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Motivation

Less restructuring in recessions
(1) Capital reallocation is sizeable

(2) Capital stock reallocation across firms ↓ Data

Significantly slow down recovery

What frictions and shocks in a (heterogenous firms) model?
- Generate less capital reallocation in recessions

- Tractable for backing out shocks
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Goals

Idiosyncratic productivity risks

Costs in reallocation:
- Partial irreversible investment + financing constraints
- Dynamics after aggregate productivity shocks / credit crunches

A simple idea
- Selling delay and the delay is prolonged in recessions

But complex issues
- Difficulties: distribution of firms with different status
- Buying assets, holding, selling, waiting to come back
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The Model 1. Households and firms (run by
entrepreneurs)
2. Households’ problem
3. Entrepreneurs’ problem
4. The stationary equilibrium
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Environment

Households (measure 1) and firms run by entrepreneurs
(measure 1)

The representative household solves

max Et

∞∑
s=t

βs−th [
c1−γ
h,s − 1

1− γ
−
κ (lh,s)1+ν

1 + ν
],

s.t. ch,t + bh,t = wt lh,t + Rtbh,t .

Optimal solution:

κcγh,t l
ν
h,t = wt , Et

βh (ch,t+1)−γ

(ch,t)
−γ Rt+1 = 1.
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Entrepreneurs

Entrepreneur j ’s preferences:

E0

∞∑
t=0

βt [log(cjt) + η(1− hjt))]

- η : fixed costs of running the firm
- j chooses whether to operate (hjt = 1) or not (hjt = 0)

j ’s production technology:

yjt = (zjtkjt)
α (At ljt)

1−α, α ∈ (0, 1)

- zjt is idiosyncratic. zh > z l with phl + plh < 1:

P =

[
phh phl

plh pll

]
- Who will operate is endogenous (aggregate TFP is
endogenous)
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Resale discounts and borrowing constraints

Capital adjustment cost function ψ(kjt+1, kjt)

=


kjt+1 − (1− δ)kjt if kjt+1 > (1− δ)kjt ,

0 if kjt+1 = (1− δ)kjt ,
−(1− d)[(1− δ)kjt − kjt+1] if kjt+1 < (1− δ)kjt .

Borrowing constraint: θ ≥ 0

Rbjt+1 ≥ −θ (1− δ) (1− d) kjt+1

Budget constraint:

cjt + bjt+1 + ψ(kjt+1, kjt) = yjt − wt ljt + Rbjt = zjtπkjt + Rbjt
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An entrepreneur’s problem
In Steady State

V (k , b, z) = max{W 1(k , b, a),W 0(k, b, z)}

W 1(k, b, z) = max
k ′>0,b′

{log(c1) + βEz [V (k ′, b′, z ′)]}

W 0(k, b, z) = max
b′
{log(c0) + η + βEz [V (0, b′, z ′)]}

where

c1 = zπk + Rb − ψ(k ′, k)− b′

c0 = zπk + Rb + (1− δ)(1− d)k − b′

W 1 and W 0 denote running and not running a firm and
R ′b′ ≥ −θ(1− d)(1− δ)k ′
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Stationary equilibrium

Definition

The equilibrium is consists of policy functions l = g l(k, b, z),
k ′ = gk(k , b, z), b′ = gb(k , b, z) and pricing functions (π,R ′) such
that:
(1). ch, lh, and bh solve the household’s problem, given w and R ′

(1). l , k ′ and b′ solve the entrepreneur’s problem, given w, R ′, and

π = α
[
(1−α)A

w

] 1−α
α

(2). Markets for labor and bonds clear∫
ljdj = lh,

∫
b′jdj + bh = 0

Remark When there are aggregate shocks, we need aggregate
state variable X = (θ,A, Γ) where Γ(k , b, z) is the joint CDF.
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Model Solution 1. Policy functions
2. Option value of capital
3. Exact aggregation
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Dynamics of (k , b): only the ratio matters

Lemma

V (γk , γb, z) = V (k, b, z) + log γ
1−β
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Dynamics of (k , b): only the ratio matters

Intuition: Without d , low z firms sell immediately to pay off debt.
With d , hold on and gradually pay off debt.
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Inaction region and action boundary

 

  

k 

b 

High   



Intro Model Solution Numerical Results Conclusion

Inaction region and action boundary

 

