Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	000000	0

Delayed Capital Reallocation

Wei Cui

University College London

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	000000	0

Introduction

Intro	Model	Solution	Numerical Results	Conclusion
•0	00000	000000	000000	0
Motivation	I			

• Less restructuring in recessions

- (1) Capital reallocation is sizeable
- (2) Capital stock reallocation across firms $\downarrow \bullet Data$

Intro	Model	Solution	Numerical Results	Conclusion
•0	00000	000000	000000	0
Motivation				

• Less restructuring in recessions

- (1) Capital reallocation is sizeable
- (2) Capital stock reallocation across firms $\downarrow \bigcirc$ Data

• Significantly slow down recovery

Intro	Model	Solution	Numerical Results	Conclusion
•0	00000	000000	000000	0
Motivation				

• Less restructuring in recessions

- (1) Capital reallocation is sizeable
- (2) Capital stock reallocation across firms $\downarrow \bigcirc$ Data

• Significantly slow down recovery

- What frictions and shocks in a (heterogenous firms) model?
 - Generate less capital reallocation in recessions
 - Tractable for backing out shocks

Intro	Model	Solution	Numerical Results	Conclusion
0•	00000	000000	000000	0
Goals				

• Idiosyncratic productivity risks

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	000000	0
Goals				

- Idiosyncratic productivity risks
- Costs in reallocation:
 - Partial irreversible investment $+\ \mbox{financing constraints}$
 - Dynamics after aggregate productivity shocks / credit crunches
- A simple idea
 - Selling delay and the delay is prolonged in recessions

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	000000	0
Goals				

- Idiosyncratic productivity risks
- Costs in reallocation:
 - Partial irreversible investment + financing constraints
 - Dynamics after aggregate productivity shocks / credit crunches
- A simple idea
 - Selling delay and the delay is prolonged in recessions
- But complex issues
 - Difficulties: distribution of firms with different status
 - Buying assets, holding, selling, waiting to come back

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	000000	0
Literature				

- Financing frictions: Kiyotaki & Moore (1997), Bernanke et al. (1999), Brunnermeier & Sannikov (2011)...
- Resale problem: Kurlat (2011), Shleifer & Vishny (1992), Ramey & Shapiro (2001), Eisfeldt & Rampini (2006, 2007), Maksimovic & Phillips (1998, 2001), Khan & Thomas (2011)
- Uncertainty shocks: Bloom (2009), Gilchrist et al. (2010), Christiano et al. (2014)...
- Solution of heterogeneous agents model: Angeletos (2007), Kiyotaki & Moore (2011), Buera & Moll (2012)...
- DSGE Estimation

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	000000	0

The Model

- 1. Households and firms (run by entrepreneurs)
- 2. Households' problem
- 3. Entrepreneurs' problem
- 4. The stationary equilibrium

Intro	Model	Solution	Numerical Results	Conclusion
00	●0000	000000		O
Environme	nt			

- Households (measure 1) and firms run by entrepreneurs (measure 1)
- The representative household solves

$$\max \quad \mathbb{E}_t \sum_{s=t}^{\infty} \beta_h^{s-t} [\frac{c_{h,s}^{1-\gamma} - 1}{1-\gamma} - \frac{\kappa \left(I_{h,s}\right)^{1+\nu}}{1+\nu}],$$

s.t.
$$c_{h,t} + b_{h,t} = w_t I_{h,t} + R_t b_{h,t}$$
.

