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Abstract

A seller dynamically sells a divisible good to a buyer. Payoffs are interdependent
as in Akerlof’s market for lemons and it is common knowledge that there are gains
from trade. The seller is informed about the quality of the good. The buyer makes
an offer in every period and learns about the good’s quality only through the seller’s
behavior. We characterize the limiting equilibrium outcome as bargaining frictions
vanish and the good becomes arbitrarily divisible. When the gains from trade decrease
in the number of units already traded, the gradual sale of high-quality goods arises
as the main signaling device in the market. We also show that the limiting outcome
is Coasean: the competition with his future selves drives the buyer’s payoff to the
lowest possible level.
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1 Introduction

This paper studies bargaining over a divisible good in the presence of informational asym-
metries and interdependent values. Divisibility is a natural feature of several real-life ne-
gotiations. For example, in financial markets, negotiations typically regard both the price
at which an asset is sold and the amount that will be traded. Divisibility opens new and
potentially complex channels for a seller who holds a valuable asset to convey information
about its quality. Accordingly, a buyer who worries about purchasing a low-quality asset
will look at the entire history of trade and update his posterior about the quality of the
asset before deciding the next trading offers.
To have a concrete example in mind, consider a bank negotiating a securitized asset

(pool of mortgages, credit-card debts, automotive loans) with an institutional investor (e.g.
a pension fund). These transactions involve dynamic negotiations and generally take place
over-the-counter. Gains from trade arise as the pension fund is more interested in lending
money to the final borrowers (e.g. homeowners) by owing the asset in exchange for the
promise of future cash flows. These gains are typically decreasing in the amount negotiated
as they are intimately linked to the pension’s fund desire to diversify its portfolio. Moreover,
the sooner the parties reach an agreement, the sooner the pension fund (the party most
interested in lending) will become the creditor and, hence, the greater the gains from trade.
Unfortunately, these relationships are often plagued by asymmetric information1 which
may lead to lower than optimal sales and/or ineffi ciently delayed transactions. The seller
is directly involved in the process of securitization and hence has better information about
the quality of these assets.2 This information advantage is due to superior information
about the pool of lenders which goes beyond the information revealed by the contract. For
example, a CDO typically releases aggregate information such as the average FICO score
but fails to release information about the distribution over FICO numbers,3 the duration of
residence of its homeowners, their average incomes, etc... As a result, the seller of subprime
CDO could often better estimate the probability that the pool of homeowners from that
asset will default in the future. Importantly, in all such situations the only information
learnt by the buyer when a trade is realized is the seller´s willingness to negotiate that
asset. Obviously sellers of better-quality assets are less reluctant to keep them in their

1See Ashcraft and Schuermann (2008), Downing et. al. (2009), Falting-Traeger and Mayer (2012) and
Gorton and Metrick (2012) for a survey.

2Consider the classic example of the synthetic CDO Hudson Mezzanine. As explained in McLean and
Nocera (2011), Goldman Sachs selected all the securities in that CDO, strived to sell it as fast as possible
and simultaneously bet against that security by taking a short position.

3This issue is discussed with detail in Lewis (2010).
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balence-sheets,4 which generates an adverse-selection problem.
For a second example, consider a private equity firm that negotiates the control of a

firm after restructuring. Often the private equity engages in negotiations to sell the firm
to a big player in the market. Similarly to the example above, the sooner the transaction
takes place the greater the gains from trade. In contrast to the example above, there are
additional reasons to trade other than the allocation of the future cash flows. In particular,
trade is often motivated by interest in better allocation of control rights. This suggests
that gains from trade are often increasing in the volume negotiated. As we will see below,
how gains from trade vary with the fraction of the firm traded will have a crucial impact
in our model predictions.
Our goal is to understand how trade evolves when the parties are asymmetrically in-

formed and negotiations are both over the quantity and the price. To this end, we extend
the canonical bargaining model with incomplete information (Fudenberg, Levine and Ti-
role (1985), and Gul, Sonnenschein and Wilson (1986)) to account for interdependencies
in values (Deneckere and Liang (2006) – DL henceforth) and divisibility. A buyer pur-
chases a durable and divisible good from a seller who is informed about the good’s quality,
which may be either high or low. For each quality and quantity, there are positive gains
from trade. These gains may be constant, increasing, or decreasing in the number of units
already traded by the parties. Constant gains constitute a benchmark-case that allows us
to analyze the effects of divisibility in the most parsimonious way. Decreasing gains arise
when portfolio diversification is the main reason for trade and, as we will explain, lead to
new insights into bargaining. Finally, increasing gains from trade are more likely to appear
when the parties trade for control rights.
In our model, the good is divided into finitely many parts (or units). The buyer makes

a take-it-or-leave-it offer in every period (however, as we discuss in Section 9, all our results
extend to the case in which the buyer proposes menus of offers). The offer stipulates a price
and a number of units to be traded. The bargaining process continues until the parties
have traded all the available units.
The buyer learns about the good’s quality only through the seller’s behavior. In partic-

ular, owning a fraction of the good does not provide the buyer with additional information
about its quality. In our leading example, an institutional investor does not learn about
the probability that the future cash flows will realize by purchasing an additional unit of a
securitized asset. Often, the buyer only learns this information in the future, when the asset
cash flows materialize. More broadly, the game analyzed in this paper is both a benchmark
model and a first step to investigate the effects of divisibility in bargaining.

4During the 2007-2008 financial crisis, a Goldman Sachs trader commented on a CDO: “It stinks... I
don’t want it in our books.”(see McLean and Nocera (2011)).
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Time on the market is the unique screening device when parties negotiate over the sale
of an indivisible good. Therefore, the only way for a seller to convince a buyer that he has a
high-quality good is by rejecting low offers in the initial phases of negotiations. Consistent
with this observation, most of the theoretical literature5 predicts similar trade patterns in
dynamic markets under adverse selection: Buyers make low offers in the beginning of the
relationship. These offers are accepted by some sellers with low-quality goods. However,
sellers with high-quality goods reject these offers, which leads to delay and often periods
of market freeze. When goods are divisible, the set of possible trade outcomes becomes
considerably richer. Does adverse-selection lead to the sale of low-quality goods in the
beginning of the relationship, followed by a market freeze and the subsequent sale of high-
quality goods, as is found in indivisible-good models? Or does the gradual sale of high-
quality goods arise as the main signaling device in such markets? Our paper is the first to
address and answer these questions.
Our model yields clear predictions in terms of economic behavior. We show the existence

of stationary equilibrium and characterize the generically unique (stationary) equilibrium
outcome. First, in the benchmark case of constant gains from trade, the parties never
have incentive to trade fractions of the good. Consequently, divisibility is irrelevant given
constant gains. A similar pattern is obtained when gains from trade are increasing. Our
model therefore predicts that when a private-equity fund sells the control of a particular
business to another firm, timing on the market is the only signalling device.
On the other hand, as we explain below, a completely different behavior is obtained

when gains from trade are decreasing in the amounted traded.
In equilibrium, the buyer employs only two types of offers: cream-skimming and uni-

versal offers. A cream-skimming offer is an offer to purchase all the remaining units of the
good at a price that only the owner of the low-quality good would be willing to accept. A
universal offer is an offer to purchase a fraction of the available good at a price that every
type of seller will accept. Typically, the buyer starts by making cream-skimming offers.
After several of these offers have been rejected, the buyer becomes more optimistic that
the good is of high quality and decides to make a universal offer for a fraction of the good.
Upon the acceptance of this offer, the buyer restarts the process of making cream-skimming
offers for the remainder of the good.
We characterize the limiting equilibrium outcome (or simply limiting outcome) which

arises as bargaining frictions vanish and the good becomes arbitrarily divisible (i.e., the
number of units into which the good is divided goes to infinity). Our interest in perfectly

5Among the several papers which obtained this finding, see the important contributions of DL, Fuchs
and Skrzypacz (2013 a,b), Camargo and Lester (2014), Fuchs et. al. (2014), Kim (2015) and Moreno and
Wooders (2010, 2015).
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divisible goods stems from the fact that in most applications of our model, the parties can
essentially trade any fraction of the good. Moreover, we get the sharpest results when the
size of each part of the good shrinks to zero.
Our main result shows a gradual sale of high-quality goods. That is, the buyer purchases

the good from the “high seller” (i.e., the owner of the high-quality good) smoothly over
time. At each point in time, the buyer also makes an offer for the remainder of the good
at a price equal to his valuation when the quality is low. The “low seller” is indifferent
between the two offers (cream-skimming and universal) and gradually reveals his identity.
In other words, he sells the good smoothly (pooling with the high seller) until a certain
random time, and then concedes by selling the remaining fraction of the good at once.
Let us now provide some intuition for the stark change in behavior led by the assumption

of decreasing gains from trade. As mentioned above, divisibilities do not matter when the
gains from trade are constant. The equilibrium involves a long delay after which the buyer
breaks even purchasing the total number of units m at the price mc (where c denotes the
seller’s cost of a high-quality unit). Importantly, the buyer could not profitably deviate by
making a universal offer for k < m units at the price kc as he would also break even with
this offer. This is no longer true when the gains from trade are decreasing. Indeed, we show
that universal offers for a fraction of the good bring two advantages in comparison with
a universal offer for the entire good: a direct payoff advantage and a strategic advantage.
The direct payoff advantage is a result of the average value of the first k units being higher
than the average value of all the m units. The strategic advantage is related to a higher
value for the buyer in the continuation game following the acceptance of a universal offer
for k < m units. To understand the last point, first notice that the average value of the
remaining units is smaller after the acceptance of a universal offer than after the rejection
of a cream-skimming offer. This effect may force another delay in the future, after the
universal offer is accepted. This delay, in turn, decreases the continuation value of low-type
sellers, making them willing to sell at a price lower than the value assigned by the buyer to
a low-quality good. Therefore the buyer profits from purchasing the good from a subset of
low-type sellers at a low price. The combination of these two advantages makes partial offers
relatively more valuable when gains from trade are decreasing. As a result, the high-quality
good is sold gradually over time. In the limit, as the good becomes arbitrarily divisible,
the number of new profitable trade opportunities increases without bound, leading to the
smooth sale of the high-quality good.
It is well known that dynamic markets with adverse-selection may lead to impasses

in bargaining (DL) and periods of illiquidity. Our model sheds light on a new economic
force present in those markets – gradual trading. It shows that markets with ameliorated
information asymmetries are achieved by a combination of gradual purchasing at high prices
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and large-purchase discounts. Applying these lessons to the main example of this paper,
our theory predicts the slow and gradual trade of high-quality assets in markets in which
two parties trade mainly for portfolio diversification.
Our second main result shows that when the gains from trade are decreasing, the limiting

equilibrium outcome is Coasean. In the limit, the buyer breaks even at any point in time,
irrespective of the offer (cream-skimming or universal) he opts to make. Consequently,
his limit payoff is equal to zero. This result is reminiscent of the Coase conjecture and
shows that the buyer’s competition with his future selves drastically reduces his payoff.
Our findings are in sharp contrast with the case in which the good is indivisible and the
buyer’s payoff remains positive in the limit as bargaining frictions vanish.
To provide some intuition, it is useful to compare our model with the indivisible-good

version of our model analyzed in DL. When the good is indivisible, negotiations involve
long impasses which severely reduce the price at which the buyer is able to purchase the
good at the beginning of the bargaining process. In other words, the buyer benefits from
long impasses and his initial payoff is strictly positive. Long impasses are sustained for two
reasons. First, the buyer is not willing to make a generous offer unless he is suffi ciently
optimistic about the quality of the good. Second, the owner of the low-quality good is
willing to wait and sell the good at a price much higher than his cost.
When the good is divisible and gains from trade are decreasing, new profitable trading

opportunities are available to the buyer, beyond the possibility of purchasing all the re-
maining units at a high price. In particular, when this option yields a low payoff, the buyer
strictly prefers to make universal offers and purchase a certain fraction of the remaining
good. Compared to DL’s model, this lowers the price that the owner of the low-quality
good is able to charge in the middle of the negotiations. However, lower payments in the
middle of the negotiations translate into shorter impasses and higher prices paid at the
beginning of the bargaining process. Consequently, the buyer’s initial payoff is drastically
reduced and converges to zero in the limit.
Our analysis shows that when gains from trade are decreasing, the buyer’s ability to

screen the seller more finely using partial offers (for fractions of the good) takes away the
commitment power that he otherwise gains from long impasses in bargaining environments
with indivisible goods.
To sum up, our model generates novel and testable predictions for dynamic markets

under adverse selection. In situations with increasing or constant gains from trade (as
when a private equity firm negotiates the sale of another firm), time on the market is the
main signaling device and the buyer keeps some of his bargaining power. On the other
hand, when the gains from trade are decreasing (as when portfolio diversification is the
main reason for trade), the high-quality good is slowly sold over time and, in the limit, the
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buyer loses all the bargaining power.

1.1 Related Literature

Bilateral bargaining with interdependent values (and indivisibility) has received consid-
erable attention in the literature (Samuelson (1984), Evans (1989), Vincent (1989), DL,
Fuchs and Skrzypacz (2013a), and Gerardi, Hörner and Maestri (2014)). The closest pa-
pers to ours are DL and Fuchs and Skrzypacz (2013a). DL solved the one-unit version
of the model in this paper. Taking their construction as a stepping stone, we build an
algorithm to extend their analysis to multiple units when there are two types of sellers.
In DL, the gains from trade are bounded away from zero. Fuchs and Skrzypacz (2013a)
bridged the gap between the value of the good to the buyer and the cost to the seller. We
find that trade happens gradually over time when the good is very divisible. This finding is
reminiscent of Fuchs and Skrzypacz (2013a) who show in a model with indivisibility that,
as the gains from trade from the good of highest quality vanish, the bursts of trade found
in DL disappear. Like Fuchs and Skrzypacz (2013a), in our model the buyer slowly learns
the seller’s type. Unlike Fuchs and Skrzypacz (2013a), however, in our model the buyer
makes two kinds of offers as he learns the seller’s type. On the one hand, he gradually
makes universally accepted offers for small pieces of the good at large per-unit prices. On
the other, he makes offers for all remaining units at large discounts. Finally, another im-
portant difference between the two papers is that in our model the gains from trade are
bounded away from zero.
Our paper is also related to the burgeoning body of literature that studies the effects

of adverse selection in dynamic markets. An important stream of this literature focuses
on markets in which one of the players is short-run. Inderst (2005) and Moreno and
Wooders (2010) pioneered the study of adverse-selection in decentralized dynamic markets.
Camargo and Lester (2014) and Moreno and Wooders (2015) focus on the effect of policy
interventions on liquidity in such markets. A question that has drawn much attention is how
different transparency regimes affect the bargaining outcome (see Hörner and Vieille (2009)
and Fuchs, Öry and Skrzypacz (2014) for a comparison of public and private offers, and
Kim (2017) for the role of time-on-the-market information). Finally, Fuchs and Skrzypacz
(2013b) characterize optimal market design policies. Beyond the issue of divisibility, our
paper differs from the above studies by analyzing the strategic effects that arise when two
long-run players bargain under adverse selection.
Another important strand of the literature analyzes the effect of exogenous learning in

the market for lemons. The pioneer work of Daley and Green (2012) analyzed a model in
which noisy information about the value of a good is revealed to the market. Kaya and
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Kim (2015) analyze a model in which the buyer observes a noisy and private signal about
the quality of the good held by the seller. Daley and Green (2016) analyze the advent of
exogenous news in a model in which two long-run players bargain over an indivisible good.
Our model differs from these contributions as we assume that the good is divisible and
abstract from exogenous learning.
The rest of the paper is organized as follows. Section 2 describes the model. Section 3

specifies the solution concept and proves the general existence and uniqueness (for generic
parameters) of the equilibrium outcome. In Section 4, we define the limit (as the bargaining
frictions vanish) of the equilibrium outcome. In Section 5, we analyze the benchmark case
of constant gains from trade. Sections 6 and 7 are devoted to the analysis of bargaining
with decreasing gains from trade and contain the main results. The case of increasing gains
from trade is studied in Section 8. Finally, Section 9 analyzes an extension of the model
and Section 10 concludes. Most proofs are relegated to a number of Appendices.

2 The Model

A buyer and a seller bargain over a divisible object. The value of each unit to each trader
depends on the seller’s private information (i.e., his type). The seller’s type is low with
probability q̂ ∈ (0, 1) and high with probability 1−q̂. Although the seller has only two types,
we find it convenient (following several papers on bargaining with incomplete information)
to assume that his type q is distributed uniformly over the unit interval.
Our goal is to analyze the effects of divisibility on the pattern of trade, with a particular

emphasis on the limit case in which the good becomes perfectly divisible. To accomplish
this, we start by examining a model with divisibility frictions in which a good of measure
one is divided into m > 1 parts (or units). We then investigate how trade evolves when
the number of units m grows large.
For each k = 1, . . . ,m, the buyer’s valuation of the (m− k + 1)-th part is equal to

v (k, q) = αkv (q) ,

where min {αm, . . . , α1} = 1,6 and the function v (·) is equal to:

v (q) =

 v if q ∈ [0, q̂]

v̄ if q ∈ (q̂, 1] .

The seller’s cost of each unit is equal to

6The fact that the minimum value of αm, . . . , α1 is equal to one is a simple normalization. The relevant
assumption is that αm, . . . , α1 are all strictly positive.
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c (q) =

 0 if q ∈ [0, q̂]

c if q ∈ (q̂, 1] .

We assume that v̄ > c > v > 0, so that it is common knowledge that for each unit there
are positive gains from trade. We refer to any q 6 q̂ as a low type and to any q > q̂ as a
high type.
As we will see below, the pattern of trade crucially depends on whether the gains from

trade are decreasing in the number of units already negotiated (αm > . . . > α1), constant
(αm = . . . = α1) or increasing (αm < . . . < α1). However, our initial results (in Section 3)
hold independently of the shape of the gains from trade and we postpone the discussion of
the three different cases to Sections 5-8 below.
In each period t = 0, 1, . . . , the buyer makes a proposal ϕt = (k, p) to trade a certain

number k of the remaining units in exchange for a transfer p > 0.7 Then the seller decides
whether to accept (at = A) or reject (at = R) the proposal ϕt. The game ends when all
the m parts are traded. As discussed and motivated in the introduction, all learning is
strategic. In particular, no information is revealed to the buyer when a transaction takes
place.
The common discount factor is δ = e−r∆, where r > 0 is the rate at which the

traders discount the future and ∆ denotes the length of each period. Consider an out-
come in which the seller has type q and accepts the offers (k1, p1) , . . . , (kM , pM) in periods

t1 < . . . < tM, respectively. Then the payoffs are
M∑
i=1

δti [pi − kic (q)] for the seller and

M∑
i=1

δti
((
αk̄i+1 + . . .+ αk̄i−1

)
v (q)− pi

)
for the buyer, where k̄0 = m and k̄i = k̄i−1 − ki for

i = 1, . . . ,M. Finally, both players’payoffs are equal to zero if all the offers are rejected.

3 Equilibrium

We let h0 = ∅ denote the empty history, and, for each t > 1, we let ht =
(
(ϕ0, a0) , . . . ,

(
ϕt−1, at−1

))
denote the (public) history of offers and acceptance decisions in periods 0, . . . , t−1.We also
let (ht, ϕt) denote the history that ends with the buyer’s proposal in period t. The buyer’s
strategy σB assigns a proposal ϕt to every history h

t. The seller’s strategy σS assigns an
acceptance decision at ∈ {A,R} to every type q and every history (ht, ϕt) . Finally, we let

7If the two players have already traded k′ = 1, . . . ,m− 1 at the end of period t− 1, then the proposal
ϕt is an element of the set {1, . . . ,m− k′} × R+.
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µ (ht) and µ (ht, ϕt) denote the buyer’s beliefs over the seller’s types after the histories h
t

and (ht, ϕt) , respectively.
8 We use µ to denote the collection of beliefs.

Our solution concept is stationary perfect Bayesian equilibrium (or stationary equi-
librium for brevity). In our context, the definition of perfect Bayesian equilibrium (see
Fudenberg and Tirole (1991)) imposes the following two conditions on off-path beliefs:
i) µ (ht, ϕt) = µ (ht) for every ht and ϕt;
ii) Suppose that the action at has positive probability after the history (ht, ϕt) given the

beliefs µ (ht, ϕt) . Then the beliefs µ (ht, (ϕt, at)) are derived from µ (ht, ϕt) using Bayes’
rule.
The first condition captures the idea that the buyer cannot learn anything from his

offer. The second condition forces the buyer to update his beliefs according to Bayes’rule
when nothing “surprising”occurs.
The following observation will turn useful in the definition of the solution concept. A

common feature of all perfect Bayesian equilibria of our game is that the seller will not be
able to extract any rent once the buyer is convinced that the quality of the good is low.9

Lemma 1 Consider a perfect Bayesian equilibrium (σB, σS, µ) and let ht be a history at
which the buyer assigns probability one to low types (i.e., µ ([0, q̂] |ht) = 1). The continua-
tion payoff of type q 6 q̂ at ht is equal to zero.

The proof of this lemma is standard and is relegated to Appendix A. Nonetheless, this
result has important equilibrium implications. In particular, it implies that in any perfect
Bayesian equilibrium, the low types are willing to accept any offer once the buyer discovers
that the seller’s type is low.
We extend the notion of stationary equilibrium (see Gul and Sonnenschein (1988),

Ausubel and Deneckere (1992), and DL) to our setting. A natural way to define stationarity
in our context is to require the acceptance decision of any seller’s type to depend only on
the number of units left for trade and on the buyer’s proposal. However, as previously
mentioned, in a perfect Bayesian equilibrium the reservation price of type q 6 q̂ to sell any
number of units must be equal to zero at any history ht such that µ ([0, q̂] |ht) = 1. This
immediately implies that in our model there do not exist perfect Bayesian equilibria that

8For any measurable subset Q of the unit interval, µ (Q|ht) denotes the buyer’s belief, at the history
ht, that the seller’s type belongs to Q. The beliefs µ (ht, ϕt) are defined in a similar way.

9In our game, there are (off-path) histories at which the buyer’s equilibrium beliefs must assign prob-
ability one to the low types. For a concrete example, assume that m = 2 and δ < 1

2 . Suppose that in the
first period the buyer makes the offer (1, p) with p ∈ (2δc, c) . In any stationary equilibrium, the high types
must reject the offer, while the low types must accept it. This is because the buyer will never pay more
than c for a unit (see below). Clearly, if the offer (1, p) is accepted the buyer learns that the seller’s type
is low.
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satisfy the “natural”definition of stationarity. The minimal departure from it is to let the
acceptance decisions of the low types depend on whether or not the buyer is convinced
that the seller’s type is low. This leads us to the following definition of stationary perfect
Bayesian equilibrium.

Definition 1 A perfect Bayesian equilibrium (σB, σS, µ) is stationary if there exists a
(measurable) function P (·, ·, ·; δ) : {1, ....,m}2 × [0, 1]→ R+ satisfying the following condi-
tions:

i) Suppose that k units are left for trade. For each q > q̂, an offer (k′, p) , k′ 6 k, is
accepted by type q if and only if p > P (k, k′, q; δ);

ii) Consider a history ht such that µ ([0, q̂] |ht) < 1 and suppose that k units are left for
trade. For each q 6 q̂, an offer (k′, p) , k′ 6 k, is accepted by type q if and only if
p > P (k, k′, q; δ).

In the next section, we establish the existence and (essentially) the uniqueness of sta-
tionary equilibria and characterize the equilibrium behavior. For brevity, when there is no
ambiguity, we suppress the dependence of the reservation price function P (k, k′, ·; δ) on δ
and write P (k, k′, ·).

3.1 Existence and Uniqueness of Stationary Equilibrium

We start our analysis with a result that holds in all stationary equilibria. The high types’
equilibrium behavior is rather simple. In fact, they behave myopically and accept an offer
if and only if the profits generated by that offer are weakly positive.

Lemma 2 Let (σB, σS, µ) be a stationary equilibrium. Then, P (k, k′, q) = k′c for every k,
k′ and q > q̂.

The statement of the lemma is an immediate consequence of the fact that at any history,
the equilibrium continuation payoff of the high types is zero. The proof of this result (in
Appendix A) is by induction on the number of units left for trade. The first step of the
argument (i.e., the high types’ continuation payoff is zero when there is only one unit
left for trade) was proved by DL. We now provide a sketch of the proof of the induction
argument. Suppose that in every stationary equilibrium the high types get a payoff equal
to zero when there are k or fewer units for trade. Let ūH denote the highest continuation
payoff that the high types get across all histories at which there are k+ 1 units for trade.10

10For simplicity, here we assume that the maximum payoff does exist. The formal proof dispenses with
this assumption.
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By contradiction, assume that ūH > 0. Our assumptions imply that, at some point, the
buyer makes an offer to buy a certain number k′ of the k + 1 remaining units at the price
k′c+ ūH . Clearly, this offer is accepted by the high types (if they reject it, they will receive
at most δūH) as well as by the low types (if they reject the offer, their identity will be
revealed and their continuation payoff will be zero). However, the same argument shows
that both the high and the low types are willing to sell the k′ units even at a price slightly
lower than k′c + ūH . We conclude that in equilibrium the buyer will never make the offer
(k′, k′c+ ūH).
Our next result addresses the issue of the existence of stationary equilibria.

