The Anatomy of the Transmission of Macroprudential Policies: Evidence from Ireland

Viral Acharya, Katharina Bergant, Matteo Crosignani, Tim Eisert, Fergal McCann

15 December 2017 4th Conference on Bank Performance, Financial Stability and the Real Economy

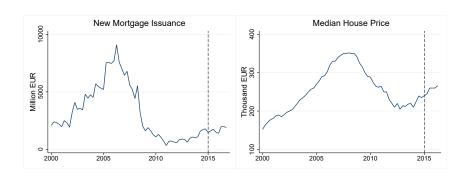
The views expressed in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System, the Reserve Bank of India, the Central Bank of Ireland, or anyone associated with these institutions. All errors are our own.

The Transmission of Macroprudential Regulation

- Macroprudential policies implemented throughout the world
- Goal is almost always to preserve financial stability
- Often aimed at limiting bank risk exposure to real estate
- Little work on transmission: recent episodes, data limitations
- ► **This paper:** Analysis of the effect of macroprudential policies aimed at limiting bank exposure to real estate on:
 - 1) Household access to credit
 - 2) Evolution of house prices
 - 3) Bank credit supply to firms
 - 4) Bank holdings of securities

This Paper

- Setting:
 - LTI and LTV limits on new residential mortgages
 - Adopted in Ireland in February 2015
- Data:
 - Mortgage-level data for residential mortgages
 - Loan-level data for credit to firms
 - Security-level holdings by banks
 - House price data by region
- Lending limits induce banks to reallocate their portfolio
 - High-income households take larger mortgages, increase their LTV at lower interest rates
 - 2) House price evolution consistent with mortgage credit reallocation patterns
 - 3) Banks increase lending to risky firms (volumes and prices)
 - 4) Banks increase their holdings of risky securities


Literature on Macropru and Bank Lending

- Cross-country evidence (Claessens et al., 2013; Ayyagari et al., 2017)
- Countercyclical capital buffers and bank lending (Jimenez et al., forthcoming; Basten and Koch, 2015)
- Capital requirement on residential mortgages (Auer and Ongena, 2016)
- The effect of liquidity requirements in emerging markets (Dassatti Camors et al., 2015)

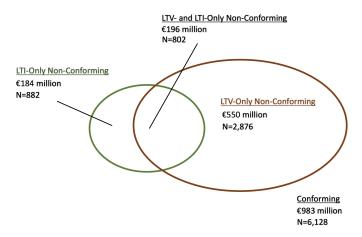
Contribution: comprehensive analysis of the transmission using microdata across asset classes (mortgages to households, loans to firms, and securities)

Setting and Data

Mortgage Issuance and House Prices in Ireland

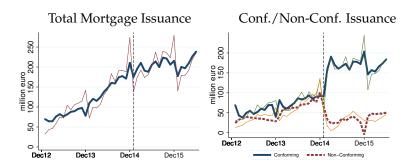
LTV/LTI Limits in Ireland

Patrick Honahan (at that time Governor) in January 2015:

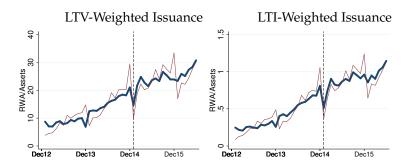

"What we are trying to prevent is another psychological loop between credit and prices and credit. If we avoid that, we can keep banks safe, we can keep borrowers safe."

- Oct 7, 2014: Announcement of new macroprudential measures
- Feb 9, 2015: LTV/LTI limits for new loans implemented
- LTI limits:
 - 3.5 for Primary Dwelling Homes (PDH)
- LTV limits:
 - ▶ 90 for First-Time-Buyers (FTB)
 - ▶ 80 for Second- and Subsequent-Buyers (SSB)
 - ▶ 70 for Buy-To-Let (BTL)
- By 2017, 13 European countries have adopted similar measures

Aggregate Facts


49% Mortgages Affected, Mostly by LTV

- 49% of typical issuance is non-conforming
- 80% of typical non-conforming issuance is LTV-non-conforming