• Optimal solution:

$$\kappa c_{h,t}^{\gamma} l_{h,t}^{\nu} = w_t, \quad \mathbb{E}_t \frac{\beta_h (c_{h,t+1})^{-\gamma}}{(c_{h,t})^{-\gamma}} R_{t+1} = 1.$$

Intro	Model	Solution	Numerical Results	Conclusion
00	0000	000000	000000	0
Entrep	reneurs			

• Entrepreneur *j*'s preferences:

$$E_0 \sum_{t=0}^{\infty} \beta^t [\log(c_{jt}) + \eta(1-h_{jt}))]$$

- η : fixed costs of running the firm

- j chooses whether to operate $(h_{jt} = 1)$ or not $(h_{jt} = 0)$

Intro	Model	Solution	Numerical Results	Conclusion
00	0000	000000	000000	0
Entrep	reneurs			

• Entrepreneur *j*'s preferences:

$$E_0 \sum_{t=0}^{\infty} \beta^t [\log(c_{jt}) + \eta(1-h_{jt}))]$$

- η : fixed costs of running the firm
- *j* chooses whether to operate $(h_{jt} = 1)$ or not $(h_{jt} = 0)$

• *j*'s production technology:

$$y_{jt}=\left(extsf{z}_{jt} extsf{k}_{jt}
ight) ^{lpha}\left(extsf{A}_{t} extsf{l}_{jt}
ight) ^{1-lpha}$$
, $lpha\in\left(0,1
ight)$

- z_{jt} is idiosyncratic. $z^h > z^l$ with $p^{hl} + p^{lh} < 1$:

$$P = \begin{bmatrix} p^{hh} & p^{hl} \\ p^{lh} & p^{ll} \end{bmatrix}$$

- Who will operate is endogenous (aggregate TFP is endogenous)

• Capital adjustment cost function $\psi(k_{jt+1}, k_{jt})$

$$= \begin{cases} k_{jt+1} - (1-\delta)k_{jt} & \text{if } k_{jt+1} > (1-\delta)k_{jt}; \\ 0 & \text{if } k_{jt+1} = (1-\delta)k_{jt}; \\ -(1-d)[(1-\delta)k_{jt} - k_{jt+1}] & \text{if } k_{jt+1} < (1-\delta)k_{jt}. \end{cases}$$

• Capital adjustment cost function $\psi(k_{jt+1}, k_{jt})$

$$= \begin{cases} k_{jt+1} - (1-\delta)k_{jt} & \text{if } k_{jt+1} > (1-\delta)k_{jt}, \\ 0 & \text{if } k_{jt+1} = (1-\delta)k_{jt}, \\ -(1-d)[(1-\delta)k_{jt} - k_{jt+1}] & \text{if } k_{jt+1} < (1-\delta)k_{jt}. \end{cases}$$

• Borrowing constraint: $\theta \ge 0$

$$extsf{Rb}_{jt+1} \geq - heta \left(1-\delta
ight) \left(1-d
ight) extsf{k}_{jt+1}$$

• Capital adjustment cost function $\psi(k_{jt+1}, k_{jt})$

$$= \begin{cases} k_{jt+1} - (1-\delta)k_{jt} & \text{if } k_{jt+1} > (1-\delta)k_{jt}, \\ 0 & \text{if } k_{jt+1} = (1-\delta)k_{jt}, \\ -(1-d)[(1-\delta)k_{jt} - k_{jt+1}] & \text{if } k_{jt+1} < (1-\delta)k_{jt}. \end{cases}$$

• Borrowing constraint: $\theta \ge 0$

$$\mathsf{Rb}_{jt+1} \geq - heta\left(1-\delta
ight)\left(1-d
ight)k_{jt+1}$$

• Budget constraint:

$$c_{jt} + b_{jt+1} + \psi(k_{jt+1}, k_{jt}) = y_{jt} - w_t l_{jt} + Rb_{jt} = z_{jt}\pi k_{jt} + Rb_{jt}$$

$$V(k, b, z) = \max\{W^{1}(k, b, a), W^{0}(k, b, z)\}$$
$$W^{1}(k, b, z) = \max_{k' > 0, b'}\{\log(c^{1}) + \beta \mathbb{E}_{z}[V(k', b', z')]\}$$
$$W^{0}(k, b, z) = \max_{b'}\{\log(c^{0}) + \eta + \beta \mathbb{E}_{z}[V(0, b', z')]\}$$