Proposition 1 There exists a stationary equilibrium.

The proof of Proposition 1 is in Appendix A where we construct the equilibrium strategy
profile and the buyer’s beliefs, and show that unilateral deviations are not profitable. Here
we illustrate the equilibrium on-path behavior. In particular, the buyer employs at most
two types of offers.11 Suppose there are k units left for trade. The first type of offer is
to purchase all the remaining k units at some price p 6 kc. The offer (k, p) , in turn, can
be accepted by all the types or only by (some of) the low types. Therefore, the rejection
of (k, p) increases the buyer’s confidence that the quality of the good is high. Because of
this, we refer to an offer of the form (k, p) (when k is the number of remaining units) as a
cream-skimming offer.
The second type of offer is to purchase some (but not all) of the remaining units, say

k′ < k, at the price k′c at which the high types break even. Notice that the offer (k′, k′c)

is accepted by all the types (recall that P (k, k′, q) = k′c for q > q̂ and Lemma 1). Thus,
we refer to an offer of the form (k′, k′c) as a universal offer.
Why does not the buyer make use of other types of offers? First, in equilibrium, any

offer of the form (k, p) with p > kc is accepted by all the types (if the low types reject such
an offer, their payoff is equal to zero). Thus, the buyer will never pay more than c for any
unit of the good.
It remains to show that it is not optimal for the buyer to purchase some of the remaining

units only from the low types. We start with the following observation. In our equilibrium,
the low types’continuation payoff depends only on the number of remaining units and the

11As we will see below, the number of types of offers employed by the buyer depends on the shape of the
gains from trade. When the gains are decreasing, the buyer uses both types of offers (see Sections 6 and 7).
In contrast, when the gains are constant or increasing, only the first type of offers is used in equilibrium
(see Sections 5 and 8).
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buyer’s belief. Also, for any number k of remaining units, the low types’payoff is (weakly)
increasing in the probability assigned to the high types by the buyer’s beliefs.12

Suppose that in equilibrium, when there are k units the buyer makes the offer (k′, p) ,

with k′ < k and p < k′c, and this offer is accepted by (some of) the low types. By accepting
this offer, these types reveal their identity and will obtain a continuation payoff equal to
zero. This, together with the observation above on the low types’ continuation payoff,
immediately implies that, for any ε > 0, the offer (k, p+ ε) to purchase all the remaining
units at the price p+ε is (weakly) more likely to be accepted than the original offer (k′, p) .

It is then easy to show that, because of discounting, the buyer is strictly better off by
making the offer (k, p+ ε) (for some small ε) than by making the offer (k′, p). Intuitively,
the buyer is able to speed up trade and expedite the consumption of the good without
conceding too much to the seller.
The reservation price functions P (1, 1, ·) , P (2, 2, ·) , . . . , P (m,m, ·) play an important

role in our analysis. To simplify notation, for the remainder of this paper we will use P (k, ·)
to indicate P (k, k, ·) .
In our equilibrium, for every k = 1, . . . ,m, the function P (k, ·) is increasing and left-

continuous (also recall that P (k, q) = kc for q > q̂). Therefore, at any point in time along
the equilibrium path, the set of types who have not sold all their units is of the form [q, 1]

for some q ∈ [0, 1) .With some abuse of notation, we use (k, q) to denote an arbitrary state
of the economy. In state (k, q) , there are still k units left for trade, and the buyer believes
that the seller’s type is uniformly distributed over the set [q, 1] .

LetW (k, q) denote the buyer’s ex-ante expected payoffwhen the state is (k, q) .13 Recall
that, in equilibrium, only cream-skimming and universal offers are used. Thus, for any state
(k, q) , W (k, q) satisfies:

W (k, q) = max
{(

maxq′∈[q,1]

∫ q′
q

[(αk + . . .+ α1) v (s)− P (k, q′)] ds+ δW (k, q′)
)
,{∫ 1

q
[(αk + . . .+ αk′+1) v (s)− (k − k′) c] ds+ δW (k′, q)

}
k′=1,...,k−1

}
.

(1)

The right-hand side of the first line of equation (1) represents the buyer’s expected
payoff if he chooses the optimal cream-skimming offer. The second line of the equation
describes the payoffs associated with the universal offers.
On the equilibrium path, the players’ behavior is rather simple. Suppose that the

state is (k, q) . Then the buyer makes the offer (either cream-skimming or universal) that

12This property holds generically for all stationary equilibria (see Proposition 2).
13Of course, the buyer’s payoffW (k, ·) depends on the discount factor. As for the reservation prices, we

suppress the dependence of W (k, ·) on δ when there is no ambiguity.
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maximizes W (k, q) . The seller of type q′ accepts any universal offer. Furthermore, he
accepts a cream-skimming offer provided that the price that the buyer is willing to pay is
above his reservation price P (k, q′).14

At a first glance, it may seem as if we have limited the scope of our analysis by restricting
attention to the equilibrium above. Nevertheless, as Proposition 2 shows, nothing is lost
inasmuch as one considers stationary equilibria.15 Two equilibria are outcome equivalent
if, conditional on each quality of the good (low or high), they induce the same probability
distribution over histories of accepted offers.

Proposition 2 For generic parameters, all stationary equilibria are outcome equivalent.

The proof of Proposition 2 (in Appendix B) is divided into two parts. The first part
shows the uniqueness of the equilibrium outcome under the assumption that the reservation
price functions P (1, ·) , . . . , P (m, ·) are increasing. The proof is by induction on the number
of units. DL show that the equilibrium price function P (1, ·) is unique. We assume that
P (1, ·) , . . . , P (k − 1, ·) are uniquely determined and demonstrate that the same result
holds for P (k, ·) .
In a stationary equilibrium, the reservation prices of the seller’s types are pinned down

by their continuation payoffs. These, in turn, are determined by the buyer’s strategy.
We show that in a stationary equilibrium the buyer’s offers are either cream-skimming or
universal. As mentioned above, it is not optimal for the buyer to purchase some (but not
all) of the remaining units only from the low types (the buyer could get all the units at
the same price). When the state is (k, q) and q is suffi ciently close to q̂, the buyer’s best
response is unique and equal to (k, kc). In words, when the buyer is suffi ciently optimistic
about the quality of the good, he prefers to purchase all the the remaining units from all
the types. This shows that the reservation price P (k, q) is uniquely determined for any
q > q̂ − ε, for some small ε. We then extend the reservation price P (k, ·) to the left of
q̂− ε. For generic values of the parameters, the buyer’s optimal offer (in the class of cream-
skimming or universal offers) is unique. Thus, the extension of P (k, ·) to the left of q̂ − ε
is generically unique.
The second part of the proof relaxes the assumption that the reservation price functions

are increasing. Of course, given an equilibrium, it is also possible to construct another
(outcome equivalent) equilibrium by permuting the low types. We show that, for generic

14Notice that along the equilibrium path the low types are indifferent between accepting and rejecting a
cream-skimming offer (k, p) with p < kc.
15It is an open question whether there is a perfect Bayesian equilibrium that is not outcome equivalent

to a stationary equilibrium.
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values of the parameters, the equilibrium described above is unique up to a permutation of
the low types.
Throughout the rest of the paper, we focus on the generic case of a unique equilibrium

outcome.

4 Frequent Offers

As is often the case in bargaining games, it is rather intractable to describe the equilibrium
behavior for an arbitrary value of the discount factor δ. Therefore, we investigate how
trade evolves when the bargaining frictions vanish. We fix the total number of units m and
characterize the equilibrium outcome in the limit, as the length of each period ∆n shrinks
to zero (and the discount factor δn = e−r∆n converges to one). We refer to this as the
m-limitimg equilibrium outcome (we simply write limiting equilibrium outcome when the
number of units m is unambiguous).
Consider a sequence {∆n} converging to zero and the corresponding sequence {δn} ={

e−r∆n
}
converging to one. For each δn, we consider the stationary equilibrium described

in Section 3.1, and construct the sequence {Pn (k, ·; δn) ,Wn (k, ·; δn)}k=1,...,m of reservation
prices and continuation payoffs. The limit of this sequence is well defined (see below) and
we denote it by {P (k, ·) ,W (k, ·)}k=1,...,m.
For any pair (k, q) , we let

P (k, q−) = limq′↑q P (k, q′)

P (k, q+) = limq′↓q P (k, q′)

denote the limit from the left and from the right, respectively, of the function P (k, ·) at q.
As we will see below, the limiting equilibrium outcome alternates between phases of

no delay and impasses. The distinction between these two phases concerns the discounted
time that it takes for the buyer to purchase the remaining units from a set of low types
with positive measure (i.e., to purchase the remaining units of the low-quality good with
positive probability). We say that there is no delay between the states (k, q) and (k′, q′)

(with k > k′ and q < q′) if the discounted time taken in equilibrium to transition from
the state (k, q) to the state (k′, q′) converges to zero as bargaining frictions vanish. In
contrast, we say that bargaining reaches an impasse at the state (k, q) if for every q′ > q,

the discounted time taken in equilibrium to transition from the state (k, q) to the state
(k, q′) remains bounded away from zero when the discount factor converges to one. Finally,
suppose that there is an impasse at (k, q) . We measure the size of the impasse in terms of
the real time during which the equilibrium stays around the state (k, q). Formally, these
concepts are defined in Definition 2 and Definition 3.
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Fix the discount factor δ and consider the corresponding equilibrium of the game. Let
hδ denote the on-path history in which all the offers of the form (k, p) with p < kc are
rejected. Of course, hδ is a finite history which ends when the buyer makes an offer for all
the remaining units at the price at which the high types break even. Let Tδ denote the
length of the history hδ. For each t < Tδ, we let htδ denote the first t + 1 elements of hδ
(i.e., we truncate hδ at period t).

Definition 2 Fix a sequence of discount factors {δn}∞n=1 converging to one. Consider two
states, (k1, q1) and (k2, q2) , with k1 > k2 and q1 < q2. We say that the real time to reach
(k2, q2) from (k1, q1) converges to zero if the following holds. For every ε > 0, there exists
n̄ such that for every n > n̄ we can find t1 < t2 < Tδn satisfying:
(i) for j = 1, 2, the state associated to the history htjδn is (kj, q̃j) for some q̃j ∈ (qj − ε, qj + ε) ;

(ii) δt2−t1n > 1− ε.

Definition 3 Fix a sequence of discount factors {δn}∞n=1 converging to one. We say that
there is an impasse at the state (k, q) if there exists γ ∈ (0, 1) for which the following holds.
For every ε > 0, there exists n̄ such that for every n > n̄ we can find t1 < t2 < Tδn
satisfying:
(i) for j = 1, 2, the state associated to the history htjδn is (k, qj) for some qj ∈ (q − ε, q + ε) ;

(ii) δt2−t1n < γ.

We say that the impasse is of real time 1 − ξ if ξ is the infimum over all γ leading to
an impasse at (k, q) .

In the following sections, we investigate how divisibility, together with the shape of the
gains from trade, affects the pattern of trade when the bargaining frictions vanish. To
make the analysis interesting, we assume that c > q̂v + (1− q̂) v̄ (recall that we normalize
the smallest αk to one). In fact, it is easy to show that if c 6 q̂v + (1− q̂) v̄, then the
equilibrium outcome of our bargaining game converges, as the discount factor δ goes to
one, to the first best and the Coase conjecture obtains.16’17

16Recall that there are positive gains from trade for every unit and every type of the seller. Therefore,
the first best is achieved when all the m units are traded without delay. According to the Coase conjecture,
as the length of the period between consecutive offers vanishes, the real time that it takes to trade the
whole good of either quality converges to zero.
17It is also straightforward to check that in a model with private values and positive gains from trade

(c 6 v = v̄ in our context), the Coase conjecture continues to hold when the object is divisible.
We also point out that all our results for fixed values of δ (the results in Section 3, Proposition 3, and

Proposition 6 below) hold when values are private (c 6 v = v̄).
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5 Constant Gains from Trade

In this section, we briefly examine the benchmark case of constant gains from trade: αm =

. . . = α1 = 1. We show that when all the units are equally valuable, divisibility does not
play any role.
We begin with a result which holds for any discount factor δ. In addition to being

interesting on its own, this result will provide an immediate characterization of the limiting
equilibrium outcome.
In equilibrium, the buyer only makes offers for the entire good and the outcome is

exactly as in DL. The linearity of the buyer’s utility (in the number of units) is crucial for
this result. To provide some intuition, we divide the argument into two steps. First, we
assume that the buyer is forced to make cream-skimming offers and investigate how the
equilibrium outcome depends on the number of units available for trade. In particular, we
guess and verify that the seller’s reservation price P (k, ·) to sell the last k units is linear in
k. In equilibrium, the reservation prices of the different types are pinned down by the speed
with which the buyer screens the seller. When both the buyer’s utility and the reservation
price are linear in k, the optimal way to screen the seller is independent of the number of
units left for trade (the buyer faces exactly the same problem for every k). This verifies
the linearity of P (k, ·) in k.
This, in turn, implies that when the buyer is required to make cream-skimming offers,

his continuation payoff is linear in the number of units available. It remains to check
whether the buyer can benefit from making a universal offer for k′ = 1, . . . , k−1 of the last
k units. The answer is no; with linear utility and linear continuation payoff, the optimal
fraction of the good to purchase with universal offers can only be zero or one.
Below we state and provide a formal proof of our result.

Proposition 3 Suppose that the gains from trade are constant: αm = . . . = α1 = 1. Then
all equilibrium offers are cream-skimming.

Proof. For every q < 1 let t (q) be such that

W (1, q) =

∫ t(q)

q

[v (s)− P (1, t (q))] ds+δW (1, t (q)) = max
q′>q

∫ q′

q

[v (s)− P (1, q′)] ds+δW (1, q′) .

Assume that for every k = 2, . . . ,m, and for every q

P (k, q) = kP (1, q)

W (k, q) = kW (1, q) =
∫ t(q)
q

[kv (s)− P (k, t (q))] ds+ δW (k, t (q)) .
(2)
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It is immediate to see that for every k > 1, and for every q

W (k, q) = max
q′>q

∫ q′

q

[kv (s)− P (k, q′)] ds+ δW (k, q′) .

We claim that it is impossible to find k′ < k and q such that

W (k, q) 6 (k − k′)
∫ 1

q

(v (s)− c) ds+ δW (k′, q) . (3)

This establishes the suboptimality of universal offers and proves our result.
By contradiction, let (k′, k, q) be a triple that satisfies inequality (3), with k being the

smallest number of (remaining) units for which the inequality can be satisfied. Then, it
follows from the definition ofW (·, ·) in equation (2) that (recall that δ < 1 andW (1, q) > 0

for every q - see DL)

kW (1, q) 6 (k − k′)
∫ 1

q

(v (s)− c) ds+δk′W (1, q) < (k − k′)
∫ 1

q

(v (s)− c) ds+k′W (1, q) ,

and, thus,

W (1, q) <

∫ 1

q

(v (s)− c) ds,

which leads to a contradiction. �
We now illustrate the equilibrium outcome of the game when the length of the period

shrinks to zero. To simplify the exposition, here and throughout the rest of the paper we
adopt the following convention. Suppose that the buyer believes that the seller’s type is
uniformly distributed over the set [q̃, 1] for some q̃ ∈ [0, 1] (recall that along the equilibrium
path, the beliefs take this form). Then we say that the buyer’s belief is q̃.
We let q̄1 ∈ (0, q̂) denote the belief at which the buyer breaks even if he purchases one

unit of the good at the price c. Thus, q̄1 is implicitly defined by∫ 1

q̄1

(v (s)− c) ds = 0. (4)

Recall that when the gains from trade are constant (αm = . . . = α1 = 1), all the offers
are cream-skimming. Therefore, the characterization of the limiting equilibrium outcome
follows directly from DL. Suppose that the number of remaining units is k = 1, . . . ,m (of
course, on the equilibrium path there are always m units left for trade). When the belief is
larger than q̄1, the buyer’s continuation payoff is strictly positive since it is bounded below
by the payoff of the offer (k, kc) . Therefore, the buyer has an incentive to speed up trade.
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Using standard Coasean arguments, DL show that in the limit (as δ goes to one), all the
types above q̄1 sell the k remaining units without delay at the price kc.
Suppose now that the buyer’s belief is below q̄1. First, it is immediate to see that there

must be delay before the buyer reaches an agreement with the high types. Without delay,
the low types would have an incentive to pool with the high types and sell their units at
the price kc. But this would yield a loss to the buyer.
One of the main breakthroughs of DL was to show that delays are resolved by impasses

and to figure out the exact size of the impasses. When δ is close to one, the reservation price
of the types below q̄1 must be smaller than kv, otherwise the buyer’s continuation payoff
would be negative (in the limit, the continuation payoff from trading with all the types
larger than q̄1 approaches zero). Thus, the seller’s reservation price crosses the buyer’s low
valuation kv when the belief is close to q̄1. DL use this fact to show that (in the limit),
the time it takes to go from state (k, q̄1 − ε) to state (k, q̄1) coincides with the time that
it takes to go from (k, q̄1) to (k, q̄1 + ε) (i.e., there is “double delay”at the state (k, q̄1)).
Putting these findings together, it is easy to see that the impasse at the state (k, q̄1) is of
real time 1−

(
v
c

)2
.

We conclude that for every k = 1, . . . ,m, the limit reservation price and continuation
payoff are:

P (k, q) :=


kv2

c
if q < q̄1

kc if q > q̄1,
(5)

and

W (k, q) :=


∫ q̄1
q

(
kv (s)− P

(
k, q̄−1

))
ds if q 6 q̄1∫ 1

q
k (v (s)− c) ds if q > q̄1.

(6)

where P
(
k, q̄−1

)
= limq↑q̄1 P (k, q) .

To sum up, the limiting equilibrium outcome of the model with constant gains from
trade is as follows. The buyer purchases all the m units from the types smaller than q̄1

without delay. Then an impasse occurs. During the impasse, the buyer keeps increasing
the price but the offers are accepted with probability close to zero. Once the impasse is
resolved, the buyer reaches an immediate agreement with all the types above q̄1.

The analysis in this section shows that when the gains from trade are constant, divis-
ibility is of no consequence as timing on the market is the only signaling device. As we
will see below, this is in contrast with the case of decreasing gains from trade, in which
divisibility plays a crucial role, and the size of the good still to be traded emerges as a new
signaling component.
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6 Decreasing Gains from Trade

We now analyze the case of decreasing gains from trade and assume that αm > . . . > α1 = 1.

It turns out that this case is significantly different from the case of constant gains. In fact,
indivisibility is not an innocuous assumption when the gains from trade are decreasing,
and the pattern of trade is greatly affected by the possibility of purchasing fractions of the
good.
In this section, we derive some preliminary properties of the limiting equilibrium out-

come. Notice first that in the case in which one unit is left for trade, the equilibrium
outcome is exactly as in DL. In the limit, the buyer trades without delay with all the
types below q̄1 (defined in equation (4)). Then there is an impasse at the state (1, q̄1) .

Once the impasse is resolved there is immediate trading with all the remaining types. The
sequence of reservation price {Pn (1, ·)} converges to P (1, ·) defined in equation (5), while
the sequence of continuation payoff {Wn (1, ·)} converges to W (1, ·) defined in equation
(6).
We establish similar convergence results for any number of units.

Lemma 3 For every k = 2, . . . ,m, there exist W (k, ·) : [0, 1]→ R+ and P (k, ·) : [0, 1]→
R+ such that {Wn (k, ·)} has a subsequence converging uniformly toW (k, ·) , and {Pn (k, ·)}
has a subsequence converging pointwise to P (k, ·) .

Proof. Notice that Wn (k, ·) are equicontinuous functions with Lipschitz coeffi cient
(αk + . . .+ α1) v̄. They are also uniformly bounded by (αk + . . .+ α1) v̄. Therefore, the
conclusion follows from Arzelà-Ascoli Theorem. The functions Pn (k, ·) are monotonic (and
hence have bounded variation) and are clearly uniformly bounded. The conclusion follows
from Helly´s First Theorem (Theorem 6.1.18 in Kannan and Krueger, 1996). �
As will become evident below, a result stronger than Lemma 3 actually holds. The

algorithm we construct in Appendix D shows that (for generic values of the parameters)
all the convergent sequences {Wn (k, ·) , Pn (k, ·)} , k = 2, . . . ,m, have the same limit which
we denote by (W (k, ·) , P (k, ·)) .
Our next result confirms the existence of an impasse at (1, q̄1) , analogous to the case

in which the buyer and the seller trade a single unit, and further establishes (1, q̄1) as the
final state at which an impasse occurs.

Proposition 4 In the limit, the last impasse is at (1, q̄1) and is of real time 1−
(
α1v
c

)2
.

The proof of Proposition 4 is in Appendix D. Recall that the gains per unit are decreasing
and that q̄1 is the type at which the buyer breaks even with the last unit if he pays the price
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c. Thus, for any number k > 2 of units left for trade and for any q > q̄1, the buyer’s expected
payoff is bounded away from zero when the state is (k, q) . The usual Coasean argument
implies that, in the limit, there cannot be any delay once the state (k, q) is reached. This
implies that if there is an impasse at (k, q′) with k > 2, then it must necessarily be the case
that q′ < q̄1. Now, suppose that the last impasse is at (k, q′) for some k > 2. Notice that once
the impasse is resolved, the buyer will end up purchasing the remaining k units at the price
kc. However, in the limit, the buyer can increase his payoff at (k, q′) by purchasing k − 1

units from all the types at the price (k − 1) c and then the last unit at the price P
(
1, q̄−1

)
(respectively c) from the types smaller (respectively larger) than q̄1. Clearly, the second
course of action is more profitable than the first one since the buyer pays P

(
1, q̄−1

)
instead

of c to purchase the last unit from the types in (q′, q̄1) . This implies that for δn suffi ciently
close to one, the buyer would have a profitable deviation. A similar contradiction can be
easily derived if one assumes that, in the limit, there are no impasses.
Once we have established the last impasse, we can move on to characterize the rest

of the m-limiting equilibrium outcome. To do so, we construct an algorithm which pins
down the entire sequence of impasses. We provide a formal description of the algorithm in
Appendix D. In what follows, we illustrate how to identify the penultimate impasse and
describe the main properties of the m-limiting equilibrium outcome (for arbitrary values
of m). This is less demanding in terms of notation and allows us to focus on the intuition
behind our results.
For every k 6 m, we denote by q̄k the type at which the buyer breaks even if he trades

the (m− k + 1)-th unit at the price c. Formally, q̄k is implicitly defined by∫ 1

q̄k

(αkv (s)− c) ds = 0, (7)

provided that the solution to the above equation exists and is positive. The cases in which
the solution is negative or does not exist are irrelevant to our construction, as an impasse
cannot occur given either circumstance when there are k units left for trade. This is because
the buyer can guarantee a strictly positive payoff by making a universal offer for one unit.
For concreteness, in these cases we set q̄k equal to −k. Notice that q̄m < . . . < q̄2 < q̄1 since
αm > . . . > α1.

For any k > 2 and q < q̄1, consider the strategy of acquiring (k − 1) units at the price
(k − 1) c from all the types [q, 1] and then the last unit from the types in (q, q̄1) at the
price P

(
1, q̄−1

)
. Let q̂k denote the type at which the buyer breaks even. To simplify the

exposition, let us assume that q̂k is well defined and positive.18 Formally, q̂k is the solution

18Of course, in the formal statement of the result and in its proof, we consider the general case.
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to the following equation:∫ 1

q̂k

((αk + . . .+ α2) v (s)− (k − 1) c) ds+

∫ q̄1

q̂k

(
α1v − P

(
1, q̄−1

))
ds = 0. (8)

Notice that q̂k > 0 implies that

(αk + . . .+ α1) v < (k − 1) c+ P
(
1, q̄−1

)
.

6.1 Two Units

It is worthwhile to devote some attention to the limiting equilibrium outcome when the
good is divided into two units. The case m = 2 provides a simple explanation of why the
high-quality good is sold gradually over time and why divisibility is disadvantageous to the
buyer.
We know from the previous section that the bargaining process ends immediately when

there are at least two units left for trade and the buyer’s belief is q > q̄1. In fact, the buyer
can guarantee a strictly positive payoff by paying c for each of the remaining units. This
immediately implies that, in the limit, the reservation price for two units of all the types
larger than q̄1 is equal to 2c.

Suppose now that the state is (2, q) with q ∈ (q̂2, q̄1) . It follows from Proposition 4 that
the limiting equilibrium outcome must reach the state (1, q̄1) .Does this happen immediately
or with some delay (in the limit)? The fact that q ∈ (q̂2, q̄1) implies that the buyer can
guarantee a strictly positive payoff by purchasing the first unit from all the types above
q at the price c, and the second unit from the types in (q, q̄1) at the price P

(
1, q̄−1

)
. The

usual Coasean forces allow us to conclude that when the bargaining frictions vanish the
transition from the state (2, q) to the state (1, q̄1) is instantaneous. This, in turn, implies
that for q ∈ (q̂2, q̄1) , the reservation price P (2, q) is equal to

P
(
2, q̂+

2

)
= c+ P

(
1, q̄−1

)
> (α2 + α1) v.

