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1 Introduction

Can anger shape economic outcomes in important ways? Consider some
examples/questions:
1. In 2006-07 gas prices went up and up. Many folks were quite upset.

Did this cause road rage?
2. In 2007 Apple launched its iPhone at $499. Just two months later they

introduced a new version, priced at $399, re-pricing the old model at $299.
This caused outrage among early adopters. Apple paid back the di¤erence.
Did this help long run pro�t?
3. When local football teams favored to win lose, the police gets more re-

ports of husbands assaulting wives. Did the unexpected loss spur frustration
and violence?
4. In 2008 the government bailed out banks through its TARP program.

Some voters were infuriated. Did this spur the Tea Party and Occupy Wall
Street movements?

�This paper modi�es and extends Smith (2009). Pierpaolo Battigalli gratefully ac-
knowledges �nancial support from ERC advanced grant 324219.
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5. Following the European Soveriegn Debt Crises (2009-), many EU coun-
tries embarked on austerity programs. Was it because citizens were frustrated
with loss of bene�ts that many cities then experienced riots and unrest?
Tra¢ c safety, pro�t maximization, domestic violence, political landscapes,

...; the hinted at themes seem important. However, in order to systemati-
cally assess relevance and consequences one needs to develop theory connect-
ing anger, decisions, and outcomes. Our goal is to take �rst steps in that
direction.
Economists traditionally paid scant attention to anger. Insights from

psychology, however suggest ways that anger has strategic implications. Psy-
chologists refer to the behavioral consequences of emotions as �action ten-
dencies,�and the action tendency of anger is aggression. One may imagine
that angry players may be willing to forego material gains to punish others,
or that a predisposition to behave aggressively when angered may bene�t a
player by serving as a credible threat, and so on. But while insights of this
nature can be gleaned from psychologists�writings, their analysis usually
stops with the individual rather than goes on to assess overall economic im-
plications. Our goal is to take the basic insights about anger that psychology
has produced as input and inspiration for the theory we develop and apply.1

Our reading of the evidence suggests that anger is typically anchorded in
frustration, which occurs when someone is unexpectedly denied something
they care about.2 An Archimedean point of our analysis is to assume that
people are frustrated when they get less material rewards than they expected
beforehand. Examples 1, 3, 5 above furnish illustrations, and indicate the
broad applied potential. Nevertheless, our focus is somewhat restrictive, as
examples 2 and 4 illustrate. In example 2 an early adapter is frustrated be-
cause he regrets he already bought, not because the new information implies
that his expected rewards of the purchase already made go down. In example
4 someone may be materially una¤ected personally, yet frustrated because
of perceived unfairness. Thus, while our analysis will address many subtle

1The relevant literature is huge. A good point of entry, and source of insights &
inspiration for us, is the recent International Handbook of Anger (Potegal, Stemmler &
Spielberger, eds., 2010), which o¤ers a cross-disciplinary perspective spanning 32 chapters
re�ecting "a¤ective neuroscience, business administration, epidemiology, health science,
linguistics, political science, psychology, psychophysiology, and sociology" (p. 3, citation
from Potegal & Stemmler�s opening chapter). We take the non-occurrence of "economics"
in the list as an indication our approach is original and needed!

2Psychologists often refer to this as "goal-blockage" (cf. p.3 of the (op.cit.) Handbook.
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considerations, there are nevertheless meaningful and nuanced ways to get
frustrated that we leave for future research.
How do decision-makers react to frustration and anger? The evidence

from psychology, and introspection, suggest a variety of possibilities often
centered on the idea that it triggers agression.3 We present three related
approaches, captured by distinct utility functions. While players motivated
by simple anger become generally hostile to, those motivated by anger from
blaming behavior or by anger from blaming intentions go after others more
discriminately with references to who actually caused, or who intended to
cause, their dismay.
What are the overall implications when people interact? To answer this

questions a solution concept is needed, and there are many seemingly sen-
sible ways to proceed. We develop and compare notions of sequential equi-
librium, equilibrium with perceived intentions, and polymorhic sequential
equilibrium. We mix & match these solution conceptss with the three afore-
mentioned di¤erent utilities, explore properties, and compare predictions.
A player�s frustration depends on his beliefs about others�choices. The

blame a player attributes to another may depend on his beliefs about others
choices or beliefs. For these reasons, all our models �nd their intellectual
home in the framework of so-called psychological game theory; see Geanako-
plos, Pearce & Stacchetti (1989) for a pioneering contribution and Battigalli
& Dufwenberg (2009) for the framework extension needed to be well-position
to understand what tools our current exercise draws on.
Section 2 contains preliminaries on how we represent games and beliefs.

Section 3 develops the three key notions of utility that we adress. Section
introduces and applies the various solution concepts. Section 5 combines
the material of the two preceding sections, and derives/highlight various
results and insights. Section 6 concludes. An Appendix contains some details,
extensions, and proofs which do not include in the main text.

3Baumeister & Bushman (2007, p. 66), e.g., say that "anger is an important and
powerful cause of aggression." They de�ne aggression (p. 62) as "any behavior that is
intended to harm another person who is motivated to avoid the harm."
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2 Preliminaries: games and beliefs

We adopt the framework of Battigalli & Dufwenberg (2012).4 Agents play
a multistage game with simultaneous actions in each stage, perfect recall,
and possibly imperfect monitoring of other agents� past actions. At each
information set, a player has conditional beliefs about the continuation. Be-
liefs at di¤erent information sets on the same path are related by Bayes�rule
whenever possible. A player�s beliefs about his own action represent his plan.
The multi-stage structure provides a natural time line. Along each path, a
player experiences a temporal sequence of beliefs a¤ecting his preferences
about actions and consequences.

2.1 Multistage game forms

Amultistage game form is given by a set of players, a set of feasible sequences
of action pro�les, called histories, an information structure and a material
payo¤ function for each player. The material payo¤ function of a player
describes the monetary (or consumption) consequences of interaction, but
not his preferences.
Formally, we describe the game tree as a set of sequences of action pro�les,

with the understanding that, at each stage, a subset of players move simulta-
neously. Chance is a player with a �xed, fully randomized behavior strategy.
To simplify the notation we assume that all players obtain information and
take an action at each decision stage, and inactive players have only one
feasible action. This is not a mere convention when the timing of belief-
dependent emotions is relevant. We adopt this speci�cation for simplicity,
not because it is without substantial loss of generality.
More formally, a multistage extensive form is a tuple

(I; A;X; �c; (Hi)i2I)

where

� I is a �nite set of players with generic element i; the chance player
is denoted c, with c =2 I; the players set including chance is denoted Ic;

� A is a �nite set of actions;
4See also Battigalli et al. (2013).
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� X is a �nite set of histories: X contains the empty history ?, each
other element of X is a �nite sequence of action pro�les x = (a1; :::ak),
with at = (ai;t)i2Ic 2 AIc for each t 2 f1; :::; kg; X with the �pre�x of�
relation � is a tree with root ?;

� �c is a pro�le of strictly positive probability measures, one for each
chance move;5

� for each i 2 I, Hi is an information partition of X that satis�es
perfect recall, and it is such that every information set h 2 Hi contains
histories of the same length.

We refer the reader to the Appendix for a more formal de�nition. Here
we stress three features. First, the game has a multistage structure because
information tracks time; we often emphasize this writing hi;t for an infor-
mation set of player i containing histories of length t, hence representing
i�s information at the beginning of period/stage t + 1. Second, we specify
a player�s information also at nodes/histories where he is not active,6 in-
cluding terminal histories; the reason is that information a¤ects beliefs and
hence emotions, therefore information may be relevant even if it does not
have instrumental value. Of course, non-terminal information sets play a
special role; the collection of such information sets is denoted by HD

i . Third,
according to our general de�nition action pro�les are written in a somewhat
redundant way, that is, we write a = (ai)i2I even if only a strict subset of
players J � I are active; we can think of the �action�of an inactive player as
�waiting�or some compulsory action. The following table summarizes quite
standard de�nitions and notation for derived objects that will be frequently

5With the notation of the following table, �c = (�c(�jx))x2XnZ 2 �x2XnZ��(Ac(x)),
where ��(Ac(x)) is the relative interior of �(Ac(x)).

6A player is active at x if he has at least two feasible actions at x.
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used in the analysis:

Name Notation De�nition
Length of x `(x) `(x) = t, x 2 (AIc)t
Terminal histories Z fx 2 X : @y 2 X; x � yg
Terminal successors of x Z(x) fz 2 Z : x � zg
Terminal successors of h � X Z(h) [x2hZ(x)
Non-terminal informations sets HD

i fh 2 Hi : h \ Z = ;g
Information set of i at x Hi(x) Hi(x) = h, x 2 h 2 Hi

Feasible action pro�les at x A(x) fa 2 AIc : (x; a) 2 Xg
Feasible actions of i at x Ai(x) fai 2 A : 9a�i 2 AIcnfig; (ai; a�i) 2 A(x)g
Feasible actions of i at h 2 Hi Ai(h) [x2hAi(x)
Feasible actions of �i at x A�i(x) �j2IcnfigAj(x)
Table 1. Extensive form: derived elements

A multistage game form is a structure

� = (I; A;X; �c; (Hi; �i)i2I)

where (I; A;X; �c; (Hi)i2I) is a multistage extensive form and, for each i 2 I,

�i : Z ! R

is the material payo¤ function of player i. Roughly, a multistage game
form describes rules of the game that an experimenter can specify in the
lab, making them common knowledge among the subjects. These rules in-
clude the map from actions to material consequences, that in this paper are
represented by the monetary payo¤ vectors attached to terminal histories,
(�i(z))i2I . From now on we will often omit the adjective �multistage.�
Game forms with a special structure deserve attention. A game form �

� has observable actions if each information set is a singleton; hence,
each Hi is isomorphic to X;

� has perfect information if it has observable actions and at most one
player is active at each non-terminal history;

� is a leader-follower game if (i) it has perfect information and two
stages, (ii) the leader is the player who is active in the �rst stage, (iii)
whoever is active in the second stage is a follower, a player di¤erent
from the leader, and (iv) there is at least one action of the leader after
which a player is active.