-1

where

$$c^{1} = z\pi k + Rb - \psi(k',k) - b'$$

 $c^{0} = z\pi k + Rb + (1-\delta)(1-d)k - b'$

 W^1 and W^0 denote running and not running a firm and $R'b' \geq -\theta(1-d)(1-\delta)k'$

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	000000	0
Statior	narv equilibriu	ım		

Definition

The equilibrium is consists of policy functions $I = g^{I}(k, b, z)$, $k' = g^{k}(k, b, z)$, $b' = g^{b}(k, b, z)$ and pricing functions (π, R') such that:

(1). c_h , l_h , and b_h solve the household's problem, given w and R' (1). I, k' and b' solve the entrepreneur's problem, given w, R', and $\pi = \alpha \left[\frac{(1-\alpha)A}{w}\right]^{\frac{1-\alpha}{\alpha}}$

(2). Markets for labor and bonds clear

$$\int l_j dj = l_h, \int b'_j dj + b_h = 0$$

Remark When there are aggregate shocks, we need aggregate state variable $X = (\theta, A, \Gamma)$ where $\Gamma(k, b, z)$ is the joint CDF.

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	000000	0

Model Solution ^{1. Policy functions} 2. Option value of capital

3. Exact aggregation

 $\begin{array}{c|c} Intro \\ \circ & Model \\ \circ & \circ & \circ & Numerical Results \\ \hline \\ Optimize O \\ Optim$

Lemma

$$V(\gamma k, \gamma b, z) = V(k, b, z) + rac{\log \gamma}{1 - eta}$$

Intuition: Without d, low z firms sell immediately to pay off debt. With d, hold on and gradually pay off debt.

$$V_k(k,b,z) = u'(c)[z\pi + q(k,b,z)(1-\delta)]$$

$$V_k(k,b,z) = u'(c)[z\pi + q(k,b,z)(1-\delta)]$$

• Buying: q(k, b, z) = 1. Selling: q(k, b, z) = 1 - d

$$V_k(k,b,z) = u'(c)[z\pi + q(k,b,z)(1-\delta)]$$

- Buying: q(k, b, z) = 1. Selling: q(k, b, z) = 1 d
- The inaction region:

$$1-d < q(k,b,z) < 1$$

$$V_k(k,b,z) = u'(c)[z\pi + q(k,b,z)(1-\delta)]$$

- Buying: q(k, b, z) = 1. Selling: q(k, b, z) = 1 d
- The inaction region:

$$1-d < q(k,b,z) < 1$$

• To characterize q. Homogeneity $\rightarrow q(k, b, z) = q(\frac{k}{k+b}, z)$ • some derivation

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	000000	0
Asset F	Pricing Form	ula		

• FOC (multipliers μ) + envelope $\Rightarrow E[m'r'|\mathcal{I}] = 1$

$$E_{z}\left[\frac{\beta u'(c')}{u'(c)}\frac{z'\pi'+(1-\delta)q(\frac{k'}{k'+b'},z')}{q(\frac{k}{k+b},z)}\right]+\mu(k,b,z)=1$$

Intro Model Solution Numerical Results Conclusion Asset Pricing Formula Conclusion Conclusion

• FOC (multipliers μ) + envelope $\Rightarrow E[m'r'|\mathcal{I}] = 1$

$$E_{z}\left[\frac{\beta u'(c')}{u'(c)}\frac{z'\pi'+(1-\delta)q(\frac{k'}{k'+b'},z')}{q(\frac{k}{k+b},z)}\right]+\mu(k,b,z)=1$$

Proposition (Policy functions for k' > 0)

$$c = (1 - \beta)(z\pi k + (1 - \delta)qk + Rb)$$

 $k' = \phi\beta(z\pi k + (1 - \delta)qk + Rb)$
 $b' = (1 - \phi)\beta(z\pi k + (1 - \delta)qk + Rb)$

where ϕ satisfies the asset pricing equation.