We conclude that as q approaches q̂2 from above, the buyer’s expected payoff at (2, q)

converges to zero.
Consider now the state (2, q) with q < q̂2. If the buyer purchases one unit from all the

types at the price c and the second unit from the types in (q, q̄1) at the price P
(
1, q̄−1

)
,

then his payoff will be negative. Also, for δn suffi ciently close to one, the reservation price
Pn (2, q) must be bounded away from P

(
2, q̂+

2

)
, otherwise, the buyer’s payoff would be

negative. This implies that if we start from (2, q) with q < q̂2, then we reach an impasse at
(2, q̂2) . Using an argument similar to DL, it is easy to show that the “double delay”result

21



holds at every impasse. Thus, the impasse at (2, q̂2) is of real time 1−
(

(α2+α1)v

c+P(1,q̄−1 )

)2

, and

that for q < q̂2, the reservation price P (2, q) is equal to

P
(
2, q̂−2

)
=

((α2 + α1) v)

c+ P
(
1, q̄−1

)2

.

To sum up, when m = 2 the limiting equilibrium outcome is as follows. The buyer pur-
chases both units from the types smaller than q̂2 at the price

((α2+α1)v)

c+P(1,q̄−1 )

2
, and the bargaining

process reaches the state (2, q̂2) without delay. At that point a first impasse occurs (the

impasse is of real time 1 −
(

((α2+α1)v)

c+P(1,q̄−1 )

)2

) . After the impasse is resolved, the buyer pur-

chases (without delay) the first unit from all the types above q̂2 and the second unit from
the types in the interval (q̂2, q̄1) . The second and final impasse occurs at the state (1, q̄1).
The bargaining process ends as soon as the impasse is resolved, as the buyer proposes to
pay c to get the second unit of the good.
Notice that the buyer’s continuation payoff is equal to zero when the bargaining process

reaches an impasse. Thus, the buyer’s limiting equilibrium payoff is equal to

W (2, 0) =

∫ q̂2

0

((α2 + α1) v (s)− P (2, s)) ds = q̂2 (α2 + α1) v

(
1− ((α2 + α1) v)

c+ P
(
1, q̄−1

)) ,
where q̂2 < q̄2 (this follows immediately from the definitions of q̂2 and q̄2).
We now compare this case with the case in which the good is indivisible. In the context

of our model, indivisibility can be simply described as a restriction on the type of admissible
offers. In particular, we assume that the buyer can only make offers of the form (2, p) for
p > 0. Let q̄DL denote the type at which the buyer breaks even if he makes the offer (2, 2c) .

Formally, q̄DL is the solution to the following equation∫ 1

q̄DL

((α2 + α1) v (s)− 2c) ds = 0.

Notice that q̄DL ∈ (q̄2, q̄1) since α2 > α1. It follows from DL that in the limit, the
seller’s reservation price (which we denote by PDL) is equal to

PDL (q) =

{
((α2+α1)v)

2c

2
if q < q̄DL

2c if q > q̄DL.

In the limit, the buyer purchases (without delay) the two units from the types smaller

than q̄DL at the price
((α2+α1)v)

2c

2
. Then, there is an impasse of real time 1 −

(
((α2+α1)v)

2c

)2

.
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Figure 1: Reservation price for two units (benchmark model: solid line; DL: dashed line)

The bargaining process ends as soon as the impasse is resolved (the buyer purchases the two
units from all the remaining types at the price 2c). Thus, the buyer’s limiting equilibrium
payoff is equal to

WDL (0) =

∫ q̄DL

0

((α2 + α1) v (s)− PDL (s)) ds = q̄DL (α2 + α1) v

(
1− ((α2 + α1) v)

2c

)
.

It is immediate to see that the buyer is better off when the good is indivisible. In fact,
WDL (0) > W (2, 0) since q̄DL > q̄2 > q̂2 and

((α2+α1)v)
2c

< ((α2+α1)v)

c+P(1,q̄−1 )
.

When the good is indivisible, the buyer pays a large price (equal to 2c) when the belief
is above q̄DL. This, however, has a positive effect on the buyer’s initial payoff. A large price
after the impasse implies a long delay and a severely reduced price before the impasse (see
Figure 1).
Suppose now that the good is divisible and the state is (2, q) with q ∈ (q̄DL, q̄1) . The

buyer’s payoff is still positive if he pays 2c for the two units. However, a more profitable
strategy is now available. Specifically, the buyer is strictly better off by making a universal
offer (for the first unit) and then proceeding with cream-skimming offers for the remaining
unit. It follows that in the interval (q̄DL, q̄1) the seller’s reservation price (for two units) is
lower in the model with divisibility than in the model with indivisibility (again, see Figure
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1). This, in turn, has two effects. First, in the initial phase of the bargaining process (i.e.,
before the first impasse is reached), the buyer trades with a smaller set of types when the
good is divisible (q̂2 < q̄DL).19 Second, since there is double delay at each impasse, the
buyer pays a larger initial price in the model with divisibility (P (2, 0) > PDL (0)). Clearly,
both effects have a negative impact on the buyer’s payoff.

6.2 Three or More Units

We now turn to the case in which the good is divided into three or more units. Our first
goal is to illustrate when the penultimate impasse of the bargaining process will occur.
We start by investigating whether the penultimate impasse is when there are two or

more than two units left for trade. It turns out that we need to distinguish between two
cases, depending on whether q̄3 is greater or smaller than q̂2 (recall that q̄3 and q̂2 are defined
in equations (7) and (8), respectively). Here and in what follows, we restrict attention to
a generic set of parameters and assume that q̂2 6= q̄3. More generally, we assume that
q̄k+1 6= q̂k for k ∈ {2, . . . ,m− 1} (this case is generic).

Case q̂2 > q̄3: there is an impasse at (2, q̂2).
First, assume that q̂2 > q̄3.We claim that, in the limit, the penultimate impasse occurs

at (2, q̂2) . Suppose, by contradiction, that the penultimate impasse is at (k, q) for some
k > 2. The fact that q̂2 > q̄3 > q̄4 > . . . > q̄m implies that for q ∈ (q̂2, q̄1) the buyer’s
payoff from purchasing (k − 1) units from all the types at the price (k − 1) c and the last
unit from the types in (q, q̄1) at the price P

(
1, q̄−1

)
is positive and bounded away from zero.

Therefore, if there is an impasse at (k, q) , it must be the case that q < q̂2.
20

Consider now the state (k, q′) for some q′ ∈ (q, q̂2) . In the limit, the buyer gets the same
payoff as if he buys (k − 1) units from the types above q′ at the price (k − 1) c, and the
last unit at the price P

(
1, q̄−1

)
(respectively c) from the types smaller (respectively larger)

than q̄1. This course of action is represented by the dashed line in Figure 2.
A different course of action (represented by the solid line in Figure 2) is to purchase

(k − 2) units at the price (k − 2) c and the last two units from the types in (q′, q̂2) at the
price P

(
2, q̂−2

)
, reaching an impasse. After the impasse at (2, q̂2) is resolved, the buyer

purchases the penultimate unit at the price c and the last unit at the price P
(
1, q̄−1

)
(respectively c) from the types smaller (respectively larger) than q̄1.

21

19Notice that the strategy of making a universal offer yields a strictly positive payoff when the buyer’s
belief lies in the interval (q̂2, q̄DL).
20Clearly, the impasse cannot occur at (k, q) with q > q̄1. Recall that for any q > q̄1, the buyer’s payoff

from buying k′ > 1 units at the price k′c from the types [q, 1] is strictly positive.
21Notice that, in the limit, the offers made after the resolution of the impasse yield a payoff equal to zero

(in fact, we have W (2, q̂2) = 0). Nevertheless, we specify these offers to facilitate the comparison with the
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Figure 2: Penultimate Impasse with Two Units Remaining

As one can see in Figure 2, the difference between these two courses of action consists
in the total price that the buyer pays to the types in (q′, q̂2) for the last two units of the
good. The total price is c+P

(
1, q̄−1

)
under the first course, and P

(
2, q̂−2

)
under the second

one. Recall that P
(
2, q̂−2

)
is bounded away from P

(
2, q̂+

2

)
= c + P

(
1, q̄−1

)
. Thus, in the

limit, the second course of action yields a larger payoff.
We conclude that for δn suffi ciently close to one, the buyer would have a profitable

deviation. In a similar way, we can rule out the case in which there is only one impasse at
(1, q̄1) .

Case q̂2 < q̄3: there are no impasses when two units are left for trade.
Consider now the case q̂2 < q̄3, and notice that this implies q̂2 < q̂3.

22 The buyer’s
continuation payoffW (3, q) is strictly positive if q > q̂3. Thus, in the limit, the transition
from the state (3, q) , with q ∈ (q̂3, q̄1) is instantaneous. This, in turn, implies that for
q ∈ (q̂3, q̄1) the limit reservation price for three units is equal to

P (3, q) = 2c+ P
(
1, q̄−1

)
.

Consider now the state (3, q) with q ∈ (q̂2, q̂3) . If the buyer makes a universal offer
for one or two units his (limit) payoff is negative. In fact, in either case, the buyer ends

first course of action.
22The payoff

∫ 1

q
((α3 + α2) v (s)− 2c) ds +

∫ q̄1
q

(
α1v − P

(
1, q̄−1

))
ds can be decomposed as the sum of

the following two components:
∫ 1

q
(α3v (s)− c) ds and

∫ 1

q
(α2v (s)− c) ds+

∫ q̄1
q

(
α1v − P

(
1, q̄−1

))
ds. Both

components are positive if q > q̄3 > q̂2 and negative if q 6 q̂2 < q̄3. It follows that q̂3 must belong to the
interval (q̂2, q̄3) .
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up paying 2c + P
(
1, q̄−1

)
to the types below q̄1, and 3c to the types above q̄1 (this yields

a negative payoff since q < q̂3). We conclude that the equilibrium offers must be cream-
skimming. Also, for q ∈ (q̂2, q̂3) , the reservation price P (3, q) must be bounded away from
2c+ P

(
1, q̄−1

)
otherwise the buyer’s payoff would be negative.

Using an argument similar to the one developed in Section 6.1, we show that if the state
(3, q) is reached (either on or off path) and q ∈ (q̂2, q̂3) , then there is an impasse at (3, q̂3)

of real time 1−
(

(α3+α2+α1)v

2c+P(1,q̄−1 )

)2

, and for q′ < q̂3 the reservation price P (3, q′) is equal to

P
(
3, q̂−3

)
=

((α3 + α2 + α1) v)

2c+ P
(
1, q̄−1

) 2

.

It is not diffi cult to check that

P
(
3, q̂−3

)
< c+ P

(
2, q̂−2

)
< c+ P

(
2, q̂+

2

)
= 2c+ P

(
1, q̄−1

)
. (9)

The first inequality shows that there is a significant drop in price from P
(
3, q̂+

3

)
to

P
(
3, q̂−3

)
at the state (3, q̂3) . In particular, this drop is larger than the drop from P

(
2, q̂+

2

)
to P

(
2, q̂−2

)
at the state (2, q̂2) .23 The reason involves the magnitude by which the reserva-

tion price exceeds the buyer’s valuation. The difference between P
(
3, q̂+

3

)
and the buyer’s

valuation for three units is larger than the difference between P
(
2, q̂+

2

)
and the valuation

for two units. This, together with the fact than an impasse doubles the delay necessary to
bring the reservation price to the buyer’s valuation, accounts for the large discontinuity in
price at (3, q̂3) .

Finally, we use the fact that cream-skimming offers for three units are relatively attrac-
tive to show that, on the limiting equilibrium path, there cannot be an impasse at (2, q̂2) .

If this were the case, we could find a state (k, q) with k > 2 and q < q̂2 such that the buyer
purchases (k − 2) units from all the remaining types and then follows the equilibrium be-
havior with two units.24 This course of action is represented by the dashed line in Figure
3.
Consider now a different course of action (represented by the solid line in Figure 3).

First, the buyer purchases (k − 3) units at the price (k − 3) c (from all the remaining types).
Then he purchases the last three units from the types in (q, q̂3) at the price P

(
3, q̂−3

)
, and

the third to last unit at the price c. After this, he follows the equilibrium behavior with
two units.
23In fact, notice that P

(
3, q̂+

3

)
= c+ P

(
2, q̂+

2

)
.

24This means that the buyer purchases the last two units at the price P
(
2, q̂−2

)
from the types in (q, q̂2),

and the penultimate unit at the price c from all the types above q̂2. Finally, he buys the last unit at the
price P

(
1, q̄−1

)
(c) from the types smaller (larger) than q̄1.
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Figure 3: Penultimate Impasse with More than Two Units Remaining

As is evident from Figure 3, these two courses of action differ with the respect to the
price that the buyer will pay to the types in (q, q̂3) for the last three units. Under the
second course, the buyer pays P

(
3, q̂−3

)
. In contrast, under the first course, the buyer pays

c + P
(
2, q̂−2

)
to the types in (q, q̂2) , and 2c + P

(
1, q̄−1

)
to the types in (q̂2, q̂3) . In both

cases, the buyer benefits from the significant drop in price for three units around the state
(3, q̂3) (see inequality 9) and strictly prefers the second course of action to the first one. We
conclude that without an impasse at (2, q̂2) , the buyer would have a profitable deviation
for δn suffi ciently close to one.
To sum up, we have shown that the penultimate impasse is at (2, q̂2) if and only if

q̂2 > q̄3. If, instead, q̂2 < q̄3, then we compare q̂3 and q̄4. Similar arguments to those
developed above allow us to conclude that the penultimate impasse is at (3, q̂3) if and only

if q̂3 > q̄4. In general, we show that the penultimate impasse is at
(
k̂, q̂k̂

)
, where we set

q̄m+1 = 0 and let k̂ denote the smallest k = 2, . . . ,m for which q̂k > q̄k+1.

Once the penultimate impasse at
(
k̂, q̂k̂

)
has been determined, we treat the last k̂ units

as a single unit and reapply our algorithm. This will give us the third to last impasse. In
general, our algorithm takes an impasse as given and applies the procedure above to identify
the impasse that comes right before. We provide a formal description of the algorithm in
Appendix D.
Below we state and discuss some general properties of the m-limiting equilibrium out-

come for arbitrary values of m (these properties are derived in Appendix D).
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Proposition 5 The m-limiting equilibrium outcome involves a set of impasses

{(k1, q̃k1) , . . . , (kJ , q̃kJ )}

where J ∈ {1, . . . ,m} , m > k1 > . . . > kJ = 1, and q̃k1 < . . . < q̃kJ = q̄1.

The impasses satisfy the following properties:
i) q̃kj ∈

(
q̄kj+1, q̄kj

)
for every j ∈ {1, . . . , J − 1} ;

ii) W
(
kj, q̃kj

)
= 0 for every j ∈ {1, . . . , J} ;

iii) For every j ∈ {1, . . . , J − 1} , we have

P
(
kj, q̃

+
kj

)
= (kj − kj+1) c+ P

(
kj+1, q̃

−
kj+1

)
(10)

and

P
(
kj, q̃

−
kj

)
=

((
αkj + . . .+ α1

)
v
)2

P
(
kj, q̃

+
kj

) =

((
αkj + . . .+ α1

)
v
)2

(kj − kj+1) c+ P
(
kj+1, q̃

−
kj+1

) . (11)

Similarly to the case with two units, them-limiting equilibrium outcome is characterized
by long periods of inactivity (impasses) followed by bursts of trade. As illustrated in Section
6, the last impasse occurs when there is one unit left for trade (and the buyer’s belief is q̄1).
The impasses differ both with respect the number of remaining units and the belief. The
burst of trade between two consecutive impasses, say

(
kj, q̃kj

)
and

(
kj+1, q̃kj+1

)
, consists of

the universal offer for (kj − kj+1) units, followed by a cream-skimming offer that is accepted
by the low types in

(
q̃kj , q̃kj+1

)
. The rejection of this offer increases the buyer’s belief and

leads to another long period of inactivity.
We saw above that the penultimate impasse occurs at the state at (2, q̂2) when q̂2 ∈

(q̄3, q̄2) . Proposition 5 i) shows that this property extends to all the other impasses (except
the last one which occurs at (1, q̄1)).25 The reason is similar to the case discussed above. If
q̃kj+1

is larger than q̄kj+1
, then there cannot be an impasse at

(
kj+1, q̃kj+1

)
since the buyer’s

payoff is strictly positive. If, on the other hand, q̃kj+1
is smaller than q̄kj+1+1, then the

reservation price of the types close to q̃kj for kj+1 + 1 units is particularly attractive to the
buyer, who then prefers to take advantage of this and avoid making a universal offer for
(kj − kj+1) units after the impasse

(
kj, q̃kj

)
is resolved. Again, there cannot be an impasse

at
(
kj+1, q̃kj+1

)
.

Clearly, at every impasse, the limit continuation payoff of the buyer must be equal to
zero otherwise he would have an incentive to speed up trade.
Finally, recall that in equilibrium the low types are indifferent between accepting and

rejecting cream-skimming offers (that are rejected by the high types), and their reservation

25Recall that we set q̄m+1 = 0.
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price is equal to their discounted continuation payoff after the rejection of the offer. In the
limit, the transition from the state

(
kj, q̃kj

)
to the state

(
kj+1, q̃kj+1

)
is without delay and,

thus, equation (10) must hold. Equation (11) follows from the fact that there is double
delay at each impasse.

Decreasing Gains from Trade and New Profitable Trade Opportunities
As we have seen with detail in this section, the equilibrium dynamics with decreasing

gains from trade are very different from the dynamics of the benchmark case of constant
gains. To explain this point, recall that divisibility does not play any role when the gains
from trade are constant. The equilibrium involves a long delay after which the buyer
breaks even purchasing all the m units left at the price mc. Importantly, the buyer could
not profitably deviate by making a universal offer for k < m units at the price kc as he
would also break even with this offer. This is no longer true when the gains from trade
are decreasing. To see why, consider a putative limiting outcome with only one delay
which occurs when there are m units left for trade. In contrast to the benchmark case,
a universal offer for k < m units brings two advantages: a direct payoff advantage and
a strategic advantage. The direct payoff advantage is due to the fact that the average
value of the first k units is higher than the average value of all the m units. The strategic
advantage is more subtle. Consider the continuation game after the purchase of k < m

units. The buyer’s valuation for each of the units left is small, which necessarily forces
another delay. This delay, in turn, decreases the continuation value of low-type sellers,
making them less reluctant to sell their goods in the current period at lower prices. As a
consequence, the buyer profits from purchasing the good from a subset of low-type sellers
at a low price. The combination of these two effects makes universal partial offers relatively
more attractive when gains from trade are decreasing. These effects bring new profitable
trade opportunities and ultimately lead to the gradual sale of high-quality goods. In the
next section, we further explore the impact of these new trading opportunities allowing the
good to be arbitrarily more divisible.

7 Limiting Equilibrium Outcome

Our analysis above shows that when the gains from trade are decreasing divisibility has
a significant impact on the pattern of trade. To gain additional insights about trading
dynamics, we consider the case in which the good becomes more and more divisible (i.e.,
is divided into smaller and smaller units). In addition to being a reasonable assumption in
a number of environments (for example, the buyer of a firm can propose to purchase any
fraction of it), this approach helps us to understand the role of divisibility, bringing new
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Figure 4: The function q (z)

insights into bargaining.
More precisely, we proceed as follows. We assume that the good has measure one.

Suppose that the measure of the good on the table is z > 0 and that the buyer purchases
a measure z′ 6 z from type q. The buyer’s valuation is given by:

v(q)

(∫ z

z−z′
α (u) du

)
,

where α : [0, 1] → R++ is a smooth and strictly increasing function, and α (0) = 1. Type
q’s valuation of any measure z of the good is equal to zero if q 6 q̂, and equal to zc̄ if q > q̂.

Thus, c̄ represents the cost of the whole good when the quality is high. We assume that v̄
> c̄ > v > 0.

For every z ∈ [0, 1] , we define q (z) ∈ [0, q̂) implicitly by∫ 1

q(z)

[α (z) v (s)− c̄] ds = 0. (12)

Suppose that the measure z of the good is still available for trade and the buyer pur-
chases one infinitesimal unit at the price c̄. If the buyer’s belief is equal to q (z) , then he
breaks even.
The function q (·) (depicted in Figure 4) is smooth and strictly decreasing since α (·) is

smooth and strictly increasing. For future reference, we let ψ (·) denote the inverse of q (·) .
We take the parameters (v, v̄, c̄, q̂, r) and the function α as given and divide the good

into m = 1, 2, . . . units of measure 1/m each. If the seller’s type is q, the buyer’s valuation
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of the (m− k + 1)-th unit, k = 1, . . . ,m, is equal to αkv (q) , where

αk :=

∫ k
m

k−1
m

α (u) du.

The cost of each unit for type q is equal to zero if q 6 q̂, and equal to c̄
m
if q > q̂. Notice

that since the function α is increasing, the gains from trade decrease as the parties engage
in more and more transactions.
For every m = 1, 2, . . . , we compute the m-limiting equilibrium outcome. Recall that

this is the limit, as the bargaining frictions vanish, of the equilibrium outcome of the game in
which the good is divided intom parts. We know from Section 6.2 that them-limiting equi-
librium outcome is characterized by a sequence of impasses

{
(zm1 , q

m
1 ) , . . . ,

(
zmNm , q

m
Nm

)}
, for

some Nm 6 m. Thus, the j-th impasse occurs at the state
(
zmj , q

m
j

)
, where zmj denotes the

fraction of the good left for trade and qmj denotes the buyer’s belief. It is more convenient
to work with the fraction of the good zmj left for trade as we vary the number of units m.
Obviously, at the state

(
zmj , q

m
j

)
the number of remaining units is equal to mzmj .

Of course, the impasses
{

(zm1 , q
m
1 ) , . . . ,

(
zmNm , q

m
Nm

)}
satisfy all the properties in Propo-

sition 5. In particular, we have
(
zmNm , q

m
Nm

)
=
(

1
m
, q
(

1
m

))
.

For every m and every k = 1, . . . ,m, we let Pm (k, ·) denote the limit of the reservation
price for k units when the bargaining frictions vanish (recall from Lemma 3 that the limit
is well defined).
Finally, fixm and consider them-limiting equilibrium outcome. We let zm (t) and qm (t)

denote the fraction of the good left for trade and the buyer’s belief, respectively, at time
t ∈ R+ if all the cream-skimming offers proposed before time t are rejected (this is the
case, for example, if the quality of the good is high). The functions zm (·) and qm (·) are
well defined since there is a unique m-limiting equilibrium outcome.
Our goal is to characterize the limit, as m grows large, of the m-limiting equilibrium

outcome. We refer to this as the limiting equilibrium outcome.26

To ease notation, in what follows we focus on the extreme case of adverse selection and
assume that the buyer’s expected valuation of the first infinitesimal unit is smaller than
the cost of the seller’s high types:∫ 1

0

[α (1) v(s)− c̄] ds < 0. (13)

26This order of limits (first with respect to the length of the period, then with respect to the size of each
unit) allows us to use the algorithm described in Section 6.2. It is an open question whether the same
limiting outcome is obtained if the order of limits is exchanged.
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It is easy to show that if
∫ 1

0
[α (0) v(s)− c̄] ds > 0, then for any m the m-limiting

equilibrium outcome coincides with the first best and the Coase conjectures obtains.27

Similarly, if
∫ 1

0
[α (z) v(s)− c̄] ds = 0 for some z ∈ (0, 1] , and the good is infinitely divisible,

then the Coase conjecture applies, but only for a measure 1− z of the good.28
We are now ready to state the main results (Theorem 1 and Corollary 1 below). Then

we present a sketch of the proof, and provide the intuition behind our findings. The full
proof of Theorem 1 is in Appendix C.

Theorem 1 The limiting equilibrium outcome satisfies the following properties:
i)

lim
m→∞

max
j∈{2,...,Nm}

qmj − qmj−1 = 0

ii)
lim
m→∞

max
j∈{2,...,Nm}

zmj−1 − zmj = 0

iii)
lim
m→∞

zm1 = 1

iv)
lim
m→∞

max
j∈{1,...,Nm}

∣∣qmj − q (zmj )∣∣ = 0

v)

limm→∞maxj∈{1,...,Nm}

∣∣∣Pm (mzmj , (qmj )−)− v ∫ zmj0 α (s) ds
∣∣∣ =

limm→∞maxj∈{1,...,Nm}

∣∣∣Pm (mzmj , (qmj )+
)
− v

∫ zmj
0 α (s) ds

∣∣∣ = 0.

