q′] k′ +R′b′
= β

(1− β)n

(1− β)n′

=
βu′(c′)

u′(c)
,

which is the stochastic discount factor. Then, when entrepreneurs are not financing con-

straint, the portfolio weight φ solves

Ez,X
[
βu′(c′)

u′(c)

z′π′ + (1− δ)q(λ′, z′;X ′)
q(λ, z;X)

]
= 1,

the classic asset pricing formula “E[Λ′r′] = 1”, where “Λ′” is the stochastic discount factor.

In summary, a typical entrepreneur consumes (1 − β) fraction and saves the other β

fraction of the net worth (that uses the option value of capital). She uses the savings to

invest in a portfolio. The portfolio consists of risky assets (capital stock) and risk-free assets

(bonds), allowing shorting on risk-free assets but not on risky ones. If she invests φ fraction

of a dollar in risky assets and the other 1−φ fraction in risk-free assets, the next period’s rate

of return is φr′+ (1−φ)R′. The goal of portfolio choice is to maximize the expected log rate

of return (i.e., the solution of φ).20 Even though the saving rate is a constant β under log

20Policy functions have closed-form expressions for any σ (available upon request). But under general
CRRA utility, the saving rate (not necessarily β) and portfolio weight φ intertwine with each other. The
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utility, different entrepreneurs save different fractions of the “accounting” net worth which is

either zπk+(1−δ)k+Rb or zπk+(1−δ)(1−d)k+Rb. Unlike the accounting net worth, the

“economic” net worth evaluates capital at shadow prices, which varies across entrepreneurs

when the investment decisions opt for inaction.

3.1.2 Inaction Regions and Liquidation

In equilibrium, there may or may not be inaction in investment. When there is, there exists

at least an option value q ∈ (1 − d, 1). To characterize the inaction region, one only needs

to check how the shadow price q(λ, z;X) varies as λ and z change (for a given X). Further,

given that we have two productivity levels zh and zl, zh firms invest to the same leverage as

shown in Proposition 1. The inaction region is thus the set of (λ, zl) such that the shadow

price is between 1− d and 1.

Therefore, some (and usually all) zh owners invest and borrow. Because of the linear rate

of return in individual level, they have the same target leverage λ′ = k′/(k′ + b′) tomorrow

regardless of their leverage today (Proposition 2).21 For zl owners, investment decisions

are either to hold or to sell. It turns out that an entrepreneur who persistently draws zl

hold capital for finite periods. The shadow price during the holding process monotonically

decreases until it reaches (1 − d) when the capital stock is liquidated. During the holding

process, the leverage also decreases.

Proposition 2 (Leverage and Deleverage):

In the neighborhood around steady state,

1. The shadow price (option value) q(λ, z;X) is an increasing function of λ.

2. zh owners borrow and invest. Moreover, they have the same target leverage k′

k′+b′
= λ̄′.

3. Denote today’s shadow price as q and tomorrow’s shadow price as q′. Then,

q′

{
= 1 if z′ = zh

< q if z′ = zl
and

k′

k′ + b′

{
= λ̄ if z′ = zh

< k
k+b

if z′ = zl

Proof. See the Appendix.

reason is that with general CRRA utility the income and substitution effect do not offset each other, for
example illustrated in Campbell and Viceira (2002). The combination of the two effects are so-called “hedging
demand” in the asset pricing literature. Depending on the investment opportunities in the long time frame,
agents put different weights on capital and consume differently.

21k′/(k′ + b′) may or may not reach the leverage under credit limits, depending on the equilibrium.
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The assumption δ(1−δ) < βR is not hard to satisfied for usual quarterly data model i.e.,

when δ is around 0.025 and βR is close to 1. In addition, the delveraging when being inactive

in capital are intuitive. For zl entrepreneurs, running business is not profitable compared to

risk-free rate. Without resale costs, they will liquidate and repay all the debt immediately

after turning from zh to zl. If they sell but become productive tomorrow, they can still buy

back capital at the same price. With resale costs, in contrast, they have the same incentive

to shrink the debt. But if they sell capital at a cost immediately, they will have to buy back

at a higher price tomorrow if they turn productive again. Instead, dividends payments from

the firm decrease to compensate debt payment, a painful process for the entrepreneurs.

Not surprisingly, capital is less and less valued during the inaction process. The fixed

costs of running a business eventually force the zl owners to liquidate. The intuition behind is

that capital stock will eventually shrink to a very small amount. Even if turned to productive

again tomorrow, the firm cannot generate much profits to compensate fixed costs. That is,

there exists a stopping rule:

Proposition 3 (Optimal Stopping Time):

For zl owners, there exists an optimal capital liquidation rule (stopping-time rule or exit

rule). Let n = zlπ + (1− δ)(1− d) +Rλ−1(1− λ) and suppose a finite λ ∈ [0, λ̄] is a root of

η =
β

1− β
plhEX

[
log

(
1 + (1− δ)z

hπ′ + (1− δ)− (1− d)R′

βnR′

)]
+

β

1− β
pllEX

[
log

(
1 + (1− δ)z

lπ′ + (1− δ)(1− d)− (1− d)R′

βnR′

)]
(8)

1. When k
k+b

> λ, zl owners are inactive in adjusting capital. When k
k+b

< λ, they

liquidate the whole firm. When k
k+b

= λ, they are indifferent between holding or

liquidating capital.

2. If no λ satisfies equation (8), then no zl entrepreneur sells capital.

Proof. See the Appendix.

The indifference condition (8) implies that the gains of liquidation (extra η utility) equals

the expected discounted costs of not doing so (the right hand side, extra value of holding

capital stock one more period).Note that, holding onto capital is similar to gambling for zh

draw in the future. The gambling is not worthwhile when the size of capital stock is so small

that profits are not enough to compensate fixed costs, even when drawing zh tomorrow.
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3.2 Recursive Equilibrium, Revisited

Now, we are ready to simplify the distribution of firms and rewrite equilibrium definition.

We know that entrepreneurs with the same leverage k/(k+b) and productivity put the same

portfolio weights on k and b. Thus, I can define aggregate capital stock and aggregate bonds

for a specific k/(k + b) ratio, given a productivity pair a, i.e.,

K(x, a) =

∫
{(k,b): k

k+b
=x}

kΓ(dk, db, a), B(x, a) =

∫
{(k,b): k

k+b
=x}

bΓ(dk, db, a)

Equilibrium can be redefined as a mapping (K(x, a),B(x, a),θ,A)→ (K ′(x, a),B′(x, a),θ′,A′).

Since drawing zh always means investment,22 keeping track of the firm distribution is equiv-

alent to keeping track of firms with the time length of having been drawing zl.

At the beginning of t, let s = 1, 2, ... denote the vintage of entrepreneurs, who have been

drawing s times of zl. These firms did not invest in t−1. Let s = 0 denote the state in which

the entrepreneur just finished investing. That is, drawing zh means that entrepreneurs will

go to vintage s = 0, whereas drawing zl means that they will go to the next vintage i.e., the

vintage whose number equal 1 plus the number of current vintage.

Inside each vintage, the leverage ratio λ = k/(k + b) is the same, which allows me to

replace q(λ, z;X) by vintage-specific price. When entrepreneurs decide to go from vintage

s to s′, the shadow price of capital will be qs′(X), which is vintage-specific and corresponds

to a specific λ′ = k′/(k′ + b′). When the secondary market is active, there exists an integer

Nt < +∞ at time t, such that (1) vintage Nt + 1, Nt + 2,... entrepreneurs who draw zl will

hold no capital stock; (2) vintage 0, 1, ..., N − 1 entrepreneurs who draw zlare from vintage

will be inactive in capital; (3) vintage N entrepreneurs will be indifferent between staying

or liquidating i.e., a fraction ft of them stays while the other fraction 1− ft liquidate.