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	000000	0
Liquidati	on			

• When to liquidate?

$$\begin{aligned} \frac{(1-\beta)\eta}{\beta} &= p^{\prime h} \mathbb{E}_X \left[\log \left(1 + (1-\delta) \frac{z^h \pi' + (1-\delta) - (1-d)R'}{\beta(z^\prime \pi + (1-\delta)(1-d) + R\frac{1-\lambda}{\Delta})R'} \right) \right] \\ &+ p^{\prime \prime} \mathbb{E}_X \left[\log \left(1 + (1-\delta) \frac{z^\prime \pi' + (1-\delta)(1-d) - (1-d)R'}{\beta(z^\prime \pi + (1-\delta)(1-d) + R\frac{1-\lambda}{\Delta})R'} \right) \right] \end{aligned}$$

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	000000	0
Liquidati	on			

• When to liquidate?

$$\begin{aligned} \frac{(1-\beta)\eta}{\beta} &= p^{\prime h} \mathbb{E}_X \left[\log \left(1 + (1-\delta) \frac{z^h \pi' + (1-\delta) - (1-d)R'}{\beta(z^\prime \pi + (1-\delta)(1-d) + R\frac{1-\lambda}{\lambda})R'} \right) \right] \\ &+ p^{\prime \prime} \mathbb{E}_X \left[\log \left(1 + (1-\delta) \frac{z^\prime \pi' + (1-\delta)(1-d) - (1-d)R'}{\beta(z^\prime \pi + (1-\delta)(1-d) + R\frac{1-\lambda}{\lambda})R'} \right) \right] \end{aligned}$$

• The drop of π and R' delays liquidation

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	000000	0
Liquidati	on			

• When to liquidate?

$$\begin{aligned} \frac{(1-\beta)\eta}{\beta} &= p^{\prime h} \mathbb{E}_X \left[\log \left(1 + (1-\delta) \frac{z^h \pi' + (1-\delta) - (1-d)R'}{\beta(z^\prime \pi + (1-\delta)(1-d) + R\frac{1-\lambda}{\lambda})R'} \right) \right] \\ &+ p^{\prime \prime} \mathbb{E}_X \left[\log \left(1 + (1-\delta) \frac{z^\prime \pi' + (1-\delta)(1-d) - (1-d)R'}{\beta(z^\prime \pi + (1-\delta)(1-d) + R\frac{1-\lambda}{\lambda})R'} \right) \right] \end{aligned}$$

- The drop of π and R' delays liquidation
- Uncertainty shocks alone may *not* delay liquidation decisions
 Importance of credit market in response to uncertainty shocks
 - Gilchrist et al. (2010) and Christiano et al. (2014)

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	○○○○○●		O
- .				

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	000000	0

Results

- 1. Calibrate the model
- 2. Comparative statics
- 3. Shocks and estimation

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000		O
Some C	alibration			

		Value	Target
Preferences			
Household discount factor	β_h	0.9900	annual interest rate 4%
Relative risk aversion	γ	2	exogenous
Inverse Frisch elasiciticity	u	0.3300	exogenous
Utility weight on leisure	κ	8.9682	working time: 33%
Production Technology			
Depreciation rate of capital	δ	0.0252	capital-to-GDP ratio: 6.0
Capital share of output	α	0.2471	investment-to-GDP ratio: 16.0%
Entrepreneurs discount factor	β	0.9890	exogenous
Fixed costs	η	1.0590	waiting periods: 12.0
Transition probability	$p^{hh} = p''$	0.9375	expected 4 year turn-over
log high productivity	Δ	0.0570	cross-sectional std 5.70%
Financial and Resale Frictions			
Financing Constraint	θ	0.4135	average debt/asset $= 0.325$
Resale Discount	d	0.0971	reallocation/capital expenditure

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	00000	0
Interaction	ns and TF	P Losses		

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	○○●000	O
Financial	shocks a	nd aggregate	productivity shocks	5

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	000000	0
Why financ	ial shocks?			