Issuance Volume Unaffected

- No decrease in total mortgage issuance
- The market "moves" from non-conforming to conforming

Buildup of Risk Exposure Unaffected

- LTV-weighted issuance as a fraction of assets keeps increasing
- LTI-weighted issuance as a fraction of assets keeps increasing

Bottom				Top	
Q1	Q2	Q3	Q4	Q5	
32,682	47,659	64,899	91,756	168,129	
34.2	35.3	36.2	37.7	40.0	
82.7	78.1	65.1	41.7	27.0	
1.7	2.3	3.2	4.3	8.4	
95,119	127,008	168,902	215,070	235,773	
77.2	77.2	78.3	76.7	71.8	
3.2	3.0	3.0	2.7	2.3	
4.15	4.26	4.25	4.26	4.27	
Distance from Lending Limits					
0.54	0.75	0.73	1.00	1.28	
6.73	5.92	3.64	4.22	10.00	
	95,119 77.2 3.2 4.15 4.15	Q1 Q2 32,682 47,659 34.2 35.3 82.7 78.1 1.7 2.3 95,119 127,008 77.2 77.2 3.2 3.0 4.15 4.26 ts 0.54 0.75	Q1 Q2 Q3 32,682 47,659 64,899 34.2 35.3 36.2 82.7 78.1 65.1 1.7 2.3 3.2 95,119 127,008 168,902 77.2 77.2 78.3 3.2 3.0 3.0 4.15 4.26 4.25 ts 0.54 0.75 0.73	Q1 Q2 Q3 Q4 32,682 47,659 64,899 91,756 34.2 35.3 36.2 37.7 82.7 78.1 65.1 41.7 1.7 2.3 3.2 4.3 95,119 127,008 168,902 215,070 77.2 77.2 78.3 76.7 3.2 3.0 3.0 2.7 4.15 4.26 4.25 4.26 ts 0.54 0.75 0.73 1.00	

Income Ouintiles	Bottom Q1	Q2	O3	O4	Top Q5
Borrower Characteristics	<u> </u>	<u> </u>		~ ~	
Income	32,682	47,659	64,899	91,756	168,129
Age	34.2	35.3	36.2	37.7	40.0
First-Time Buyer	82.7	78.1	65.1	41.7	27.0
Buy-to-Let	1.7	2.3	3.2	4.3	8.4
Loan Characteristics					
Size	95,119	127,008	168,902	215,070	235,773
LTV	77.2	77.2	78.3	76.7	71.8
LTI	3.2	3.0	3.0	2.7	2.3
Rate	4.15	4.26	4.25	4.26	4.27
Distance from Lending Limits					
Distance from LTI Limit	0.54	0.75	0.73	1.00	1.28
Distance from LTV Limit	6.73	5.92	3.64	4.22	10.00

	Bottom				Top
Income Quintiles	Q1	Q2	Q3	Q4	Q5
Borrower Characteristics					
Income	32,682	47,659	64,899	91,756	168,129
Age	34.2	35.3	36.2	37.7	40.0
First-Time Buyer	82.7	78.1	65.1	41.7	27.0
Buy-to-Let	1.7	2.3	3.2	4.3	8.4
Loan Characteristics					
Size	95,119	127,008	168,902	215,070	235,773
LTV	77.2	77.2	78.3	76.7	71.8
LTI	3.2	3.0	3.0	2.7	2.3
Rate	4.15	4.26	4.25	4.26	4.27
Distance from Lending Limits					
Distance from LTI Limit	0.54	0.75	0.73	1.00	1.28
Distance from LTV Limit	6.73	5.92	3.64	4.22	10.00

	Bottom				Top
Income Quintiles	Q1	Q2	Q3	Q4	$Q\bar{5}$
Borrower Characteristics					
Income	32,682	47,659	64,899	91,756	168,129
Age	34.2	35.3	36.2	37.7	40.0
First-Time Buyer	82.7	78.1	65.1	41.7	27.0
Buy-to-Let	1.7	2.3	3.2	4.3	8.4
Loan Characteristics					
Size	95,119	127,008	168,902	215,070	235,773
LTV	77.2	77.2	78.3	76.7	71.8
LTI	3.2	3.0	3.0	2.7	2.3
Rate	4.15	4.26	4.25	4.26	4.27
Distance from Lending Limits					
Distance from LTI Limit	0.54	0.75	0.73	1.00	1.28
Distance from LTV Limit	6.73	5.92	3.64	4.22	10.00