For simplicity, I focus on small exogenous shocks around the steady state such that the

equilibrium vintages do not change, i.e., Nt = N . Note that N is an endogenous constant

integer, as N itself varies in different steady states. In addition, I can leave the aggregate

state X out and denote variables with vintage subscripts. For example, at time t, the shadow

price of capital for those entrepreneurs who are going to vintage i is qi. Then, q0 = 1 denotes

the buying price and qN+1 = qN+2 = 1− d denote the selling price.23 In summary,

1. Entrepreneurs go to vintage 0 once they draw zh.

2. For those vintage i entrepreneurs who draw zl, they hold onto capital stock if they are

22For most parameters, every zh entrepreneurs invest; for some parameters, some zh entrepreneurs invest
and others do not run firms (in which obviously zl entrepreneurs do not run firms as well).

23“Shadow price” of capital of entrepreneurs who are going to invest and go to vintage 0.
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from vintage 0, 1, ..., N . Their vintage number will be i+ 1 and they value capital at

price qi+1.

3. For those vintage N entrepreneurs who draw zl, a fraction ft of them stays in the

business (going to vintage N + 1) while 1− ft liquidates their firms (going to vintage

N + 2). They value capital at price qN+1 = qN+2 = 1− d.

4. Entrepreneurs in vintage N + 1, N + 2, ..., do not run firms if they draw zl.

Notice that qi are the endogenous valuation of capital in each vintage that are to be

determined. It will be the valuation such that the envelop conditions hold after entrepreneurs

choose the desired consumption, capital stock, and bonds.

One can group vintages after N + 1 together to be vintage N + 2, since entrepreneurs in

vintages N + 2, N + 3,... only hold bonds. To express portfolio choices in each vintage, first

define the transition probability and the associated productivity of each vintage as

pih =

{
phh, if i = 0

plh, if i > 0
, pil =

{
phl, if i = 0

pll, if i > 0
, zi =

{
zh, if i = 0

zl, if i > 0

Second, let the (internal) rate of return on capital from time t to time t+ 1 be r′ij for those

entrepreneurs who are going to vintage i, where i = 0, 1, ..., N − 1 and j ∈ h, l indicates

drawing zh and drawing zl at time t + 1.24 The vintage i specific rate of return on capital

when zh or zl is realized can be written as

r′ih =
z0π

′ + (1− δ)q′0
qi

, r′il =
zi+1π

′ + (1− δ)q′i+1

qi
for i = 1, 2, ..., N.

According to Proposition 1, the portfolio weight φ on capital can be simplified to

Corollary 1 (Vintage-specific Portfolio Choices):

Suppose φ̃i (i = 0, 1, 2, ..., N) is a solution to the following equation of φ̃i

pihEX

[
r′ih −R′

φ̃i (r′ih −R′) +R′

]
+ pilEX

[
r′il −R′

φ̃i (r′il −R′) +R′

]
= 0

The capital weight φi (i = 0, 1, 2, ..., N) for entrepreneurs who are going to vintage i solves

φi = min{ 1

1− θ(1− δ)(1− d)/R′
, φ̃i}

24For example, an entrepreneur going to vintage 3 in time t draws zh at time t+ 1, her rate of return on
capital from t to t+ 1 is r′3h.
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Figure 3: Evolution of the distribution
Each box represents a vintage in which firms have the same λ = k

k+b
leverage ratio. The vintage number is identical to how

many periods an entrepreneur has been drawing zl. Entrepreneurs who draw zh invest and move to vintage 0 (black lines).
Entrepreneurs who are from vintage 0 to N and draw zl are possibly inactive (black dash lines). Entrepreneurs in vintage N+1
or the last vintage N + 2 hold only bonds if drawing zl (liquidate the firm or continuing holding only bonds). ft denotes the
fraction of vintage N entrepreneurs who draw zl but choose to hold onto capital stock .1− ft then denotes the other fraction
who liquidate their firms (red dotted lines).
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Finally, φN+1 will be such that entrepreneurs choose to be inactive in capital stock and

value the capital at price qN+1 = 1− d.

Once we know φi (i = 0, 1, 2, ..., N + 1), one could back out the leverage ratio at the

beginning of time t+ 1 i.e.,

λ′i =
φi

φi + qi(1− φi)
. (9)

I can fully characterize the firm distribution evolution from t to t+1 in Figure 3 using the

vintage formulation. In addition, I can simplify the equilibrium definition with the vintage
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structure. To see this, Let Ki,t be the aggregate capital in each vintage i = 0, 1, ..., N + 1

and BN+2,t be the aggregate bonds in vintage N + 2. Capital transition is characterized by

aggregate capital in vintage 0, 1, ..., N + 1:

q0K
′
0 = φ0

N+1∑
i=0

pihβ[z0π + q0(1− δ) +R
1− λi
λi

]Ki + φ0p
(N+2)hβRBN+2, (10)

qiK
′
i = φip

(i−1)lβ[ziπ + qi(1− δ) +R
1− λi−1

λi−1

]Ki−1, i = 1, 2, ..., N (11)

qN+1K
′
N+1 = φN+1p

(i−1)lfβ[zN+1π + qN+1(1− δ) +R
1− λN
λN

]KN

B′N+2 = pNl(1− f)β[zN+2π + qN+2(1− δ) +R(1− λN)/λN ]KN (12)

+ p(N+1)lβ[zN+2π + qN+2(1− δ) +R(1− λN+1)/λN+1]KN+1 + p(N+2)lβRBN+2

The aggregate capital in vintages i = 1, 2, ..., N + 1 satisfies

K ′i =

{
p(i−1)l(1− δ)Ki−1, if i = 0, 1, ..N

p(i−1)lf(1− δ)Ki−1 if i = N + 1
(13)

To pin-down f , the indifference condition is

η =
β

1− β
plhEX

[
log

(
1 + (1− δ) zhπ′ + (1− δ)− (1− d)R′

β(zNπ + (1− δ)(1− d) +R 1−λN
λN

)R′

)]

+
β

1− β
pllEX

[
log

(
1 + (1− δ) zlπ′ + (1− δ)(1− d)− (1− d)R′

β(zNπ + (1− δ)(1− d) +R 1−λN
λN

)R′

)]
(14)

Market clearing conditions for credit and labor are

N+1∑
i=0

(1− λi)Ki

λi
+BN+2 + bh = 0,

(π
α

) 1
1−α

(
N+1∑
i=0

ziKi

)
= Alh (15)

where the labor market clearing condition is obtained from
[

(1−α)A1−α

w

]1/α (∑N+1
i=0 ziKi

)
= lh

together with the relationship between the real wage and the profit rate

π = α

[
(1− α)A

w

] 1−α
α

(16)

Definition 2 (The Second Recursive Equilibrium Definition):
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The recursive competitive equilibrium is a function ({φi}N+1
i=0 , {qi}N+1

i=0 , λ′i
N+1
i=0 , {K ′i}N+1

i=0 ,

B′N+2, f , π, R′) of state variables ({λi}N+1
i=0 , {Ki}N+1

i=0 , BN+2, R, θ−1, A−1) and a given initial

condition, such that25

1. ch, lh, and bh solve the household’s problem i.e.,

κcγhl
ν
h = w, EX

βh (c′h)
−γ

(ch)
−γ R′ = 1, ch + bh = wlh +Rbh,−1

2. equations (10) to (16) are satisfied

3. {φi}N+1
i=0 solve the portfolio choice problems in Corollary 1 and {λi}N+1

i=0 solve (9)

4. q0 = 1, qN+1 = 1− d, and qN+2 = 1− d

5. together with the law of motion of (θ, A)

3.3 Delayed Capital Reallocation

The inaction region can be easily expressed by the set of leverage ratios and productivities

such as in Figures 2:

{( k

k + b
, z) : λ ≤ k

k + b
≤ λ̄ and z = zl}

where λ is the lower bound and λ̄ is the upper bound. Any changes that lead to increase of

λ̄− λ will expand the inaction region. One can directly check the stopping condition (8) to

examine how does λ change in response to changes in prices. For convenience, I repeat the

(8).