- Financial shocks: lower labor costs and lower interest rate
 - Less competition from the productive firms
 - Holding onto assets are more attractive
- Productivity shocks
 - Reduce everyone's incentive to stay in business
 - Note

$$\pi = \alpha \left[\frac{(1-\alpha)A}{w} \right]^{\frac{1-\alpha}{\alpha}}$$

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	000000	0
Procyclical	reallocation	?		

Table : Only One Type of Shocks

	Volatility		Co-movement	
	Standard Standard deviation deviation to that of output		Correlation with output	
	Output	Reallocation	Reallocation	Reallocation Turn-over
Data:	1.42%	10.91	0.85	0.79
Model: Only financial shocks Only aggregate TFP shocks	1.38% 1.31%	11.03 1.77	<mark>0.83</mark> 0.18	0.71 -0.33

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000		O
Smoothed	Shocks			

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	000000	0

Final Remark

Summary and Extension Takeaways

Intro	Model	Solution	Numerical Results	Conclusion
00	00000	000000	000000	•
Conclusio	n			

- Partial irreversible and financing constraints
 - Capital reallocation delay and prolonged delay in recessions
 - But aggregate productivity shocks shorten the delay
- Complicated inaction region can still be solved easily
- Policy implication: rethink interest rate policy?
- Implication on labor reallocation.

Hypothesis	data 0000	Proofs 0000	Calibration	Summary 00	References
Hypothesis					

• Hypothesis: Firms that allow wide swings in their leverage ratios, i.e., firms with large leverage ratio ranges, have tighter financial constraints when they are investing.

Hypothesis	data 0000	Proofs 0000	Calibration	Summary 00	References
Hypothesis					

• Hypothesis: Firms that allow wide swings in their leverage ratios, i.e., firms with large leverage ratio ranges, have tighter financial constraints when they are investing.

• Data

- Randomly selected firms over a period
- For each firm, compute the difference between maximum and minimum leverage ratio
- Group firms into different financial constrained categories

Hypothesis	data 0000	Proofs 0000	Calibration	Summary 00	References
Hypothesis					

• Hypothesis: Firms that allow wide swings in their leverage ratios, i.e., firms with large leverage ratio ranges, have tighter financial constraints when they are investing.

Data

- Randomly selected firms over a period
- For each firm, compute the difference between maximum and minimum leverage ratio
- Group firms into different financial constrained categories

• Test

- Under null hypothesis, the degree of financial constraints does not have impacts on the leverage difference

Correlation: 0.85 • back

Idiosyncratic TFP dispersion: gap between 75% quantile and 25% quantile from Bloom et.al (2012) • back

Hypothesis	data 00●0	Proofs 0000	Calibration	Summary 00	References
Data Sour	rce				

- COMPUSTAT / SDC data
 - For those who has assets acquired once in 2000-2012
 - Leverage before selling
- Sell immediately when profits are bad?
 - 5174 cases of selling
 - With about 60% selling all their assets.

- 2071 * 20 firm-quarter observations, after merged with COMPUSTAT (adjusting missing value in debt for consecutive 20 quarters)

Debt/Asset Ratio
Debt/

Hypothesis	data 0000	Proofs 0000	Calibration	Summary 00	References
Asset Pr	icing Forn	nula			

• FOC (multipliers μ) + envelope $\Rightarrow E[m'r'|\mathcal{I}] = 1$

$$E_{z}\left[\frac{\beta u'(c')}{u'(c)}\frac{z'\pi'+(1-\delta)q(\frac{k'}{k'+b'},z')}{q(\frac{k}{k+b},z)}\right]+\mu(k,b,z)=1$$

Hypothesis	data 0000	Proofs 0000	Calibration	Summary 00	References
Asset Pr	icing Forn	nula			