6



The following game form is a leading example we repeatedly refer to, and
it illustrates our notation.

Example 1 (Ultimatum Minigame) Ann and Bob play the following leader-
follower game: in the �rst period Ann can make a fair o¤er, which is auto-
matically accepted and implemented, or a greedy o¤er; in the second period
Bob can either accept or reject the o¤er. The actions, timing, and material
payo¤s are described in Figure A (pro�les �here pairs �are written according
to players�alphabetical order):

Figure A. Ultimatum Minigame.

According to our notation, and suppressing the chance player, we have

I = fa; bg, A = ff; g; n; y; �g;

where � is the pseudo-action of �waiting,�and

X = f?; ((f; �)) ; ((g; �)) ; ((f; �); (�; y)) ; ((g; �); (�; n)) ((g; �); (�; y))g;
Z = f((f; �); (�; y)) ; ((g; �); (�; n)) ((g; �); (�; y))g;

Aa(?) = ff; gg, Aa(x) = f�g for each x 2 f((f; �)) ; ((g; �))g;
Ab(?) = f�g, Ab((f; �)) = fyg, Ab((g; �)) = fy; ng:

Hence, Ann is active only at the root ? and Bob is active only after the
greedy o¤er g. Ha and Hb are isomorphic to X, HD

a and H
D
b are isomorphic

to XnZ.

From now on, when we discuss examples, we will not mention pseudo-
actions any more. Furthermore, we omit redundant parentheses whenever
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this does not hurt clarity. For example, we will write g for the history
of length one ((g; �)) containing the action pair (g; �) of the Ultimatum
Minigame.

2.2 Information and time

The exact timing of experienced beliefs may be key in games with belief-
dependent preferences. We model time by assuming that it corresponds to
the stages of the game. Thus, if there is a period in which, given the previous
history, no player moves and nothing is learned, we still want to model it as
a separate stage. Speci�cally, we assume the following time line: the play
unfolds through time periods t = 1; 2; 3; ::: (�rst, second, third ...) of equal
duration; by convention, period t is the time interval between date t� 1 and
date t (a date is a point in time, a period is an interval). For example, period
1 is the time interval between date 0 and date 1. The information of player
i at the beginning of period t is given by some information set h formed by
histories of length t � 1. We will sometime write hi;t�1 to emphasize that
we refer to an information set of player i that consists of histories of length
t � 1. For t = 1, we have hi;0 = f?g: at date 0, the beginning of stage 1,
players have no information, which corresponds to the singleton information
set containing the only history of length 0.7

Whenever player i observes hi;t�1 2 Hi at the beginning of stage t and
takes action ai 2 Ai(hi;t�1) he automatically and immediately observes that
he has just taken this action, therefore his information is given by the set of
histories

(hi;t�1; ai) := f(x0; a0) 2 X : x0 2 hi;t�1; a0i = aig.
Then, given that the other players choose a�i and the play moves to the
beginning of stage t + 1, player i may learn something about the actions
taken by the co-players (in stage t or earlier), and his information (h; ai) is
re�ned to some hi;t 2 Hi with Z(hi;t) � Z(hi;t�1) (see the time-line in Figure
T). Note that some history in (hi;t�1; ai) may be terminal.

7The multistage information structure implies that the infomation set containing the
empty history cannot contain any other history.
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Figure T. Time-line.

Players have to be able to assign a material or psychological value to each
action ai they take at each information set h 2 Hi, and we want to represent
these values as their conditional expected payo¤ (or psychological utility)
given (h; ai). Therefore, it is convenient to enrich the information structure
of each player i, adding to Hi to the �end-of-period information sets�of the
form (h; ai) described above. Thus, we obtain the larger collection

�Hi := Hi [ f(h; ai) : h 2 Hi; ai 2 Ai(h)g.

containing also the information sets of the form (hi; ai). By perfect recall,
one can extend the �pre�x of�relation to this collection of information sets:
for every h0; h00 2 �Hi, let h0 � h00 if and only if for every x00 2 h00 there is
x0 2 h0 such that x0 � x00. With this, ( �Hi;�) is a tree. (As we said, �Hi is a
set of personal histories of information states and actions of i).
We need a formal notation for the sequence of beliefs experienced by

a player along a path, which depends on the sequence of information sets
crossed by this path. For any history x = (a1; :::at) and stage k = 1; :::; t,
let x�k = (a1; :::ak) denote the k-pre�x of x; by convention x�0 := ? is the
0-pre�x of every x. The information set of i that obtains at the beginning of
stage k + 1 along path x is therefore Hi(x

�k).
Of course, by perfect recall, Hi(x

�k) = Hi(y
�k) whenever x; y 2 hi 2 Hi.

Therefore, for each information set h of player i made of histories of length
t (h 2 Hi, h � (AI)t) and each k = 0; :::; t, it makes sense to write h�k =
Hi(x

�k), where x 2 h is arbitrary.
The following game form illustrates our notation on the information struc-

ture.
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Example 2 Ann, Bob and Penny the punisher play the following game form
with observable actions, where Ann and Bob move simultaneously in the �rst
period and Penny may move in the second:

Figure B. Asymmetric punishment.

This is a game with asymmetric punishment because, if Penny punishes the
coordination failure (D;L), she badly hurts Bob and at the same time slightly
rewards Ann.8 Since there are observable actions, the information structure
of each player is isomorphic to the set of histories X. The expanded infor-
mation structure �Hp of Penny coincides with her information structure Hp

because when she moves she is the only active player. The action sets of Ann
and Bob are, respectively,

Aa(?) = fU;Dg, Ab(?) = fL;Rg,

and their expanded information structures are, respectively,

�Ha = Ha [ ff(U;L); (U;R)g; f(D;L); (D;R)gg ,
�Hb = Hb [ ff(U;L); (D;L)g; f(U;R); (D;R)gg .

For example, f(D;L); (D;R)g is the information of Ann after she has chosen
action D. The date-1 information set of Penny implied by terminal history

8We will comment on this feature to discuss solution concepts.
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z = ((D;L); N) is

Hp(z
�1) = Hp((D;L)) = f(D;L)g:

2.3 Beliefs and plans

Players have beliefs about the behavior and beliefs of co-players; given such
beliefs they form plans; a plan and beliefs about other players yield beliefs
about path of play, i.e., a probability measure over the set of terminal his-
tories z 2 Z. Of course, at each information set h 2 �Hi, player i assigns
probability one to the set Z(h) of terminal successors of h, and beliefs held
at information sets ordered by precedence have to be related according to
the rules of conditional probabilities. For example, in a two-person game
with observable actions without chance moves, beliefs of player i about j�s
behavior can be represented by a behavioral strategy of j, that is, an array
of probabilities of actions �j = (�j(�jx))x2XnZ 2 �x2XnZ�(Aj(x)); a plan of i
can also be represented as a behavioral strategy, viz. �i. The pair of behav-
ioral strategies (�i; �j) yields, for each x 2 XnZ, the conditional probability
of reaching terminal history z 2 Z(x) from x, viz. P�i;�j(zjx). Clearly, if
x0 � x00 (x0 is an initial subsequence, or �pre�x�of x00), then

P�i;�j(x00jx0) > 0) P�i;�j(zjx00) =
P�i;�j(zjx0)
P�i;�j(x00jx0)

.

However, player i also has beliefs about what j thinks; what i believes j will
do, typically depends on what i believes j thinks. Therefore, observing the
previous moves by j in partial history x make i update his beliefs about what
j thinks.
Since we have not yet modeled the space of possible beliefs of co-players,

we start with an abstract representation of conditional beliefs where a player
has beliefs over an uncertainty space of the form Z � Y , an event is a (mea-
surable) subset E � Z � Y ; in particular, the event that information set h
is reached is Z(h)� Y . The interpretation of Y is that it represents the set
of possible belief systems of i�s co-players.

De�nition 3 Fix a compact metrizable space Y . A conditional proba-
bility system (CPS) on (Z � Y; �Hi) is an array of probability measures
� = (�(�jZ(h)� Y ))h2 �Hi 2 [�(Z � Y )]

�Hi such that
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(1) (knowledge implies probability-one belief) for every h 2 �Hi,

�(Z(h)� Y jZ(h)� Y ) = 1;

(2) (chain rule) for every g; h 2 �Hi with h � g and measurable E � Z(g)�Y

�(EjZ(h)� Y ) = �(EjZ(g)� Y )�(Z(g)� Y jZ(h)� Y ):

Note that condition (2) in De�nition 3 makes sense because h � g implies
Z(g) � Z(h). Hence this condition expresses the rule of conditional proba-
bilities applied to the chain of events E � Z(g) � Y � Z(h) � Y . The set
of �rst-order CPSs on (Z; �Hi) is de�ned analogously. Therefore we omit a
formal de�nition.9 A CPS � on (Z � Y; �Hi) induces a �rst-order CPS � on
(Z; �Hi) in the obvious way: for every h 2 �Hi and z 2 Z(h)

�(zjZ(h)) = �(fzg � Y jZ(h)� Y ):

To ease notation, we will write �(�jh) instead of �(�jZ(h) � Y ) when-
ever this causes no confusion; similarly, for a �rst-order CPS � 2 � �Hi(Z),
we will write �(xjh) and �(h0jh) instead of, respectively, �(Z(x)jZ(h)) and
�(Z(h0)jZ(h)).
De�nition 3 may represent the system of beliefs of an external observer

that obtains the same information as player i. But, arguably, reasonable
beliefs of player i should satisfy a further condition: At each stage k, player
i takes the belief systems of his co-players and their stage-k choices as given;
therefore, his beliefs about them are independent of his choice. We express
this property by means of probabilities conditional on histories (rather than
information sets), and marginal probabilities of actions, action pro�les and
events in Y . Therefore, for any CPS � on (Z � Y; �Hi), we introduce a
simpli�ed notation for marginal conditional probabilities summarized by the
following table, where h 2 �Hi, EY � Y is measurable, x 2 h is such that

9Indeed, � �Hi(Z) is isomorphic to � �Hi(Z �f�g), where Y = f�g is an arbitrary single-
ton.
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�(Z(x)� Y jh) > 0, ai 2 Ai(h) and a�i 2 A�i(x):

Notation De�nition
�(xjh) �(Z(x)� Y jh)
�(EY jh) �(Z � EY jh)
�(aijh) �(Z(h; ai)� Y jh)
�(ai; a�ijx) �(Z(x; (ai; a�i))� Y jh)=�(Z(x)� Y jh)
�(aijx)

P
b�i2A�i(x)

�(ai;b�ijx)
�(a�ijx)

P
bi2Ai(x) �(bi; a�ijx)

Table 2. Marginal conditional probabilities

De�nition 4 A CPS � on (Z � Y; �Hi) satis�es own-action independence
(OAI) if, for every h 2 Hi, the following conditions hold:10

(1) for every ai 2 Ai(h) and measurable EY � Y

�(EY jh) = �(EY jh; ai);

(2) for every x 2 h such that �(xjh) > 0, ai 2 Ai(x) and a�i 2 A�i(x),

�(aijx) = �(aijh),

�((ai; a�i)jx) = �(aijx)� �(a�ijx);

The set of CPSs of i satisfying OAI is denoted by �
�Hi
i (Z � Y ). Similarly,

the set of �rst-order CPSs of i satisfying OAI is denoted by �
�Hi
i (Z).