As the good becomes more and more divisible, the number of impasses goes to infinite
while their size shrinks to zero. Between two consecutive impasses, the trading dynamics
are as follows. First, the buyer makes a universal offer to purchase an arbitrarily small
fraction of the good (thus, in the limit, the high-quality good is traded smoothly over
time). Then the buyer makes a cream-skimming offer and purchase the remaining fraction
of the good from an arbitrarily small set of low types. In the limit, the price of this offer
coincides the buyer’s valuation of the remaining fraction of the (low-quality) good.
Recall the definition of the functions zm (·) and qm (·) above. The monotonicity of

these functions guarantees that the sequence {zm (·) , qm (·)}m=1,... has a convergent subse-
quence. By Theorem 1, every subsequence converges to the same limit, which we denote
by (z∗(t), q∗(t)).

27This means that in the limit, as the length of the period between consecutive offers vanishes, all the
m units (of either quality) are traded without delay.
28In this case, the results derived in this section apply to the remaining measure z of the good.
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Theorem 1 also allows us to characterize the functions z∗(t) and q∗(t). Property iv)
immediately implies that for every t > 0

z∗ (t) = ψ (q∗(t)) ,

where, recall, ψ (·) is the inverse of q (·) (defined in equation (12)). Thus, q∗ (0) = q (1)

since z∗ (0) = 1.

Finally, notice that in equilibrium the low types must be indifferent between accepting
the cream-skimming offer at time t and accepting the cream-skimming offer at time t+ ∆t

(while mimicking the high types between t and t+∆t). Property v) of Theorem 1 shows that
when m grows large the price of a cream-skimming offer approaches the buyer’s valuation
(for the low-quality good). Putting these observations together, we have:

v
∫ ψ(q∗(t))

0
α(u)du = −

∫ t+∆t

t
e−r(τ−t)ψ′ (q∗(τ)) q∗′(τ)c̄dτ + e−r∆tv

∫ ψ(q∗(t+∆t))

0
α(u)du =

−ψ′ (q∗(t)) q∗′(t)c̄∆t+ (1− r∆t)v
∫ ψ(q∗(t))

0
α(u)du+ vα (ψ (q∗ (t)))ψ′ (q∗ (t)) q∗′ (t) ∆t+ o (∆t) .

(14)
Finally, using equation (14) and taking the limit as ∆t goes to zero, we obtain q∗′ (t) .

The following corollary summarizes our findings.

Corollary 1 The functions z∗(·) and q∗(·) satisfy, for every t > 0, the following conditions:

q∗′ (t) =
rv
∫ ψ(q∗(t))
0 α(u)du

ψ′(q∗(t))(vα(ψ(q∗(t)))−c̄)

z∗′(t) = ψ′ (q∗(t)) q∗′(t) =
rv
∫ ψ(q∗(t))
0 α(u)du

(vα(ψ(q∗(t)))−c̄) .
(15)

Furthermore, q∗ (0) = q (1), z∗ (0) = 1, and z∗ (t) = ψ (q∗(t)) for every t.

The limiting equilibrium outcome can be interpreted as follows. At time zero, the buyer
makes a cream-skimming offer for the entire good (measure one) at a price v

(∫ 1

0
α(u)du

)
.

This offer is accepted by the low types in the interval [0, q (1)] . Thus, if the offer is rejected,
the buyer’s belief jumps to q (1) . At each time t > 0, the buyer engages in two actions
simultaneously: he makes a universal offer for an infinitesimal quantity (which, of course, is
accepted by all the remaining types), and a cream-skimming offer to purchase the remaining

fraction ψ (q∗(t)) of the good at the price v
(∫ ψ(q∗(t))

0
α(u)du

)
. The low types accept the

cream-skimming offer smoothly over time in such a way that the belief evolves according
to q∗ (·).
We remark that z∗(t) > 0 for every t ∈ R+ and that limt→∞ z

∗(t) = 0. That is, as
the good becomes infinitely divisible, the game takes an arbitrarily long time to finish.
Nonetheless, the fraction of the good available for trade vanishes over time.
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Figure 5: The Limiting Equilibrium Outcome

Figure 5 illustrates a typical trade path in the limiting equilibrium outcome.
The proof of Theorem 1 is based on the analysis (carried out in Appendix C) of a

dynamic system linking one impasse to the next. In particular, we show that if the last
impasse occurs when the fraction of the good left for trade is small (this is necessarily
the case when m is large), then each of the prior impasses is also small. Formally, our
analysis demonstrates that for every ε > 0, we can find η > 0 such that if zmNm < η, then

max
j∈{2,...,Nm}

zmj−1 − zmj < ε. Although the formal proof is somewhat involved and relegated to

the appendix, the following fact and its proof convey most of the intuition with ease and
expediency.

Fact 1 Consider the sequence of impasses
{

(zm1 , q
m
1 ) , . . . ,

(
zmNm , q

m
Nm

)}
m=1,...

. Suppose that

there exists a sequence
{
zmjm , q

m
jm

}
m=1,...

, with jm > 1 for every m, such that

lim
m→∞

Pm

(
mzmjm ,

(
qmjm
)+
)
− Pm

(
mzmjm ,

(
qmjm
)−)

= 0.

Then we have

limm→∞ z
m
jm−1 − zmjm = 0

limm→∞ Pm

(
mzmjm−1,

(
qmjm−1

)+
)
− Pm

(
mzmjmzm

jm−1

,
(
qmjm−1

)−)
= 0.

The driving forces behind Fact 1 are closely related to our finding that the high-quality
good is sold gradually over time. Consider any (non initial) impasse occurring at the state
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(
zmjm , q

m
jm

)
in the m-limiting equilibrium outcome. Assume that the difference between the

reservation prices before and after this impasse, Pm
(
mzmjm ,

(
qmjm
)+
)
−Pm

(
mzmjm ,

(
qmjm
)−)

,

is small. We start showing that this implies that the size of the previous delay, measured
by zmjm−1 − zmjm , will also be small when the good is very divisible (m is large).
First, observe that according to Proposition 5 ii), the buyer’s limit payoff at the pre-

vious impasse
(
zmjm−1, q

m
jm−1

)
is equal to zero. This payoff can be decomposed into two

components: universal-offer component and cream-skimming offer component, which we
illustrate below.
Universal-Offer component: This part represents the payoff from purchasing a mea-

sure
(
zmjm−1 − zmjm

)
of the good at the price

(
zmjm−1 − zmjm

)
c̄ when the belief is equal to qmjm−1.

Formally, the universal-offer component is equal to∫ zmjm−1

zmjm

∫ 1

qmjm−1

(α (u) v (s)− c̄) dsdu.

Recall from Proposition 5 ii) that qmjm−1 is smaller than the belief at which the buyer
would break even if he had to make a universal offer for the first of the mzmjm−1 remaining
units. Also, recall that the gains from trade are decreasing. Therefore, the universal-offer
component is negative and decreasing in the fraction of the good that is traded.
Cream-skimming offer component: This part represents the payoff from purchas-

ing the remaining fraction of the good zmjm at the price Pm
(
mzmjm ,

(
qmjm
)−)

from all the

low types in the set
(
qmjm−1, q

m
jm

)
. The cream-skimming component is positive (the price

Pm

(
mzmjm ,

(
qmjm
)−)

is smaller than the buyer’s valuation of the fraction zmjm of the low-

quality good) and equal to∫ qmjm

qmjm−1

[
v

∫ zmjm

0

α (u) du− Pm
(
mzmjm ,

(
qmjm
)−)]

dq

From Proposition 5 iii) we have

Pm

(
mzmjm ,

(
qmjm
)−)

=

(
v
∫ zmjm

0 α (u) du
)2

Pm

(
mzmjm ,

(
qmjm
)+
) .

It is easy to check that this, together with Pm
(
mzmjm ,

(
qmjm
)−)

< Pm

(
mzmjm ,

(
qmjm
)+
)
,

implies

Pm

(
mzmjm ,

(
qmjm
)−)

< v

∫ zmjm

0

α (u) du < Pm

(
mzmjm ,

(
qmjm
)+
)
.
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Thus, as the prices Pm
(
mzmjm ,

(
qmjm
)−)

and Pm
(
mzmjm ,

(
qmjm
)+
)
get arbitrarily close to

each other, the cream-skimming offer component shrinks to zero.
This, in turn, implies that the universal-offer component must also converge to zero

(recall that the sum of the two components is equal to zero). This is possible only if zmjm−1

converges to zmjm as m grows large, which proves the first result in Fact 1.
We now turn to the second result. Again, from Proposition 5 iii) we have

Pm

(
mzmjm−1,

(
qmjm−1

)−)
=

 v
∫ zmjm−1

0 α (u) du

Pm

(
mzmjm ,

(
qmjm
)−)

+
(
zmjm−1 − zmjm

)
c̄

2

Pm

(
mzmjm−1,

(
qmjm−1

)+
)
.

We have shown that asm goes to infinity, Pm
(
mzmjm ,

(
qmjm
)−)

converges to v
∫ zmjm

0 α (u) du,

and the difference
(
zmjm−1 − zmjm

)
shrinks to zero. We conclude that the first term of the

right-hand side (i.e., the term in parenthesis) in the equation above must converge to one.
This establishes the second result in Fact 1.
In summary, we conclude that when the good is very divisible, a small discontinuity

in the reservation price at a given impasse is preceded by both a small transaction of the
high-quality good and a small discontinuity in the reservation price at the impasse that
comes right before. This is the key element leading to Theorem 1. In fact, from Proposition
5 we know that the last impasse occurs when there is one unit left for trade. Furthermore,
when this impasse is resolved, the reservation price (for the last unit of the good) is equal
to c̄/m. As m grows large, the discontinuity in the reservation price at the last impasse
converges to zero. The logic above immediately implies that the penultimate impasse must
also be small, entailing a small third-to-last impasse, and so on.
We remark that since the number of impasses increases without bounds as the good

becomes arbitrarily divisible, the proof of Theorem 1 has to show that there are no cumula-
tive effects and all the impasses remain uniformly small when the last impasse is suffi ciently
small. This requires a somewhat more involved argument and is relegated to the appendix.
As we saw in the last section, direct payoff and strategic advantages give rise to new

profitable partial offers when the gains from trade are decreasing. The number of such
profitable trade opportunities increase without bound as the good becomes more divisible
and as a result high-quality goods are smoothly sold over time in the limit.

7.1 Gradual Sale of High-quality Goods

A common result in the literature on dynamic markets with adverse selection and indi-
visibility is the sale of low-quality goods at the beginning of the relationship, followed by
periods of market freezing, after which high-quality goods are sold. Theorem 1 shows that
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adverse selection unravels in a very different way when the good is divisible and the gains
from trade are decreasing. In such situations, we predict that the gradual sale of high-
quality goods arises as the main signaling device. Our model delivers novel and testable
implications for situations in which two parties dynamically trade for portfolio diversifi-
cation such as negotiations over securitized assets in over-the-counter markets. In times
of uncertainty about fundamentals, we expect that sellers with valuable assets make small
transaction over time, while sellers who hold lemons also engage in sales of large quantities.

7.2 Coasean Outcome in the Market for Lemons

In his influential work, Coase (1972) conjectured that a monopolist who lacks commitment
power ends up selling the good almost immediately at a price equal to the lowest valua-
tion among all consumers. In our environment, this conjecture would signify the buyer’s
purchase of the entire good immediately at price c̄. However, this cannot be an equilibrium
outcome of our model, as the buyer would pay a price larger than the expected valuation
of the good. Thus, we conclude that, in equilibrium, there must necessarily be delay. If
we wish to conjecture that the competition between the buyer’s present and future selves
brings his profits to the lowest possible level, we must consider an adaptation of the Coase
conjecture to an environment with interdependent values.
We say that there is a Coasean outcome in the market for lemons (Coasean outcome

for brevity) if at any time t > 0 the buyer breaks even both if he makes a universal offer
for the first of the infinitesimal units still available and if he makes the cream-skimming
offer. Theorem 1 shows that the limiting outcome of the model with decreasing gains from
trade is Coasean.
We conclude that the combination of adverse selection and divisibility has dramatic

effects on payoffs. When the good is infinitely divisible, both the buyer and the high type
sellers get a payoff equal to zero. On the other hand, the low types’payoff coincides with
the buyer’s valuation of the low-quality good. This result is in stark contrast to the results
obtained by DL in the one-unit model, where the buyer’s payoff is strictly positive and the
low types get less than the buyer’s valuation.29

When the good is indivisible, negotiations necessarily involve long impasses. In fact,

29It is easy to show that our limiting equilibrium outcome is more effi cient than the limiting outcome
in DL. More formally, there exist m̄ such that for any m > m̄ the expected social welfare (i.e., the
discounted sum of the realized trading surplus) of the m-limiting equilibrium outcome is higher than the
social welfare in the limiting outcome of the model with indivisibility (1-limiting equilibrium outcome).
However, the limiting equilibrium outcome is not constrained effi cient. There exists a direct incentive
compatible mechanism which achieves a larger welfare than the limiting equilibrium outcome. Finally, the
social welfare of the m-limiting equilibrium outcome is not necessarily monotonic in m.
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the buyer is willing to pay a large price only if he is suffi ciently optimistic about the quality
of the good. On the other hand, the owner of the low-quality good is willing to wait for a
long period until he can sell the good at a price much larger than his cost. Because of the
long impasses, the price at which the buyer is able to purchase the good at the beginning
of the negotiations is severely reduced. Therefore, he obtains a strictly positive payoff.
When the good is divisible, purchasing all the remaining units at a large price is only

one of many options available to the buyer. When this option yields a low payoff, the buyer
prefers to purchase only a fraction of the remaining good. Compared to DL’s model, this
lowers the price that the owner of the low-quality good is able to charge in the middle of
the negotiations. However, lower payments in the middle of the negotiations correspond
to shorter impasses and higher prices paid in the early stages of the negotiations. Con-
sequently, the buyer’s initial payoff is drastically reduced and converges to zero in the
limit.
Our analysis shows that the possibility to make (arbitrary) partial offers is detrimental

to the buyer’s payoff when the gains from trade are decreasing. In the standard model
with an indivisible object, the buyer would be willing to pay (ex-ante) a positive price to
lose the ability to adjust the offer as he becomes more optimistic about the quality of the
good. Similarly, in our model, the buyer would be willing to pay a positive price to lose
the ability to make partial offers.

7.3 Comparative Statics

In this section, we investigate how the limiting equilibrium outcome depends on the primi-
tives of the model. This will allow us to determine the effects of the economic fundamentals
on the speed of trade.
For some small ε > 0, consider a different valuation function α̃ such that α̃(u) ∈

(α(u), α(u) + ε) for every u ∈ [0, 1] . Define the function ψ̃ (·) accordingly. Let (z̃∗(·), q̃∗(·))
be the functions describing the new Coasean outcome. We claim that z̃∗(t) < z∗(t) for
every t > 0. Assume towards a contradiction that this is not the case. First, notice that

z̃∗′(0) = ψ̃
′
(q̃∗(0)) q̃∗′(0) =

rv
∫ 1
0 α̃(u)du

vα̃(1)−c̄ <
rv
∫ 1
0 α(u)du

vα(1)−c̄ = z∗′ (0) < 0.

Let t denote the smallest t > 0 for which z̃∗(t) = z∗(t) (our contradiction hypothesis
guarantees that t exists). It follows that

z̃∗′(t) =
rv
∫ z̃∗(t)

0
α̃(u)du

vα̃(z̃∗(t))− c̄ <
rv
∫ z∗(t)

0
α(u)du

vα(z∗(t))− c̄ = z∗′(t) < 0.

38



However, this and the fact that z̃∗(t) < z∗(t) for every t < t imply that z̃∗(t) < z∗(t),

which contradicts the definition of t.
A similar argument shows that a decrease in the cost c̄, an increase in the value v, and

an increase in the discount rate r all decrease z∗(t) for every t > 0. It is also easy to check
that a small change in the value v̄ or in the probability q̂ does not affect the speed of trade.
The analysis above allows us to state the following fact.

Fact 2 In the Coasean outcome, trade of the high-quality good happens faster when adverse
selection is less severe (i.e., when α or v increases or when c̄ decreases) or when the parties
are less patient.

Let us provide some intuition for Fact 2. First, consider an increase in α or in v. In this
case, the low types’payoffs from accepting cream-skimming offers increase. On the other
hand, the payoff from accepting a universal offer (for an infinitesimal quantity) remains
constant. Consequently, a smaller delay is necessary to induce the low types to reveal their
private information. Similarly, a decrease in c̄ makes the universal offers less attractive for
the low types (in other words, the low types are less tempted to pool with the high types),
and hence trade happens faster.
Fact 2 yields sharp predictions about the effect of a change of the primitives on the

timing at which the high-quality good is sold. On the other hand, when the seller’s type is
low, the quantity of the low-quality good that is still available for trade at time t > 0 is a
random variable. In particular, if the seller’s type is smaller than q∗ (t) , then the remaining
quantity is zero. Otherwise, it is equal to z∗ (t) . Thus, if we let g∗ (t) denote the expected
quantity of the low-quality good that is available at time t > 0, we have

g∗ (t) =

(
q̂ − q∗ (t)

q̂

)
z∗ (t) .

When adverse selection becomes less severe (i.e., α or v increases or c̄ decreases) there
are two opposing effects on the timing at which the low-quality good is sold. On the one
hand, a decrease in adverse selection decreases q(1).30 Hence, the quantity of the low-

quality good that is available right after t = 0, g∗(0+) =
(
q̂−q∗(1)

q̂

)
, increases. On the other

hand, Fact 2 establishes that a decrease in adverse selection increases the speed of trade
of the high-quality good. For a given q(1), this effect increases the speed of trade of the
low-quality good and hence decreases the expected quantity that is available at t. It is easy
to construct examples showing that the quantity of the low-quality good still available for
trade at time t is non-monotonic in α, v or c̄.

30Remember that q(1) satisfies
∫ 1

q(1)
[α(1)v(s)− c̄] ds = 0 (see equation (12)).
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Finally, the effect of a change in r, v̄, or q̂ is unambiguous. In fact, it is simple to check
that the trade of the low-quality good happens faster (g∗ (t) decreases for every t > 0)
when r or q̂ increase, or when v̄ decreases. Clearly, there is less delay when the parties
are less patient. Also, recall that a change in q̂ or v̄ does not affect the speed of trade
of the high-quality good (the value of z∗ (t) remains unchanged for every t) and that the
buyer must break even when he makes a universal offer. This observation, together with
an increase in q̂ (or a decrease in v̄), immediately implies that the fraction q̂−q∗(t)

q̂
of the

low types that the buyer still faces at time t must decrease. Therefore, the speed of trade
of the low-quality good increases since the low types are quicker to accept cream-skimming
offers.

8 Increasing Gains

In this section, we consider the case of increasing gains from trade and assume that αm <

. . . < α1. The assumption of increasing gains is natural when the different units are
complementary. For example, when different shareholders dispute the control of a firm, the
marginal value of an additional share is often increasing in the number of shares already
owned, as bigger shareholders can exert more influence on the firm’s decisions.
The case of increasing gains is similar to the case of constant gains from trade. In

particular, in equilibrium the buyer uses only cream-skimming offers (this is true for any
discount factor δ).
To see why universal offers are not optimal for the buyer, consider the model in which

the parties bargain over the last k units and assume that these units are indivisible (as
in DL). When the gains from trade are increasing, the buyer’s valuation for an additional
unit is decreasing in the number of units already traded. This implies that the unit price
is decreasing in k (the total number of units). In equilibrium, the buyer takes advantage
of the low prices associated to large transactions and purchases all the units at once.

Proposition 6 Suppose that the gains from trade are increasing: αm < . . . < α1. Then all
equilibrium offers are cream-skimming.

The proof of Proposition 6 is slightly more involved than the proof of Proposition 3.31

We provide it in Appendix F.
Clearly, Proposition 6 implies that in the limit, as the bargaining frictions vanish, the

equilibrium outcome is as in DL. The buyer purchases all the units from a subset of low

31At the cost of a slightly lengthier proof, one can simultaneously accommodate the cases of constant
and increasing gains from trade.
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types without delay. Then there is an impasse. Once the impasse is resolved, the buyer
trades all the units with all the remaining types (without further delay).
In the limit, as δ goes to one, the equilibrium outcome with increasing and constant

gains is very different from the equilibrium outcome with decreasing gains. However, this
is not a failure of upper-hemicontinuity of the equilibrium. Fix the total number of units
m. It is possible to show that for every δ there exists εδ > 0 such that if |αm − α1| < εδ,

then all equilibrium offers are cream-skimming. However, as δ approaches one, εδ shrinks
to zero, which is consistent with our finding that when the gains are decreasing and the
bargaining frictions vanish universal offers occur on the equilibrium path.

9 Menus of Offers

In this section, we examine an extension of the model involving the types of trading in-
struments available to the buyer. In the benchmark model, the buyer can choose in every
period the number of the remaining units that he wants to purchase. Theorem 1 suggests
that when the gains from trade are decreasing having many trading opportunities is not
beneficial to the buyer. According to this line of reasoning, one would expect that the buyer
would not benefit from a larger set of trading opportunities. To assess this conjecture, we
extend the contract space by allowing the buyer to offer menus of offers. In what follows,
we restrict attention to the case of decreasing gains from trade.32

As in the benchmark model, an offer (k, p) specifies the number of unit k that the
parties trade and the transfer p > 0 that the seller is entitled to receive. A menuM is a
set of offers. In particular, when the number of units on the table is k = 1, . . . ,m, the set
of available menus is the set of all compact subsets of {1, ..., k} × R+. Upon being offered
a menuM, the seller can either accept one offer inM or reject all the offers.
We continue to restrict attention to stationary (perfect Bayesian) equilibria. In our

context, this means that the decision of any seller’s type depends on the number of units
left for trade and the menuM offered by the buyer.33 Furthermore, we impose the addi-
tional requirement that all the seller’s high types agree on their decisions at any point in
time. Formally, we consider stationary equilibria in which the seller’s strategy satisfies the
following property. For every t and for every history ((M0, a0) , . . . , (Mt−1, at−1) ,Mt) of
proposed menus and seller’s decisions, there exists an action that is chosen by all the types

32It is easy to check that when the gains from trade are constant or increasing our results extend to the
case in which the buyer offers menus.
33As in the benchmark model, the low types’ decision also depends on whether or not the buyer is

convinced that the quality of the good is low (there are no stationary equilibria if we do not allow for this
possibility).
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larger than q̂.
Under this refinement, the buyer’s beliefs (on the equilibrium path) take a very simple

form. Similarly to the benchmark model, after every on-path history, the buyer believes
that the seller’s type is uniformly distributed over the set [q̃, 1] for some q̃ ∈ [0, q̂] .34 Our
refinement implies that the high types accept an offer if and only if it yields a non-negative
current payoff.35 This is in line with the high types’behavior in the equilibrium of the
benchmark model.
In Appendix G, we construct a stationary equilibrium of the game in which the buyer

can propose menus with at most two offers. We show that, as the bargaining frictions
vanish, the outcome of the equilibrium described in Appendix G converges to them-limiting
outcome of the benchmark model (where m denotes the total number of units available for
trade). Furthermore, the assumption of allowing the buyer to make at most two offers is not
restrictive. Consider the game in which the buyer can propose arbitrary menus (arbitrary
compact subsets of the set of feasible offers). Under our refinement (and for generic values
of the parameters), all stationary equilibria of this game are outcome equivalent to the
equilibrium in Appendix G. This shows that the main result of this paper (Theorem 1) is
robust to the introduction of menus. In particular, the analysis in this section corroborates
our finding that the buyer does not benefit from additional trading instruments.

10 Concluding Remarks

This paper studies bargaining with interdependent values and divisible goods. We show
that when the gains from trade are decreasing a new pattern of trade, gradual trading, arises
in these markets and that the possibility of purchasing fractions of the good is detrimental
to the uninformed buyer. In the limit, when offers are frequent and the good is arbitrarily
divisible, the high-quality good is sold smoothly over time and the buyer’s payoff converges
to the lowest possible level. When adverse selection is particularly severe, the buyer’s
limiting equilibrium payoff is equal to zero.
Throughout the paper we have made a few simplifying assumptions which make the

analysis tractable. In particular, we have assumed that the quality of the good can take
only two values (i.e., the seller has only two types). This assumption guarantees the

34In contrast, if we allow the high types to make different choices, then the beliefs are not “unidimen-
sional” (in the sense that one has to keep track of the fractions of both the low and the high types still
present in the game), and the analysis is not tractable. Moreover, it is an open question whether there
exist equilibria that do not satisfy our refinement.
35Under our refinement, it is without loss of generality (in terms of equilibrium outcomes) to restrict

attention to equilibria in which the menus proposed by the buyer contains at most one offer that yields a
non-negative payoff to the high types.
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existence of stationary equilibria. We are unable to show that stationary equilibria exist in
a model with more than two types. However, under some conditions on the primitives of
the model, the main result of the paper extends to the case of finitely many types.
Consider the model described in Section 7 but assume that c (q) and v (q) are two (non-

decreasing) step functions with finitely many discontinuity points. Without loss, we assume
that c (0) = 0 and let q̂ = sup{q:c(q)=0} q denote the probability that the good is of the worst
quality. Also, suppose that for z = 0, 1, there exists q (z) ∈ (0, q̂)∫ 1

q(z)

[α (z) v(s)− c (1)] ds = 0.