η =
β

1− β
plhEX

[
log

(
1 + (1− δ) zhπ′ + (1− δ)− (1− d)R′

β(zlπ + (1− δ)(1− d) +R 1−λ
λ

)R′

)]

+
β

1− β
pllEX

[
log

(
1 + (1− δ) z

lπ′ + (1− δ)(1− d)− (1− d)R′

β(zlπ + (1− δ)(1− d) +R 1−λ
λ

)R′

)]
(17)

Since the right hand side of (8) is a decreasing function of R′ and an increasing function

of π′ and λ, therefore a lower interest rate R′ or a higher profit rate π′ can lead to the

decrease of λ (in steady state). That is, the inaction region expands and low productive

firms are less willing to liquidate.

25The capital market clearing is embedded in the capital transition dynamics, and one can easily verify
that the goods market clearing condition is satisfied (i.e., Walras’ Law holds).
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Corollary 2 (Changes of Inaction Region):

The inaction region expands when

1. π′ is higher

2. R′ is lower

In steady state, At = 1 and R′ will be fixed as β−1
h . Then, tighter financing constraints

will limit the expansion of productive firms and thus create misallocation. Wages will tend to

be lower and thus the profit rate πt for entrepreneurs will be higher. Therefore, entrepreneurs

with low idiosyncratic productivity are more willing to hold onto their assets.

However, we still have to be careful because tighter financing constraints at the same

time decrease λ̄, so the inaction region λ̄−λ might not increase. But if the response of π′ to

θ changes are strong enough, the inaction region λ̄− λ will increase and so are the waiting

periods (the number of vintages). I will show this result in numerical simulation.

In dynamics, tighter financing constraints lead to lower demand for borrowing and a drop

of interest rate R′; at the same time it creates misallocation and reduce wages which increase

profit rate given a constant aggregate productivity At. In response, ft increases as more zl

firms are willing to keep their assets. Note that we focus on the equilibrium in which the

number of vintages Nt + 2 does not change. Potentially the response to credit shocks could

be large enough such that the number of vintages increase for a short period of times. In

that case, there could be zero reallocation of capital for some time.

Reallocation is directly linked the economic efficiency. The longer the waiting periods,

the more capital reallocation is delayed, and the less efficient is the economy (i.e., the lower

is the aggregate TFP). To see this, the aggregate TFP can be measured by

TFP =
Y

KαL1−α

where Y is the total output, K is the total capital stock, and L is the total labor hours

used in production, including labor hours from households (i.e., lh) and labor hours from

entrepreneurs (i.e., le)

L = lh + le.

To compute le i.e., the measure of entrepreneurs who run firms, I use the transition prob-

ability of idiosyncratic technology and the fraction ft of entrepreneurs who liquidate (with

details in the appendix). Note that α fraction of the output produced from a firm is the

associated entrepreneur’s profits. Output can be written as

Y =
π

α
(zhKh + zlKl),
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where Kh = K0 and Kl =
∑N+1

i=1 Ki denote the capital stock under zh and zl technology

respectively. Together with the labor market clearing condition
(
π
α

) 1
1−α
(
zhKh + zlKl

)
= Alh,

TFP can be simplified to

TFP =
π
α

(zhKh + zlKl)

(Kh +Kl)α
[(

π
α

) 1
1−α (zhKh + zlKl)/A+ le

]1−α . (18)

When Kl → 0, all capital is installed under zh technology and a measure 0 entrepreneurs

run firms, so that le → 0 and the TFP reaches the upper bound z̃h = (zh)α. When Kl > 0,

aggregate TFP from (18) is

TFP =
π
α

(zhKh/Kl + zl)

(Kh/Kl + 1)α
[(

π
α

) 1
1−α (zhKh/Kl + zl) + le/Kl

]1−α <

(
zhKh

Kl
+ zl

Kh
Kl

+ 1

)α

Therefore, we know that the relative capital stock ratio Kh
Kl

determines the economy efficiency.

The smaller is Kh
Kl

ratio, the lower is the upper bound for TFP since zh > zl. Intuitively,

the longer the waiting period, the more capital is held by zl firms which implies the smaller

Kh/Kl ratio and thus a lower aggregate TFP. The quantitative effects of delayed reallocation

and aggregate TFP losses are the main targets in the next section.

4 Numerical Examples

I calibrate the parameters to match the steady state result to several U.S. long-run economy

characteristics in quarterly frequencies (Table 1). Following Veracierto (2002), the capi-

tal abstracts from components such as land, residential structure, and consumer durables.

Thus, the capital corresponds to non-residential structures, plant, and equipment while

the investment corresponds to the non-residential investment in the National Income and

Product Accounts (NIPA). Meanwhile, the empirical counterpart for consumption should

be non-durable goods and services consumption. Output is then defined as the sum of the

consumption and the investment. The investment/output ratio is found to be 0.16 and the

capital to output ratio is 6.0 which set targets for α and δ. βh targets the interest rate from

households’ investment in financial assets. The risk-free interest rate is low but equity return

is high (e.g. Mehra and Prescott (1985)). Thus Rt is commonly chosen to be 4% annually

as a balance. Entrepreneurs’ discount factor is set close to but smaller than households

discount factor such that they are willing to accept 0.5% higher interest rate if they borrow.

I set households’ risk-aversion γ = 2 and ν = 0.33 common in macro literature. Finally, lh

is set to 0.33 of total hours which calibrates κ.
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Table 1: Baseline calibration

Parameter Value Target/Source

Preferences and Production Technology
Household discount factor βh 0.9900 annual interest rate 4%
Relative risk aversion γ 2 exogenous
Inverse Frisch elasiciticity of labor supply ν 0.3300 exogenous
Utility weight on leisure κ 8.9682 working time: 33%

Production Technology
Depreciation rate of capital δ 0.0252 capital-to-GDP ratio: 6.0
Capital share of output α 0.2471 investment-to-GDP ratio: 16.0%
Entrepreneurs discount factor β 0.9890 exogenous
Fixed costs η 1.0590 waiting periods: 12.0
Transition probability 1 phh 0.9375 expected 4 year turn-over
Transition probability 2 pll 0.9375 expected 4 year turn-over
Idiosyncratic high productivity ∆ 0.0570 cross-sectional std 5.70%

Financial and Resale Frictions
Financing Constraint θ 0.4135 average debt/asset = 0.325
Resale Discount d 0.0971 reallocation/capital expenditure = 0.35

Notes: The model is calibrated to quarterly frequency.

For the productivity transition matrix, one only needs phl and plh. I set them equal and

to match 4 year (8 quarters) turn-over rate i.e., half of average 8 year business cycle similar

to Eisfeldt and Rampini (2006). For the idiosyncratic productivity, I specify

log(z̃h) = ∆, log(z̃l) = −∆

such that the standard deviation of idiosyncratic productivity is ∆ in annual frequency.26 I

follow the cross-sectional standard deviation of productivity (5.7%) in Basu, Fernald, and

Kimball (2006) and set ∆ = 0.057.

The parameters left are η, θ, and d. These three affect leverage, investment, and liquida-

tion. The haircut θ targets leverage where empirically, the debt-to-asset ratio is averaged to

be 0.325 from flow of funds data. The degree of asset irreversibility d targets reallocation,

where fraction of capital reallocation over total capital purchase is roughly 35%. Finally, the

leisure utility η measures “fixed costs” and controls how long a persistently unproductive

firm will hold the assets and deleveraging. I chose η such that there will be about 3 years

(12 quarters) of waiting periods.