OAI implies that a CPS of player i is made of two independent parts, i�s
beliefs about his own behavior and his beliefs about the co-players�behavior
and beliefs.11

10Condition (2) holds vacuously for terminal information sets.
11These are minimal own-action independence properties. For example, they do not im-

ply that if j plays after i without observing anything about i�s move then the probability
of j�s action conditional on i�s earlier action ai is independent of ai (see the discussion in
Battigalli et al., 2013). It is as if i is allowed to believe that j may observe a signal corre-
lated with his action. This is prevented by the OAI condition above only for simultaneous
actions. In sum, the OAI property expressed above is just the minimal property required
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Remark 5 A CPS � on (Z � Y; �Hi) satis�es condition (2) of De�nition
4 if and only if there is a unique behavioral strategy �i = (�i(�jh))h2HD

i
2

�i := �h2HD
i
�(Ai(h)) such that, for every h 2 HD

i , x 2 h with �(xjh) > 0,
ai 2 Ai(x) and a�i 2 A�i(x),

�(aijx) = �i(aijh),

�((ai; a�i)jx) = �i(aijh)� �(a�ijx).
In game forms with observable actions (that is, with Hi isomorphic to X)
and two players, a CPS � on (Z � Y; �Hi) satis�es condition (2) if and only
if there is a unique pair of behavioral strategies (�i; ��i) such that, for every
x 2 XnZ, ai 2 Ai(x) and a�i 2 A�i(x),

�((ai; a�i)jx) = �i(aijx)� ��i(a�ijx).

We interpret the behavioral strategy given by condition (2) of De�nition
4 as the plan of player i.

As a technical aside, we note that the set of CPS�s with the OAI property
is compact metrizable, just like Y :12

Lemma 6 �
�Hi
i (S � Y ) is compact metrizable.

With this result, we can recursively de�ne beliefs of order m:13 Hence-
forth, j 6= i means j 2 Infig. For every i 2 I and m 2 N, de�ne the set of
m-order CPSs of i as

Y m
i := �

�Hi
i (Z � (�j 6=iY m�1

j )); (1)

to make sense of expected utility maximization. The remaining condition to be added is:

x0; x00 2
T
j 6=i
Hj(x

0) \Hj(x00)) �(a�ijx0) = �(a�ijx00):

for all x0; x00 2 XnZ and a�i 2 A�i(x0) such that �(a�ijx0) and �(a�ijx00) are well de�ned.
It says that i does not think he can a¤ect the probability of future opponents�actions unless
the opponents can observe that somebody (i actually) changed action. The equilibrium
concepts introduced later contain consistency conditions that imply OAI and the condition
above, and also rule out some other correlations allowed by OAI.
12�(Y ) is endowed with the weak convergence topology, which has a compatible metric

(the Euclidean metric when Y is �nite). Product spaces are endowed with the product
topology. Subsets of topological spaces are endowed with the relative topology.
13This is not the usual construction of belief hierarchies. Since we consider only �nitely

many orders of belief, we can use a simpli�ed construction.
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where
Y 1
i := �

�Hi
i (Z):

By Lemma 6, each Y 1
j (j 2 I) is compact metrizable, and if each Y m�1

j

(j 2 I) is compact metrizable, then also each Y m
i := �

�Hi
i (Z � (�j 6=iY m�1

j ))
(i 2 I) is compact metrizable; therefore the recursive de�nition is well-posed.
For every m � 2, 1 � k < m and �mi 2 Y m

i , we let (�
m
i )

k denote
the k-order CPS derived from �mi under the assumption that players�
hierarchies of beliefs are coherent. Formally, also the de�nition of such lower-
order beliefs is recursive: For all i 2 I, m � 2 and �mi 2 Y m

i , let (�
m
i )

1 :=
(margZ�mi (�jh))h2 �Hi. It is routine to show that (�mi )1 2 Y 1

i . Now suppose
that (�m�1j )k 2 Y k

j has been de�ned for every j and 1 � k < m� 1; then, for
all i 2 I, �h 2 �Hi, z 2 Z(�h) and measurable Ek�i � �j 6=iY k

j , let

(�mi )
k+1(fzg�Ek�ij�h) := �mi

�
fzg � f(�m�1j )j 6=i 2 �j 6=iY m�1

j : ((�m�1j )k)j 6=i 2 Ek�igj�h
�

and then extend by countable additivity to the sigma-algebra on Z � Y k
�i. It

is also convenient to de�ne (�mi )
m := �mi . It can be shown that k � ` � m

implies ((�mi )
`)k = (�mi )

k.
In this paper we focus on beliefs of the �rst, second and third order,

respectively denoted by the �rst three letters of the Greek alphabet:

�i 2 Y 1
i := �

�Hi
i (Z);

�i 2 Y 2
i := �

�Hi
i (Z � (�j 6=iY 1

j ));

i 2 Y 3
i := �

�Hi
i (Z � (�j 6=iY 2

j )):

Higher-order beliefs implicitly determine lower-order beliefs: when we con-
sider �i, �i and i at the same time, it is implicitly understood that �i is
the �rst-order belief implied by �i, that is �i = (�i)

1, and similarly �i is the
second-order belief derived from i, �i = (i)

2; hence �i = ((i)
2)1 = (i)

1.
Higher-order beliefs are important in the analysis of anger from blame, not
in the analysis of simple anger.

Finally, we introduce notation for conditional expectations. Fix a CPS
�i 2 �

�Hi
i (Z � Y ). For any bounded and measurable, real-valued function

 : Z � Y ! R and any �h 2 �Hi, we let

E[ j�h;�i] :=
Z
Z(�h)�Y

 (z; y)�i(z � dyj�h)
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denote the expected value of  conditional on �h given CPS �i. If  depends
only on z, and �i = (�i(�j�h))�h2 �Hi = (margZ�i(�j�h))�h2 �Hi is the �rst-order CPS,
then we obtain

E[ j�h;�i] = E[ j�h;�i] =
X
z2Z(�h)

 (z)�i(zj�h).

3 Anatomy of belief-dependent anger

In this section we describe action tendencies determined by simple anger (3.1)
and anger from blame (3.2). Blame may be caused by observed behavior of
co-players (3.2.1) or inferences about their intentions (3.2.2).

3.1 Simple anger

Our �rst model �which we call simple anger �may be seen as a representation
of the classic �frustration-aggression hypothesis�of Dollard et al. (1939). A
player thus motivated may behave aggressively not only when another person
is responsible for some adverse event, but also after frustrating events that
are due to third parties or even to nature. It formalizes Frijda�s (1993, p.
362) statement that �many experiences or responses of anger...are elicited by
events that involve no blameworthy action.�
Fix a �rst-order CPS �i 2 Y 1

i and a date-t information set �hi;t 2 �Hi

(�ht � (AI)t). The expected material payo¤ of i at date t (either the end of
period t, or the beginning of period t+ 1) conditional on �hi;t is E[�ij�hi;t;�i].
Fix hi;t 2 Hi, the information of player i at the beginning of period t+ 1. If
i chooses ai 2 Ai(hi;t), his expected material payo¤ at the end of period t+1
is then E[�ij(hi;t; ai);�i]. Now let

��i (hi;t;�i) :=

�
maxai2Ai(hi;t) E[�ij(hi;t; ai);�i], if hi;t 2 HD

i ;
E[�ijhi;t;�i], if hi;t 2 HinHD

i .
(2)

(The second part of eq. (2) is the relevant expected payo¤ when hi;t is a
terminal information set.)
Fix two consecutive information sets hi;t�1; hi;t 2 Hi; they give i�s in-

formation at the beginning of period t and t + 1 respectively. Note that,
by perfect recall, hi;t�1 is uniquely determined by hi;t. We assume that the
extent of i�s frustration in period t + 1 is given by the gap, if positive,
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between his expected payo¤ at date t� 1 (beginning of period t) and the best
expected payo¤ he can choose to obtain at date t + 1 (at the end of period
t+ 1, before learning new information about the other players):

Fi(hi;t;�i) = maxf0;E[�ijhi;t�1;�i]� ��i (hi;t;�i)g: (3)

Notice that we only make explicit the dependence of Fi on hi;t because
hi;t�1 is implicitly determined by hi;t: with our notation, we are consider-
ing hi;t�1 = h�t�1i;t ; also, when hi;t is a terminal information set, Fi(hi;t;�i)
is the frustration experienced at the end of the game, that is, in the period
after the last stage of the game. Since there cannot be any frustration in the
�rst period, we adopt the convention

Fi(f?g;�i) = 0.