In words, the belief at which the buyer breaks even when he purchases any unit of the
good at the price c (1) corresponds to a type with the lowest quality of the good. It is not
diffi cult to show that under these assumptions Theorem 1 continues to hold.
An important question in the literature on bargaining concerns the role of the gap

between the buyer and the seller’s valuations of the good. Similarly to DL, we have assumed
that the gains from trade are strictly positive (for every type and every unit). How do our
results change if we assume that the gains are weakly positive? In the case of decreasing
(increasing) gains from trade, the gap-assumption affects only the last (first) unit and our
main results continue to hold. In particular, our characterization of the limiting equilibrium
outcome remains valid if we assume that α : [0, 1]→ R++ is a smooth and strictly increasing
(or strictly decreasing) function and a (z) v (q)− c (q) > 0 for every z and every q. 36

In our model, the buyer learns about the quality of the good only through the seller’s
behavior. This assumption is reasonable in a number of important applications and our
model constitutes a useful theoretical benchmark to study bargaining over divisible objects.
However, it would be interesting to extend the model to allow for additional forms of
learning: endogenous, for example, in the form of learning via the consumption of parts of
the good, or exogenous (as in Daley and Green (2012) and (2016). We leave the study of
bargaining with learning for future work, but conjecture that the driving forces behind our
results will emerge even with learning and will lead to the gradual sale of the high-quality
good.

36It is easy to see that when the gains from trade are constant, the violation of the gap-assumption leads
to an equilibrium outcome in which the high-quality good is not traded at all and only (some of) the low
types reach an immediate agreement (for all the units) with the buyer. We also refer the reader to DL for
a discussion of the gap-assumption in the case of constant gains from trade.
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Appendix A: Existence of Stationary Equilibria

Proof of Lemma 1.

Given a perfect Bayesian equilibrium (σB, σS, µ) , we let Hk (σB, σS, µ) , k = 1, . . . ,m,

denote the set of histories ht after which there are k units left for trade and such that
µ ([0, q̂] |ht) = 1.

First, we show that the claim is true if ht ∈ H1 (σB, σS, µ) , that is, there is only one unit
left for trade. Define ūL as the supremum, over all the perfect Bayesian equilibria, of the
continuation payoffs of the low types q 6 q̂ at histories ht ∈ H1 (σB, σS, µ) . Assume towards
a contradiction that ūL > 0. Take ε =

(
1−δ

2

)
ūL and notice that there exists a perfect

Bayesian equilibrium (σB, σS, µ) and a history h̄t ∈ H1 (σB, σS, µ) at which the buyer
makes the proposal ϕt = (1, p) for some p ∈ [ūL − ε, ūL] . We claim that the conditional
probability, given the beliefs µ

(
h̄t
)
, that the proposal ϕt is accepted must be one. To see

this, notice that if ϕt is accepted with a probability of less than one (given µ
(
h̄t
)
), then(

h̄t, (ϕt, R)
)
∈ H1 (σB, σS, µ) (i.e., µ

(
[0, q̂] |h̄t, (ϕt, R)

)
= 1) and the continuation payoff of

the low types is at most ūL. But then it is not optimal for a low type to reject ϕt since
ūL − ε > δūL. However, using a similar argument it is easy to show that the conditional
probability, given the belief µ

(
h̄t
)
, that the proposal ϕ′t =

(
1, ūL −

(
3
2

)
ε
)
is accepted is

also one (since ūL −
(

3
2

)
ε > δūL). Thus, the buyer has a profitable deviation at h̄t since

he strictly prefers the proposal ϕ′t to ϕt.
Next, assume that the claim is true for any ht ∈ H1 (σB, σS, µ)∪ . . .∪Hk−1 (σB, σS, µ) ,

k = 2, . . . ,m. We show that the claim is also true for any ht ∈ Hk (σB, σS, µ) . Again,
towards a contradiction, let ūL > 0 be the supremum, over all the perfect Bayesian
equilibria (σB, σS, µ), of the continuation payoffs of the low types q 6 q̂ at histories ht

∈ Hk (σB, σS, µ) . Take ε =
(

1−δ
2

)
ūL and notice that there exist a perfect Bayesian equilib-

rium (σB, σS, µ) and a history h̄t ∈ Hk (σB, σS, µ) at which the buyer makes the proposal
ϕt = (k′, p) for some k′ = 1, . . . , k and p ∈ [ūL − ε, ūL] . Using the induction hypothesis and
an argument similar to the one presented in the previous paragraph, we conclude that the
conditional probability, given µ

(
h̄t
)
, that the proposal ϕt = (k′, p) is accepted is equal to

one. However, the same is true for the proposal ϕ′t =
(
k′, ūL −

(
3
2

)
ε
)
which is, therefore,

strictly preferred to ϕt. Again, this shows that the buyer has a profitable deviation at h̄
t

and concludes our proof. �

Proof of Lemma 2.

The first step of the proof is to show that, at any history, the equilibrium continuation
payoff of the high types is zero. From the characterization in DL, we know that this is true
at every history ht at which there is only one unit left for trade. For k = 1, . . . ,m− 1, we
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assume that the continuation payoff (in any stationary equilibrium) of the high types q > q̂

is zero when k or fewer units are left for trade. We show that the continuation payoff of
the high types is also zero when the number of remaining units is k + 1.

Define ūH as the supremum, over all stationary equilibria, of the continuation payoffs of
the high types q > q̂ at histories in which the remaining units are k + 1. Trivially, we have
ūH ∈ [0, (α1 + . . .+ αk+1) v̄] .We claim that ūH = 0. By contradiction, assume that ūH > 0.

Take ε =
(

1−δ
2

)
ūH and notice that there exist a stationary equilibrium (σB, σS, µ) and a

history h̄t at which the high types q > q̂ obtain the continuation payoff uH ∈ [ūH − ε, ūH ]

by accepting a certain offer ϕt = (k′, k′c+ uH) for some k′ ∈ {1, . . . , k + 1} . We claim
that the conditional probability, given the beliefs µ

(
h̄t
)
, that the proposal ϕt is accepted

is one. First, every type q > q̂ must accept ϕt at h̄
t. This is because every high type gets

at least ūH − ε by accepting ϕt, whereas he gets at most δūH < ūH − ε by rejecting ϕt.
Thus, our claim is true if µ

(
[0, q̂] |h̄t

)
= 0. If, on the other hand, µ

(
[0, q̂] |h̄t

)
> 0 and the

conditional probability that ϕt is accepted is not one, then µ
(
[0, q̂] |h̄t, (ϕt, R)

)
= 1 and the

continuation payoff of the low types q 6 q̂ will be zero (recall Lemma 1 above). But then
it is not optimal for the low types to reject ϕt.
Consider now the proposal ϕ′t =

(
k′, k′c+ uH − ε

2

)
. Using an argument similar to the

one above, it is easy to see that the conditional probability, given µ
(
h̄t
)
, that the proposal

ϕ′t is accepted is also one. Since in a stationary equilibrium the continuation payoff of the
buyer depends only on the number of units left and his beliefs about the seller’s type, ϕ′t
is a profitable deviation at h̄t. Thus, we conclude that ūH is equal to zero.
Fix a stationary equilibrium (σB, σS, µ) and let ht denote an arbitrary history. Suppose

that the buyer makes the offer ϕt = (k, p) at ht and consider type q > q̂. The fact that q’s
continuation payoff is zero immediately implies that he must accept the offer ϕt if p > kc

and must reject it if p < kc. Recall that the definition of stationarity requires that q accepts
the offer if and only if p > P (k, k′, q) . It thus follows that, in any stationary equilibrium,
P (k, k′, q) = k′c for every k, k′ and q > q̂. �

Proof of Proposition 1.

Recall that W (k, q) denotes the buyer’s expected payoff when the state is (k, p) and
satisfies equation (1). Let Y (k, q) denote the arg max correspondence in (1). As mentioned
in Section 3.1, the solution can either be of the form (k, q′) , for some q′ ∈ [q, q̂] ∪ {1} , or
of the form (k′, q) for some k′ = 1, . . . , k − 1. In the first case, the buyer makes the cream-
skimming offer (k, P (k, q′)) and purchases all the remaining k units from the types in the
interval [q, q′] .37 In the second case, the buyer makes a universal offer and purchases (k − k′)
units from the types in [q, 1] .

37Below, we show that if (k, q′) is a solution of (1), then P (k, q′′) > P (k, q′) for every q′′ > q′.

45



Of course, for q > q̂ equation (1) implies

W (k, q) = (1− q) [(αk + . . .+ α1) v̄ − kc] .

Although we have a continuum of low types, it is obvious that, at every history, all of
them must get the same continuation payoff (otherwise, some of these types would have an
incentive to deviate and mimic the behavior of other low types). We refer to this payoff
as the payoff of the low type. We let ZL (k, q) denote the low type’s payoff when the state
is (k, q) . When the set Y (k, q) is a singleton, the buyer’s optimal behavior is uniquely
determined. When Y (k, q) contains more than one element, we select the solution in
Y (k, q) that yields the lowest payoff to the low types. Therefore, for any k = 1, . . . ,m and
any q ∈ [0, q̂] , ZL (k, q) satisfies:

ZL (k, q) = min

{{
min

(k,q′)∈Y (k,q)
P (k, q′)

}
,

{
min

(k′,q)∈Y (k,q)
[(k − k′) c+ δZL (k′, q)]

}}
. (16)

We let t (k, q) denote the solution to (16). (If there are multiple solutions, then there
exists at least one solution of the form (k′, q) and we pick the one with the lowest k′.)
Finally, for every k = 1, . . . ,m, we define P (k, ·) : [0, 1] → R+ to be the largest

increasing function that is (weakly) below the function δZL (k, ·) . Formally, P (k, ·) satisfies
the following condition.

Condition 2 For every q, P (k, q) satisfies:
(i) P (k, q) 6 δZL (k, q) ;

(ii) P (k, q) 6 P (k, q′) for every q′ > q;

(iii) For every η ∈ (P (k, q) , δZL (k, q)) there exists q′ > q such that δZL (k, q′) < η.

Next, we show that it is never optimal for the buyer to choose a point in the interior of a
flat segment of P (k, ·) . That is, we show that if t (k, q) = (k, q′) , then P (k, q′′) > P (k, q′)

for every q′′ > q′.

By contradiction, suppose t (k, q) = (k, q′) and P (k, q′′) = P (k, q′) for q′′ > q′. Suppose
also that t (k, q′) = (k′, q′) and t (k′, q′) = (k′, q′′′) for some q′′′ > q′′. Notice that we have

P (k, q′′) = P (k, q′) 6 δ (k − k′) c+ δ2P (k′, q′′′) .

Given the state (k, q) , consider the following strategy. The buyer buys k parts from
the types in [q, q′′] at the price P (k, q′′) = P (k, q′) . Then if the seller rejects the offer,
the buyer purchases (k − k′) units from all the types. Finally the buyer purchases k′ parts
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from the types in (q′′, q′′′] . The difference between the buyer’s payoff from following this
strategy and W (k, q) is equal to:∫ q′′

q′ [(αk + . . .+ α1) v (s)− P (k, q′′)] ds− δ
∫ q′′
q′ [(αk + . . .+ αk′+1) v (s)− (k − k′) c] ds−

δ2
∫ q′′
q′ [(αk′ + . . .+ α1) v (s)− P (k′, q′′′)] ds >

∫ q′′
q′ [(αk + . . .+ α1) v (s)] ds−

δ
∫ q′′
q′ [(αk + . . .+ αk′+1) v (s)] ds− δ2

∫ q′′
q′ [(αk′ + . . .+ α1) v (s)] ds > 0.

Here we considered a specific continuation strategy following the state (k, q′) . In a
similar way, it is easy to show that if the buyer does not choose the endpoint of a flat
segment, then there is a strictly profitable deviation for any possible continuation strategy.
We omit the details.
A quadruplet of functions (W (·) , P (·) , ZL (·) , t (·)) satisfying equations (1) and (16),

and Condition 2 defines the following stationary equilibrium. First, at any history of the
game, type q > q̂ accepts an offer to sell k units if and only if the transfer is at least kc.
Consider now type q < q̂. Suppose that there are k units left for trade and type q has never
accepted a transfer smaller than k′c to sell k′ 6 m − k units. In this case, type q accepts
the proposal (k′′, p) , k′′ 6 k, if and only if p > min {P (k, q) , k′′c} .38 On the other hand,
if type q has already accepted a transfer smaller than k′c to sell k′ 6 m− k units, then he
accepts any offer.
We now turn to the buyer. In the first period, the buyer makes an offer consistent with

t (m, 0) .39 Suppose that the seller has never accepted an offer less than k′c for k′ units and
that the state is (k, q) . Then the buyer makes an offer consistent with t (k, q) .40 Finally,
suppose that in the past the seller has accepted a transfer less than k′c for k′ units. Then
the buyer offers zero to purchase all the remaining units.
As far as the buyer’s beliefs are concerned, they are pinned down by Bayes’rule except

for the following two cases. First, suppose that the state is (k, q) , the buyer makes the
offer (k′, p), with k′ < k and p < P (k, k′, q) , and the offer is accepted. In this case, we
assume that the buyer assigns probability one to the fact that the good is of low quality.
Second, assume that the state is (k, q) , the buyer makes the offer (k′, p) , with k′ 6 k and

38This defines the functions P (k, k′, ·) for k > k′ and q ∈ [0, q̂] .
39This means that if t (m, 0) = (m, q) for some q > 0, then the buyer proposes to purchase all the m

units at the price P (m, q) . If instead t (m, 0) = (k, 0) for some k < m, then the buyer purchases (m− k)
units at the price (m− k) c.
40If the previous offer p for k units was not in the range of P (k, ·) , then the buyer randomizes among

the offers consistent with the elements of Y (k, q) so as to rationalize the low types’acceptance decision of
the offer p.

47



p > k′c, and the offer is rejected. In this case, the buyer does not update his belief and the
state remains (k, q) .

Given how we construct the quadruplet (W (·) , P (·) , ZL (·) , t (·)) and how we define
the buyer’s strategy, it is immediate to see that the seller cannot profitably deviate. It is
also straightforward to check that the buyer’s behavior is optimal if we restrict the buyer to
choosing between cream-skimming and universal offers. To conclude that we indeed have
an equilibrium, it remains to show that it is not optimal for the buyer to purchase a fraction
of the remaining units only from the low types. Suppose the state is (k, q) , for some q 6 q̂,

and consider the offer (k′, p) , with k′ < k and P (k, k′, q) 6 p < k′c.41 Let [q, q′] denote
the set of types who accept this offer. Given the seller’s strategy, we have p > P (k, q′′)

for q′′ 6 q′ and p < P (k, q′′) for q′′ > q′. Consider now the offer (k, p) . This offer is also
accepted by the types in [q, q′] . Clearly, the buyer strictly prefers the offer (k, p) to the
offer (k′, p) (while the two offers specify the same payment, the discounted consumption is
larger under the former offer than under the latter).
To conclude the proof of Proposition 1 it remains to show that there exists a quadruplet

(W (·) , P (·) , ZL (·) , t (·)) satisfying equations (1) and (16), and Condition 2.

Claim 1 For every k = 1, . . . ,m, there exists q̄ < q̂ such that for q ∈ [q̄, q̂]

W (k, q) =
∫ 1

q
[(αk + . . .+ α1) v (s)− kc] ds > 0

ZL (k, q) = kc

P (k, q) = δkc

t (k, q) = (k, 1) .

Proof. If the buyer proposes to buy all the k units at a price smaller than kc, his

expected payoff is bounded above by

(q̂ − q) (αk + . . .+ α1) v + (1− q̂) δ [(αk + . . .+ α1) v̄ − kc] ,

which is smaller than ∫ 1

q

[(αk + . . .+ α1) v (s)− kc] ds

41Suppose that the state is (k, q) and consider the offer (k′, p) , with k′ < k and p < P (k, k′, q) . Below
we show that W (k′′, q′′) > 0 for all k′′ and q′′ < 1. This immediately implies that the offer (k′, p) is
not optimal. This is because the offer is rejected with probability one and the buyer will get at most
δW (k, q) < W (k, q) .
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for q suffi ciently close to q̂. Using an inductive argument, it is also easy to check that buying
k′ < k units from all the types (i.e., at the price k′c) is not optimal when q is close to q̂. �

For k = 1, the quadruplet (W (1, ·) , P (1, ·) , ZL (1, ·) , t (1, ·)) is as in DL. For k =

2, . . . ,m, we assume that (W (·) , P (·) , ZL (·) , t (·)) are defined for k′ < k and extend the
construction to k. Claim 1 also allows us to assume that (W (k, ·) , P (k, ·) , ZL (k, ·) , t (k, ·))
are defined over the interval [qn, 1] for some qn < q̂ and W (k, q) > 0 for every q ∈ [qn, 1] .

We now extend the quadruplet (W (k, ·) , P (k, ·) , ZL (k, ·) , t (k, ·)) to the interval [qn+1, 1]

for some qn+1 < qn.

For q ∈ [0, qn] , define W̃ (k, q) and X̃ (k, q) as follows:

W̃ (k, q) = max
q′>qn

∫ q′

q

[(αk + . . .+ α1) v (s)− P (k, q′)] ds+ δW (k, q′) , (17)

X̃ (k, q) = arg max
q′>qn

∫ q′

q

[(αk + . . .+ α1) v (s)− P (k, q′)] ds+ δW (k, q′) .

It is easy to check that if q′ ∈ X̃ (k, q) , then P (k, q′′) > P (k, q′) for every q′′ > q′

(i.e., the maximum is never achieved on the interior of a flat segment of P ). The objective
function in (17) has strictly increasing differences in q at all maximizers q′. Thus, X̃ is a
nondecreasing correspondence: if q > q′, then q̃ > q̃′ for any pair q̃ ∈ X̃ (k, q) , q̃′ ∈ X̃ (k, q′) .

Also, from the theorem of the maximum, X̃ is upper hemicontinuous.
We let x̃ (k, q) ∈ [qn, 1] denote the smallest element in X̃ (k, q) . We also define for

q ∈ [0, qn] the acceptance function P̃ (k, q) = δP (k, x̃ (k, q)) .

Next, for q ∈ [0, qn] , define Ŵ (k, q) as follows:

Ŵ (k, q) = max
q′∈[q,qn]

∫ q′

q

[
(αk + . . .+ α1) v (s)− P̃ (k, q′)

]
ds+ δW̃ (k, q′) .

We let x̂ (k, q) ∈ [q, qn] denote the smallest element of the arg max correspondence in the

above expression. Finally, define qn+1 = max
{
q ∈ [0, qn] : W̃ (k, q) 6 Ŵ (k, q)

}
whenever

the set is nonempty and qn+1 = 0 otherwise. Notice that W̃ (k, qn) > 0 (W̃ (k, qn) is equal
to δW (k, qn) > 0 if we choose q′ = qn in (17)), and Ŵ (k, qn) = δW̃ (k, qn) < W̃ (k, qn) .

By the theorem of the maximum, W̃ and Ŵ are continuous and, therefore, qn+1 < qn.

By definition of qn+1, we have W̃ (k, q) > Ŵ (k, q) for q > qn+1. It is easy to show that
W̃ (k, q) 6 Ŵ (k, q) for q 6 qn+1 (the function W̃ (k, q)− Ŵ (k, q) is increasing in [0, qn+1]

and is equal to zero at qn+1).

Next, we claim that W̃ (k, q) > 0 for all q ∈ [qn+1, qn] . For qn we have W̃ (k, qn) >
δW (k, qn) > 0. For q ∈ [qn+1, qn) , let x (k, q) ∈ [qn, 1] be the largest element in X̃ (k, q)
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and let ε be such that q + ε ∈ (q, qn). Since x (k, q) is feasible at q + ε, we have

W̃ (k, q + ε) >
∫ x(k,q)

q+ε

[(αk + . . .+ α1) v (s)− P (k, x (k, q))] ds+ δW (k, x (k, q)) .

It then follows from

W̃ (k, q) =

∫ x(k,q)

q

[(αk + . . .+ α1) v (s)− P (k, x (k, q))] ds+ δW (k, x (k, q))

that

W̃ (k, q + ε) > W̃ (k, q)−
∫ q+ε

q

[(αk + . . .+ α1) v (s)− P (k, x (k, q))] ds. (18)

Since q + ε < qn and W̃ (k, q) > Ŵ (k, q) , we have

W̃ (k, q) >

∫ q+ε

q

[
(αk + . . .+ α1) v (s)− P̃ (k, q + ε)

]
ds+ δW̃ (k, q + ε) . (19)

Substituting (18) into (19) yields

(1− δ) W̃ (k, q) >∫ q+ε
q
{(1− δ) (αk + . . .+ α1) v (s)− δ [(P (k, x̃ (k, q + ε))− P (k, x (k, q)))]} ds.

The proof is complete if we show that

lim
ε↓0

[(P (k, x̃ (k, q + ε))− P (k, x (k, q)))] = 0. (20)

Because X̃ (k, q) is a nondecreasing upper hemicontinuous correspondence, we have
limε↓0 x̃ (k, q + ε) = x (k, q) . Therefore, equality (20) can fail only if P (k, ·) has a discon-
tinuity at x (k, q) . But then we must have x̃ (k, q + ε) = x (k, q) for a suffi ciently small
ε.
Next, we define the quadruplet (W 1 (k, ·) , P 1 (k, ·) , Z1

L (k, ·) , t1 (k, ·)) . For q > qn, we let
(W 1 (k, ·) , P 1 (k, ·) , Z1

L (k, ·) , t1 (k, ·)) be equal to (W (k, ·) , P (k, ·) , ZL (k, ·) , t (k, ·)) . For
q ∈ [qn+1, qn] define

W 1 (k, q) = max

{
W̃ (k, q) ,

{∫ 1

q

[(αk + . . .+ αk′+1) v (s)− (k − k′) c] ds+ δW (k′, q)

}
k′=1,...,k−1

}
,

and let t1 (k, q) be the solution with the lowest continuation payoff to the low type. (If
there are multiple solutions with the same continuation payoff, then there exists at least
one solution of the form (k′, q) , and we pick the one with the lowest k′.)
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If t1 (k, q) = (k, x̃ (k, q)) , then let Z1
L (k, q) = δZL (k, x̃ (k, q)) . If t1 (k, q) = (k′, q) , then

let Z1
L (k, q) = (k − k′) c + δZL (k′, q) . Finally, for q ∈ [qn+1, qn] , we define P 1 (k, q) to be

the largest increasing function that is (weakly) below the function δZ1
L (k, ·) .

We now inductively define a sequence of quadruplets
{(
W ` (k, ·) , P ` (k, ·) , Z`

L (k, ·) , t` (k, ·)
)}

`=1,2,...,
.

Given
(
W ` (k, ·) , P ` (k, ·) , Z`

L (k, ·) , t` (k, ·)
)
, we define the next element of the sequence as

follows:

W `+1 (k, q) = max
{(

maxq′∈[q,1]

∫ q′
q

[
(αk + . . .+ α1) v (s)− P ` (k, q′)

]
ds+ δW ` (k, q′)

)
,{∫ 1

q
[(αk + . . .+ αk′+1) v (s)− (k − k′) c] ds+ δW (k′, q)

}
k′=1,...,k−1

}
.

We let t`+1 (k, q) be the solution to the above problem with the lowest continuation
payoff to the low type which we denote by Z`+1 (k, q) . Finally, P `+1 (k, ·) is the largest
increasing function below δZ`+1 (k, ·) .

Claim 2 There exists `∗ such that(
W `∗ (k, ·) , P `∗ (k, ·) , Z`∗

L (k, ·) , t`∗ (k, ·)
)

=
(
W `∗+1 (k, ·) , P `∗+1 (k, ·) , Z`∗+1

L (k, ·) , t`∗+1 (k, ·)
)
.

Proof. Since W 1 (k, ·) is strictly positive on [qn+1, 1] , there exists ∆ > 0, such that
W 1 (k, q) > ∆ for every q ∈ [qn+1, 1] . For each `, W ` (k, ·) is uniformly continuous and
W ` (k, q) > W 1 (k, q) . This implies that there exists ε` > 0 such that for every q ∈ [qn+1, 1] ,

if t` (k, q) = (k, q′) , then q′ > q + ε`.

Recall that ∆ is a lower bound to W ` (k, ·) for each `. Let T be an integer such that

∆ >

(
1

T
+ δT

)
(αk + . . .+ α1) v̄.

If the claim fails, then we can find `, q ∈ [qn+1, qn), and a sequence q = q0 < q1 < . . . <

qT < q + 1
T
such that for every τ = 1, . . . , T, t` (k, qτ−1) = (k, qτ ) . But then we have the

following contradiction:

∆ < W ` (k, q) <

(
1

T
+ δT

)
(αk + . . .+ α1) v̄ < ∆.

�
At this point we are ready to extend (W (k, ·) , P (k, ·) , ZL (k, ·) , t (k, ·)) to the interval

[qn+1, qn] by setting them equal to
(
W `∗ (k, ·) , P `∗ (k, ·) , Z`∗

L (k, ·) , t`∗ (k, ·)
)
.