4.1 A Sample Path of Firm Dynamics

Under the calibrated parameters, there are 11 to 12 inactive quarters in the steady state.

That is, entrepreneurs who turn from zh to zl and draw zl for 11 quarters in a row neither

buy nor sell capital during those 11 quarters. When they unfortunately draws the 12th zl,

26The standard deviation is 2∆
√

1− (phl)4.
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Figure 4: Capital, bond and leverage dynamics of a firm
The firm’s physical capital is normalized to be 1 at the end of period 1. Solid line: productivity draws normalizing the low

productivity to be 1. Dash line: physical capital. Dash dotted line: bond. Dotted line: leverage ratio k/(k + b).

1 3 5 7 9 11 13 15 17 19 21 23
0.95

1

1.05

1.1

1.15

time

1 3 5 7 9 11 13 15 17 19 21 23
0

0.5

1

time

1 3 5 7 9 11 13 15 17 19 21 23
−0.5

0

0.5

time

1 3 5 7 9 11 13 15 17 19 21 23
0

1

2

time

Productivity

Capital

Bond

Leverage

one fraction of them sells the firm and saves in bonds while the other fraction decides to be

inactive for another quarter. For those who still run firms but draw a 13th zl, they liquidate

the entire firm and save the revenue in bonds until they become productive again.

Consider a specific sample path of a firm. Suppose entrepreneur j has one unit of capital

and was investing and borrowing before. Her bond position is −θ(1− δ)(1− d)/R. Then, j

draws 12 quarters of zl in a row from time t = 2 on. In the 13th quarter, j draws zl again

and decides to liquidate the entire firm. After that, j keeps drawing two zl for quarter 14

but draws zh afterwards.

j lets the capital depreciate in the first 12 quarters and liquidates it in the 13th quarter

(firm dynamics in Figure 4) i.e., capital at the end of the 13th quarter is 0. During the

inactive investment process, debt is being paid and leverage decreases. After liquidation, j

saves only in bonds and consume (1− β) of the bond value.

j continues to hold bonds until drawing zh again in the 15th quarter. Then, she uses
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Figure 5: Aggregate TFP Losses and Waiting Periods
Steady state TFP and waiting periods as a function of θ (when the steady state has capital reallocation). The red solid line

denotes the waiting periods N . The blue dashed line denotes aggregate TFP as percentage of z̃h.
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her net worth as a down payment to borrow and invest. Though she borrows to the limit,

capital stock after investing is less than one, the amount j started with. The firm size is not

as large as before because j does not have enough resources to expand. Her business was not

profitable under zl technology and capital was sold at a discount in quarter 13. If j keeps

drawing zh, she can continue investing and capital stock can gradually go back to one.

4.2 Comparative Statics

To examine the interactions of financial friction and capital partially irreversibility, I vary θ to

see the changes of aggregate total factor productivity (TFP) and the fraction of entrepreneurs

who liquidate their firms. Let θ decrease from +∞ to 0. The economy features no borrowing

constraint when θ > θd1 = 0.6540. zh firms have enough credit to reallocate all available

capital from zl firms. For the calibrated d = 0.1, which is not too large compared to some

empirical evidence, every zl owners liquidate their firms when θ is above θd1. Capital stock

is fully under zh technology and thus aggregate TFP equals z̃h. Notice that if d is large

enough, zl owners may not sell their capital regardless of the level of θ.

When θ reaches θd2 = 0.6214, some previous zh entrepreneurs who just drew zl start

to hold capital for one period (Figure 5). zh owners invest and borrow to the limit. As

θ becomes even smaller, the inaction region starts to expand and waiting periods increase
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Figure 6: Aggregate TFP Losses in d > 0 and d = 0 economy
Aggregate TFP as percentage of z̃h in the steady state, when only θ changes. The red solid line: d > 0 economy. The blue

dashed line: d = 0 economy.
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i.e., persistently unlucky zl owners wait longer and longer before selling capital. Capital

reallocation is less which reduces aggregate TFP.

When θ = θd3 = 0.3689, the secondary market shuts down so that no single zl owner sells

capital (Figure 6). All entrepreneurs effectively save only through running firms. The reason

is that a larger degree of financial frictions further limit borrowing and reallocation and wage

rate drop further lower. Then, π will tend to be very large while R = βh−1 is still fixed in

steady state. When θ < θd3, the condition R′ ≥ zlπ′ + (1− δ) under which zl owners do not

invest is no longer satisfied. Therefore, zl owners always find investing in capital stock better

than saving in bonds. The economy is thus characterized by no productivity risk-sharing,

in contrast to some degree of risk-sharing through financial market. As a comparison, I plot

the simple economy with d = 0.

The important message is that both markets can shut down together if the two frictions

interact. θ ∈ [0, θd3] is an extreme interaction between asset irreversibility and financial

constraints. Asset illiquidity delays liquidation and tighter borrowing constraints prolong

the delay. Once the profit rate is high enough and the interest rate is low enough due to

large financial frictions, no liquidation takes place and the credit market effectively shuts

down. Then, the economy is as if in the d = 0 economy with θ = 0, even though θd3 is still

far from zero (which exemplifies the interaction).
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Finally, notice that such TFP losses are large and significant compared to the literature

on financial frictions’ impact on capital misallocation.27 Given a degree of financial frictions,

capital partially irreversibility can add losses about 0.5% to 1.5% of the efficient economy

aggregate TFP (z̃h). In the extreme case, there is about 2.5% more losses when borrowing

is still allowed but both credit market and secondary market are effectively shut down. The

studies in the literature are thus sensitive to the introduction of capital irreversibility, a

common phenomenon in the secondary market.

4.3 Equilibrium Response to Shocks

For estimating the shocks and their persistence, I use output and capital reallocation (both

after HP-filtered) as the observations. The unobservable shocks are financial shocks and ag-

gregate productivity shocks. I use maximum likelihood methods to back out the information

of the shocks, conditional on the observations. Specifically, I assume:

log θt = (1− ρθ) log θ + ρθ log θt−1 + εθt ,

logAt = ρA logAt−1 + εAt .

Innovation process εt = [εθt , ε
A
t ]T is Gaussian with E[εt] = 0, E[εtε

′
s] = 0, E[εtε

′
t] = Σε and

Σε =

[
σ2
θ σθA

σAθ σ2
A

]
.

I use the HP-filtered cyclical components of real reallocation and real GDP data from

1984Q1 to 2011Q4 to estimate the standard deviation and the persistence parameters. The

correlation in the variance-covariance matrix represents channels that are not modeled. For

example, one rationale could be that adverse aggregate TFP shocks are from less capital

utilization resulting from less funding resources (so that σθA > 0).

I experiment with standard aggregate TFP shocks and financial shocks. With large

aggregate shocks, the model becomes intractable because the number of vintages changes

after large shocks, leaving complex dynamics to solve. Instead, I focus on small aggregate

shocks such that the equilibrium vintages do not change. I solve the dynamics around the

steady state using first-order perturbation methods. Then I verify that the shocks are small

enough through the response of the fraction (ft) of entrepreneurs that stay in vintage N = 12.

If ft is still less than 1, the vintages do not change.