Here is the intuition behind this formulation: Frustration is related to
lack of full control over gain and losses, in particular, to the inability to
eliminate perceived losses. Therefore, in order to de�ne frustration in period
t + 1, we look at the gap between the previously expected material payo¤,
�i(hi;t�1;�i), and the expected payo¤ that can be achieved by choosing a
particular action ai in period t + 1, �i((hi;t; ai);�i) (note that (hi;t; ai) is a
date (t+ 1) information set, just before the uncertainty about other players
partially resolves). Decision maker i can partially control this gap, which
could be negative, by choosing ai 2 Ai(hi;t). The gap, or perceived loss,
which is beyond i�s control is the di¤erence, if positive,

E[�ijhi;t�1;�i]� max
ai2Ai(hi;t)

E[�ij(hi;t; ai);�i] =

= E[�ijhi;t�1;�i]� ��i (hi;t;�i).
We can compare this to a simpler formulation: the extent of i�s frustra-

tion is just given by the di¤erence, if positive, between E[�ijhi;t�1;�i] and
E[�ijhi;t;�i], which is larger than the di¤erence above. This latter di¤erence
simply measures the extent of i�s disappointment, or diminished expectations.
We propose that diminished expectations, which depend on the planned ac-
tion for the current period, do not by themselves cause frustration, it is the
unavoidable perceived loss that causes frustration, and the related action ten-
dency of aggression. This distinction is illustrated by the following example.
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Example 7 Suppose that, in the game form of Figure C, Bob expects L and
plans to choose ` if R. Such expectation and plan are given by the �rst-order
CPS �b such that �b(Lj?) = 1 and �b(`jR) = 1. Given such beliefs, the
disappointment of Bob after he observes R is

E[�bj?;�b]� E[�bjR;�b] = 1� 0 = 1.

But Bob can avoid the loss by choosing r:

E[�bj?;�b]� ��b(R;�b) = 1�maxf�b(R; `); �b(R; r)g = 1� 2 = �1.

According to our assumption, the extent of Bob�s frustration in the second
stage is therefore zero:

Fb(R;�b) = maxf0;E[�bj?;�b]� ��b(R;�b)g = 0.

Thus, if anger and aggressive behavior are caused by frustration as de�ned
here, Bob would not be aggressive R. If instead anger were caused by mere
disappoinment, Bob could be angry and after R, and choose the aggressive
action `.

Figure C. Sequential coordination game.

Besides this di¤erence between disappointment and our de�nition of frus-
tration, there is an even more important di¤erence in the assumed impact
on behavior. In models of disappointment avoidance, it is the anticipation of
disappointment that plays a role, inducing behavior that trades o¤ expected
material gains with expected disappointment. When disappointment occurs,
it is � in a sense �too late to take a remedial action. The frustration ex-
perienced in stage k instead generates the action tendency of aggression in
stage k and possibly in later stages as well. In principle, also the anticipation
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of frustration may play a role, inducing behavior that tends to avoid future
frustration. But here neglet this e¤ect for the sake of simplicity.
Our simplest assumption about the action tendency generated by frus-

tration is that, when i is frustrated, he alleviates his frustration, which may
have cumulated over time, by taking it on other players and decreasing their
material payo¤. We call this action tendency simple anger (SA). In order
to represent action tendencies, we assume that, at each stage, player i max-
imizes a �decision utility� function, which combines his expected material
payo¤ and a psychological component. The impact of frustration felt in the
distant past is reduced according to an exponentially decreasing weight.

De�nition 8 The SA-decision utility of choosing action ai in period t+1
at a non-terminal information set hi;t 2 HD

i given CPS �i is

uSAi (hi;t; ai;�i) =

E[�ij(hi;t; ai);�i]� dSAi

 
tX

k=1

(rSAi )t�kFi(h
�k
i;t ;�i)

! X
j 6=i

E[�jj(hi;t; ai);�i]
!
,

(4)
with dSAi � 0, rSAi 2 [0; 1].

Parameter dSAi is the weight of present action tendencies given by the de-
sire to alleviate frustration by reducing the expected material payo¤ of other
players. Parameter rSAi gives the exponential rate at which past frustration
fades, when rSAi = 0 only present frustration matters, when rSAi = 1 past
frustration matters as much as present frustration.

Example 9 Consider the Ultimatum Minigame of Figure A. If Bob expects
f at t = 0 (1st-order belief �b(f j?) close to one), after g he is frustrated
and trades o¤ his material payo¤ �b with the desire to hurt Ann. Indeed, if
�b(f j?) = 1, the extent of Bob�s frustration after g is

Fb(g;�b) = max f0; (2�maxf0; 1g)g = 1.
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Example 10 Now suppose that Bob has to wait one period before he can
respond to Ann�s o¤er, as in Figure D.

Figure D. Ultimatum Minigame with delayed reply.

If Bob initially expects the fair o¤er f and gets the greedy o¤er g, he is
frustrated at beginning of the second period, but there is no further frustration
in the third period because his expected payo¤ cannot change. Therefore the
cumulated frustration at the beginning of the third period is only

rSAb � Fb(g;�b) + 1� Fb((g; �);�b) = rSAb + 0 = rSAb .

If Bob �cools o¤�fast, i.e., if rSAb is small, then he accepts the greedy o¤er.

In the Ultimatum Minigame the cause of a player�s frustration (given his
beliefs) is the other player. But simple anger can also cause aggressive be-
havior against players who cannot have caused any frustration, e.g., inactive
players. Simple anger can even be caused by one�s inability to follow his own
plan.

Example 11 (Inspired by Frijda, 1993) Andy the handyman uses a ham-
mer. He has an apprentice, Bob, that has no payo¤-relevant action. Chance
determines whether it is a good day of a bad day. In a bad day Andy hammers
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his thumb and then can either take it on Bob or not, if he does, he further
disrupts the production process. See Figure E.

Figure E. Hammering one�s thumb.

Assuming that �a(Bj?) = " < 1
2
, the extent of Andy�s frustration in a bad

day is

Fa(B;�a) = max f0; (2(1� ") + "�a(N jB)�maxf0; 1g)g = 2(1�")+"�a(N jB)�1 > 0.
If Andy is su¢ ciently prone to simple anger (dSAa su¢ ciently high), then he
takes it on Bob in a bad day.

Example 12 Andy is the only active player in the game form depicted in
Figure F (a modi�cation of Figure E), Bob is an interested observer:

Figure F. Game with an interested observer.

The only reasonable action for Andy is the good one, G, hence he plans
L (�a(Gj?) = 1) and initially expects $2. Choosing B by mistake would
frustrate Andy:

Fa(B;�a) = max f0; (2�maxf0; 1g)g = 1:
Again, if Andy is su¢ ciently prone to simple anger (dSAa > 1), then he would
give up $1 to take it on Bob.

21



3.2 Anger from blame

Much of the psychology literature associates anger with other-responsibility
or blame for negative events. For example, Averill (1983, p. 1150) says
�More than anything else, anger is an attribution of blame.�14 With anger
from blame, responsibility matters. Players are never angry at coplayers
whom they judge to be blameless. We o¤er two models which take this up,
in di¤erent ways.
For each history x = (a1; :::; at�1; at), let x=t;jbj denote the modi�ed

history obtained by replacing stage-t action of player j with action bj 2
Aj(x

�t�1):
x=t;jbj = (a

1; :::; at�1; (at�j; bj)).

With this, the extent of i�s frustration in period t + 1 to be �apportioned�
to j�s t-period action in history x is

Fji(x;�i) := Fi(x;�i)� min
bj2Aj(x�t�1)

Fi(x=t;jbj;�i) (5)

(note that Fji(x;�i) � 0 by de�nition).
Note, even in a two-person game form it is possible that Fji(x;�i) <

Fi(x;�i) because i�s frustration may have been caused by himself or by
chance. In particular, when j is a passive player (as in the game forms of Fig-
ures D and E) Aj(x�t�1) is a singleton, hence minbj2Aj(x�t�1) Fi(x=t;jbj;�i) =
Fi(x;�i) and Fji(x;�i) = 0. But in some two-person games Fji(x;�i) =
Fi(x;�i) at each history x where i is active.

Remark 13 In a leader-follower game, a follower apportions all his frustra-
tion on the leader: let j be the leader, then for every i 6= j, �i and a 2 Aj(?),
Fji(a;�i) = Fi(a;�i).

For example, in an Ultimatum Game (such as the game form of Figure A)
the responder�s (player i) frustration is entirely due to the proposer�s (player
j) non-fully expected o¤er a, hence Fji(a;�i) = Fi(a;�i).

3.2.1 Blaming behavior

Our simplest theory of anger from blame is that in each period player i
blames his co-players for his frustration, apportioning blame according to
14See also See also Smith & Ellsworth (1985), Ortony, Clure & Collins (1988), Lazarus

(1991), Weiner (1995), and Lerner & Keltner (2000).
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eq. (5), and he is angry at co-players that caused his frustration irrespective
of their intentions. The extent of i�s blame on j depends on i�s �rst-order
beliefs �i for two reasons: �rst, frustration depends on �i; second, in game
forms without observable actions, the likelihood of past imperfectly observed
actions of co-players is given by �i:

Bij(hi;t;�i) := E[Fjijhi;t;�i] =
X
x2hi;t

Fji(x;�i)�i(xjhi;t)

Anger from blame may build up over time. At any point in time, an angry
player i has the tendency to decrease the material payo¤ of the co-players
he blame. We capture this action tendency with a decision-utility function
that trades o¤ expected material payo¤ with harm in�icted on blameworthy
co-players:

De�nition 14 The decision utility due to anger from blaming behavior, or
ABB-decision utility of action ai at a non-terminal information set hi;t 2
HD
i given �rst-order CPS �i is

uABBi (hi;t; ai;�i) =

E[�ij(hi;t; ai);�i]� dABBi

X
j 6=i

 
tX

k=1

(rABBi )t�kBij(h
�k
i;t ;�i)

!
E[�jj(hi;t; ai);�i],

(6)

As in eq. (4), parameter dABBi is the weight of present action tendencies
due to anger from blame. When dABBi = 0, player i maximizes his expected
material payo¤. As before, parameter rABBi gives the exponential rate at
which past anger from blame fades, when rABBi = 0 only present frustra-
tion matters, when rABBi = 1 past frustration matters as much as present
frustration.
For example, consider the game form of Figure B and suppose that Penny

initially expects perfect coordination between Ann and Bob (it does not
matter whether (U;L) or (D; r)) and then observes the anti-coordination
pair (D;L); then eq. (6) implies that Penny blames Ann and Bob equally
because each one of them could have unilaterally avoided this unexpected
bad outcome, and hence she is equally angry toward both. We will go back
to this example in the analysis of equilibrium behavior. In the following
example we have just the opposite situation: nobody can be individually
blamed:
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Example 15 Ann and Bob play a kind of Prisoners�Dilemma game, Penny
stands to gain if and only if they both cooperate (action pair (U;R)) and has
the opportunity to punish if and only if they both defect (action pair (D;L),
see Figure G).

if N L R
U 1,4,1 3,3,2
D 2,2,1 4,1,1

if P L R
U 1,4,1 3,3,2
D 0,0,0 4,1,1

Figure G. Prisoner�s Dilemma with punishment: multistage and strategic form

According to eq. (6), if Penny expects cooperation and then observes that both
defected she is not angry with either Ann or Bob and hence has no tendency
to punish.