Finally, we show that it takes finitely many steps to extend the function W (k, ·) to the
whole unit interval. By contradiction, suppose that limn→∞ qn = q∗ > 0. We distinguish
between the following two cases.
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Case 1. First, consider the case in which there exists a sequence of points {qj}∞j=1

converging (from above) to q∗ such that for each qj

W (k, qj) =

∫ q′j

qj

[
(αk + . . .+ α1) v (s)− P

(
k, q′j

)]
ds+ δW

(
k, q′j

)
(21)

for some q′j > qj.

From this it follows that limq→q∗ P (k, q) = 0 and, therefore, inf(q∗,1] W (k, q) > 0. We
now choose ε > 0 to satisfy

[(αk + . . .+ α1) v̄ + δ] ε < (1− δ) inf
(q∗,1]

W (k, q) . (22)

Because of the uniform continuity of W (k, ·), given ε we can find η ∈ (0, ε) , such that
for every (q, q′) ∈ (q∗, 1]2 , if |q − q′| < η, then |W (k, q)−W (k, q′) | < ε.

The fact that the sequence {qj}∞j=1 converges to q
∗ and satisfies (21) implies that there

exists ̂ = 1, 2, . . . , such that |q̂ − q′̂| < η < ε. If we let w denote the minimum between
W (k, q̂) and W

(
k, q′̂

)
we have the following contradiction:

w 6 W (k, q̂) 6 (αk + . . .+ α1) v̄ε+ δW
(
k, q′̂

)
6

(αk + . . .+ α1) v̄ε+ δ (w + ε) < w

where the last inequality follows from (22) and w > inf(q∗,1] W (k, q) .

Case 2. Consider now the case in which there exists an interval (q∗, q̆) and k′ < k such
that for each q ∈ (q∗, q̆) , t (k, q) = (k′, q) .

In this case, we can find n̂ such that for every n > n̂, t (k, qn) = (k′, qn) and t (k′, qn) =

(k′, q̃) for some q̃ > qn̂. Furthermore, the sequence {qn}∞n=n̂ converges (from above) to
q∗. First, we show that limn→∞W (k, qn) = 0. To see this, recall our definition of W̃ , P̃

and Ŵ . The function W̃ is uniformly continuous. Fix ε > 0, and let η ∈ (0, ε) be such∣∣∣W̃ (k, q)− W̃ (k, q′)
∣∣∣ < ε for every (q, q′) with |q − q′| < η. Furthermore, there exists n′

such that qn − qn+1 < η for every n > n′. Therefore, if n > n′ we have

W̃ (k, qn+1) = Ŵ (k, qn+1) = maxq′∈[qn+1,qn]

∫ q′
q

[
(αk + . . .+ α1) v (s)− P̃ (k, q′)

]
ds+ δW̃ (k, q′) 6

ε (αk + . . .+ α1) v̄ + δ supq′∈[qn+1,qn] W̃ (k, q′) 6 ε [(αk + . . .+ α1) v̄ + δ] + δW̃ (k, qn+1)

and, therefore,

W̃ (k, qn+1) 6 ε [(αk + . . .+ α1) v̄ + δ]

(1− δ) .
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This implies limn→∞ W̃ (k, qn) = 0. On the other hand, for n > n̂, W̃ (k, qn+1) >
−εkc+ δW (k, qn) . Thus, we have limn→∞W (k, qn) = 0.

Next, we claim that

δ [(k − k′) c+ δP (k′, q̃)] > (αk + . . .+ α1) v.

The left hand side is an upper bound to the reservation price P (k, qn) for k units of
any type qn with n > n̂. If the inequality is violated, then W (k, qn) is bounded below by

(qn̂ − qn) [(αk + . . .+ α1) v − δ [(k − k′) c+ δP (k′, q̃)]] > 0

contradicting the fact that limn→∞W (k, qn) = 0.

For q < qn̂, suppose the buyer adopts the following strategy. First, he purchases k
units at the price P (k, qn̂) 6 δ [(k − k′) c+ δP (k′, q̃)] from the types in [q, qn̂] . Then he
purchases (k − k′) units from all the types in [qn̂, 1] . Finally, he follows the optimal strategy
given (k′, qn̂) . The buyer’s payoff from adopting such a strategy is weakly larger than R (q)

defined by

R (q) =
∫ qn̂
q

[(αk + . . .+ α1) v − δ [(k − k′) c+ δP (k′, q̃)]] ds+

δ
∫ 1

qn̂
[(αk + . . .+ αk′+1) v (s)− (k − k′) c] ds+ δ2

∫ q̃
qn̂

[(αk′ + . . .+ α1) v − P (k′, q̃)] ds+ δ3W (k′, q̃) .

Notice that R (q) is increasing in q.
For q < qn̂, let V (q) be equal to

V (q) =
∫ qn̂
q

[(αk + . . .+ αk′+1) v − (k − k′) c] ds+
∫ 1

qn̂
[(αk + . . .+ αk′+1) v (s)− (k − k′) c] ds+

δ
∫ qn̂
q

[(αk′ + . . .+ α1) v − P (k′, q̃)] ds+ δ
∫ q̃
qn̂

[(αk′ + . . .+ α1) v − P (k′, q̃)] ds+ δ2W (k′, q̃)

and notice that W (k, q) = V (q) for q ∈ (q∗, qn̂] . Let q̄ be such that R (q̄) = V (q̄) . Such q̄
is well defined since it is the solution to the following equation:[∫ 1

qn̂
[(αk + . . .+ αk′+1) v (s)− (k − k′) c] ds+ δ

∫ q̃
qn̂

[(αk′ + . . .+ α1) v − P (k′, q̃)] ds+ δ2W (k′, q̃)
]

=∫ qn̂
q̄

[(αk′ + . . .+ α1) v + (k − k′) c+ δP (k′, q̃)] ds.

(23)
For q ∈ (q∗, qn̂] , the left hand side is larger than the right hand side in (23) since V (q)

is the value of the optimal strategy. Of course, the inequality is reversed as q̄ goes to −∞.
Thus q̄ exists and is weakly smaller than q∗.
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Using (23), we obtain

R (q̄) = V (q̄) > (qn̂ − q̄) (αk + . . .+ α1) v > 0.

Recall that q̄ 6 q∗ and R (·) is increasing in q. For every n > n̂, we have

W (k, qn) = V (qn) > R (qn) > R (q̄) > 0

which contradicts the fact that limn→∞W (k, qn) = 0. �

Appendix B: Uniqueness

Proof of Proposition 2.

First, we prove the result under the assumption that P (k, ·) is weakly increasing and,
without loss of generality, left-continuous for all k. Second, we give a general argument.

Step 1: For generic parameters all stationary equilibria with increasing reservation
price functions are outcome equivalent.
DL establish that when the parties trade a single unit there is (for a generic set of

parameters) a unique left-continuous reservation price function P (1, ·), which is equal to
the one constructed in Appendix A. First, we consider equilibria satisfying Condition 1
below.
Condition 1: At any history in which there are k units remaining, the buyer either

makes a cream-skimming offer or makes a universal offer for k′ < k units.
Assume that for some k = 2, . . . ,m, there is a generic set of parameters for which for

all k′ < k, P (k′, ·) constructed in Appendix A is the unique reservation price function in
all stationary equilibria. It is straightforward to show that there is q̄ < 1 such that if the
state is (k, q′) with q′ > q̄, then the buyer makes the offer (k, kc) and this offer is accepted
with probability one in all stationary equilibria. Define

q∗ := inf


q′ : there exists a generic set of parameters such that for all q > q′

P (k, q) constructed in Appendix A is the unique
reservation price in all stationary equilibria

 .

We show that there is ε > 0 and a generic set of parameters such that for all q > q∗− ε,
our P (k, q) is the unique reservation price in all stationary equilibria.
Consider a state (k, q) with q < q∗. First, impose that the buyer is obliged to make

a cream-skimming offer (k, P (k, q̃)) for some q̃ > q . Using the same argument as in
Appendix A we conclude that there exists ε > 0 such that if q > q∗ − ε then in any
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stationary equilibria, the buyer’s optimal offer is (k, P (k, q′)) with q′ > q∗ + ε. Let us now
restrict our attention to the states (k, q) with q ∈ (q∗ − ε, q∗].
Consider the choice between a cream-skimming offer and a universal offer for k′ < k

units. Observe that, by assumption, for every (k′, q) with k′ < k and q ∈ [0, 1] or k′ = k and
q > q∗, P (k′, q) is unique in all stationary equilibria. Hence, the low type’s continuation
payoff at the state (k′, q) is the same in all stationary equilibria. Thus, for a generic set of
parameters, the buyer has a unique best response at (k, q) . This implies that the unique
(left-continuous) extension of P to (k, q) with q > q∗ − ε1 is the reservation price function
that we constructed in Appendix A. This, in turn, shows the uniqueness of the reservation
price functions under the assumption that the functions are weakly increasing and the
buyer makes only cream-skimming or universal offers.
Next, we show that Condition 1 holds generically (this guarantees the uniqueness of

stationary equilibrium outcomes when the reservation price functions are increasing). It
follows from DL that Condition 1 holds for k = 1. Assume that for some k = 2, . . . ,m,

Condition 1 holds for all k′ < k. Notice that there exists q̃ ∈ (0, 1) such that whenever the
state is (k, q) and q > q̃ the buyer makes the offer (k, kc). Define

q∗ := inf

{
q′ : there exists a generic set of parameters such that for all q > q′

Condition 1 holds at the state (k, q)

}
.

We now show that there exists ε > 0 such that generically Condition 1 holds at every
state (k, q) with q > q∗ − ε. By contradiction, assume that this is not true. It is straight-
forward to show that there exist ε > 0, a stationary equilibrium and a state (k, q) , with
q > q∗ − ε, such that the following two conditions are satisfied. First, the buyer makes the
offer (k′, p) with k′ < k and p < k′c. Second, if the offer is rejected, then the state becomes
(k, q′) with q′ > q∗ + ε.

From our analysis above, we may assume that for all q > q∗ the reservation prices
coincide with those constructed in Appendix A. This and the fact that q′ > q∗ + ε imply
that the low types’continuation payoff from rejecting the offer (k′, p) is at least δZL (k, q′)

(recall that in Appendix A the reservation price functions are constructed to give the
lowest continuation payoff to the seller’s low types). Now it follows from Lemma 1 that the
continuation payoff of the (low) types who accept the offer (k′, p) is equal to zero. Thus,
p > δZL (k, q′) since some low types accept the offer (k′, p) . But then the buyer has a
profitable deviation at the state (k, q) by making the cream-skimming offer (k, δZL (k, q′))

(notice that this offer is weakly more likely to be accepted than the equilibrium offer (k′, p)).
This concludes the proof of Step 1.
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Step 2: General result
Next, we claim that there is a generic set of parameters for which, for every station-

ary equilibrium, there is an outcome equivalent stationary equilibrium in which all the
reservation price functions are increasing. This, together with Step 1, proves Proposition
2.
From the results in DL we know that the claim above is true when m = 1. Con-

sider the game in which there are m > 1 parts and take a stationary equilibrium. Let
P (1, ·) , . . . , P (m, ·) denote the corresponding reservation price functions. We consider the
following relabeling process, which does not change the outcome of the game.
i) Relabeling the types for the first unit
Since P (1, ·) : [0, 1]→ R is measurable, there exists a one-to-one (measurable) function

g : [0, 1]→ [0, 1] such that P̂ (1, ·) defined by

P̂ (1, q) = P (1, g(q))

is increasing (almost everywhere). Without loss we assume that P̂ (1, ·) is increasing every-
where and left-continuous.42 For every k = 2, ...,m define P̂ (k, ·) : [0, 1]→ R by:

P̂ (k, q) = P (k, g(q)) .

From DL we know that P̂ (1, ·) is a step function. We claim that for every k ∈ {2, ...,m}
the regions in which P̂ (k, ·) fails to be monotonic lie in flat regions of P̂ (1, ·) . Using m (·)
for the Lebesgue measure, the formal statement is as follows.

Claim 3 Let Ω be the generic set of parameters under which Step 1 holds. Let q1 < q2 <

q3 < q4 be such that P̂ (1, ·) is constant both in the interval [q1, q2] and in [q3, q4], and
P̂ (1, q1) < P̂ (1, q3). Take k ∈ {2, ...,m}, p ∈ R and assume that P̂ (k, q) > p for some
subset of [q1, q2] with positive measure. Finally, let A := {q ∈ [q3, q4] : P̂ (k, q) < p}. Then
m (A) = 0.

Proof. The proof is by contradiction. Define B := {q ∈ [q1, q2] : P̂ (k, q) > p} and
assume that m(A) > 0 and m(B) > 0.
Consider now the following history. At the beginning of the game the buyer purchases

m − k units from all the types at the price (m− k) c. Then he makes an offer for the k
remaining units which is accepted by all the types in A and is rejected by all the types in
B. Following this rejection the buyer purchases k− 1 units from all the remaining types at
the price (k − 1) c. Let C ⊂ [0, 1] denote the set of types who still have one unit to trade.

42This is possible because the set of discontinuities of P̂ (1, ·) is countable.
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Notice that C contains “gaps”. We would like to relabel C in such a way that it contains
no “gaps”. To do so, define a mapping h : C → [0, 1] implicitly by:

m(q′ : q′ ∈ C ∩ [q, 1]) = 1− h(q).

Let q = inf{h(q) : q ∈ C}, and notice that m(C) = 1− q and for any q̃ ∈ (q, 1) we have

m(q′ : q′ ∈ C, h(q′) > q̃) =

∫
q∈C∩[inf{q′:h(q′)>q̃},1]

dm(q) = 1− q̃.

Next, we define a function P̃ (1, ·) : [1− q, 1]→ R by:

P̃ (1, q) := sup{P̂ (1, h(q̃)) : h(q̃) < q}.

The function P̃ (1, ·) is increasing since both P̂ (1, ·) and h (·) are increasing. By chang-
ing P̃ (1, ·) in a set of measure zero if necessary, we may assume that P̃ is left-continuous.
Therefore, it follows from the analysis in Step 1 that the functions P̃ (1, ·) and P̂ (1, ·) must
coincide on the interval [1 − q, 1]. However, we now show that they differ. Indeed, define
q∗ and q∗∗ by

q∗ := sup{q : P̂ (1, q) 6 P̂ (1, q3)}, q∗∗ := sup{q : P̃ (1, q) 6 P̂ (1, q3)}.

The fact that m(A) > 0 and m(B) > 0 implies q∗ < q∗∗ and, therefore, m({q > 1− q :

P̂ (1, q) > P̃ (1, q)}) > 0. Thus, we conclude that the parameters of the model do not belong
to Ω.�
ii) Inductively relabeling the types for the next unit
Recall that P (1, ·) , . . . , P (m, ·) denote the equilibrium reservation price functions. As-

sume, as an induction hypothesis, that for some k̃ = 2, . . . ,m− 1 there exists a one-to-one
(measurable) function g : [0, 1]→ [0, 1] such that P̂ (k, ·) , k = 1, . . . , k̃, defined by

P̂ (k, q) = P (k, g(q))

is an increasing and left-continuous step function. For every k′ = k̃ + 1, . . . ,m define
P̂ (k′, ·) : [0, 1]→ R by:

P̂ (k′, q) = P (k′, g(q)) .

The proof is complete if we show that for every k′ > k̃ the regions in which P̂ (k′, ·) fails
to be monotonic lie in flat regions of P̂ (1, ·) , . . . , P̂

(
k̃, ·
)
.
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Claim 4 Let Ω be the generic set of parameters under which Step 1 holds. Fix k = 1, . . . , k̃

and let q1 < q2 < q3 < q4 be such that P̂ (k, ·) is constant both in the interval [q1, q2] and in
[q3, q4], and P̂ (k, q1) < P̂ (k, q3). Take k′ ∈ k̃+1, . . . ,m, p ∈ R and assume that P̂ (k′, q) > p

for some subset of [q1, q2] with positive measure. Finally, let A := {q ∈ [q3, q4] : P̂ (k′, q) <

p}. Then m (A) = 0.

Proof Define B := {q ∈ [q1, q2] : P̂ (k′, q) > p} and assume towards a contradiction
that m(A) > 0 and m(B) > 0. Consider now the following history. At the beginning
of the game the buyer purchases m − k′ units from all the types at the price (m− k′) c.
Then he makes an offer for the k′ remaining units, which is accepted by all the types in A
and is rejected by all the types in B. Following this rejection, the buyer purchases k′ − k
units from all the remaining types at the price (k′ − k) c. Proceeding analogously to the
proof of Claim 3 we conclude that in the model with k units the outcome of stationary
equilibria with increasing reservation price functions is not unique. Then, it follows from
Step 1 that the parameters of the model do not belong to Ω and. This concludes the proof
of Proposition 2. �

Appendix C: Proof of Theorem 1

In this appendix, we provide the proof of Theorem 1. For each m = 1, 2, . . . , we let

Am :=
{

(zm1 , q
m
1 ) , . . . ,

(
zmNm , q

m
Nm

)}
denote the set of impasses of them-limiting equilibrium outcome. It is convenient to reverse
the order adopted in Section 7 and assume that

(
zmNm , q

m
Nm

)
is the first impasse of the m-

limiting equilibrium outcome, and (zm1 , q
m
1 ) =

(
1
m
, q
(

1
m

))
is the last impasse. Therefore,

qm1 > qm2 > ... > qmNm .

In what follows, we prove the first two results in Theorem 1.

Claim 5 The limiting equilibrium outcome satisfies the following properties:
i)

lim
m→∞

max
j∈{2,...,Nm}

∣∣qmj − qmj−1

∣∣ = 0

ii)
lim
m→∞

max
j∈{2,...,Nm}

∣∣zmj−1 − zmj
∣∣ = 0.

The first equation in Claim 5 establishes that the largest probability that a cream-
skimming offer is accepted converges to zero. The second equation shows that the size of
the largest universal offer also shrinks to zero.
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Once we have established Claim 5, it is immediate to derive the remaining results
in Theorem 1 and show that trade of an infinitely divisible high-quality good will occur
gradually over time. This result leads to the differential equation (15) which determines
the rate at which the information is revealed and the good is sold.
To prove Claim 5, we derive a dynamic system that links the beliefs at (the limits

of) three consecutive impasses (see equation (32) below). The system follows from the
following three conditions. First, the buyer’s payoff from trading between two impasses is
equal to zero. Second, there is double delay at every impasse. Finally, the seller’s low types
are indifferent between accepting and rejecting cream-skimming offers. Below is the formal
derivation of equation (32). We then analyze the dynamic system and show that, in the
limit, the distance between the beliefs at two consecutive impasses must shrink to zero.
Assume towards a contradiction that

lim sup
m

max
Am

∣∣qmu − qmu−1

∣∣ > ε,

for some ε > 0. By taking a subsequence if necessary, we may assume that there exists a
sequence

{((
zmrm+1, q

m
rm+1

)
,
(
zmrm , q

m
rm

))}∞
m=1

, with
((
zmrm+1, q

m
rm+1

)
,
(
zmrm , q

m
rm

))
∈ Am × Am

for every m, converging to ((z1, q1) , (z0, q0)) such that

q0 − q1 = ν > 0. (24)

First, we claim that zj = ψ (qj) , for j = 0, 1. Here we provide the proof for j = 1 (the
proof for j = 0 is similar and therefore omitted). It follows from Proposition 5-i) that qmrm+1

lies between q̄jm+1 and q̄jm , for some jm = 1, . . . ,m− 1, where q̄jm+1 and q̄jm satisfy∫ 1

q̄jm+1

[(∫ jm+1
m

jm
m

α (u) du
)
v (s)− c̄

m

]
ds = 0,

∫ 1

q̄jm

[(∫ jm
m
jm−1
m

α (u) du
)
v (s)− c̄

m

]
ds = 0.

Since α′ is continuous, we conclude that q̄jm+1 and q̄jm become uniformly close as m
goes to infinity, which leads to the desired conclusion.
Second, Proposition 5-ii) implies that the buyer’s payoff from transiting from the state(

zmrm+1, q
m
rm+1

)
to the state

(
zmrm , q

m
rm

)
must be equal to zero. There are two different ways

to express the payoff from this transition. We can either assume that the buyer first makes
the universal offer to purchase m

(
zmrm+1 − zmrm

)
units from all the types above qmrm+1. Then

he proposes to purchase mzmrm units at the price Pm
(
mzmrm ,

(
qmrm
)−)

. This offer is accepted

by all the (low) types in the interval
[
qmrm+1, q

m
rm

]
. Alternatively, we can assume that the
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buyer first makes the offer to purchase mzmrm+1 units at the price Pm
(
mzmrm+1,

(
qmrm+1

)+
)
.

Again, this cream-skimming offer is accepted by all the types in
[
qmrm+1, q

m
rm

]
. If the offer is

rejected, then the buyer makes the universal offer to purchase m
(
zmrm+1 − zmrm

)
from all the

types above qmrm . It turns out to be more convenient to work with the second expression.
Thus, we have:(

qmrm − qmrm+1

) [∫ zmrm+1

0
α (u) vdu− Pm

(
mzmrm+1,

(
qmrm+1

)+
)]

+∫ zmrm+1

zmrm

(∫ 1

qmrm
[α (u) v(s)− c̄] ds

)
du = 0.

(25)

The expression in (25) is continuous in
(
zmrm+1, q

m
rm+1, z

m
rm , q

m
rm

)
and Pm

(
mzmrm+1,

(
qmrm+1

)+
)
.

Hence, since the sequence
{((

zmrm+1, q
m
rm+1

)
,
(
zmrm , q

m
rm

))}∞
m=1

converges to ((z1, q1) , (z0, q0)) ,

it follows that the sequence
{
Pm

(
mzmrm+1,

(
qmrm+1

)+
)}

is convergent and the limit, which

we denote by P̄1, must satisfy

(q0 − q1)

[∫ z1

0

α (u) vdu− P̄1

]
+

∫ z1

z0

(∫ 1

q0

[α (u) v(s)− c̄] ds
)
du = 0. (26)

The two components of the buyer’s payoff from the transition between (the limits of)
two consecutive impasses can be easily visualized in Figure 6.

A

A

Figure 6: The buyer’s payoff from transiting between two consecutive impasses

Recall that zj = ψ (qj) , for j = 0, 1, and ψ′ (q) < 0 for every q. Thus, we may change
variables and write equation (26) as
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(q0 − q1)

[∫ ψ(q1)

0

α (u) vdu− P̄1

]
+

∫ q0

q1

[
−ψ′(u)

(∫ 1

q0

[α (ψ (u)) v(s)− c̄] ds
)]

du = 0.

(27)
Next, we show that q0 < q (0) (and, therefore, z0 > 0). The proof is by contradiction.

It follows easily from Proposition 5-iii) that if z0 = 0, then P̄1 = z1c̄. But then as m goes
to infinity, the buyer’s payoff from transiting from the state

(
zmrm+1, q

m
rm+1

)
to the state(

zmrm , q
m
rm

)
converges to

(q (0)− q1)
[∫ z1

0
α (u) vdu− z1c̄

]
+
∫ z1

0

(∫ 1

q(0)
[α (u) v(s)− c̄] ds

)
du =∫ z1

0

(∫ 1

q1
[α (u) v(s)− c̄] ds

)
du < 0,

which contradicts equation (26).
Therefore, form large there is an impasse

(
zmrm−1, q

m
rm−1

)
that comes right after

(
zmrm , q

m
rm

)
.

Again, by taking a subsequence if necessary, assume that the sequence
{(
zmrm−1, q

m
rm−1

)}
converges and let (z−1, q−1) denote its limit. We claim that q−1 ∈ (q0, q (0)) . The proof
that q−1 < q (0) is identical to the proof above that q0 < q (0) .We now show that q−1 > q0.

Recall that qmrm−1 > qmrm for every m, and assume, by contradiction, that q−1 = q0. Also,
recall that

(
zmrm+1, q

m
rm+1

)
and

(
zmrm , q

m
rm

)
are two consecutive impasses. Thus, it follows

from Proposition 5 that if q−1 = q0, then

P̄1 = (z1 − z0) c̄+

∫ z0

0

α (u) vdu.

This, in turn, implies that, as m goes to infinity, the buyer’s payoff from transiting from(
zmrm+1, q

m
rm+1

)
to
(
zmrm , q

m
rm

)
converges to

(q0 − q1)
[∫ z1

0
α (u) vdu− (z1 − z0) c̄−

∫ z0
0
α (u) vdu

]
+
∫ z1
z0

(∫ 1

q0
[α (u) v(s)− c̄] ds

)
du =∫ z1

z0

(∫ 1

q1
[α (u) v(s)− c̄] ds

)
du < 0,

which, again, contradicts equation (26) (see Figure 7).

Using the same argument described above, we conclude that the sequence
{
Pm

(
mzmrm ,

(
qmrm
)+
)}

has a limit, which we denote by P̄0, and that

(q−1 − q0)

[∫ ψ(q0)

0

α (u) vdu− P̄0

]
+

∫ q−1

q0

[
−ψ′(u)

(∫ 1

q−1

[α (ψ (u)) v(s)− c̄] ds
)]

du = 0.