• FOC (multipliers μ) + envelope $\Rightarrow E[m'r'|\mathcal{I}] = 1$

$$E_{z}\left[\frac{\beta u'(c')}{u'(c)}\frac{z'\pi'+(1-\delta)q(\frac{k'}{k'+b'},z')}{q(\frac{k}{k+b},z)}\right]+\mu(k,b,z)=1$$

Proposition (Policy functions for k' > 0)

$$c = (1 - \beta)(z\pi k + (1 - \delta)qk + Rb)$$

 $k' = \phi\beta(z\pi k + (1 - \delta)qk + Rb)$
 $b' = (1 - \phi)\beta(z\pi k + (1 - \delta)qk + Rb)$

where ϕ satisfies the asset pricing equation.

Liquidation gains (safe) = Liquidation costs (risky) • Proof

Proposition

Let $n = z^{l}\pi + (1 - \delta)(1 - d) + R\frac{1 - \lambda}{\lambda}$. Suppose $\underline{\lambda} \in [0, \overline{\lambda}]$ solves

$$\eta = p^{lh} Value(n, z^h) + p^{ll} Value(n, z^l)$$

 z^{l} entrepreneurs liquidate the assets when $\frac{k}{k+b} \leq \underline{\lambda}$.

Corollary

Inaction region $\overline{\lambda} - \underline{\lambda}$ is larger when η is higher, d is higher, and θ is lower.

▶ back

Hypothesis	data 0000	Proofs ●○○○	Calibration	Summary 00	References
Adjustmer	nt Cost	Function			

To normalize capital to be 1. Continuation value for selling, $n = z'\pi + (1 - \delta)(1 - d) + R\tilde{b}$:

$$V^{out} = log((1 - \beta)n) + \eta$$

+ $\beta p^{lh} \left[A^0 + \frac{log(\beta nR)}{1 - \beta} \right] + \beta p^{ll} \left[A^{N+1} + \frac{log(\beta nR)}{1 - \beta} \right]$

Continuation value with one-shot inactive deviation

$$V^{in} = log((1 - \beta)n)$$

$$+ \beta p^{lh} \left[A^0 + \frac{log\left((z^l \pi + (1 - \delta))\tilde{k} + R\left(\beta n - (1 - d)\tilde{k}\right)\right)}{1 - \beta} \right]$$

$$+ \beta p^{ll} \left[A^{N+1} + \frac{log\left((z^l \pi + (1 - \delta)(1 - d))\tilde{k} + R\left(\beta n - (1 - d)\right)}{1 - \beta} \right) \right]$$

The difference of the two value is $V^{out} - V^{in}$

$$\eta + \frac{\beta \log (\beta R)}{1 - \beta}$$
$$- \left[\frac{\beta}{1 - \beta} p^{lh} \log \left(\beta R + \tilde{k} \frac{z^{l} \pi + (1 - \delta) - (1 - d) R}{m}\right) + \frac{\beta}{1 - \beta} p^{ll} \log \left(\beta R + \tilde{k} \frac{z^{l} \pi + (1 - \delta) (1 - d) - (1 - d) R}{m}\right)\right]$$

As b/k goes to infinity, the difference goes to $\eta > 0$. Meanwhile, the term in the bracket is an increasing function of m (and b/k). Thus, there is possible crossing of V^{out} and V^{in} .