Quick Recap

- 1) Mortgage issuance keeps increasing (market "moves")
- 2) Buildup of risk exposure unaffected
- High income borrowers are more distant from lending limits

Transmission Channel

1) Borrowers cannot borrow anymore and are shut out of the market

- 1) Borrowers cannot borrow anymore and are shut out of the market
- 2) "Borrower Adapting" Channel
 - Banks do not change their credit supply
 - Households demand a different LTI/LTV loan to qualify

- 1) Borrowers cannot borrow anymore and are shut out of the market
- 2) "Borrower Adapting" Channel
 - Banks do not change their credit supply
 - Households demand a different LTI/LTV loan to qualify

$$\downarrow LTV = \frac{House - DownPayment}{House} = 1 - \frac{DownPayment}{House} \downarrow$$

- 1) Borrowers cannot borrow anymore and are shut out of the market
- 2) "Borrower Adapting" Channel
 - Banks do not change their credit supply
 - Households demand a different LTI/LTV loan to qualify

$$\downarrow LTV = \frac{House - DownPayment}{House} = 1 - \frac{DownPayment}{House} \downarrow$$

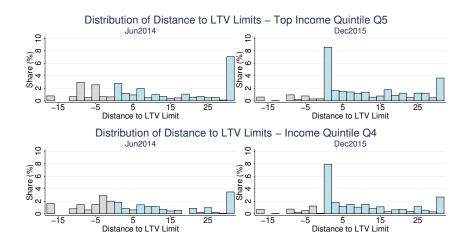
$$\downarrow LTI = \frac{House \downarrow -DownPayment \uparrow}{Income}$$

- 1) Borrowers cannot borrow anymore and are shut out of the market
- 2) "Borrower Adapting" Channel
 - Banks do not change their credit supply
 - Households demand a different LTI/LTV loan to qualify

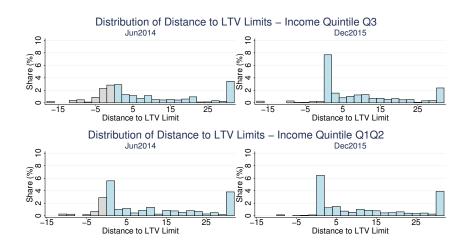
$$\downarrow LTV = \frac{House - DownPayment}{House} = 1 - \frac{DownPayment}{House} \downarrow$$

$$\downarrow LTI = \frac{House \downarrow -DownPayment \uparrow}{Income}$$

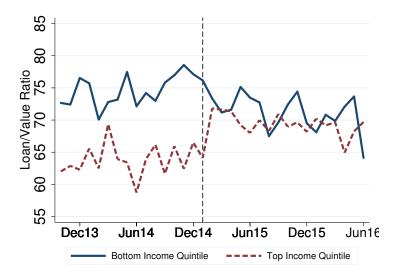
3) "Bank Credit Reallocation" Channel

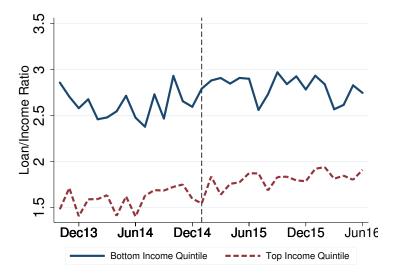

- 1) Borrowers cannot borrow anymore and are shut out of the market
- 2) "Borrower Adapting" Channel
 - Banks do not change their credit supply
 - Households demand a different LTI/LTV loan to qualify

$$\downarrow LTV = \frac{House - DownPayment}{House} = 1 - \frac{DownPayment}{House} \downarrow$$


$$\downarrow LTI = \frac{House \downarrow -DownPayment \uparrow}{Income}$$

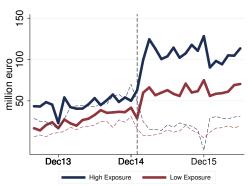
- 3) "Bank Credit Reallocation" Channel
 - Banks change their credit supply and lend to *different* types of households to make-up for the lost business