Small   

  

k 

b 

High   



Intro Model Solution Numerical Results Conclusion

The option value of capital

Option value of capital q(k, b, z) satisfies

Vk(k , b, z) = u′(c)[zπ + q(k , b, z)(1− δ)]

Buying: q(k, b, z) = 1. Selling: q(k , b, z) = 1− d

The inaction region:

1− d < q(k, b, z) < 1

To characterize q. Homogeneity → q(k , b, z) = q( k
k+b , z)

some derivation
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Asset Pricing Formula

FOC (multipliers µ) + envelope ⇒ E [m′r ′|I] = 1

Ez

[
βu′(c ′)

u′(c)

z ′π′ + (1− δ)q( k ′

k ′+b′ , z
′)

q( k
k+b , z)

]
+ µ(k , b, z) = 1

Proposition (Policy functions for k ′ > 0)

c = (1− β)(zπk + (1− δ)qk + Rb)

k ′ = φβ(zπk + (1− δ)qk + Rb)

b′ = (1− φ)β(zπk + (1− δ)qk + Rb)

where φ satisfies the asset pricing equation.
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Liquidation

When to liquidate?

(1− β)η

β
= plhEX

[
log

(
1 + (1− δ) zhπ′+(1−δ)−(1−d)R′

β(z lπ+(1−δ)(1−d)+R 1−λ
λ

)R′

)]
+ pllEX

[
log

(
1 + (1− δ) z lπ′+(1−δ)(1−d)−(1−d)R′

β(z lπ+(1−δ)(1−d)+R 1−λ
λ

)R′

)]

The drop of π and R ′ delays liquidation

Uncertainty shocks alone may not delay liquidation decisions
- Importance of credit market in response to uncertainty
shocks
- Gilchrist et al. (2010) and Christiano et al. (2014)
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Exact aggregation
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Results 1. Calibrate the model
2. Comparative statics
3. Shocks and estimation
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Some Calibration

Value Target

Preferences
Household discount factor βh 0.9900 annual interest rate 4%
Relative risk aversion γ 2 exogenous
Inverse Frisch elasiciticity ν 0.3300 exogenous
Utility weight on leisure κ 8.9682 working time: 33%

Production Technology
Depreciation rate of capital δ 0.0252 capital-to-GDP ratio: 6.0
Capital share of output α 0.2471 investment-to-GDP ratio: 16.0%
Entrepreneurs discount factor β 0.9890 exogenous
Fixed costs η 1.0590 waiting periods: 12.0
Transition probability phh = pll 0.9375 expected 4 year turn-over
log high productivity ∆ 0.0570 cross-sectional std 5.70%

Financial and Resale Frictions
Financing Constraint θ 0.4135 average debt/asset = 0.325
Resale Discount d 0.0971 reallocation/capital expenditure = 0.35
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Interactions and TFP Losses
Comparative Statics
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Financial shocks and aggregate productivity shocks
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Why financial shocks?

Financial shocks: lower labor costs and lower interest rate
- Less competition from the productive firms
- Holding onto assets are more attractive

Productivity shocks
- Reduce everyone’s incentive to stay in business
- Note

π = α

[
(1− α)A

w

] 1−α
α
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Procyclical reallocation?

Table : Only One Type of Shocks

Volatility Co-movement

Standard Standard deviation
deviation to that of output Correlation with output

Output Reallocation Reallocation Reallocation Turn-over

Data: 1.42% 10.91 0.85 0.79

Model:
Only financial shocks 1.38% 11.03 0.83 0.71
Only aggregate TFP shocks 1.31% 1.77 0.18 -0.33
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Smoothed Shocks

back
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Final Remark 1. Summary and Extension
2. Takeaways
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Conclusion

Partial irreversible and financing constraints
- Capital reallocation delay and prolonged delay in recessions
- But aggregate productivity shocks shorten the delay

Complicated inaction region can still be solved easily

Policy implication: rethink interest rate policy?

Implication on labor reallocation.
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Hypothesis

Hypothesis: Firms that allow wide swings in their leverage
ratios, i.e., firms with large leverage ratio ranges, have tighter
financial constraints when they are investing.