27For example, Midrigan and Xu (2012) found that misallocation results in TFP losses of only about 0.3%
in the benchmark calibrated economy and at most 5% when the credit market completely shuts down. In
Moll (2010) the magnitude of TFP losses depends on the persistence of idiosyncratic productivity shocks.
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Figure 7: Experiment: Responses to two types of shocks
Responses to one standard deviation of negative financial shocks (shocks to θ) and negative aggregate productivity shocks
(shocks to A). Reallocation: capital reallocation. Turn-over: capital reallocation as percentage of total assets. Aggregate TFP:
the Solow residuals after adjusted by A changes. The solid line denotes the response to financial shocks while the dashed line
denotes the response to aggregate productivity shocks.
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The standard deviation of aggregate TFP shocks (shocks to A) is 0.45%, which is close to

other estimation results found in the literature such as in Thomas (2002) (with 0.53%). Sec-

ond, the size of the credit shocks (about 1.15%) is larger than aggregate TFP shocks (0.45%).

Finally, credit shocks (ρθ = 0.9701) are more persistent than TFP shocks (ρA = 0.8721).

The correlation between financial shocks and aggregate TFP shocks is 0.27. Even though I

only use the two observed series (output and reallocation) for estimation (to avoid stochastic

singularity issues because I focus on two shocks), the estimated aggregate TFP shocks and

financing shocks generate key business cycle statistics that are close to the data (Table 5

in the Appendix). Figure 7 show the impulses to a one standard deviation (1.15%) credit

shocks and a one standard deviation (0.45%) aggregate productivity shocks, by neglecting

the correlation of the two shocks.
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In response to credit shocks, tightened financing constraints largely reduce the investment

from zh firms. Because high productive firms are constrained, aggregate TFP drops which

reduces real interest rate for saving i.e., the benefits after liquidation are smaller. In addition,

demand for labor shrinks and real wage rate declines in equilibrium. Running firms now has

lower labor input costs (i.e., π increases). Therefore, since both the benefits after liquidation

and the costs of keeping running business are smaller, more zl firms delay selling assets.

These selling delays lead to less reallocation and thus a larger further drop of aggregate TFP

and output.

Notice that investment drops because productive firms are more constrained. Purchase

of used assets will drop at the same time. But the selling margin intensifies the drop of used

assets. Reallocation thus appears to be more volatile than new investment.

Shocks to aggregate productivity, however, generate completely different dynamics. First,

capital reallocation is more initially and the turn-over of capital will be high for about 3

years. Since aggregate productivity drops, the profit rate of investing in capital declines (see

πt responses). The zl owners thus have less incentive to hold capital, and more capital is

liquidated. Second, compared to the economy before the shocks, fewer zl owners stay to

operate firms such that the measured TFP dispersion will be smaller. In fact, aggregate

TFP (correcting the drop of At) increases slightly after the shocks.

To better illustrate, when productivity At is lower, the first order effect is that profit rate

is instantaneously lower since

πt = α

[
(1− α)At

wt

] 1−α
α

. (19)

Though wage rate wt will also drop, it will decrease less than At because demand for labor

will not drop equally with At. In addition, (saving) interest rate Rt will change slightly

because households’ savings make it stable. In steady state, Rt is β−1
h regardless of aggregate

productivity. Then, zl firms find keeping assets very unattractive as the return generated

from business is low. Reallocation from zl firms thus increase after negative At shocks,

similar to “creative destruction” conventional wisdom.

4.4 Full Simulation

Whether aggregate shocks can generate less reallocation in recessions depends on whether

shocks can delay zl firms in selling assets. To examine more thoroughly the reallocation-

output co-movement, I simulate the model i.e., when financial shocks or aggregate produc-

tivity shocks repeatedly hit the economy. For example, Table 2 shows the simulation using

one type of shocks only. Note that the estimates are from previous exercise.
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Table 2: Only One Type of Shocks

Volatility Co-movement

Standard Standard deviation
deviation to that of output Correlation with output

Output Reallocation Reallocation Reallocation Turn-over

Data: 1.42% 10.91 0.85 0.79

Model:
Only financial shocks 1.38% 11.03 0.83 0.71
Only aggregate TFP shocks 1.31% 1.77 0.18 -0.33

First, reallocation is more volatile in the economy with only financial shocks. From the

impulse responses, aggregate TFP shocks have the opposite effects on reallocation. That is

why we should observe a more volatile reallocation in responses to only financial shocks.

Second, aggregate TFP shocks still generate a slightly positive correlation between real-

location and output. This fact is because after one-time aggregate TFP shock, eventually

capital available for reallocation will be less, as in the impulse responses in Figure 7. To

clearly see the delay of capital reallocation, the reallocation turnover is negatively correlated

with output if aggregate productivity shocks are the only driving force.

In summary, one needs both aggregate TFP shocks and credit shocks to generate con-

sumption, investment, and output dynamics as in Table 5; however, to capture both pro-

cyclical reallocation, financial shocks are necessary. The dynamics of capital reallocation

thus provide some useful information of the source(s) of business cycles.

5 Discussion

Without irreversibility, there is no inactive investment decisions such that there is no waiting

periods. Without borrowing constraints, zh firms can borrow as much as possible to real-

locate assets. The number of waiting periods is small and in fact is zero in our calibrated

economy. In order to generate prolonged capital reallocation delay during recessions, the

interactions between the two frictions are the key ingredients.

What about shocks to the cross-sectional dispersion of idiosyncratic productivities, such

as in Bloom (2009)? Uncertainty shocks increase the real option value of holding assets.

However, there is no definite answer in this paper. For example, when the gap of zh and

zl increases while the unconditional mean are kept the same, it is ambiguous whether the

right-hand side of (8) is larger or smaller, keeping everything else equal. Such “uncertainty
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shock” might not lead to the decrease of λ i.e., the inaction region might not expand.

Intuitively, when zl becomes smaller, the scenario of drawing zl again tomorrow could be

very unattractive given the interest rate and the fixed costs. At the same time, the dynamics

of profit rate π and interest rate R′ are ambiguous, which further adds to the “uncertain”

response after uncertainty shocks. Note that the key reason for this ambiguous result is that

the benefits after liquidation is not trivially determined, once we introduce credit markets.

Importantly, the illustration does not suggest that aggregate productivity shocks or un-

certainty shocks are not important. Instead, it shows that aggregate productivity shocks

alone have difficulties in explaining the selling margin, while uncertainty shocks alone may

give ambiguous direction of capital reallocation. The key message is that a tougher out-

side financing condition seem to be necessary, even if aggregate productivity or uncertainty

shocks are the driving force. While I consider the reallocation margin, Gilchrist, Sim, and

Zakrajsek (2010) and Christiano, Motto, and Rostagno (2014) illustrate the similar issues

with the consideration of default over business cycles.

Finally, this paper does not model changes of illiquidity. The first reason is that if

illiquidity comes from asymmetric information, good quality assets might be forced to be

liquidated in recessions and mitigate the information problem as in Eisfeldt (2004). Second,

if the increases of illiquidity are all because of fire-sale of real assets as in Shleifer and Vishny

(1992), the larger TFP dispersion during recessions is hard to be justified. Fire-sale theories

suggest the most efficient firms of using the assets are also in financial troubles, which should

lead to a smaller TFP dispersion. The last and probably the most important one is that if

the illiquidity can be amplified, then this paper proposes one cause for the initial drop of

asset liquidity: a credit crunch can reduce the number of buyers and sellers simultaneously

and lead to endogenous change of capital irreversibility. Recently, Lanteri (2014) shows

the change of irreversibility generated from the endogenous choices of new and used capital

stock.

6 Final Remark

This paper shows that inefficient firms might want to hold onto capital stock in recessions

and delay the reallocation process, in contrast to the “creative destruction” conventional

wisdom. The reason is that lower rates of return from saving in risk-free assets and lower

real wage rates in recessions will make keeping capital stock with risky returns more attractive

to unproductive firms. Therefore, lowering interest rate as a policy response in recessions

might delay capital reallocation further, though it can help productive firms to expand. The

trade-offs are thus worthy of careful consideration.
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The challenge to link asset liquidation from individual firms and aggregate capital real-

location is the evolving distribution of firms. I model the selling decision as a stopping-time

problem that turns out to simplify the aggregate distribution dramatically. Meanwhile, the

real option value of capital stock before liquidation shed some light on how firms price their

assets internally.