Distance to LTV Limits

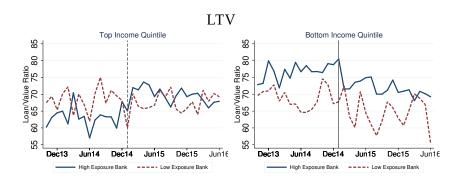

Distance to LTV Limits

Evolution of LTV by Income

Evolution of LTI by Income


Bank-Level Heterogeneity

$$Exposure_b = \frac{\sum_{t=Feb14}^{Jan15} \text{Non-Conforming Mortgage Issuance}_{bt}}{\sum_{t=Feb14}^{Jan15} \text{Total Mortgage Issuance}_{bt}}$$


Bank-Level Heterogeneity

$$Exposure_b = \frac{\sum_{t=Feb14}^{Jan15} \text{Non-Conforming Mortgage Issuance}_{bt}}{\sum_{t=Feb14}^{Jan15} \text{Total Mortgage Issuance}_{bt}}$$

Conforming Mortgage Issuance

DiD Graph

$$Y_{bcht} = \alpha + \beta Post_t \times Exposure_b + \gamma X_{b,t-1} + \nu_b + \eta_{ct} + \epsilon_{bcht}$$

- Bank *b*, county *c*, income bucket *h*, time *t*
- County-time FE, bank FE, time-varying bank controls

Q1	Q2	Q3	Q4	Q5
-58.791***	-21.373**	1.137	4.674	57.831***
(10.805)	(9.951)	(11.751)	(10.198)	(19.857)
√	✓	√	✓	✓
\checkmark	✓	\checkmark	✓	\checkmark
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
2,363	2,755	2,896	2,466	1,866
0.361	0.235	0.223	0.245	0.339
	(10.805) ✓ ✓ ✓ 2,363	-58.791*** -21.373** (10.805) (9.951)	-58.791*** -21.373** 1.137 (10.805) (9.951) (11.751)	-58.791*** -21.373** 1.137 4.674 (10.805) (9.951) (11.751) (10.198)

Double Clustering at the bank-county and time level

LTV	Q1	Q2	Q3	Q4	Q5
Post X Exposure	-58.791***	-21.373**	1.137	4.674	57.831***
	(10.805)	(9.951)	(11.751)	(10.198)	(19.857)
Bank Controls	✓	✓	✓	✓	<u>√</u>
Bank FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
County-Time FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Observations	2,363	2,755	2,896	2,466	1,866
R-squared	0.361	0.235	0.223	0.245	0.339

- ► One SD higher Bank Exposure leads to
 - ▶ 4.26pp lower LTV for Q1 households
 - ▶ 4.19pp higher LTV for Q5 households

$$Y_{bcht} = \alpha + \beta Post_t \times Exposure_b + \gamma X_{b,t-1} + \nu_b + \eta_{ct} + \epsilon_{bcht}$$

- Bank *b*, county *c*, income bucket *h*, time *t*
- County-time FE, bank FE, time-varying bank controls

Loan Size	Q1	Q2	Q3	Q4	Q5
Post X Exposure	-0.258	-0.445**	-0.733**	-1.257***	3.483***
	(0.310)	(0.186)	(0.322)	(0.329)	(0.906)
Bank Controls	√	√	√	✓	✓
Bank FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
County-Time FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Observations	2,404	2,786	2,947	2,512	1,929
R-squared	0.418	0.338	0.339	0.357	0.437

Double Clustering at the bank-county and time level

Loan Size	Q1	Q2	Q3	Q4	Q5
Post X Exposure	-0.258	-0.445**	-0.733**	-1.257***	3.483***
_	(0.310)	(0.186)	(0.322)	(0.329)	(0.906)
Bank Controls	√	✓	✓	✓	✓
Bank FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
County-Time FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Observations	2,404	2,786	2,947	2,512	1,929
R-squared	0.418	0.338	0.339	0.357	0.437