(28)
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Figure 7: Profitable deviation between two impasses

The next step is to show that we can express P̄1 in terms of (q1, q0, q−1) . We then
substitute this expression into (27) and obtain an equation in (q1, q0, q−1) . From equation
(28), we have

P̄0 =

∫ ψ(q0)

0

α (u) vdu+

∫ q−1

q0

[
−ψ′(u)

(∫ 1

q−1
[α (ψ (u)) v(s)− c̄] ds

)]
du

q−1 − q0

 . (29)

It easy to show that the sequence of prices
{
Pm

(
mzmrm ,

(
qmrm
)−)}

admits a limit which
we denote by P 0. Using the fact that there is double delay at every impasse and equation
(29), we obtain

P 0 =

(∫ ψ(q0)
0 α(u)vdu

P̄0

)∫ ψ(q0)

0
α (u) vdu = ∫ ψ(q0)

0 α(u)vdu∫ ψ(q0)
0 α(u)vdu+

( ∫ q−1
q0 [−ψ′(u)(

∫ 1
q−1

[α(ψ(u))v(s)−c̄]ds)]du
q−1−q0

)
∫ ψ(q0)

0
α (u) vdu.

Recall that, for everym, the seller’s low types are indifferent between selling the remain-
ing mzmrm+1 units at the price Pm

(
mzmrm+1,

(
qmrm+1

)+
)
and selling the first m

(
zmrm+1 − zmrm

)
at the price

(
zmrm+1 − zmrm

)
c̄ and the remainingmzmrm at the price Pm

(
mzmrm ,

(
qmrm
)−)

. Thus,
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in the limit, as m goes to infinity, we have (recall that z1 − z0 = ψ(q1)− ψ(q0))

P̄1 = (ψ(q1)− ψ(q0)) c̄+ P 0 =

(ψ(q1)− ψ(q0)) c̄+

 ∫ ψ(q0)
0 α(u)vdu∫ ψ(q0)

0 α(u)vdu+

( ∫ q−1
q0 [−ψ′(u)(

∫ 1
q−1

[α(ψ(u))v(s)−c̄]ds)]du
q−1−q0

)
∫ ψ(q0)

0
α (u) vdu.

(30)
Finally, we substitute equation (30) into equation (27) and obtain an equation linking

the beliefs at (the limits of) three consecutive impasses:

Φ (q1, q0, q−1) :=
∫ ψ(q1)

0
α (u) vdu+

(∫ q0
q1

[
−ψ′(u)

(∫ 1
q0

[α(ψ(u))v(s)−c̄]ds
)]
du

q0−q1

)
−

(ψ(q1)− ψ(q0)) c̄−

 ∫ ψ(q0)
0 α(u)vdu∫ ψ(q0)

0 α(u)vdu+

( ∫ q−1
q0 [−ψ′(u)(

∫ 1
q−1

[α(ψ(u))v(s)−c̄]ds)]du
q−1−q0

)
∫ ψ(q0)

0
α (u) vdu = 0.

(31)
Since q−1 < q (0) , for m large there is an impasse

(
zmrm−2, q

m
rm−2

)
that comes right after(

zmrm−1, q
m
rm−1

)
. As usual, by taking a subsequence if necessary, assume that the sequence{(

zmrm−2, q
m
rm−2

)}
converges and let (z−2, q−2) denote its limit. It is also easy to show that

Φ (q0, q−1, q−2) = 0, where the function Φ is defined in (31).
We proceed inductively and obtain a sequence of limits of impasses {(zi, qi)}i=1,0,−1,... .

For every i = 1, 0,−1, . . ., we have zi = ψ (qi) and

Φ (qi, qi−1, qi−2) =
∫ ψ(qi)

0
α (u) vdu+

(∫ qi−1
qi

[
−ψ′(u)

(∫ 1
qi−1

[α(ψ(u))v(s)−c̄]ds
)]
du

qi−1−qi

)
−

(ψ(qi)− ψ(qi−1)) c̄−

 ∫ ψ(qi−1)

0 α(u)vdu∫ ψ(qi−1)
0 α(u)vdu+

( ∫ qi−2
qi−1 [−ψ′(u)(

∫ 1
qi−2

[α(ψ(u))v(s)−c̄]ds)]du
qi−2−qi−1

)
∫ ψ(qi−1)

0
α (u) vdu = 0.

(32)
Also, for every i = 1, 0,−1, . . ., we let P̄i denote the limit, as m goes to infinity, of

Pm

(
mzmrm+i,

(
qmrm+i

)+
)
.

By construction, the sequence {qi} is increasing and bounded above by q (0) . Therefore,
we have

lim
i→−∞

(qi−1 − qi) = 0. (33)
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In what follows, we analyze the dynamic system in (32) and show that if an impasse is
small, then all the impasses that precede it are also small. Formally, we demonstrate that
there exists ε > 0 such that if (qi−1 − qi) < ε, for some i, then (qi′−1 − qi′) < ν

2
for every i′ =

1, 0, . . . , i+1. This contradicts equation (24), showing that lim supm maxAm
∣∣qmu − qmu−1

∣∣ = 0

and completing the proof of Claim 5.
Consider the sequence

{(
qi, P̄i

)}
i=1,0,−1,...

constructed above and recall that for every
i = 1, 0,−1, . . . we have Φ (qi, qi−1, qi−2) = 0 (see equation (32)) and

P̄i =

∫ ψ(qi)

0

α (u) vdu+

∫ qi−1

qi

[
−ψ′(u)

(∫ 1

qi−1
[α (ψ (u)) v(s)− c̄] ds

)]
du

qi−1 − qi

 (34)

Also recall that the sequence {q1, q0, q−1, . . .} is increasing and bounded above by q (0) .

Therefore, the sequence is convergent, and we denote its limit by q−∞.
In Appendix E, we establish the following two facts.

Fact 3 There exists η∗ > 0 such that for every i = 0,−1, . . . , if qi−1 − qi < η∗, then
qi − qi+1 <

4
3

(qi−1 − qi) .

Fact 4 There exist two constants b1 > 0 and b2 > 0 such that for every i = 1, 0,−1, . . .,
we have
i) (

P̄i −
∫ ψ(qi)

0
α (u) vdu

)
−
(
P̄i−1 −

∫ ψ(qi−1)

0
α (u) vdu

)
qi−1 − qi

6 b1(qi−1 − qi), (35)

and ii)

qi−1 − qi 6 b2

(
P̄i −

∫ ψ(qi)

0

α (u) vdu

)
. (36)

Claim 5 follows from Lemmas 4-6 below.

Lemma 4 Let j and j′ be two integers satisfying 1 > j′ > j, and consider the beliefs
qj′ < qj′−1 < . . . < qj. Let ε and M be two positive numbers such that qi−1 − qi < ε for
every i = j + 1, . . . , j′, and qj − qj′ < M−1. Then for every i = j + 1, . . . , j′, we have

P̄i −
∫ ψ(qi)

0

α (u) vdu < P̄j −
∫ ψ(qj)

0

α (u) vdu+ εb1M
−1.
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Proof. Notice that (qi−i − qi) < ε implies

P̄i −
∫ ψ(qi)

0
α (u) vdu =

P̄i−1 −
∫ ψ(qi−1)

0
α (u) vdu+

(
P̄i−

∫ ψ(qi)
0 α(u)vdu−

(
P̄i−1−

∫ ψ(qi−1)

0 α(u)vdu

)
qi−i−qi

)
(qi−i − qi) <

P̄i−1 −
∫ ψ(qi−1)

0
α (u) vdu+ εb1(qi−i − qi),

where the inequality follows from equation (35). Therefore for every i = j + 1, . . . , j′, we
have

P̄i −
∫ ψ(qi)

0
α (u) vdu < P̄j −

∫ ψ(qj)

0
α (u) vdu+ εb1

j′∑
i′=j+1

(qi′−i − qi′) <

P̄j −
∫ ψ(qj)

0
α (u) vdu+ εb1M

−1.

�

Lemma 5 Let j and j′ be two integers satisfying 0 > j′ > j, and let ε andM be two positive
numbers such that ε < η∗, qi−1 − qi < ε for every i = j + 1, . . . , j′, P̄j −

∫ ψ(qj)

0
α (u) vdu <(

ε
3b2

)
, and M > 3b1b2. If qj − qj′ < M−1, then qj′ − qj′+1 < ε.

Proof. We have

qj′−1 − qj′ 6 b2

(
P̄j′ −

∫ ψ(qj′ )

0
α (u) vdu

)
<

b2

(
P̄j −

∫ ψ(qj)

0
α (u) vdu+ εb1M

−1
)
<

b2

((
ε

3b2

)
+ εb1M

−1
)
< 2

3
ε,

where the first inequality follows from Fact 4 (equation (36)), the second follows from
Lemma 4, and the last two inequalities are an immediate consequence of the assumptions
in Lemma 5. Finally, the inequality above together with Fact 3 and the assumption ε < η∗

implies

qj′ − qj′+1 <
4

3
(qj′−1 − qj′) =

4

3

2

3
ε < ε.

�

Lemma 6 For every ε > 0 there exists κ > 0 such that for every i = 0,−1, . . . , the
following is true. If max

{
qi−1 − qi, P̄i −

∫ ψ(qi)

0
α (u) vdu

}
< κ, then qj−1− qj < ε for every

j = 1, 0, . . . , i+ 1.
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Proof. Take M̄ > 3b1b2 and an integer N such that
(
q−∞−q1

N

)
<
(

1
2M̄

)
, and q0 >

q1 +
(
q−∞−q1

N

)
. Consider the partition of [q1, q−∞] into N intervals. Let the integer m∗ be

such

q1 +m∗
(
q−∞ − q1

N

)
6 q0 < q1 + (m∗ + 1)

(
q−∞ − q1

N

)
,

and for m = m∗ + 1, . . . , N − 1 define

jm := max

{
j : qj > q1 +m

(
q−∞ − q1

N

)}
.

Also define jN = −∞. Considerm = m∗+1, . . . , N. It follows from Lemma 4 and Lemma
5 that for every εm > 0, there exists κm > 0 such thatmax

{
qi−1 − qi, P̄i −

∫ ψ(qi)

0
α (u) vdu

}
<

κm, for some i = jm−1−1, jm−1−2, . . . , jm, implies max
{
qi′−1 − qi′ , P̄i′ −

∫ ψ(qi′ )

0
α (u) vdu

}
< εm for every i′ = jm−1, . . . , i+ 1.

This, together with Fact 3, immediately implies Lemma 6. �

Recall that limi→−∞ qi−qi−1 = 0 (see equation (33)). Using this fact and equation (34),
it is easy to check that

lim
i→−∞

P̄i −
∫ ψ(qi)

0

α (u) vdu = 0. (37)

Combining Lemma 6 with equation (33) and equation (37) we obtain a contradiction
to equation (24). This concludes the proof of Claim 5. �
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Online Appendix: Omitted Proofs (Not for Publication)

Appendix D: Algorithm

Proof of Proposition 4.

First, suppose, by contradiction, that the last impasse occurs at (k, q′) for some k > 1.

We claim that q′ < q̄1. To see this, notice that there exists γ > 0 such that for every q > q̄1

W (k, q) >
∫ 1

q

((αk + . . .+ α1) v (s)− kc) ds > γ.

The fact that the function W (k, ·) is strictly bounded below from zero implies that, as
δn → 1, the time it takes for the buyer to buy the remaining k units from the types above
q̄1 converges to zero. This result follows from well known Coasean forces.
The fact that the last impasse is at (k, q′) implies that for q ∈ (q′, q̄1) we have

W (k, q) =
∫ 1

q
((αk + . . .+ α1) v (s)− kc) ds <∫ 1

q
((αk + . . .+ α2) v (s)− (k − 1) c) ds+

∫ q̄1
q

(
α1v (s)− P

(
1, q̄−1

))
ds,

which is the payoff from buying the first (k − 1) units from all the remaining types at the
price (k − 1) c and the last unit from the types in [q, q̄1] at the price P

(
1, q̄−1

)
. Thus, for

δn suffi ciently close to one, the buyer has a profitable deviation at (k, q) .

Suppose now that no impasse occurs on the equilibrium path. Then for q < q̄1, we have

W (m, q) =
∫ 1

q
((αm + . . .+ α1) v (s)−mc) ds <∫ 1

q
((αm + . . .+ α2) v (s)− (m− 1) c) ds+

∫ q̄1
q

(
α1v (s)− P

(
1, q̄−1

))
ds.

and, again, for δn suffi ciently close to one, the buyer has a profitable deviation at (m, q) .

This shows that the last impasse is at (1, q̄1). The fact that this impasse is of real time
1−

(
α1v
c

)2
follows from DL. �

We now develop the necessary notation to provide a formal description of the algo-
rithm which describes the m-limiting equilibrium outcome. We let D denote the set of the
following triples:

D := {(k, q, p) : k = 1, . . . ,m− 1, q > q̄k+1 and p < (αk + . . .+ α1) v} .

Fix a triple (k, q, p) ∈ D. For each state (k′, q′) , with k′ = k + 1, . . . ,m and q′ < q,

consider the following course of action. The buyer makes the universal offer for (k′ − k)

1



units (which is accepted by all the types in [q′, 1]) and then purchases the last k units from
the types in [q′, q] at the price p.We let χ (k′, k, q, p) denote the type q′ at which the buyer
breaks even. Formally, for k′ = k + 1, . . . ,m, we let χ (k′, k, q, p) be implicitly defined by∫ 1

χ(k′,k,q,p)

((αk′ + . . .+ αk+1) v (s)− (k′ − k) c) ds+

∫ q

χ(k′,k,q,p)

((αk + . . .+ α1) v − p) ds = 0,

provided that the solution to the above equation exists and is positive. In the other cases,
we set χ (k′, k, q, p) equal to zero.
For each k′ = k + 1, . . . ,m, we compare χ (k′, k, q, p) with zero and q̄k′+1 (recall that

this is the type at which the buyer breaks even if he trades the (m− k)-th unit at the price
c). We let φ1 (k, q, p) denote the smallest integer k′ for which χ (k′, k, q, p) is strictly larger
than the other two quantities (see below for the case in which such an integer does not
exist). Formally, suppose that χ (k′, k, q, p) > max {0, q̄k′+1} for some k′ = k+1, . . . ,m−1.

Then we let φ1 (k, q, p) be equal to

φ1 (k, q, p) := arg min
{
k
′
= k + 1, . . . ,m− 1 s.t. χ (k′, k, q, p) > max {0, q̄k′+1}

}
.

If instead χ (k′, k, q, p) 6 max {0, q̄k′+1} for every k′ = k + 1, . . . ,m − 1, then we let
φ1 (k, q, p) be equal to m.
Finally, we let

φ2 (k, q, p) := χ (φ1 (k, q, p) , k, q, p)

denote the critical type q′ at which the buyer breaks even if he purchases (φ1 (k, q, p)− k)

units at the price (φ1 (k, q, p)− k) c from the types in [q′, 1] and the last k units at the price
p from the types in [q′, q] .43

We are now ready to provide a formal description of our algorithm.

Proposition 7 Suppose that, in the limit, the (j − 1)-th to last impasse is at (kj−1, qj−1)

with kj−1 < m.

i) If φ2

(
kj−1, qj−1, P

(
kj−1, q

−
j−1

))
= 0, then there are no other impasses.

ii) If φ2

(
kj−1, qj−1, P

(
kj−1, q

−
j−1

))
> 0, then the j-th to last impasse is at(

φ1

(
kj−1, qj−1, P

(
kj−1, q

−
j−1

))
, φ2

(
kj−1, qj−1, P

(
kj−1, q

−
j−1

)))
.

This impasse is also the first one if φ1

(
kj−1, qj−1, P

(
kj−1, q

−
j−1

))
= m. Furthermore, the

impasse is of real time 1−
(

((αkj+...+α1)v)
(kj−kj−1)c+P(kj−1,q

−
j−1)

)2

, and

P
(
kj, q

−
j

)
=

((αkj+...+α1)v)
2

(kj−kj−1)c+P(kj−1,q
−
j−1)

<
(
αkj + . . .+ α1

)
v

P
(
kj, q

+
j

)
= (kj − kj−1) c+ P

(
kj−1, q

−
j−1

)
.

43Recall that we set χ (φ1 (k, q, p) , k, q, p) equal to zero if the critical type q′ is negative or does not exist.
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Proof. The proof of Proposition 7 is split into a series of lemmata. To simplify the
notation, we consider the case j = 2. In other words, we take as given the fact that the
last impasse is at (1, q̄1) and characterize the penultimate impasse. The proof for arbitrary
values of j is analogous to the case analyzed here. Also, for notational convenience, we use
q̂k, k = 2, . . . ,m, to denote χ

(
k, 1, q̄1, P

(
1, q̄−1

))
.We remind the reader that q̂k is implicitly

defined by

∫ q̄1

q̂k

(
(αk + . . .+ α1) v − (k − 1) c− P

(
1, q̄−1

))
ds+

∫ 1

q̄1

((αk + . . .+ α2) v (s)− (k − 1) c) ds = 0.

provided that the solution to the above equation exists and is positive. Otherwise we set
q̂k equal to zero.
Of course, q̂k < q̄1 for every k > 1. We also point out that for generic values of the

parameters, q̂k 6= q̄k+1. In the following, we restrict our attention to generic cases.
It is easy to see that if q̂k > 0, then

(αk + . . .+ α1) v < (k − 1) c+ P
(
1, q̄−1

)
.

Lemma 7 Consider k = 2, . . . ,m− 1 and suppose that 0 < q̂k < q̄k+1. Then q̂k+1 > q̂k.

Proof. Notice that∫ q̄1
q̂k

(
(αk+1 + . . .+ α1) v − kc− P

(
1, q̄−1

))
ds+

∫ 1

q̄1
((αk+1 + . . .+ α2) v (s)− kc) ds =∫ q̄1

q̂k

(
(αk + . . .+ α1) v − (k − 1) c− P

(
1, q̄−1

))
ds+

∫ 1

q̄1
((αk + . . .+ α2) v (s)− (k − 1) c) ds+∫ q̄k+1

q̂k
(αk+1v − c) ds+

∫ 1

q̄k+1
(αk+1v (s)− c) ds =∫ q̄k+1

q̂k
(αk+1v − c) ds < 0.

Consider the function G : R→ R,

G(q) :=

∫ q̄1

q

(
(αk+1 + . . .+ α1) v − kc− P

(
1, q̄−1

))
ds+

∫ 1

q̄1

((αk+1 + . . .+ α2) v (s)− kc) ds.

Notice that G is linear in q, G(q̄1) > 0 and G (q̂k) < 0. Therefore, the inequality above
implies q̂k+1 ∈ (q̂k, q̄1) . �

Lemma 8 Let k 6 m and assume that for j = 2, ..., k − 1 we have q̂j 6 max {0, q̄j+1} .
For δn → 1, consider a sequence of histories htnn (on or off-path) associated to states (k, qn)

with qn → q∗ ∈ (q̂k, q̄1) . Then, the state (1, q̄1) is reached. Moreover, the real time required
for this event converges to zero.
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Proof. By contradiction, let k be the minimal number such that the claim is violated.
Without loss, assume that qn ∈ (q̂k, q̄1) for all n.
First, it is easy to see that the conclusion of Proposition 4 holds if the initial history

is associated to a state (k, q) with q < q̄1. Therefore, we know that any continuation game
must reach an impasse at (1, q̄1) . The proof will be concluded if we show that for any ε > 0

there exists γ > 0 such that for all j ∈ {2, ..., k} and q > q̂k + ε we have W (j, q) > γ.

Take ε > 0. For j ∈ {2, ..., k − 1} Lemma 7 implies q̂k > q̂j. Hence, for any q ∈
(q̂k + ε, q̄1) and k̃ ∈ {2, ..., k} the payoff from buying (k̃ − 1) units in the first period and
then following the equilibrium strategy for (1, q) converges to∫ q̄1

q

(
(αk̃ + . . .+ α1) v −

(
k̃ − 1

)
c− P

(
1, q̄−1

))
ds+

∫ 1

q̄1

(
(αk̃ + . . .+ α2) v (s)−

(
k̃ − 1

)
c
)
ds,

which is bounded away from zero. �
Lemma 8 immediately implies the following corollary.

Corollary 2 Let k 6 m and assume that for j = 2, ..., k − 1 we have q̂j 6 max {0, q̄j+1} .
Then for q ∈ (q̂k, q̄1) we have

P (k, q) = P (1, q̄−1 ) + (k − 1) c.

For k > 1 we define W̃ (k, ·) and P̃ (k, ·) by

W̃ (k, q) :=
∫ q̄1
q

(αkv(s)− c) ds+W (k − 1, q)

P̃ (k, q) := c+ P (k − 1, q).

Lemma 9 Let k 6 m and assume that for j = 2, ..., k − 1 we have q̂j 6 max {0, q̄j+1} and
q̂k > 0. For δn → 1, consider a sequence of histories htnn (on or off-path) associated to states
(k, qn) with qn → q∗ ∈ (q̂k−1, q̂k) . Then:
i) The continuation game reaches the state (k, q̂k);
ii) The real time required for this event converges to zero;

iii) There is an impasse at (k, q̂k) of real time 1−
(∑

j6k αjv

P(k,q̂+
k )

)2

.

iv) For q ∈ (q̂k−1, q̂k) we have:

P (k, q) =

(∑
j6k αjv

P
(
k, q̂+

k

))2

P
(
k, q̂+

k

)
,

v) For q ∈ (q̂k−1, q̂k) we have:

W (k, q) =

∫ q̂k

q

(∑
j6k

αjv − P
(
k, q̂−k

))
ds.
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Proof. We begin by arguing that there must be an impasse at (k, q̂k) .

From Lemma 8 we have W̃ (k, q̂k) = 0 and W̃ (k, q) < 0 for q ∈
((

q̂k−1+q̂k
2

)
, q̂k

)
. First,

taking a subsequence if necessary the continuation value of the low type at (k, qn) converges
to some v∗L. We claim that v∗L < P (k, q̂+

k ). Suppose this is not the case. Take a small ε > 0

and let ht1n the first history reached (with positive probability) by h
tn
n such that the state

at htnn , (kn, q
1
n) is such that either i) kn = k and q1

n > q̂k + ε or ii) the buyer makes an offer
for z units at a price zc. Using the fact that the continuation values are always positive
and the reservation prices are weakly increasing, an upper bound to the buyer’s payoff (for
large n) is: ∫ q1

n

qn

(∑
j6k αjv − P (k, q̂+

k ) + ε
)
ds+ W̃ (kn, q

1
n) + ε =

W̃ (k, qn) + ε+ ε (q1
n − qn)

which is negative for ε < −W̃ (k,qn)
2

.

For some (small) η > 0, take the continuation game and define ht2(η)
n the first history

reached (with positive probability) by htnn such that either the buyer buys z units (z ∈
{1, ..., k − 1}) at a price cz or the continuation utility of the low type is at least P (k, q̂+

k )−η.
Let (k, qηn) the state at ht2(η)

n . Taking a convergent subsequence, qηn → qη. Clearly limη→0 q
η =

q̂k. The first argument of this Lemma establishes that lim infη→0 q
η > q̂k, while Corollary

2 establishes lim supη→0 q
η 6 q̂k. One can then take a small η such that: a) qηn is close to

q̂k;b) For (k, q), such that q ∈ (qn, q
η
n) the buyer buys k units only from the low type; and

c) Pn(k, qηn) is close to P (k, q̂k+). After establishing a),b) and c), one can use an argument
similar to that in DL to establish that there is an impasse at (k, q̂k) corresponding to a real

delay equal to
(∑

j6k αjv

P(k,q̂+
k )

)2

. This implies P (k, q̂−k ) =

(∑
j6k αjv

P(k,q̂+
k )

)2

P (k, q̂+
k ). Therefore, iii)

and iv) are established.
Now, consider a state (k, q), with q ∈ (q̂k−1, q̂k) . Since the reservation price of the

low type converges to P (k, q̂−k ) <
∑

j6k αjv and the limit payoff from buying z units
(z ∈ {1, ..., k − 1}) at a price cz converges to W̃ (k, qn) < 0, i), ii) and v) follow immediately.
�

Lemma 10 Let k < m and assume that for j = 2, ..., k we have q̂j 6 max {0, q̄j+1} . Then,
for any initial state (k′, q′) , k′ = k + 1, . . . ,m, q′ > 0, and for any q > q′, there is no
impasse at (k, q) .

Proof. First we show an important inequality. If c > αk+1v, then we have:

c+

(
((αk + . . .+ α1) v)2

(k − 1)c+ P (1, q̄−1 )

)
>

(
((αk + . . .+ α1) v + αk+1v)2

(k − 1)c+ P (1, q̄−1 ) + c

)
. (38)
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To simplify notation, write V for (αk + . . .+ α1) v, P for (k − 1)c + P (1, q̄−1 ) and vk+1

for αk+1v. The inequality above is equivalent to:

c+

(
V 2

P

)
>

(
(V + vk+1)2

P + c

)
⇔ c

(
P 2 + Pc+ V 2

)
> 2V vk+1P + Pv2

k+1.