One future prospect is how the resale costs endogenously interact with the depth of asset

markets. The reallocation costs, in that case, come from matching between buyers and

sellers. Sellers may find it costly to search potential buyers, especially during downturns. In

contrast, asset markets are generally deeper in economic booms. The resale discounts are

smaller in boom times and delayed selling by inefficient firms is shortened. A better allocation

of assets will deepen asset markets further, and labor market conditions will improve too.

Therefore, policy targeted the resale market depth may have a large effect by improving the

efficiency of asset allocation. This channel may also shed light on unemployment issues.
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Appendices

A Data Description

For capital reallocation, the quarterly COMPUSTAT contains useful information for ownership
changes of productive assets from 1984Q1. Following Eisfeldt and Rampini (2006), who use annual
COMPUSTAT data from 1971, I measure capital reallocation by sales of property, plant and equip-
ment (SPPE, data item 107 with combined data code entries excluded), plus acquisitions (AQC,
data item 129 with combined data code entries excluded). The measure captures transactions after
which the capital is used by a new firm and new productivity is thus applied. The advantage of
using quarterly data compared to annual data is more observations. However, quarterly data is
shown in the “cash flow statement” and there is a substantial seasonal pattern. Therefore, I apply
seasonal adjustment to the data.

For aggregate consumption, investment, and GDP, I obtain the data from FRED, a macroe-
conomic dataset managed by Federal Reserve Bank at St. Louis. Note that I exclude residential
investment, consumer durables, government expenditure, and net export because the model ab-
stract from these components.

B Extra Tables

Table 3: Summary Statistics for COMPUSTAT Capital Reallocation
Level variables are in millions of 2005 dollars for a given calendar quarter. “PP&E” stands for property,
plant and equipment, “CapEx” for capital expenditures, ”Reallocation” is the sum of acquisitions plus sales
of PP&E, and “Investment” is defined as the capital expenditure plus acquisition. Total Reallocation/Total
Previous PP&E ratio is computed as the sample mean of the numerator over the sample mean of the
denominator to avoid the problem of firms with extremely large assets.

Variable Mean Median Std. Dev.
Assets 2435.11 129.94 15712.73
PP&E 602.24 17.16 3851.315
CapEx 20.12 1.23 101.23
Acquisitions 6.12 0.00 45.67
Sales of PP&E 3.51 0.00 18.50
Total Sales of PP&E/Total Reallocation 30.71%
Total Reallocation/Total Investment 32.1%
Total Reallocation/Total Previous PP&E 1.44%
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Table 4: Capital reallocation
Correlation of real GDP and the various definitions of capital reallocation, after taking natural log and
then HP filtered. Numbers in the bracket are the standard deviation after correcting heteroscedasticity and
autocorrelation. Acquisition: COMPUSTAT data items 129. SPPE: sales of property, plant and equipment,
COMPUSTAT data item 107. AQC turnover: acquisition divided by total asset (item 6) last period. SPPE
turnover: SPPE divided by total property, plant and equipment (item 8) last period. Total Reallocation is
the sum of acquisition and SPPE. GDP is real GDP in 2005 dollars. All series are seasonal adjusted and
“***” denotes 1% signifance level.

Corrrelation Acquisition SPPE Reallocation SPPE turnover AQC turnover
Corr with GDP 0.840∗∗∗ 0.430∗∗∗ 0.854∗∗∗ 0.411∗∗∗ 0.786∗∗∗

(0.064) (0.148) (0.057) (0.128) (0.071)

Table 5: Key statistics in the data and in the model
Data are cyclical components of HP filtered series from 1984Q1 to 2011Q4. Standard deviations denote the standard deviations
of percentage deviations from trends.

Volatility Co-movement

Standard Standard deviation
deviation to that of output Correlation with Output

Output Consumption Investment Reallocation Consumption Investment Reallocation TFP dispersion

Data: 1.42% 0.55 3.86 10.91 0.91 0.96 0.85 -0.42

Model: 1.35% 0.61 4.01 11.05 0.88 0.91 0.61 -0.37

C Proofs

C.1 Lemma 1

First, I prove (i) and (ii) of Lemma 1.Define the Bellman operator T as

T V (k, b, z;X) = max
{
W 1(k, b, z;X),W 0(k, b, z;X)

}
W 1(k, b, z;X) = max

k′>0,R′b′≥−θ(1−d)(1−δ)k′
u(zπk +Rb− ψ(k′, k)− b′)− η + βEz,X [V (k′, b′, z′;X ′)]

W 0 (k, b, z;X) = max
b′

{
u
(
zπk +Rb+ (1− δ) (1− d) k − b′

)
+ βEz,X

[
V (0, b′, a′;X ′

]}
The value function is the fixed point of the contraction mapping in some closed space V1 of functions
(see Stokey, Lucas, and Prescott (1989)). I will show that V1 includes the properties (1) and (2) in
the Lemma. To simplify notation, let

w1(k, b, k′, b′, z;X) = u(k, b, k′, b′, z;X)− η + βEz,X [V (k′, b′, z′;X ′)]

w0(k, b, k′, b′, z;X) = u(k, b, 0, b′, z;X) + βEz,X [V (0, b′, a′;X ′)]
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with slight abuse of notation of utility function u (.).
(1) Increasing in z, k and b, and concavity
See Stokey, Lucas, and Prescott (1989).
(2) V satisfies the following property

V (γk, γb, z;X) = V (k, b, z;X) +
log γ

1− β

I will prove the contraction mapping T V satisfies the same property (2) if V satisfies (2). Then,
the unique fixed point V satisfies (2).

Consider an agent with state (k, b, a) with (k′, b′) as the optimal policy. Now, consider another
agent with (γk, γb, a), where γ > 0. First notice that the policy (γk′, γb′) is feasible, i.e., it satisfies
budget and borrowing constraints. Second, given a consistent choice h ∈ {0, 1},

T V (γk, γb, z;X) ≥ wh(γk, γb, γk′, γb′, z;X)

= log γ(zπk +Rb− ψ(k′, k)− b′)− ηh+ βEz,X [V (k′, b′, z′;X ′)] +
β log γ

1− β

= log(zπk +Rb− ψ(k′, k)− b′)− ηh+ βEz,X [V (k′, b′, z′;X ′)] +
log γ

1− β

or

T V (γk, γb, z;X) ≥ T V (k, b, z;X) +
log γ

1− β
.

Conversely, starting at (γk, γb, z), scaling by 1/γ, and following similar procedure above, one has

T V (k, b, z;X) ≥ T V (γk, γb, z;X)− log γ

1− β
.

Combining the two gives

T V (γk, γb, z;X) = T V (k, b, z;X) +
log γ

1− β
.

Therefore, the mapping TV has the same property. Because V is the unique fixed point, V (γk, γb, z;X) =
V (k, b, z;X) + log γ

1−β .
(iii) Differentiability
The differentiability of V (k, b, η, a;X) when k′ ≷ (1 − δ)k is standard, which relies on the dif-

ferentiability of standard dynamic programming problem as proved by Benveniste and Scheinkman
(1979) (or see Stokey, Lucas, and Prescott (1989)). When k′ = (1 − δ)k, I follow methods from
Clausen and Strub (2012) in Banach space (the space of k and b) and adjust to the dynamic pro-
gramming problem of my model. The general idea is that the value function is the upper envelop
of value function of buying, inactive and selling. It is therefore super-differentiable. At the same
time, it has potential downward kink (sub-differentiable) because of ψ(k′, k) function. Therefore,
the value function will be both super-differentiable and sub-differentiable, and thus differentiable.
The detail derivation is long and tedious but available upon request.