Data
- Randomly selected firms over a period
- For each firm, compute the difference between maximum
and minimum leverage ratio
- Group firms into different financial constrained categories

Test
- Under null hypothesis, the degree of financial constraints
does not have impacts on the leverage difference
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Capital Reallocation Decreases in Recessions
Sales of Property, Plants and Equipment / Acquisition in 2005 dollars: definition from
Eisfeldt & Rampini (2006)

Correlation: 0.85 back



Hypothesis data Proofs Calibration Summary References

Benefits to Reallocation Increase in Recessions

Idiosyncratic TFP dispersion: gap between 75% quantile and 25%
quantile from Bloom et.al (2012) back
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Data Source

COMPUSTAT / SDC data
- For those who has assets acquired once in 2000-2012
- Leverage before selling

Sell immediately when profits are bad?
- 5174 cases of selling
- With about 60% selling all their assets.
- 2071 * 20 firm-quarter observations, after merged with
COMPUSTAT (adjusting missing value in debt for consecutive
20 quarters)
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Firm-level Data: Debt/Asset ratio
deleverage before selling assets

Debt/Asset Ratio back
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Asset Pricing Formula

FOC (multipliers µ) + envelope ⇒ E [m′r ′|I] = 1

Ez

[
βu′(c ′)

u′(c)

z ′π′ + (1− δ)q( k ′

k ′+b′ , z
′)

q( k
k+b , z)

]
+ µ(k , b, z) = 1

Proposition (Policy functions for k ′ > 0)

c = (1− β)(zπk + (1− δ)qk + Rb)

k ′ = φβ(zπk + (1− δ)qk + Rb)

b′ = (1− φ)β(zπk + (1− δ)qk + Rb)

where φ satisfies the asset pricing equation.
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Stopping Criteria and Inaction Boundary

Liquidation gains (safe) = Liquidation costs (risky) Proof

Proposition

Let n = z lπ + (1− δ)(1− d) + R 1−λ
λ . Suppose λ ∈ [0, λ̄] solves

η = plhValue(n, zh) + pllValue(n, z l)

z l entrepreneurs liquidate the assets when k
k+b ≤ λ.

Corollary

Inaction region λ̄− λ is larger when η is higher, d is higher, and θ
is lower.

back
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Adjustment Cost Function

back
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Optimal Stopping Time Rule - Proof Sketch

To normalize capital to be 1. Continuation value for selling,
n = z lπ + (1− δ)(1− d) + Rb̃:

V out = log((1− β)n) + η

+ βplh

[
A0 +

log (βnR)

1− β

]
+ βpll

[
AN+1 +

log (βnR)

1− β

]
Continuation value with one-shot inactive deviation

V in =log((1− β)n)

+ βplh

A0 +
log
(

(z lπ + (1− δ))k̃ + R
(
βn − (1− d) k̃

))
1− β


+ βpll

AN+1 +
log
(

(z lπ + (1− δ) (1− d))k̃ + R
(
βn − (1− d) k̃

))
1− β
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Optimal Stopping Time Rule - Proof Sketch

The difference of the two value is V out − V in

η +
βlog (βR)

1− β

− [
β

1− β
plhlog

(
βR + k̃

z lπ + (1− δ)− (1− d) R

m

)
+

β

1− β
pll log

(
βR + k̃

z lπ + (1− δ) (1− d)− (1− d) R

m

)
]

As b/k goes to infinity, the difference goes to η > 0. Meanwhile,
the term in the bracket is an increasing function of m (and b/k).
Thus, there is possible crossing of V out and V in.
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Optimal Stopping Time Rule - A graph
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Key Statistics

Table : Key statistics in the data and in the model

Volatility Co-movement

Standard Standard deviation
deviation to that of output Correlation with Output

Output Consumption Investment Reallocation Consumption Investment Reallocation TFP dispersion

Data: 1.42% 0.55 3.86 10.91 0.95 0.96 0.85 -0.42

Model: 1.35% 0.61 4.01 11.05 0.84 0.91 0.61 -0.37
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Smoothed Shocks

back
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Liquidation Smoothing

Bring closer to the data may need large shocks

Extension: fixed costs η is drawn from an uniform distribution
with support [η, η̄]

Some entrepreneurs in each vintage will liquidate, because of
high fixed costs

The cut-off of fixed costs move in response to shocks
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Liquidation Costs and Financing Constraints
In financial firms?

Similar problem in financial institution

Which assets to sell when borrowing is tougher?
- Liquid assets first
- Leaving illiquid assets later

Systematic risks accumulate if only illiquid assets are left
economy wide back
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