3.2.2 Blaming intentions

Our second theory of anger from blame is that i�s anger toward j is driven
by how much j intended to frustrate i, where such intentions are assessed
according to i�s higher-order beliefs. To model this, we �rst look at how much
player j expects to frustrate i. Using his second-order beliefs �j 2 Y 2

j :=

�
�Hj
�
Z � (�k 6=jY 1

j

�
, player j can compute the expectation E[Fjijhj;t�1; �j]

of the period-(t + 1) frustration he is going to in�ict on i with his period t
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choice conditional on hj;t�1:

�Fji(hj;t�1; �j) :=
X

x2hj;t�1

X
a2A(x)

Z
Y 1i

Fji((x; a);�i)�j(Z(x; a)�d�i�Y 1
�jijhj;t�1):

(7)
Then, using his third-order beliefs i 2 Y 3

i = �
�Hi(Z � (�k 6=iY 2

k ), player
i can compute the expectation of this expectation (held by j in the previous
period) conditional on hi;t, which is how much i blames j for the intention
to frustrate him

�Bij(hi;t; i) :=
X
x2hi;t

Z
Y 2j

�Fji(Hj(x
�t�1); �j)i(Z(x)� d�j � Y 2

�ijjhi;t). (8)

When i is frustrated and thinks that his co-players intended (planned) to
frustrate him, he blames them and becomes angry. Such anger from blame
may build up over time. As in the case of blaming behavior, an angry player
i has the tendency to decrease the material payo¤ of the co-players he blame,
and this action tendency is captured by a decision-utility function that trades
o¤expected experience utility with harm in�icted on blameworthy co-players:

De�nition 16 The decision utility due to anger from blaming intentions,
or ABI-decision utility of action ai at a non-terminal information set
hi;t 2 HD

i given third-order CPS i is

uABIi (hi;t; ai; i) = E[�ij(hi;t; ai);�i]+

�dABIi

tX
k=1

(rABIi )t�k1fFi(h�ki;t ;�i)>0g
(h�ki;t ;�i)

 X
j 6=i

�Bij(h
�k
i;t ; i)

!
E[�jj(hi;t; ai);�i],

(9)
where 1f�g(�) is the indicator function, dABIi ; rABIi 2 [0; 1], and �i = 1i is the
�rst-order belief derived from i.

4 Solution concepts

In this section we de�ne solution concepts for general psychological games
with m-order beliefs, which can be applied to games with simple anger and
with anger from blame. Recall that HD

i := fh 2 Hi : h \ Z = ;g is the
collection of non terminal information sets of i, that is, the information sets
containing decision nodes/histories.
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De�nition 17 An `-order psychological game is a structure

�` = (I; A;X; �c; (Hi; u
`
i)i2I),

where (I; A;X; �c; (Hi)i2I) is a multistage extensive form and, for each i 2 I,

u`i = (u
`
i(h; �; �) : Ai(h)� Y `

i ! R)h2HD
i

is a pro�le of decision-utility functions.

For example, if players�actions tendencies are determined by simple anger
(eq. 4), or anger from blaming behavior (eq. 6), then we have a 1st-order
psychological game; if instead action tendencies are determined by anger
from blaming behavior (eq. 9), then we have a 3rd-order psychological game.
We de�ne equilibrium beliefs of order m for psychological games of order

` � m. The reason is twofold. First, we want to compare equilibrium beliefs
of orderm for psychological games of di¤erent orders.15 Second, we introduce
restrictions on o¤-equilibrium-path updated beliefs that require m > `.

4.1 Sequential equilibrium

For every point y in a metrizable space Y , we let �y denote the Dirac measure
that assigns probability one to y. Also, for every behavioral strategy pro�le
� and history x, we let P�(x) denote the probability of x given by �.16 We
say that � is fully randomized if �i(aijhi) > 0 for all i 2 I, hi 2 HD

i

and ai 2 Ai(hi). Of course, if � is fully randomized P�(x) > 0 for every
history x. Finally, recall that we use obvious abbreviations such as �mi (xjh)
for marginal conditional beliefs, and that - for each k � m � (�mi )

k is the
k-order belief derived from m-order belief �mi .
We build on Battigalli & Dufwenberg (2009) to extend Kreps & Wilson�s

(1982) de�nition of sequential equilibrium assessment to psychological games.

15Geanakoplos et al. (1989) and Battigalli & Dufwenberg (2009) de�ne equilibria by
means of in�nite hierarchies of beliefs, i.e. with m = 1. In this more applied paper we
can limit our attention to �nite-order beliefs.
16If x = (a1; :::;a`), then

P�(x) :=
Ỳ
t=1

Y
j2I
�j(a

t
j jHj(x�t�1)).
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An m-order assessment is a pro�le (�; �m) = (�i; �
m
i )i2I 2 �i2I�i � Y m

i

such that �i is the behavioral strategy induced by CPS �mi (recall Remark
5); (�; �m) is fully randomized if � is fully randomized.

De�nition 18 An m-order assessment (�; �m) is consistent if there is a
converging sequence (�n; �mn ) ! (�; �m) of fully randomized assessments
such that, for every i 2 I, h 2 Hi, x 2 h, a 2 A(x) and n
(1)

�mi;n(xjh) =
P�n(x)P
x02h P�n(x0)

,

and
�mi;n(ajx) = �c(acjx)

Y
j2I

�j;n(ajjHj(x));

(2) for every j 6= i and k = 1; :::;m� 1, margY kj (�
m
i;n)

k+1(�jh) = �(�mj;n)k .

By continuity, conditions (1)-(2) must also hold at the limit (�; �m) (as
long as probabilities conditional on histories are well de�ned). Part (1) of
De�nition 18 adapts the de�nition of consistency of Kreps & Wilson (1982).
It implies that players share the same �rst-order beliefs, hence that the beliefs
of each player i about the behavior of a given player j coincide with the
plan (behavior strategy) of j. Part (2) requires that players have correct
conditional beliefs about the co-players�systems of beliefs (see Battigalli &
Dufwenberg, 2009). Consistency implies that the behavior strategy pro�le
� essentially determines the corresponding m-order belief pro�le �m, with
possibly some freedom for beliefs about co-players�past moves at information
sets o¤ the �-path.

Remark 19 For every behavior strategy pro�le � there is an `-order consis-
tent assessment (�; �`). If � is fully randomized or the extensive form has
observable actions there is a unique `-order consistent assessment (�; �`).
For every `-order consistent assessment (�; �`) there is a unique m-order
consistent assessment (�; �m) such that �`i = (�

m
i )

` for every i 2 I.

We say that a player plans rationally if the behavior strategy implied by
his �rst-order CPS assigns positive probability only to actions that maximize
his decision utility. Formally:
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De�nition 20 Let �i be the behavior strategy induced by CPS �mi . Player i
plans rationally in (�i; �mi ) if

Supp�i(�jh) � arg max
ai2Ai(h)

u`i(h; ai; (�
m
i )

`)

for every h 2 HD
i .

Fix a game form �, a player i 2 I and a CPS �i 2 �Hi
i (Z � Y ) (where Y

is some metrizable space). Assuming that i cares only about his monetary
payo¤ and is risk neutral, �i determines a decision tree �(�i) and a behavior
strategy �i.17 By the One-Shot Deviation Principle �i is sequentially optimal
in �(�i) if and only if i plans rationally given �i. This observation can be
extended to a class of psychological games. But for general psychological
games the One-Shot Deviation principle does not hold; a CPS where player
i plans rationally is an intrapersonal equilibrium (given beliefs about others)
that solves a �xed point problem, and the solution may have to be randomized
(see Battigalli & Dufwenberg, 2009 and 2012).

De�nition 21 An m-order assessment (�i; �mi )i2I is a sequential equilib-
rium (SE) of an `-order psychological game �` (` � m) if it is consistent and
each player i 2 I plans rationally in (�i; �mi ). An SE outcome is a distri-
bution � 2 �(Z) over terminal histories induced by an SE behavior strategy
pro�le.

The previous observation about the One-Shot Deviation Principle implies
that for games with material preferences our de�nition of SE is equivalent to
the de�nition of Kreps & Wilson (1982).
Comment According to the SE concept, a player never has doubts about

the belief systems, and hence the plans of his co-players. If player i observes
an action of j that, according to i�s higher-order beliefs, j did not plan to
choose, this is explained away as a non-intentional choice (a �mistake�);
furthermore, i believes that there will be no other un-planned actions in the
continuation (cf. Selten, 1975). This is a de�nition of equilibrium in beliefs;
of course, a prediction is obtained by assuming that each player i actually
behaves according to his plan �i.

17Recall that �i satis�es own-action independence. Hence we can turn the game in a
decision problem where i and �i never play simultaneously and use �i to assing probabil-
itites to "arcs" a�i in a unique way. The probabilities of decision nodes x conditional on
information sets are given by �i(xjHi(x)).

28



Example 22 Consider the Ultimatum Minigame of Figure A with the de-
cision utility function (9). Is the strategy pair (f; n) a sequential equilib-
rium? No, because in any third-order consistent assessment (f; n; a; b)
Bob�s would be certain, upon observing the greedy o¤er g, that this was an
unintentional choice made by mistake; therefore he would not blame Ann and
would rather deviate and accept (y) the greedy o¤er.