C.2 Lemma 2

I will use the results in the previous Lemma.
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(i) To save notation, I abstract from aggregate state variable X. From Lemma 1,

V (γ(k + e), γb, z) = V (k + e, b, z) +
log γ

1− β

Take a derivative with respect to e and evaluate it at e = 0; one has γVk(γk, γb, z) = Vk(k, b, z).
Divide γ on both sides and one can prove that Vk is homogeneous with degree −1.

(ii) Consider two entrepreneurs with (k0, b0, z) and (γk0, γb0, z). Using equation (6) of Lemma
1, the targeted capital stock and bonds are scaled up by γ and thus the optimal consumption
choices are c0 and γc0 from the budget constraints. Therefore, using property (i) of this Lemma,
Vk/u

′(c) is the same for the two entrepreneurs. More generally, Vk/u
′(c) depends only on k/(k+ b).

(iii) By definition, q(k, b, z) = (Vk/u
′(c)− zπ)(1− δ)−1. Using (ii), we know that q(k, b, z) can

be written as q(λ, z) where λ = k/(k + b).

C.3 Proposition 1: Investment and Disinvestment

C.3.1 When k = 0

Notice that
V (0, b, z;X) = max{W 1(0, b, z;X),W 0(0, b, z;X)}

W 1(0, b, z;X) = max
k′,b′
{log(Rb− k′ − b′)− η + βEz,X

[
V (k′, b′, z′;X ′)

]
}

= max
k′,b′
{log(Rb− k′ − b′)− η +

β log(k′ + b′)

1− β
+ βEz,X

[
V (λ′, 1− λ′, z′;X ′)

]
}

W 0(0, b, z;X) = max
b′
{log(Rb− b′) +

β log b′

1− β
+ βEz,X

[
V (0, 1, z′;X)

]
}

For W 1, one can maximize out k′ + b′ with optimal solution k′ + b′ = βR and

W 1(0, b, z;X) = log(1− β) +
β log β

1− β
+

logRb

1− β
− η + max

λ′

{
β log λ′

1− β
+ βEz,X

[
V (1,

1− λ′

λ′
, z′;X ′)

]}
which means that investing entrepreneur will pick a common target leverage λ′ = λ̄′ to maximize
the expressions in the bracket. Also, the consumption is

c = (1− β)Rb

For W 0, the optimal solution is b′ = βR and therefore one has

W 0(0, b, z;X) = log(1− β) +
β log β

1− β
+

logRb

1− β
+ βEz,X

[
V (0, 1, z′;X)

]
The consumption is again

c = (1− β)Rb
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C.3.2 When k > 0.

(1) if the entrepreneur decides to invest, W 1(k, b, z;X) can be rewritten as

W 1(k, b, z;X)

= max
k′,b′

{
log(zπk +Rb− ψ(k′, 1)− b′)− η + βEz,X [V (k′, b′, z′;X ′)]

}
= max

λ′,k̃′

{
log(zπk + (1− δ)k +Rb− k′ − b′)− η +

β log(k′ + b′)

1− β
+ βEz,X [V (λ′, 1− λ′, z′;X ′)]

}
One can maximize out k′ + b′with optimal solution k′ + b′ = β [zπk + (1− δ)k +Rb] and

W 1(k, b, z;X) = log(1−β)+
β log β

1− β
+

log(zπk + (1− δ)k +Rb)

1− β
−η+max

λ′

{
β log λ′

1− β
+ βEz,X

[
V (1,

1− λ′

λ′
, z′;X ′)

]}
which means again that investing entrepreneur will pick a common target leverage λ′ = λ̄′and is
the same as those investing entrepreneurs without firms. The consumption function is

c = (1− β)(zπk + (1− δ)k +Rb)

(2) If the entrepreneur decides to sell.

W 0(k, b, a;X)

= max
{

log(zπk + (1− δ)(1− d)k +Rb− b′) + βEz,X
[
V (0, b′, z′;X ′)

]}
= max

b′

{
log(zπk + (1− δ)(1− d) +Rb− b′) + βEz,X

[
V (0, 1, z′;X ′)

]
+
β log(b′)

1− β

}
.

Notice that Ez,X [V (0, 1, z;X)] does not depend on the choice of b′. Therefore, given b and k the
optimal solution b′ is b′ = β [zπk + (1− δ)(1− d)k +Rb] and we have

W 0(k, b, z;X) = log(1− β) +
β log β

1− β
+

log(zπk + (1− δ)(1− d)k +Rb)

1− β
+ βEz,X

[
V (0, 1, z′;X ′)

]
.

The consumption function is thus

c = (1− β)(zπk + (1− δ)(1− d)k +Rb)

(3) If the entrepreneur decides to be inactive, W 1(k, b, z;X) can be rewritten as

W 1(k, b, z;X)

= max
k′,b′

{
log(zπk +Rb− ψ(k′, 1)− b′)− η + βEz,X [V (k′, b′, z′;X ′)]

}
= max

λ′,k̃′

{
log(zπk + q(1− δ)k +Rb− qk′ − b′)− η +

β log(qk′ + b′)

1− β
+ βEz,X [V (

1

q + 1−λ′
λ′

,
1

q λ′

1−λ′ + 1
, z′;X ′)]

}
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One can maximize out qk′ + b′with optimal solution and k′ + b′ = β [zπk + (1− δ)qk +Rb]

W 1(k, b, z;X) = log(1− β) +
β log β

1− β
+

log(zπk + (1− δ)qk +Rb)

1− β
− η

+ max
λ′

β log
(

λ′

qλ′+1−λ′
)

1− β
+ βEz,X

[
V (1,

1− λ′

λ′
, z′;X ′)

]
which means again that investing entrepreneur will pick a common target leverage λ′ = λ̄′and is
the same as those investing entrepreneurs without firms. The consumption function is

c = (1− β) [zπk + (1− δ)qk +Rb]

Thus far, we know that consumption function has the above algebraic form, regardless of whether
the entrepreneur needs to invest, sell or be inactive. One can replace q = 1 and q = 1− d for those
who invest and who sell. The remaining question is to solve

max
λ′

β log
(

λ′

qλ′+1−λ′
)

1− β
+ βEz,X

[
V (1,

1− λ′

λ′
, z′;X ′)

]
where the first-order condition is

1

(1− β)
(
q + 1−λ′

λ′

) = Ez,XVb(1,
1− λ′

λ′
)

Using the envelop condition and using c = (1− β) [zπk + (1− δ)qk +Rb], one has

1

q + 1−λ′
λ′

= Ez,X

[
R′

z′π′ + (1− δ)q′ +R′ 1−λ
′

λ′

]

For convenience, denote φ such that qk′ = φβ [zπk + (1− δ)qk +Rb] and b′ = (1−φ)β [zπk + (1− δ)qk +Rb],
then the above equation can be simplified to

Ez,X

 R′

φ z
′π′+(1−δ)q′

q + (1− φ)R′

 = 1

Notice that Vb
R = Vk

zπ+(1−δ)q , one also has

Ez,X

 z′π′+(1−δ)q′
q

φ z
′π′+(1−δ)q′

q + (1− φ)R′

 = 1

C.4 Proposition 2 : Leverage and Deleverage

Consider an entrepreneur with leverage λ. Normalize capital stock by k = 1, the state variable is
(1, 1−λ

λ , z;X). Consumption is can be expressed as c = (1 − β)
[
zπ + (1− δ) +Rλ−1(1− λ)

]
. In
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addition, from the budget constraint c = zπ +R 1−λ
λ − (1− δ)1−λ′

λ′ such that

zπ +Rλ− (1− δ)1− λ′

λ′
= (1− β)

[
zπ + (1− δ)q +R

1− λ
λ

]
,

where both q and λ′ are functions of (λ, z;X). Then,

q (λ, z;X) =
β
[
zπ +R 1−λ

λ

]
− (1− δ)1−λ′

λ′

(1− β)(1− δ)
.