- ► Average Loan Size to Q5 in pre period: 222,822 EUR
- ➤ One SD higher Bank exposure leads to 42,717 EUR larger loans used to buy 26,684 larger houses

$$Y_{bcht} = \alpha + \beta Post_t \times Exposure_b + \gamma X_{b,t-1} + \nu_b + \eta_{ct} + \epsilon_{bcht}$$

- Bank *b*, county *c*, income bucket *h*, time *t*
- County-time FE, bank FE, time-varying bank controls

Total Loan Vol	Q1	Q2	Q3	Q4	Q5
Post X Exposure	-0.804*	-0.284	-0.122	-0.377	1.591**
	(0.404)	(0.391)	(0.477)	(0.472)	(0.729)
Bank Controls	✓	✓	✓	✓	✓
Bank FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
County-Time FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Observations	2,404	2,786	2,947	2,512	1,929
R-squared	0.496	0.491	0.568	0.578	0.639

Double Clustering at the bank-county and time level

$$Y_{bcht} = \alpha + \beta Post_t \times Exposure_b + \gamma X_{b,t-1} + \nu_b + \eta_{ct} + \epsilon_{bcht}$$

- Bank b, county c, income bucket h, time t
- County-time FE, bank FE, time-varying bank controls

LTI	Q1	Q2	Q3	Q4	Q5
Post X Exposure	-5.474	1.958	2.129	3.021	2.913
	(4.630)	(2.897)	(3.469)	(3.858)	(3.011)
Bank Controls	✓	✓	✓	✓	✓
Bank FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
County-Time FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Observations	1,396	1 <i>,</i> 775	1,929	1,743	1,267
R-squared	0.391	0.389	0.457	0.466	0.502

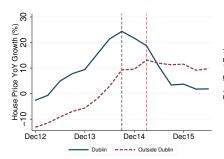
Double Clustering at the bank-county and time level

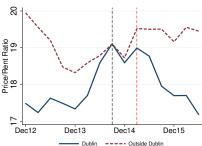
Interest Rate

Why are high-income households taking larger loans?

Interest Rate

Why are high-income households taking larger loans?


Panel A	Pre	Post	Difference
Q1	4.12	3.84	-0.28
Q2	4.24	3.85	-0.39
Q3	4.21	3.81	-0.40
Q4	4.21	3.80	-0.41
Q5	4.24	3.78	-0.46


Interest Rate

Panel B	Rate	Rate	Rate	Rate	Rate
$Post \times Exposure$	0.712**	0.250	0.348	-0.023	-0.753**
	(0.308)	(0.262)	(0.264)	(0.346)	(0.346)
Observations	376	382	383	379	367
R-squared	0.604	0.731	0.731	0.586	0.567
Bank FE	√	√	√	√	✓
Time FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Sample	Q1	Q2	Q3	Q4	Q5

Evolution of House Prices

House Price Growth and Price to Rent Ratio

House Price Growth by Property Size

	2013Q4-2014Q4			2014Q4-2015Q4						
	1BR	2BR	3BR	4BR	5BR	1BR	2BR	3BR	4BR	5BR
Dublin	24.0	27.6	24.4	15.6	15.0	-9.9	1.3	2.2	7.8	12.5
Other Cities:	17.2	4.4	6.5	1.9	3.1	-0.8	16.4	20.6	23.0	23.9
-Cork	23.6	10.1	12.3	7.4	8.8	-0.4	16.8	21.0	23.4	24.3
-Galway	25.6	11.9	14.2	9.2	10.5	-1.2	15.9	20.0	22.4	23.31
-Limerick	7.1	-4.5	-2.6	-6.9	-5.7	0.8	18.2	22.5	24.9	25.8
-Waterford	12.4	0.2	2.2	-2.3	-1.1	-2.2	14.8	18.9	21.2	22.1