The consistency condition in the de�nition of SE implies that the set of
m-order sequential equilibria of an `-order psychological game (` � m) is
essentially independent of m:

Remark 23 For all `; k;m 2 N, with ` � k � m, and (�i; �mi )i2I , the
following are equivalent:
(a) (�i; �mi )i2I is an SE,
(b) (�i; (�mi )

k)i2I is an SE and (�i; �mi )i2I is consistent
(c) (�mi )i2I is the unique m-order beliefs pro�le such that (�i; (�

m
i )

k)i2I is an
SE.

Adapting the proof of existence of Battigalli & Dufwenberg (2009) one
can show the following:

Theorem 24 Every `-order psychological game with continuous decision-
utility functions has an m-order sequential equilibrium for each m � `.

4.2 Equilibrium with perceived intentionality

Fix anm-order CPSs �mi 2 Y m
i of player i, two consecutive information sets of

player i, ht�1; ht 2 Hi and an action ai 2 Ai(ht�1) so that (ht�1; ai) � ht, that
is, ai is the unique18 action of i at ht�1 leading to ht. If �mi (htj(ht�1; ai)) = 0,
it must be the case that i is �surprised�by what he learns at date t about
his co-players� behavior. As we said, the sequential equilibrium concept
postulates that i always holds correct beliefs about the plans of his co-players.
If this is the case, then i�s surprise must be due to a deviation of some j 6= i
from his plan (recall that j�s beliefs about his own behavior are equivalent to
a behavior strategy of j), and i indeed infers that some co-player j deviated
from his plan, but has no doubt about what this plan may be.

18By perfect recall.
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If instead i interpreted a surprise as the result of an intentional choice,
then he would be forced to conclude that some co-player�s plan are di¤erent
from what he thought. We explore a notion of equilibrium whereby each
player interprets deviations from the expected path as due to intentional
choices. This forces us to weaken the consistency condition of De�nition
18. If we assume that players�s initial beliefs about their co-players beliefs
(hence their plans) are correct and that deviations from the expected path are
perceived as intentional, then we must allow beliefs conditional on deviations
to be incorrect. In the following de�nitions we consider deviations by di¤erent
co-players separately, checking whether a history x has positive probability
under j�s strategy �j for some ��j; in this case we say that �j allows x.19

De�nition 25 Anm-order assessment (�; �m) is weakly consistent if there
are jIj converging sequences of fully randomized assessments (�in; �mi;n) !
(�i; �mi ) (i 2 I) such that, for every i 2 I, h 2 Hi, x 2 h, a 2 A(x) and n
(1)

�mi;n(xjh) =
P�in(x)P
x02h P�in(x0)

,

and
�mi;n(ajx) = �c(acjx)

Y
j2I

�ij;n(ajjHj(x)),

(2) for every j 6= i, k = 1; :::;m� 1, if �ij allows x, then

�ij(�jHj(x)) = �jj(�jHj(x))

�mi (xjh) > 0 =) margY kj (�
m
i )

k+1(�jx) = �(�mj )k :

An m-order assessment (�; �m) is weak sequential equilibrium (WSE) of
an `-order psychological game (` � m) if it is weakly consistent and each
i 2 I plans rationally in (�i; �mi ).

As the name suggests, WSE weakens the SE concept. In a WSE a player
may change his beliefs about the intentions of a co-player after a deviation of
the latter. The next step is a theory of how players change their beliefs about

19Formally, �j allows x if P�j ;��j (x) > 0 for some ��j (or, equivalently, for every
strictly positive ��j). Two behavioral strategies �j and � j allow the same histories and
behave in the same way at such histories if and only if they are realization-equivalent
(P�j ;��j (x) = P�j ;��j (x) for all x and ��j). See Kuhn (1953).
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co-players� intentions. There are several plausible alternatives, including a
theory of forward-induction thinking along the lines of the rationalizability
analysis of Battigalli & Dufwenberg (2009, Section 5). Here we adopt an
approach more in the spirit of the equilibrium re�nement literature (see in
particular Reny, 1992). The idea is that a deviation by j is explained, if
possible, by assuming that j is following a di¤erent equilibrium.
For any beliefs pro�le (�ki )i2I , we say that player j allows history x within

(�ki )i2I if the behavior strategy �j determined by �
k
j (the plan of j within �

k
j )

allows x. Let WSEk(j; x) denote the set of k-order WSE beliefs such that
j allows x, and let WSEkj (j; x) be the projection of WSEk(j; x) on Y k

j . In
other words, WSEkj (j; x) is the set of CPS�s �

k
j 2 Y k

j that belong to some
WSE where j allows x. First suppose for simplicity that past actions are
observable. In this case our re�nement of WSE requires that each player i
believes conditional on each history x with WSEkj (j; x) 6= ; that j is following
a WSE plan contained in an k-order WSE where j allows x. The following
de�nition applies to more general extensive forms.

De�nition 26 Anm-order assessment (�; �m) is an equilibrium with per-
ceived intentionality (EPI) of an `-order psychological game, with ` <
m, if it is an m-WSE such for every i 2 I, j 6= i and x 2 X with
WSEm�1j (j; x) 6= ;

�mi (xjHi(x)) > 0 =) margYm�1j
�mi (WSEm�1j (j; x)jx) = 1.

An EPI outcome is a distribution � 2 �(Z) over terminal histories induced
by an EPI behavior strategy pro�le.

Comment EPI di¤ers from SE in two related ways. First, as explained
above, the strong requirement of consistency is replaced by weak consistency:
each player i has a plan �ii and jIj � 1 independent conjectures (�ij)i6=i about
co-players�behavior, conjecture �ij and higher-order beliefs about each co-
player j are assumed to be correct as long as no deviation by j is detected.
Furthermore, at o¤-equilibrium-path histories players may disagree about
who deviated and how. Second, when player i is surprised by co-player j at
history x, he assumes �if possible �that j is following some other equilibrium
plan allowing x. This implies that at some histories i would change his mind
about j�s beliefs, whereas in an SE each player has �xed beliefs about the
co-players�beliefs.
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Example 27 Consider again the Ultimatum Minigame of Figure A with the
decision utility function (9). We claim that, for su¢ ciently high dABIb , the
strategy pair (f; n) is part of a fourth-order EPI assessment (f; n; �a; �b).20

First note that (g; y) is part of a third-order SE (g; y; ab), which by de�-
nition is also a third-order WSE: In this equilibrium Bob expects the greedy
o¤er g, which therefore cannot anger him, hence he accepts. With this, we can
construct an EPI (f; n; �a; �b) whereby Bob would interpret the deviation to
the greedy o¤er as Ann having in mind the �wrong�equilibrium (g; y; ab),
hence as an intentional choice by Ann. Then Bob would blame Ann and
punish her (if dABIb is high enough) saying no.

4.3 Polymorphic equilibria

There is another way to reconcile consistency requirements with non trivial
inferences about co-players�beliefs, which is more easily understood in the
context of population games. Suppose that the given game is played by
agents drawn at random from large populations, one for each player role
i 2 I. Di¤erent agents in the same population i may have di¤erent plans,
hence di¤erent �rst-order beliefs, even if their beliefs agree about the behavior
and beliefs of co-players �i. In this case we say that the population is
�polymorphic.�Once an agent playing in role i observes some moves of co-
players, he makes inferences about the intentions of the agents playing in the
co-players�roles.
Let �i be a �nite support distribution over �i�Y m

i . We interpret �i as a
statistical distribution of plans and beliefs in the population of agents playing
in role i and for every (�i;k; �i;k) in the support of �i we let �i;k denote the
fraction of agents with plan and beliefs (�i;k; �i;k). With a slight abuse of
terminology we call �support of �i�the set of indices ki such that �i;ki > 0 and
we will refer to such indices as �types.�21 A type pro�le is denoted k = (ki)i2I .
Assuming random matching, a pro�le of distributions � = (�i)i2I determines
the probability of reaching each history x:Tthe probability of assessment
(�i;ki ; �i;ki)i2I is

Q
i2I �i;ki; the probability of reaching x given that each player

20Here �i denotes the fourth-order CPS of i, not a Dirac measure (� is the fourth letter
of the Greek alphabet).
21The marginal of �i on �i is a behavior strategy mixture (see Selten, 1975).
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follows his plan in (�i;ki ; �i;ki)i2I is P(�i;ki )i2I (x); therefore,

P�(x) =
X

k2�i2ISupp�i

Y
i2I

�i;kiP(�i;ki )i2I (x).

Let P��i(x) denote the probability obtained from P�(x) by replacing �i with
a degenerate distribution (Dirac measure) ��i where �i chooses each action
of i in history x with probability one. By perfect recall, if P�(x) > 0, then

P�(xjHi(x)) =
P��i(x)P

x02Hi(x) P��i(x
0)

and

P�(a�ijx) =
X

ai2Ai(x)

P��i(x; (ai; a�i))
P��i(x)

are well de�ned and independent of �i.22

De�nition 28 An m-order polymorphic assessment is a pro�le of �nite
support probability measures �m = (�mi )i2I 2 �i2I�(�i � Y m

i ) such that
�i;ki is the behavior strategy induced by �

m
i;ki
for every i 2 I and every ki in

the support of �mi . A polymorphic assessment �m is consistent if there is
a converging sequence of polymorphic assessments �mn ! �m such that, for
every i 2 I, ki 2 Supp�i;n, x 2 X, a�i2 A�i(x) and n 2 N
(1) �i;ki;n is fully randomized,

�mi;ki;n(xjHi(x)) = P��i;n(xjHi(x)),

and
�mi;ki;n(a�ijx) =

X
a0i2Ai(x)

P��i;n(a�ijx);

(2) for every ` = 1; :::;m � 1, and k�i = (kj)j 6=j in the support of ��i;n =Q
j 6=i �j;n

margY `�i(�
m
i;ki;n

)`+1((�mj;kj ;n)j 6=ijx) =
�k�i;nP�k�i (x)
P��i;n(x)

.