For convenience, let me do change of variable λ̃ = b/k = (1− λ) /λ. Since λ̃ and λ has one to one
mapping, I can express

q
(
λ̃, z;X

)
=
β
[
zπ +Rλ̃

]
− (1− δ)λ̃

(1− β)(1− δ)
.

The goal is to prove that q is an increasing function of λ or a decreasing function of λ̃. Take
derivative w.r.t. λ̃, one has

∂q

∂λ̃
=
βR− (1− δ)∂λ̃′

∂λ̃

(1− β)(1− δ)
. (20)

Further, if being inactive in investment k′ = (1− δ) and ψ(k, 1) = 0, the envelop condition gives

Vb(1, λ̃, z;X) =
R

zπ +Rλ̃− ψ(k′, 1)− k′
(
λ̃
)′ =

R

zπ +Rλ̃− (1− δ)λ̃′

Therefore

∂Vb(1, λ̃, z;X)

∂λ̃
= −

R
[
R− (1− δ)∂λ̃′

∂λ̃

]
[
zπ +Rλ̃− (1− δ)λ̃′

]2 .

In addition, one can use the expression for consumption such that

Vb(1, λ̃, z;X) =
R

(1− β)
[
zπ + (1− δ)q

(
λ̃, z;X

)
+Rλ̃

]
and therefore

∂Vb(1, λ̃, z;X)

∂λ̃
= −

R
[
(1− δ) ∂q

∂λ̃
+R

]
(1− β)

[
zπ + (1− δ)q

(
λ̃, a;X

)
+Rλ̃

]2 = −
R

[
βR−(1−δ) ∂λ̃

′
∂λ̃

(1−β)(1−δ) +R

]
(1− β)

[
zπ + (1− δ)q

(
λ̃, a;X

)
+Rλ̃

]2 .

I equate the above two expressions for ∂Vb(1,λ̃,z;X)

∂λ̃
and obtain

∂λ̃′

∂λ̃
=

βR

δ(1− δ)
.

Using this result, equation (20) then becomes

∂q

∂λ̃
= −βR

δ2
< 0.
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which proves that q is a decreasing function of λ̃ and thus an increasing function of λ.

Notice that δ is close to 0, while βR is close to 1. Then, λ̃′ > λ̃ because ∂λ̃′

∂λ̃
> 1. The option

value q(λ̃′, zl;X ′) < q(λ̃, zl;X), in the neighbourhood around steady state i.e., when X ′ is not very
different from X.

C.5 Proposition 3: Liquidation Decisions

Consider an entrepreneur with a firm, according to the previous proof, the three values associated
with investing, being inactive, and selling are

W 1(k, b, z;X) = log(1− β) +
β log β

1− β
+

log(zπk + (1− δ)k +Rb)

1− β
− η

+ max
λ′

{
β log λ′

1− β
+ βEz,X

[
V (1,

1− λ′

λ′
, z′;X ′)

]}

W 1(k, b, z;X) = log(1− β) +
β log β

1− β
+

log(zπk + (1− δ)qk +Rb)

1− β
− η

+ max
x

β log
(

1
q+x−1

)
1− β

+ βEz,X
[
V (1, x− 1, z′;X ′)

]
W 0(k, b, z;X) = log(1− β) +

β log β

1− β
+

log(zπk + (1− δ)(1− d)k +Rb)

1− β
+ βEz,X

[
V (0, 1, z′;X ′)

]
The algebraic form of being inactive is the same as investing by replacing q = 1.

W 1−W 0 = log

(
1 +

(1− δ) [q (λ)− (1− d)]

zπ + (1− δ)(1− d) +Rλ−1(1− λ)

)
+max

x

β log
(

1
q(λ)+x−1

)
1− β

+ βEz,X
[
V (1, x− 1, z′;X ′)

]−η−βEz,X [V (0, 1, z′;X ′)
]

The last two components are constant while the first two components are increasing function of λ.
Therefore, W 1−W 0 will be a increasing function of λ and there will be single cross with zero if there
is crossing such that there exist a λ below which W 0 dominate and above which W 1 dominates.
That is, λ is the liquidation threshold.

From the above discussion, one knows that the value function can be written as

V (k, b, z;X) = Jb(X) +
log(zπk + (1− δ)k +Rb)

1− β

if entrepreneurs decide to invest,

V (k, b, z;X) = J(λ, z;X) +
log(zπk + (1− δ)qk +Rb)

1− β

if entrepreneurs decide to being inactive, and

V (k, b, z;X) = Js(X) +
log(zπk + (1− δ)(1− d)k +Rb)

1− β

if entrepreneurs decide to sell existing business or keep out of business. Importantly, Jb, J , and
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Js are independent of k and b levels. To compute the leverage with which entrepreneurs liquidate
the firms, I use no one-shot deviation strategy. Consider an entrepreneur who is about to liquidate
business and who is with leverage λ and net-worth n = zπ + (1− δ)(1− d) +Rλ−1(1− λ). Again,
I normalize capital stock to be 1. If liquidate, the value of doing so is

log((1− β)n) + pllEX
[
Jb(X

′) +
log(Rβn)

1− β

]
+ plhEX

[
Js(X

′) +
log(Rβn)

1− β

]
If keeping running for one more period but liquidating next period if still drawing zl, the value of
doing so is

log((1− β)n)− η + pllEX

[
Jb(X

′) +
log
(
zhπ′(1− δ) + (1− δ)(1− δ) +R′b′

)
1− β

]

+ plhEX

[
Js(X

′) +
log
(
zlπ′(1− δ) + (1− δ)(1− δ)(1− d) +R′b′

)
1− β

]

where b′ = βn − (1 − d)(1 − δ). Then, the leverage cut-off λ should make this two expression the
same i.e.,

η̃ =
β

1− β
plhEX

[
log

(
1 + (1− δ)z

hπ′ + (1− δ)− (1− d)R′

βnR′

)]
+

β

1− β
pllEX

[
log

(
1 + (1− δ)z

lπ′ + (1− δ)(1− d)− (1− d)R′

βnR′

)]

C.6 Aggregate TFP

We know that aggregate TFP can be measure by

TFP =
π
α(zhKh + zlKl)

(Kh +Kl)α
[(

π
α

) 1
1−α (zhKh + zlKl)/A+ le

]1−α . (21)

We know information of all variables except le. To compute le, we first compute the measure of
entrepreneurs mi in each vintage i. For vintage 0 entrepreneurs, the evolution satisfies

m′0 = phhm0 + plh
N+2∑
i=1

mi

For vintage i = 1, 2, ..., N entrepreneurs,

m′i = pi−1lmi−1

For vintage i = N + 1,
m′N+1 = pNlfmN

For vintage i = N + 2,
m′N+2 = pNl(1− f)mN + p(N+2)lmN+2
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Therefore, if we stack the measure as m = [m1,m2, ...mN+1,mN+2]T , we have

m′ = Pm

where

P =



phh phl

plh pll

plh pll

... ... ...
plh fpll (1− f)pll

plh pll

plh pll


(N+2)×(N+2)

In steady state, once f is determined, the right eigenvector (after normalization) of P T associated
with eigenvalue one is the stationary population of entrepreneurs in each vintage. For a detail
description, see Ljungqvist and Sargent (2004). Further, we can use the relationship between m′

and m to compute m′ and then l′e
l′e = 1−mN+2
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