Hypothesis	data 0000	Proofs ○○○●	Calibration	Summary 00	References
Optimal	Stopping T	ime Rule -	A graph		

Hypothesis	data 0000	Proofs 0000	Calibration	Summary 00	References
Key Statistics					

Table : Key statistics in the data and in the model

	Volatility					Co-m	ovement	
	Standard deviation	Standard deviation to that of output			Correlation with Output			
	Output	Consumption	Investment	Reallocation	Consumption	Investment	Reallocation	TFP dispersion
Data:	1.42%	0.55	3.86	10.91	0.95	0.96	0.85	-0.42
Model:	1.35%	0.61	4.01	11.05	0.84	0.91	0.61	-0.37

Hypothesis	data 0000	Proofs 0000	Calibration	Summary 00	References
Smoothe	d Shocks				

Hypothesis	data 0000	Proofs 0000	Calibration	Summary ●○	References
Liquidation	Smoothi	ng			

- Bring closer to the data may need large shocks
- Extension: fixed costs η is drawn from an uniform distribution with support $[\underline{\eta}, \bar{\eta}]$
- Some entrepreneurs in each vintage will liquidate, because of high fixed costs
- The cut-off of fixed costs move in response to shocks

- Similar problem in financial institution
- Which assets to sell when borrowing is tougher?
 - Liquid assets first
 - Leaving illiquid assets later
- Systematic risks accumulate if only illiquid assets are left economy wide back

Hypothesis	data 0000	Proofs 0000	Calibration	Summary 00	References
Angele	etos, GM. (2	2007), 'Unin	sured idiosyncr	atic investment	risk
and	aggregate sa	iving', <i>Revie</i>	w of Economic	Dynamics	
10 (1), 1–30.				

- Bernanke, B., Gertler, M. & Gilchrist, S. (1999), The Financial Accelerator in a Quantitative Business Cycle Framework, Elsevier, chapter 21, pp. 1341–1393.
- Bloom, N. (2009), 'The impact of uncertainty shocks', *Econometrica* **77**(3), 623–685.
- Brunnermeier, M. & Sannikov, Y. (2011), A macroeconomic model with a financial sector, Technical report, Princeton University.
- Buera, F. J. & Moll, B. (2012), Aggregate implications of a credit crunch, Technical report, NBER.
- Christiano, L. J., Motto, R. & Rostagno, M. (2014), 'Risk shocks', *American Economic Review* **104**(1), 27–65.
- Eisfeldt, A. L. & Rampini, A. A. (2006), 'Capital reallocation and liquidity', *Journal of Monetary Economics* **53**, 369–399.

Hypothesis	data 0000	Proofs 0000	Calibration	Summary 00	References
			3		

- Eisfeldt, A. L. & Rampini, A. A. (2007), 'New or used? investment with credit constraints', *Journal of Monetary Economics* 54(8), 2656–2681.
- Gilchrist, S., Sim, J. W. & Zakrajsek, E. (2010), Uncertainty, financial frictions, and investment dynamics, Technical report, Boston University.
- Khan, A. & Thomas, J. K. (2011), Credit shocks and aggregate fluctuations in an economy with production heterogeneity, Technical report, Ohio State University.
- Kiyotaki, N. & Moore, J. (1997), 'Credit cycles', *Journal of Political Economy* **105**(2), 211–48.
- Kiyotaki, N. & Moore, J. (2011), Liquidity, business cycles, and monetary policy, Technical report, Princeton University.
- Kurlat, P. (2011), Lemons, market shutdowns and learning, Technical report, Stanford University.
- Maksimovic, V. & Phillips, G. (1998), 'Asset efficiency and reallocation decisions of bankrupt firms', *The Journal of Finance* 53(5), 1495–1532.

Hypothe	sis data Proofs 0000 0000	Calibration	Summary 00	References
I	Maksimovic, V. & Phillips, G assets: Who engages in me efficiency gains?', <i>The Jou</i> Ramey, V. A. & Shapiro, M. study of aerospace plant', 109 (5), 958–992.	i. (2001), 'The n ergers and asset rnal of Finance ! D. (2001), 'Disp Journal of Politi	narket for corpor sales and are th 5 6 (6), 2019–206 placed capital: A <i>cal Economy</i>	rate ere 55. A
0	Shleifer, A. & Vishny, R. W. capacity: A market equilib	(1992), 'Liquida rium approach',	tion values and <i>The Journal of</i>	debt

Finance **47**(4), 1343–1366.