22Indeed, P�(xjHi(x)) =
P
���
(x)P

x02Hi(x0)
P
���
(x0) and P�(a�ijx) = �c(acjx)

Q
j 6=i ��

�
j (aj jHj(x)),

where ���j is any behavior strategy of j realization-equivalent to the behavior strategy
mixture implied by �i, that is, marg�j�j . See selten (1975).
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Comments All the conditional probabilities in De�nition 28 are well
de�ned. By continuity, all the equalities hold in the limit (as long as con-
ditional probabilities are well de�ned in the limit). Condition (1) implies
that

�mi;ki(zjf?g) = P(��i;�i;ki )(z)
for every z 2 Z, i 2 I and ki in the support of �i. In a mixed consistent
assessment di¤erent types ki of player i have di¤erent plans, but they agree
on the statistics � and hence on beliefs of the co-players, and at each stage
they assume that the co-players will follow their plans (whatever they are)
in the continuation of the game. Furthermore, the types of players i and i0

agree on the beliefs of any third player j. The only uncertainty concerns the
plans implied by co-players beliefs.

De�nition 29 An m-order mixed assessment �m is a polymorphic se-
quential equilibrium if it is consistent and, for every i 2 I and ki in the
support of �i, i plans rationally in (�i;ki ; �

m
i;ki
).

Remark 30 Every SE is a degenerate polymorphic SE. Therefore every `-
order psychological game with continuous decision-utility functions has an
m-order polymorphic SE for each m � `.

Example 31 Consider the Ultimatum Minigame of Figure A and the ABI-
decision utility of eq. (9). Let dABIb = 1 for simplicity. We claim that
the following pro�le (�a; �b) is a mixed SE: �b assigns probability one to just
one type of Bob who randomizes with �b(yjg) = 2

3
, there are two equally likely

types of Ann, �a =
�
1
2
; 1
2

�
, type 1 (resp. 2) has the deterministic plan f (resp.

g). First-order beliefs �i and higher-order beliefs �i and i are determined
by the consistency conditions. Both types of Ann are indi¤erent given their
belief beliefs about Bob, because only material payo¤s matter for them (there
cannot be any frustration in the �rst period), and both o¤ers yield $2 in
expectation. Bob is frustrated by the greedy o¤er

Fb(g;�b) = max

�
0; 2� 1

2
+

�
1� 2

3
+ 0� 1

3

�
� 1
2
� 1
�
=
1

3
.

Bob infers from observing g that he is facing the type of Ann who planned
the greedy o¤er and he fully blames his frustration on Ann. With this, Bob
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is indi¤erent between accepting and rejecting:

uABIb (g; y; b) = 1� 1
3
� 3 = 0,

uABIb (g; n; b) = 0� 1
3
� 0 = 0.

5 Equilibrium analysis of anger

For a given multistage game form � (a game with material payo¤s) we let
�SA(dSA; rSA), �ABB(dABB; rABB) and �ABI(dABI ; rABI) respectively denote
the psychological games with simple anger, anger from blaming behavior
and anger from blaming intentions obtained from � with parameters val-
ues (dSAi ; rSAi )i2I , (dABBi ; rABBi )i2I and (dABIi ; rABIi )i2I . In statements where
the precise parameter values do not matter, we simply write �SA, �ABB and
�ABI to denote the psychological games based on game form �. The material-
preferences equilibria of � are the equilibria of �SA(0;0) and �ABB(0;0) of
the same kind (SE, EPI or mixed SE), and are the 1st-order belief projection
of the higher-order beliefs equilibria of �ABI(0;0). We �rst establish some
general relationships between equilibria of the same kind with di¤erent mod-
els of anger and equilibria of di¤erent kinds with the same model of anger.
We compare equilibrium strategies and equilibrium outcomes across di¤erent
games and/or type of equilibrium.

Proposition 32 Let � be a two-stage game form with two players and (at
most) one active player in the second stage. Then every pure SE (resp.
EPI) outcome of � is also an SE (resp. EPI) outcome of the psychological
games �ABB and �ABI ; furthermore, if there are no chance moves every pure
SE (resp. EPI) outcome of � is also an SE (resp. EPI) outcome of the
psychological game �SA.

To understand this, note that players cannot be frustrated at the be-
ginning of the game, hence they cannot be angry and expected material
payo¤maximization coincides with decision utility maximization in the �rst
stage. The same holds in the second stage on the equilibrium path. If at
o¤-equilibrium-path information sets a player is angry his decision utility
maximizing action gives the co-player a lower material payo¤ compared to
the material-payo¤ equilibrium action. Therefore, if the active player�s strat-
egy of the material-payo¤ equilibrium is modi�ed o¤ the equilibrium path so
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as to maximize his decision utility, the incentive of the co-player to deviate
in the �rst stage is even lower than in the material-payo¤ equilibrium.
It is easy to show that some psychological games with simple anger and

anger from blaming behavior have more pure SE or EPI outcomes than the
material payo¤ game. For example, it is easy to check that the fair o¤er f
is a pure SE outcome of of the Ultimatum Minigame with simple anger and
anger from blaming behavior if Bob is su¢ ciently prone to anger. The same
holds for the EPI outcomes of psychological games with anger from blaming
intentions, as shown in Example 31. On the other hand, the SEs of � and
�ABI tend to coincide. The reason is that, as explained above, in an SE
players never change their mind about co-players intentions, thus when they
are frustrated by unexpected moves they do not blame the co-players.

Proposition 33 Let � be a game form without chance moves. Then the
pure (third-order) SEs of � and �ABI coincide.

The intuition is quite simple. In a pure equilibrium of a game without
chance moves players can feel frustrated only after deviations. But according
to the SE equilibrium concept, deviations are always interpreted as uninten-
tional mistakes and players do not blame their frustration on co-players,
hence they are not aggressive. This means that in equilibrium players maxi-
mize their material payo¤ at every non-terminal history.
The following proposition concerns leader-follower games, a kind of two-

stage games. In two-stage games the rate of decay of anger is irrelevant
because players can feel frustrated only in the second and �nal period. There-
fore we omit the vector r of decay parameters from our notation.

Proposition 34 In a leader-follower game �, every SE outcome of �ABB(dABB)
where the leader�s strategy is fully randomized is also a polymorphic SE out-
come of �ABI(dABI) provided that dABB = dABI .

The intuition is as follows. Let � be an SE strategy pro�le of �ABB(dABB)
where the leader strategy is fully randomized. First note that since there
cannot be any frustration in the �rst period, the leader just maximizes his
expected payo¤. The indi¤erence condition for the leader implies that each
pure action of the leader, say player 1, is a best reply to ��1. Then let
� = (�i)i2I be as follows: for each a1 2 A1(?), there is a corresponding
type and �1;a1 = �1(a1j?); for each follower i there is a unique type with

36



plan/strategy �i. Beliefs are determined by the consistency conditions be-
cause action are observable. By construction, the second-period frustration
of followers is the same in both assessments. Upon observing a1 the active
follower infers that he is facing the type who plans precisely a1, therefore
blaming intentions is equivalent to blaming behavior and incentives are the
same in both assessments (with the respective decision utilities).
For example, in the Ultimatum Minigame there is a randomized SE of

�ABB(1) where the leader (Ann) randomizes 1
2
: 1
2
on the fair and greedy

o¤er and the follower (Bob) accepts the greedy o¤er with probability 2
3
. As

shown in Example 31, this corresponds to a polymorphic SE of �ABI(1) with
the same outcome.

6 Concluding remarks

A series of experimental studies suggest that anger is an important driver of
behavior. In the the ultimatum game... using emotion self-reports, Pillutla
& Murnighan (1996) �nd that reported anger predicted rejections better
than perceived unfairness ... Schotter & Sopher (2007) measure second-
mover expectations and �nd that unful�lled expectations drive rejections ...
Sanfey (2009) reports that psychology students who are told that a typical
o¤er is $4-$5 reject low o¤ers more frequently than students who are told
that a typical o¤er is $1 - $2 ... Sanfey et al. (2003) �nd that rejections
of low o¤ers are associated with greater activation of the anterior insula, a
brain region associated with negative emotional states ... Koenigs & Tranel
(2007) �nd that patients with lesions in the ventromedial prefrontal cortex
(vmpfc) �a region of the brain associated with emotion regulation �reject
unfair o¤ers more frequently than normal subjects. Patients with vmpfc
damage have a tendency towards exaggerated anger and emotional outbursts
in social situations involving frustration or provocation, and the results of this
study suggest that anger regulation plays a key role in economic behavior ...
Cross-cultural studies show considerable variation in behavior (Henrich et al.
2006); one explanation for these results is that cultural factors in uence the
initial expectations subjects have about play in the game, subjects compare
observed play with these expectations, negative deviations from the culturally
in�uenced benchmark lead to emotional reactions, based on frustrations &
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anger, which then a¤ect behavior.23

To boot, psychologist have argued for years that anger shapes behavior in
important ways for years �we have cited this scholarship extensively earlier
and will not repeat here.
What has been missing, from an economist�s point-of-view, are theoretical

models of anger that can be employed in economic analysis. Our goal in this
paper has been to take �rst steps in that direction. We hope that the models
we have proposed will prove useful for applied work, and that our paper
will also inspire experimental work that can shed light on the empirical, and
situational, relevance of the various nuances of anger that our approach has
highlighted.

7 Appendix

7.1 De�nition of multistage extensive form

Let N0 denote the set of natural numbers including zero, and �x a range A.
For each ` 2 N0, A` is the set of sequences of length ` of elements of A,
with the convention that A0 = f?g is the singleton containing the empty
sequence ?. For every k; ` 2 N0, x 2 Ak is a pre�x of y 2 A`, written
x � y, if k < ` and y is obtained by concatenating x with a sequence of `�k
elements of A, that is x = ? (k = 0), or x = (a1; :::ak), y = (b1; :::;bk; :::;b`)
and (a1; :::ak) = (b1; :::;bk). Notice that ? is a pre�x of every nonempty
sequence. We say that x is a weak pre�x of y, written x � y, if either
x � y or x = y. For any index set J and range A, AJ is the set of pro�les
(aj)i2J , that is, the set of functions that assign an element of A to each i 2 I.