LTV	Q1	Q2	Q3	Q4	Q5
Dublin					
Post × Exposure	-108.471***	-24.770	-0.383	-28.649*	1.468
	(25.369)	(19.910)	(16.648)	(14.479)	(17.217)
Observations	314	400	446	444	439
R-squared	0.350	0.205	0.147	0.181	0.225
Outside Dublin					
Post × Exposure	-49.615***	-12.545	-4.700	18.559*	72.805***
	(11.803)	(10.204)	(10.306)	(11.193)	(18.607)
Observations	2,049	2,355	2,450	2,022	1,427
R-squared	0.360	0.237	0.228	0.253	0.355
Bank Controls	✓	✓	✓	✓	√
Bank FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
County-Time FE	✓	✓	✓	✓	✓

Double Clustering at the bank-county and time level

LTV	Q1	Q2	Q3	Q4	Q5
Dublin					
Post × Exposure	-108.471***	-24.770	-0.383	-28.649*	1.468
	(25.369)	(19.910)	(16.648)	(14.479)	(17.217)
Observations	314	400	446	444	439
R-squared	0.350	0.205	0.147	0.181	0.225
Bank Controls	✓	✓	✓	✓	✓
Bank FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
County-Time FE	✓	✓	✓	✓	✓

 One SD higher Bank Exposure leads to 7.85pp lower LTV for Q1 households in Dublin

LTV	Q1	Q2	Q3	Q4	Q5
Outside Dublin					
Post × Exposure	-49.615***	-12.545	-4.700	18.559*	72.805***
	(11.803)	(10.204)	(10.306)	(11.193)	(18.607)
Observations	2,049	2,355	2,450	2,022	1,427
R-squared	0.360	0.237	0.228	0.253	0.355
Bank Controls	✓	✓	✓	✓	✓
Bank FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
County-Time FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

- ▶ One SD higher Bank Exposure leads to
 - ▶ 3.59pp lower LTV for Q1 households outside Dublin
 - ▶ 5.27pp higher LTV for Q5 households outside Dublin

Loan Size	Q1	Q2	Q3	Q4	Q5
Dublin					
Post × Exposure	-1.250**	-0.690*	-0.282	-1.230**	0.840
	(0.515)	(0.387)	(0.316)	(0.473)	(0.527)
Observations	316	400	446	446	439
R-squared	0.275	0.201	0.186	0.226	0.162
Outside Dublin					
Post × Exposure	0.184	-0.221	-0.897***	-1.317***	4.956***
	(0.285)	(0.196)	(0.278)	(0.326)	(0.664)
Observations	2,088	2,386	2,501	2,066	1,490
R-squared	0.407	0.308	0.289	0.312	0.402
Bank Controls	√	√	√	√	√
Bank FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
County-Time FE	✓	✓	✓	✓	✓

Double Clustering at the bank-county and time level

Total Loan Vol	Q1	Q2	Q3	Q4	Q5
Dublin					
$\overline{\text{Post} \times \text{Exposure}}$	-1.863*	-0.551	1.128	0.477	0.727
	(1.033)	(1.030)	(0.865)	(0.875)	(0.927)
Observations	316	400	446	446	439
R-squared	0.367	0.486	0.519	0.548	0.563
Outside Dublin					
$\overline{\text{Post} \times \text{Exposure}}$	-0.099	0.083	-0.277	-0.177	1.607**
	(0.391)	(0.308)	(0.370)	(0.402)	(0.749)
Observations	2,088	2,386	2,501	2,066	1,490
R-squared	0.388	0.341	0.375	0.359	0.358
Bank Controls	√	√	√	√	\checkmark
Bank FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
County-Time FE	\checkmark	\checkmark	\checkmark	\checkmark	✓

Double Clustering at the bank-county and time level

Other Assets

Do banks increase their risk-taking in other asset classes?