23While we devote this paragraph mainly to the ultimatum game, we note that there
exists relevant evidence also from other games. Fehr & Gachter (2002) conclude that
negative emotions such as anger are the proximate cause of costly punishment of free-
riders in public goods games. Experiments by Frans van Winden and several coauthors
(e.g. Bosman & van Winden 2002; Bosman, Sutter & van Winden 2005); Reuben & van
Winden 2008) record both emotions and expectations in the power-to-take game. In this
game a �rst-mover can "take" some fraction of a second-mover�s endowment. The second-
mover, upon seeing the take decision, decides how much of the endowment to destroy
before the �rst-mover gets it (unlike in the ultimatum game, where all-or-nothing gets
destroyed). These papers show that second-mover expectations about take-rates are a key
factor in the decision to destroy income, and that anger-like emotions are also triggered
by the di¤erence between expected and actual take rates.
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De�nition 35 A set of sequences

X �
S
`2N0

A`

is a tree if the following holds: for each x; y 2
S
`2N0

A`, if y 2 X and x � y,

then x 2 X. A sequence z 2 X is terminal (in X) if z is not the pre�x of
any other element of X; the set of terminal sequences in X is denoted by Z.

De�nition 36 Amultistage extensive form is a structure (I; A;X; �c; (Hi)i2I)
whose elements are speci�ed as follows:
(1) I is a �nite set of players;
(2) A is a �nite set of actions;
(3) X �

S
`2N0

(AIc)` is a �nite tree of sequences of action pro�les a = (ai)i2Ic 2

AIc, called histories;
(4) �c = (�c(�jx))x2XnZ 2 �x2XnZ�o(Ac(x)) (where Ac(x) = fac 2 A :
9a�c 2 AI ; (x; (ac; a)) 2 Xg) is the probability function of chance moves;
(5) for every i 2 I, Hi � 2X is a partition of X, called the information
partition of i;
The tree X has the following property:
(X, independent choices) for every i 2 I, x 2 X, ai; bi 2 A, a�i;b�i 2
AIcnfig, if (x; (ai; a�i)); (x; (bi;b�i)) 2 X then (x; (ai;b�i)) 2 X.
The information partitions (Hi)i2I have the following properties:
(H.1, knowledge of stage) for every i 2 I, h 2 Hi , x; y 2 h, x and y have
the same length;
(H.2, knowledge of feasible actions) for every i 2 I, h 2 Hi , x; y 2 h, ai 2 A,
a�i 2 AIcnfig, if (x; (ai; a�i)) 2 X then there is some b�i 2 AIcnfig such that
(y; (ai;b�i)) 2 X;
(H.3, perfect recall) for every i 2 I, h0; h00 2 Hi , x00; y00 2 h00, if x0 � x00 for
some history x0 2 h then there are a history y0 � y00, an action ai 2 A and
action pro�les a�i;b�i 2 AIcnfig such that y0 2 h0, (x0; (ai; a�i)) � x00 and
(y0; (ai;b�i)) � y00.

Property (X) says that the set of action pro�les that are feasible at a given
history is a cross-product, A(x) = �j2IcAj(x), which means that what i can
choose is independent of what the co-players and chance choose (if choices are
truly simultaneous and fully controlled by players it cannot be otherwise).
Property (H.1) says that the game form has a multistage structure: players
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always know howmany action pro�les have already been chosen. This implies
that the singleton containing the empty history is an information set of each
player: for every i 2 I, f?g 2 Hi.24 Property (H.2) says that a player
knows his set of feasible actions: for every x 2 h 2 Hi, Ai(x) = Ai(h).
Property (H.3) says that players have perfect recall and this is captured
by the information partitions.25 Therefore, each information set h 2 Hi is
identi�ed by the unique personal history recording the information states and
actions of i that obtains for every x 2 h. In a game form with observable
actions, each h 2 Hi is a singleton and Hi is isomorphic to the set of
histories X. By convention, at a non terminal history x 2 XnZ; each player
i (including chance) has a nonempty set Ai(x) of feasible actions; if he is
active jAi(x)j � 2, if he is inactive jAi(x)j = 1. By de�nition, a history
x is terminal if and only if Ai(x) = ; for each i 2 I. If a game form with
observable actions has only one active player at each non-terminal history,
then it has perfect information. Notice that when the game ends players
learn that it has ended26 and obtain information about the path of play.

7.2 Impact of positive surprises on frustration

In eq. (4) we are excluding the possibility that positive surprises can partially
o¤set frustration. To account for this possibility, we can introduce a less
extreme functional form where positive surprises have a positive impact. Let

f(�) =

�
�, if � � 0
g�, if � < 0

, (0 � g � 1); (10)

F̂i(hi;t;�i) =

�
f(E[�ijhi;t�1;�i]� ��i (hi;t;�i)); if hi;t 2 HD

i

f(E[�ijhi;t�1;�i]� �i(hi;t;�i)); if hi;t � HinHD
i

(11)

(the second part of eq. (11) takes into account that if hi;t is terminal i cannot
a¤ect any more his expected payo¤). Parameter g is the weight of a gain

24Since Hi is a partition of X and ? 2 X, there is some h 2 Hi such that ? 2 h. Let
x 2 X be a history of length ` > 0; then x =2 h, otherwise h would contain two histories of
di¤erent length, thus violating property (H.1).
25Information partitions capture the information structure given by the rules of the game

as well as assumptions about the cognitive abilities of players, such positive introspection,
negative introspection and perfect recall.
26If an information set h 2 Hi contained a terminal history x and a non-terminal history

y, then property (H.2) would be violated: Ai(x) = ; 6= Ai(y).
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over lagged expectations. When g = 0, f(�) = maxf0;�g and we obtain the
expression of eq. (3), F̂i(hi;t;�i) =Fi(hi;t;�i); when g = 1, f(x) = x and we
get F̂i(hi;t;�i) = �i;t�1(hi;t�1;�i)���i (hi;t;�i). Then a plausible speci�cation
of decision utilities could be the following:

ûFi (hi;t; ai;�i) =

E[�ij(hi;t; ai);�i]�dSAi max

(
0;

tX
k=1

(rFi )
t�kF̂i(h

�k
i;t ;�i)

)
�
 X
j 6=i

E[�jj(hi;t; ai);�i]
!
:

(12)
When g = 0, eq.s (??) and (12) give back, respectively eq.s (??) and (4),
that is, v̂Fi (z; �i) = vFi (z; �i) and ûFi (hi;t; ai;�i) = uFi (hi;t; ai;�i). When
g = 1 positive surprises completely cancel out negative surprises of the same
size.

7.3 Impact of positive surprises on anger from blame

Also in the case of anger from blaming behavior we can assume that positive
surprises in some periods partially or totally o¤set negative surprises in other
periods and hence take o¤ some anger, a possibility excluded by eq. (6).27 To
account for this possibility, we can introduce a less extreme functional form
where positive surprises have a positive impact. Fix a history x of length t,
then

Fi(x;�i) := f
�
E[�ijHi(x

�t�1);�i]� ��i (Hi(x);�i)
�

(13)

where f is the loss-gain function de�ned in eq. (10) parametrized by the
weight g of a gain over lagged expectations. Then �Fji(x;�i) and B̂ij(hi;t;�i)
can be derived in much the same way as Fji(x;�i) and Bij(hi;t;�i):

F̂ji(x;�i) := F̂i(x;�i)� min
bj2Aj(x�t�1)

F̂i(xjt;jbj;�i),

B̂ij(hi;t;�i) := E[F̂jijhi;t;�i]:
The following is a plausible speci�cation of decision utility:

ûABBi (hi;t; ai;�i) =

27The required modi�cations for the case of blaming intentions are similar.
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E[�ij(hi;t; ai);�i]� dABBi

X
j 6=i

 
tX

k=1

(rABBi )t�kB̂ij(h
�k
i;t ;�i)

!
E[�jj(hi;t; ai);�i],

(14)
where v̂i is the modi�ed experience utility function de�ned in eq. (??) and
dABBi ; rABBi 2 [0; 1]. When g = 0, eq.s (??) and (14) give back, respec-
tively, eq.s (??) and (6), that is, v̂i(z; �i) = vi(z; �i) and ûABBi (hi;t; ai;�i) =
uABBi (hi;t; ai;�i). When g = 1 positive surprises completely cancel out neg-
ative surprises of the same size.

7.4 Proofs

7.4.1 Proof of Lemma 6

Battigalli & Siniscalchi (1999) shows that the set of CPS�s on (Z; �Hi) is a
closed subset of [�(Z � Y )]

�Hi. We only have to show that �
�Hi
i (S � Y ) is

a closed subset of the set of CPS�s. Fix an arbitrary converging sequence
�n ! �0 of CPS�s that satisfy conditions (1)-(2) of De�nition 4. Then,
�n(�jh) converges weakly to �0(�jh) for each h 2 �Hi. Fix some h 2 Hi,
x 2 h, ai 2 Ai(x) and a�i 2 A�i(x). Function margY (�) : �(Z � Y ) !
�(Y ) is continuous, therefore �n(�jh)! �0(�jh), �n(�jh; ai)! �0(�jh; ai) and
margY �

n(�jh) = margY �
n(�jh; ai) imply margY �0(�jh) = margY �

0(�jh; ai).
Thus, �0 satis�es condition (1). Suppose that �0(Z(x)� Y jh) > 0. Then

�n((ai; a�i)jx) =
�n(Z(x; (ai; a�i))� Y jh)

�n(Z(x)� Y jh)

is well de�ned, not only for n = 0, but also for each n large enough, so that
�n(Z(x) � Y jh) > 0. Z(x; (ai; a�i)) � Y and Z(x) � Y are both closed and
open in the product topology given by the discrete topology of Z and the
topology of Y , therefore �n(�jh)! �0(�jh) implies

�n(Z(x)� Y jh) ! �0(Z(x)� Y jh);
�n(Z(x; (ai; a�i))� Y jh) ! �0(Z(x; (ai; a�i))� Y jh),

�n((ai; a�ijx) ! �0((ai; a�ijx),

so that condition (2) must hold in the limit for �0. �
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7.4.2 Proof of Proposition 32

(...) �

7.4.3 Proof of Proposition 33

(...) �
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