- 1) Credit to Firms
- 2) Holdings of Securities

Credit to Firms (Loan Volume)

$$Y_{bclqt} = \alpha + \beta Post_t \times Exposure_b + \gamma X_{bt-1} + \delta_{bc} + \eta_{clqt} + \epsilon_{bclqt}$$

- Bank *b*, industry *l*, county *c*, quality *q*, time *t*
- Semi-annual data from 2013H1 to 2016H1, Post = 1 from 2015H1
- Risky, bank rating 5-6. NonRisky, bank rating 1-4

Credit to Firms (Loan Volume)

$$Y_{bclqt} = \alpha + \beta Post_t \times Exposure_b + \gamma X_{bt-1} + \delta_{bc} + \eta_{clqt} + \epsilon_{bclqt}$$

- Bank b, industry l, county c, quality q, time t
- Semi-annual data from 2013H1 to 2016H1, Post = 1 from 2015H1
- Risky, bank rating 5-6. NonRisky, bank rating 1-4

LHS: $\Delta VOLUME$	Total	Risky	NonRisky
Exposure×Post	0.842***	1.816***	0.299*
	(0.17)	(0.41)	(0.17)
Time-Varying Bank Controls	✓	✓	✓
Industry-County-Quality-Time FE	\checkmark	\checkmark	\checkmark
Bank-County FE	\checkmark	\checkmark	\checkmark
Observations	10522	3567	6955
R-squared	0.473	0.412	0.504

Credit to Firms (Loan Rate)

$$Y_{bclqt} = \alpha + \beta Post_t \times Exposure_b + \gamma X_{bt-1} + \delta_{bc} + \eta_{clqt} + \epsilon_{bclqt}$$

- Bank *b*, industry *l*, county *c*, quality *q*, time *t*
- Semi-annual data from 2013H1 to 2016H1, Post = 1 from 2015H1
- Risky, bank rating 5-6. NonRisky, bank rating 1-4

LHS: $\Delta RATE$	Total	Risky	NonRisky
Exposure×Post	-0.392**	-0.783**	-0.191
-	(0.17)	(0.38)	(0.22)
Time-Varying Bank Controls	✓	✓	√
Industry-County-Quality-Time FE	\checkmark	\checkmark	✓
Bank-County FE	\checkmark	\checkmark	\checkmark
Observations	10522	3567	6955
R-squared	0.452	0.449	0.458

Do banks increase their risk-taking in other asset classes?

- 1) Lending to Firms
- 2) Holdings of Securities

Effect on Holdings of Securities

$$NetBuys_{sbt} = \alpha + \beta Exposure_b \times Post_t \times Yield_s + \gamma_{bt} + \eta_{st} + \epsilon_{sit}$$

$$NetBuys_{sbt} = \frac{Holdings_{sbt} - Holdings_{sbt-1}}{0.5*(Holdings_{sbt} + Holdings_{sbt-1})}$$

- Net Buys $\in [-2, 2]$ of security s by bank b between t and t 1
- Quarterly data: 2013Q1 to 2016Q2, Post = 1 from 2015Q2

Effect on Holdings of Securities

$$NetBuys_{sbt} = \alpha + \beta Exposure_b \times Post_t \times Yield_s + \gamma_{bt} + \eta_{st} + \epsilon_{sit}$$

$$NetBuys_{sbt} = \frac{Holdings_{sbt} - Holdings_{sbt-1}}{0.5 * (Holdings_{sbt} + Holdings_{sbt-1})}$$

- Net Buys ∈ [-2,2] of security s by bank b between t and t-1
- Quarterly data: 2013Q1 to 2016Q2, Post = 1 from 2015Q2

	Net Buys	Buys	Sells
Exposure×Post×Yield	0.051***	0.225***	-0.176**
	(3.00)	(3.10)	(-2.16)
Bank-Time FE	✓	✓	$\overline{\hspace{1cm}}$
Security-Time FE	\checkmark	\checkmark	\checkmark
Observations	8034	8034	8034
R-squared	0.950	0.918	0.914

Concluding Remarks

Conclusion

- 1) Introduction of lending limits leads to reallocation of mortgages by banks affected by the regulation
- 2) Richer households take out larger loans than before and pay lower interest rates
- 3) Low income households in Dublin are less able to borrow, high income households outside Dublin see largest increase in bank credit, consistent with evolution of house prices
- 4) Banks increase their risk-taking in both corporate lending and security holdings