For the last inequality it suffi ces that

c
(
P 2 + Pc+ V 2

)
> 2V Pvk+1 + Pcvk+1 ⇔ c

(
P 2 + P (c− vk+1) + V 2

)
> 2V Pvk+1.

For the last inequality, it suffi ces that

c
(
P 2 + V 2

)
> 2V Pc⇔ c (P − V )2 > 0.

If q̂k = 0, there cannot be an impasse at any state (k, q) since W (k, ·) is bounded away
from zero.
Therefore, assume that 0 < q̂k < q̂k+1. If the state is (k′, q) and q > q̂k+q̂k+1

2
, then there

cannot be an impasse at (k, q) since W (k, ·) is bounded away from zero.
It remains to consider the case q 6 q̂k+q̂k+1

2
. Let (k′, q′′) , q′′ ∈ [q′, q] , denote the state

at which the buyer purchases (k′ − k) units from all the remaining types. We now show
that there exists γ > 0 such that when the state is (k′, q′′) , the limit payoff from buying
(k′ − k) units from the types in [q′′, 1] is lower at least by γ than the payoff from buying
(k′ − k − 1) units from the types in [q′′, 1] and then (k + 1) units from the types in (q′′, q̂k+1) .

If q ∈
[
q̂k,
(
q̂k+q̂k+1

2

)]
the result is trivial. Hence, assume q < q̂k.The payoff from the first

strategy is:∫ 1

q′′ ((αk′ + . . .+ αk+1) v(s)− (k′ − k) c) ds+
∫ q̂k
q′′

(
(αk + . . .+ α1) v −

(
((αk+...+α1)v)2

(k−1)c+P (1,q̄−1 )

))
ds =∫ q̂k

q′′

(
(αk′ + . . .+ α1) v −

(
((αk+...+α1)v)2

(k−1)c+P (1,q̄−1 )

)
− (k′ − k) c

)
ds+∫ 1

q′′ ((αk′ + . . .+ αk+1) v(s)− (k′ − k) c) ds <∫ q̂k
q′′

(
(αk′ + . . .+ α1) v −

(
((αk+...+α1)v)2

(k−1)c+P (1,q̄−1 )

)
− c
)
ds+∫ 1

q′′ ((αk′ + . . .+ αk+2) v(s)− (k′ − k − 1) c) ds

since
∫ 1

q′′ (αk+1v(s)− c) ds < 0.44 Now, from inequality (38) the expression above is strictly
smaller than ∫ q̂k

q′′

((
ααk′ + . . .+ α1

)
v − ((αk+1+...+α1)v)2

(k−1)c+P (1,q̄−1 )+c

)
ds+∫ 1

q′′ ((αk′ + . . .+ αk+2) v(s)− (k′ − k − 1) c) ds

44We set αk′ + . . .+ αk+2 = 0 if k′ = k + 1.
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which, in turn, is strictly smaller than∫ q̂k+1

q′′

(
(αk+1 + . . .+ α1) v − ((αk+1+...+α1)v)2

(k−1)c+P (1,q̄−1 )+c

)
ds+∫ 1

q′′ ((αk′ + . . .+ αk+2) v(s)− (k′ − k − 1) c) ds

which is the payoff from the second strategy. �
At this point it is convenient to define q̄m+1 = 0. We now need to distinguish between

two cases:
(a) there exists k = 2, . . . ,m, such that q̂k > max {q̄k+1, 0} ;

(b) for every k = 2, . . . ,m, q̂k 6 max {q̄k+1, 0} .
We start with case (a) and define k̂ as

k̂ := inf {k = 2, . . . ,m− 1 : q̂k > max {q̄k+1, 0}}

The following Lemma follows directly from Lemma 9 and Lemma 10.

Lemma 11 The limit functions P
(
k̂, ·
)
and W

(
k̂, ·
)
satisfy

P
(
k̂, q
)

:=



(
(αk̂+...+α1)v

(k̂−1)c+P(1,q̄−1 )

)2 ((
k̂ − 1

)
c+ P

(
1, q̄−1

))
if q < q̂k̂(

k̂ − 1
)
c+ P

(
1, q̄−1

)
if q ∈ (q̂k̂, q̄1)

k̂c if q > q̄1

W
(
k̂, q
)

:=



∫ q̂k̂
q

(
(αk̂ + . . .+ α1) v − P

(
k̂, q
))

ds if q 6 q̂k̂∫ q̄1
q

(
(αk̂ + . . .+ α1) v − P

(
k̂, q
))

ds+∫ 1

q̄1

(
(αk̂ + . . .+ α2) v (s)−

(
k̂ − 1

)
c
)
ds

if q ∈ (q̂k̂, q̄1]

∫ 1

q

(
(αk̂ + . . .+ α1) v (s)− k̂c

)
ds if q > q̄1

Lemma 12 The penultimate impasse occurs at
(
k̂, q̂k̂

)
and is of real time 1−

(
(αk̂+...+α1)v

(k̂−1)c+P(1,q̄−1 )

)2

.

Furthermore, if k̂ = m, then the impasse at
(
k̂, q̂k̂

)
is the first impasse.
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Proof. By contradiction, suppose the claim is false. There are two possibilities:
i) the penultimate impasse occurs at (k, q′) for some k = k̂ + 1, . . . ,m;

ii) there is only one impasse at (1, q̄1) .

We consider case i) and derive a contradiction. The proof for case ii) is similar to the
proof for case i); thus, we omit the details.
The fact that q̂k̂ > q̄k̂+1 > q̄k̂+2 > . . . q̄m implies that for any k = k̂ + 1, . . . ,m and any

q′ ∈ [q̂k̂, q̄1] ∫ q̄1
q′

(
(αk + . . .+ α1) v (s)− (k − 1) c− P

(
1, q̄−1

))
ds+∫ 1

q̄1
((αk + . . .+ α2) v (s)− (k − 1) c) ds > 0.

Thus, if the penultimate impasse occurs at (k, q′) , then q′ < q̂k̂. For q ∈ (q′, q̂k̂) , we
have

W (k, q) =
∫ q̄1
q

(
(αk + . . .+ α1) v (s)− (k − 1) c− P

(
1, q̄−1

))
ds+∫ 1

q̄1
((αk + . . .+ α2) v (s)− (k − 1) c) ds

=
∫ q̂k̂
q

(
(αk + . . .+ α1) v (s)− (k − 1) c− P

(
1, q̄−1

))
ds+∫ 1

q̂k̂

((
αk + . . .+ αk̂+1

)
v (s)−

(
k − k̂

)
c
)
ds+W

(
k̂, q̂k̂

)
,

where we used the expression for W
(
k̂, q
)
for q > q̂k̂. Since W

(
k̂, q̂k̂

)
= 0 the expression

above is: ∫ q̂k̂
q

((
αk + . . .+ αk̂+1

)
v (s)−

(
k − k̂

)
c
)
ds+∫ q̂k̂

q

(
(αk̂ + . . .+ α1) v (s)−

(
k̂ − 1

)
c− P

(
1, q̄−1

))
ds+∫ 1

q̂k̂

((
αk + . . .+ αk̂+1

)
v (s)−

(
k − k̂

)
c
)
ds =∫ 1

q

((
αk + . . .+ αk̂+1

)
v (s)−

(
k − k̂

)
c
)
ds+∫ q̂k̂

q

(
(αk̂ + . . .+ α1) v (s)−

(
k̂ − 1

)
c− P

(
1, q̄−1

))
ds <∫ 1

q

((
αk + . . .+ αk̂+1

)
v (s)−

(
k − k̂

)
c
)
ds+∫ q̂k̂

q

(
(αk̂ + . . .+ α1) v (s)− P

(
k̂, q̂k̂−

))
ds,

which is the (limit) payoff from buying
(
k − k̂

)
units at a price

(
k − k̂

)
c.

Finally, it follows immediately from Lemma 9 and Lemma 11 that the impasse at
(
k̂, q̂k̂

)
is of real time 1 −

(
(αk̂+...+α1)v

(k̂−1)c+P(1,q̄−1 )

)2

and that no other impasses occur prior to it when

k̂ = m.�

8



We now turn to case (b).

Lemma 13 Suppose that for every k = 2, . . . ,m, q̂k 6 max {q̄k+1, 0} . Then in the limit
there is only one impasse at (1, q̄1) .

Proof. First, notice that for any k = 2, . . . ,m, if q̂k = 0, an impasse cannot occur at
(k, q) since W (k, ·) is bounded away from zero. Under the assumptions of the lemma, the
fact an impasse cannot occur at (k, q̂k) with k = 2, . . . ,m − 1 and q̂k ∈ (0, q̄k+1) follows
from Lemma 10. �

11 Appendix E: Upper Bounds

In this appendix, we prove Fact 3 and Fact 4 stated in Appendix C.
For every i = 0,−1, . . . , we have Φ (qi+1, qi, qi−1) = 0 (recall that the function Φ is

defined in equation (32)). Using straightforward algebra and defining the function α̂ = α◦ψ
we obtain

(qi − qi+1)

∫ qi
qi+1

−ψ′(u)(c̄−α̂(u)v)du

qi−qi+1
= (qi − qi+1)

(∫ qi
qi+1

[
−ψ′(u)

(∫ 1
qi

[α̂(u)v(s)−c̄]ds
)]
du

(qi−qi+1)2

)
+

 ∫ ψ(qi)
0 α(u)vdu∫ ψ(qi)

0 α(u)vdu+

( ∫ qi−1
qi [−ψ′(u)(

∫ 1
qi−1

[α̂(u)v(s)−c̄]ds)]du
qi−1−qi

)
(∫ qi−1

qi

[
−ψ′(u)

(∫ 1
qi−1

[α̂(u)v(s)−c̄]ds
)]
du

(qi−1−qi)2

)
(qi−1 − qi) ,

or equivalently

qi−qi+1

qi−1−qi =

 ∫ ψ(qi)
0 α(u)vdu∫ ψ(qi)

0 α(u)vdu+

( ∫ qi−1
qi [−ψ′(u)(

∫ 1
qi−1

[α̂(u)v(s)−c̄]ds)]du
qi−1−qi

)
 ·


∫ qi−1
qi [−ψ′(u)(

∫ 1
qi−1

[α̂(u)v(s)−c̄]ds)]du
(qi−1−qi)

2∫ qi
qi+1

−ψ′(u)(c̄−α̂(u)v)du

qi−qi+1
−
∫ qi
qi+1 [−ψ′(u)(

∫ 1
qi

[α̂(u)v(s)−c̄]ds)]du
(qi−qi+1)2

 .

(39)

Consider the first term in the right-hand side of equation (39). It is bounded above by
one. Hence, we obtain the following upper bound for qi−qi+1

qi−1−qi :
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qi − qi+1

qi−1 − qi
6

∫ qi−1
qi

[
−ψ′(u)

(∫ 1
qi−1

[α̂(u)v(s)−c̄]ds
)]
du

(qi−1−qi)2∫ qi
qi+1

−ψ′(u)(c̄−α̂(u)v)du

qi−qi+1
−
∫ qi
qi+1

[
−ψ′(u)

(∫ 1
qi

[α̂(u)v(s)−c̄]ds
)]
du

(qi−qi+1)2

. (40)

Using the fact that
∫ 1

qi
[α̂ (qi) v(s)− c̄] ds = 0 and the mean value theorem, we obtain∫ qi

qi+1

[
−ψ′(u)

(∫ 1

qi
[α̂ (u) v(s)− c̄] ds

)]
du =∫ 1

qi
v (s) ds

∫ qi
qi+1

(
ψ′(u)

∫ qi
u
α̂′ (s) ds

)
du =

(
ψ′(q′i)α̂

′(q′′i )
∫ 1
qi
v(s)ds

2

)
(qi − qi+1)2

(41)

for some (q′i, q
′′
i ) ∈ [qi+1, qi]

2 .

In a similar way we obtain∫ qi−1

qi

[
−ψ′(u)

(∫ 1

qi−1

[α̂ (u) v(s)− c̄] ds
)]

du =

(
ψ′(q′i−1)α̂′

(
q′′i−1

) ∫ 1

qi−1
v (s) ds

2

)
(qi−1 − qi)2

(42)

for some
(
q′i−1, q

′′
i−1

)
∈ [qi, qi−1]2 .

Also, it follows from the mean value theorem that∫ qi
qi+1
−ψ′ (u) (c̄− α̂ (u) v) du

qi − qi+1

= −ψ′(q′′′i ) (c̄− α̂ (q′′′i ) v) , (43)

for some q′′′i ∈ [qi+1, qi] .

Hence, from equations (40)-(43) we conclude that the function Υ(qi−1, qi, qi+1) defined
by

Υ(qi−1, qi, qi+1) :=

(
ψ′(q′i−1)α̂′(q′′i−1)

∫ 1
qi−1

v(s)ds

2

)
−ψ′(q′′′i ) (c̄− α̂ (q′′′i ) v)−

(
ψ′(q′i)α̂

′(q′′i )
∫ 1
qi
v(s)ds

2

) ,
is an upper bound to qi−qi+1

qi−1−qi .
45

We let h = qi−1− qi and express qi as qi−1− h. It easily follows from equation (32) that
qi+1 is a (locally) well defined function of qi−1 and h and we write qi+1 (qi−1, h) for it.46

Next, we define Υ̂ (qi−1, h) := Υ (qi−1, qi−1 − h, qi+1 (qi−1, h)) . We now compute the limit

45To simplify the notation, in the definition of the function Υ we suppress the dependence of q′i, q
′′
i and

q′′′i on qi+1 and qi. Similarly, we suppress the dependence of q′i−1 and q
′′
i−1 on qi and qi−1.

46Notice that limh→0 qi+1 (qi−1, h) = qi−1.
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of Υ̂ (qi−1, h) as h shrinks to zero. To do this, we first need to evaluate α̂′ (q) . Recall that,

by definition,
∫ 1

q
(α̂ (q) v(s)− c̄) ds = 0. This immediately implies α̂′ (q) =

(
α̂(q)v−c̄∫ 1
q v(s)ds

)
for

every q 6 q̂. Hence, for every qi−1 we have

lim
h→0

Υ̂ (qi−1, h) =

(
α̂(qi−1)v−c̄∫ 1
qi−1

v(s)ds

)∫ 1
qi−1

v(s)ds

2

(α̂ (qi−1) v − c̄)−


(
α̂(qi−1)v−c̄∫ 1
qi−1

v(s)ds

)∫ 1
qi−1

v(s)ds

2


= 1. (44)

Next, we state some simple mathematical facts (the proofs are standard and, therefore,
omitted).

Claim 6 Let f and f̃ be two continuous functions from [0, 1]× [a, b] into R. Assume that
f and f̃ are four times continuously differentiable in the first argument. Assume that these
derivatives are continuous in the second argument. There exists M > 0 such that for every
y ∈ [a, b] and x ∈ (0, 1)

i)
∣∣∣ ddx (∫ x0 f(s,y)ds

x

)∣∣∣ < M ;

ii)
∣∣∣ ddx (∫ x0 f(s,y)

∫ s
0 f̃(u,y)duds

x2

)∣∣∣ < M.

Claim 6 is used to prove the next result.

Claim 7 Υ̂(qi−1, h) is differentiable in h. Furthermore, there exist M > 0 and h1 > 0 such

that h < h1 implies
∣∣∣∂Υ̂(qi−1,h)

∂h

∣∣∣ < M for all qi−1 ∈ (0, q (0)).

We use the implicit function theorem to evaluate ∂Υ̂(qi−1,h)
∂h

. It is straightforward to
bound this derivative for every qi−1 bounded away from q (0) . We use Claim 6 to bound
the derivative for qi−1 close to q (0) . Straightforward but tedious algebra yields the Lipschitz
constant.
Claim 7 and equation (44) imply the following result.

Claim 8 For every ε > 0 there exists h1 > 0 such that h < h1 implies Υ(qi−1, h) < 1 + ε

for every qi−1 ∈ (0, q (0)) .

The next result is an immediate corollary of Claim 8 and allows us to prove Fact 3 (in
Appendix C).
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Corollary 3 For every ε > 0 there exists η > 0 such that for every i = 0,−1, . . . , if
qi−1 − qi < η, then qi − qi+1 < (1 + ε) (qi−1 − qi) .

We now turn to the proof of Fact 4. It follows from equation (34) that for every
i = 1, 0,−1, . . . , we have

P̄i−
∫ ψ(qi)
0 α(u)vdu−

(
P̄i−1−

∫ ψ(qi−1)
0 α(u)vdu

)
qi−1−qi =

∫ qi−1
qi

[
−ψ′(u)

(∫ 1
qi−1

[α̂(u)v(s)−c̄]ds
)]
du

(qi−1−qi)2 −

∫ qi−2
qi−1

[
−ψ′(u)

(∫ 1
qi−2

[α̂(u)v(s)−c̄]ds
)]
du

(qi−2−qi−1)2

(
qi−2−qi−1

qi−1−qi

)
.

(45)

Similarly to what we did above, we let h = qi−2 − qi−1 and express qi−1 as qi−2 − h and
compute qi as function of qi−2 and h (and write qi (qi−2, h) for it). It follows from equation
(41) that as h goes to zero the right-hand side of (45) converges to(

ψ′(qi−2)α̂′ (qi−2)
∫ 1

qi
v (s) ds

2

)(
1− h

qi−2 − h− qi (qi−2, h)

)
.

It follows from Corollary 3 that for every ε > 0 there exists h1 > 0 such that h < h1

implies h
qi−2−h−qi(qi−2,h)

> 1
1+ε

for every qi−2 ∈ (0, q (0)) . This allows us to establish our next
result.

Claim 9 As h goes to zero the functionmax

{(
ψ′(qi−2)α̂′(qi−2)

∫ 1
qi
v(s)ds

2

)(
1− h

qi−2−h−qi(qi−2,h)

)
, 0

}
converges uniformly (in qi−2) to zero.

Finally, using straightforward algebra one can show that there exists an upper bound
for the function above, which implies the first lemma of this section.

Lemma 14 There exists b1 > 0 such that for every i = 1, 0,−1, . . . ,(
P̄i −

∫ ψ(qi)

0
α (u) vdu

)
−
(
P̄i−1 −

∫ ψ(qi−1)

0
α (u) vdu

)
qi−1 − qi

6 b1(qi−1 − qi).

Next, using equations (34) and (42) we obtain(
P̄i −

∫ ψ(qi)

0

α (u) vdu

)
=

(
ψ′(q′i−1)α̂′

(
q′′i−1

) ∫ 1

qi−1
v (s) ds

2

)
(qi−1 − qi) , (46)
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for some
(
q′i−1, q

′′
i−1

)
∈ [qi, qi−1]2 . Letting b2 be a uniform bound for the reciprocal of the

term in parenthesis in the right-hand side of (46), we obtain our second important lemma.

Lemma 15 There exists b2 > 0 such that for every i = 1, 0,−1, . . . ,

qi−1 − qi 6 b2

(
P̄i −

∫ ψ(qi)

0

α (u) vdu

)
.

12 Appendix F: Increasing Gains

Proof of Proposition 6.
For every k = 1, . . . ,m, consider the DL’s model in which the parties trade k indivisible

units and let W (k, ·) and P (k, ·) denote the buyer’s continuation payoff and the seller’s
reservation price, respectively. Also, for every q ∈ [0, 1) , let tk (q) > q be such that

W (k, q) =

∫ tk(q)

q

[(αk + . . .+ α1) v (s)− P (k, tk (q))] ds+ δW (k, tk (q)) .

The proof of Proposition 6 is complete if we show that it is suboptimal for the buyer to
make universal offers when the number of remaining units is k = 1, . . . ,m. By definition,
our claim holds when there is only one unit left for trade. We now assume that the claim
holds when the number of remaining units is at most k − 1, k = 2, . . . ,m, and show that
it also holds when there are k units left for trade.
By contradiction, suppose that there exist k′ < k and q such that

W (k, q) 6
∫ 1

q
[(αk + . . .+ αk′+1) v (s)− (k − k′) c] ds+ δW (k′, q) <∫ 1

q
[(αk + . . .+ αk′+1) v (s)− (k − k′) c] ds+W (k′, q) ,

(47)

where the second inequality follows from the fact thatW (k′, q) is strictly positive for every
q (see DL). This, together with the fact that tk (q) 6 1, imply∫ 1

q
[(αk + . . .+ α1) v (s)− kc] ds 6 W (k, q) <∫ 1

q
[(αk + . . .+ αk′+1) v (s)− (k − k′) c] ds+W (k′, q) ,

and, thus,

W (k′, q) >

∫ 1

q

[(αk′ + . . .+ α1) v (s)− k′c] ds. (48)
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Recall that W (k′, q) is the buyer’s continuation payoffwhen he makes cream-skimming
offers (which are, by assumption, optimal when there are k′ units left for trade). Thus,
there exists T ∈ Z+ such that

W (k′, q) =
T∑
τ=1

δt−1

∫ tτ
k′ (q)

tτ−1
k′ (q)

[(αk′ + . . .+ α1) v (s)− P (k′, tτk′ (q))] ds,

where we define t0k′ (q) = q, and for τ = 1, . . . , T, tτk′ (q) = tk′
(
tτ−1
k′ (q)

)
(of course, tTk′ (q) =

1).
A lower bound to the continuation payoffW (k, q) can be computed by assuming that

the buyer purchases after τ − 1 periods, τ = 1, . . . , T, the k units from the types between
tτ−1
k′ (q) and tτk′ (q) at the price P (k, tτk′ (q)) . Thus, we have

W (k, q) >
T∑
τ=1

δt−1

∫ tτ
k′ (q)

tτ−1
k′ (q)

[(αk + . . .+ α1) v (s)− P (k, tτk′ (q))] ds. (49)

Using equations (5)-(12) in DL (pages 1318-1319), it is easy to check that

P (k, q′)

k
6 P (k′, q′)

k′
(50)

for every q′ ∈ [0, 1] .

Combining equations (47), (49), and (50), we obtain

T∑
τ=1

δt−1
∫ tτ

k′ (q)

tτ−1
k′ (q)

[
(αk + . . .+ α1) v (s)− k

k′P (k′, tτk′ (q))
]
ds 6

T∑
τ=1

δt−1
∫ tτ

k′ (q)

tτ−1
k′ (q)

[(αk + . . .+ α1) v (s)− P (k, tτk′ (q))] ds 6 W (k, q) <∫ 1

q
[(αk + . . .+ αk′+1) v (s)− (k − k′) c] ds+W (k′, q) =∫ 1

q
[(αk + . . .+ αk′+1) v (s)− (k − k′) c] ds+

T∑
τ=1

δt−1
∫ tτ

k′ (q)

tτ−1
k′ (q)

[(αk′ + . . .+ α1) v (s)− P (k′, tτk′ (q))] ds,

which implies (we compare the first and the last term after multiplying both of them by
k′

k−k′ )
T∑
τ=1

δt−1
∫ tτ

k′ (q)

tτ−1
k′ (q)

[
k′

k−k′ (αk + . . .+ αk′+1) v (s)− P (k′, tτk′ (q))
]
ds <∫ 1

q

[
k′

k−k′ (αk + . . .+ αk′+1) v (s)− k′c
]
ds.

14



Recall that the gains from trade are increasing (αm < . . . < α1). Thus, we have

k′

k − k′ (αk + . . .+ αk′+1) < αk′ + . . .+ α1.

It follows immediately from the last two inequalities that

W (k′, q) =
T∑
τ=1

δt−1
∫ tτ

k′ (q)

tτ−1
k′ (q)

[(αk′ + . . .+ α1) v (s)− P (k′, tτk′ (q))] ds <∫ 1

q
[(αk + . . .+ αk′+1) v (s)− k′c] ds,

which contradicts inequality (48) and concludes our proof.

13 Appendix G: Menus of Offers

As anticipated in Section 9, in this appendix we construct a stationary equilibrium of the
game in which the buyer can propose menus with at most two offers. In particular, we focus
on the equilibrium on-path behavior. The equilibrium off-path behavior and the buyer’s
beliefs are derived similarly to those in Appendix A (we omit the details).
In equilibrium, the buyer proposes two types of menus. Let k = 1, . . . ,m denote the

number of units on the table. AmenuM of the first type takes the formM = {(k, p) , (k′, k′c)}
for some k′ = 1, . . . , k and p < kc. Thus, the first offer (k, p) is for all the remaining units
and can be accepted only by the low types. The second offer (k′, k′c) is for a fraction of
the remaining units and the price is such that the high types break even.
The second type of menus contains only one offer of the form (k, p) with p 6 kc (i.e.,

the buyer proposes to purchase all the remaining units). Although a menuM of the second
type contains only one offer, we find it convenient to denote it asM = {(k, p) , (0, 0)} . In
this case, we also say that the seller accepts the offer (0, 0) if he rejects the offer (k, p) .

For every k = 1, . . . ,m and every k′ = 0, . . . , k − 1, we define the function Pm (k, k′, ·) :

[0, 1] → R+. The function Pm (k, k′, ·) is weakly increasing, left-continuous, and satisfies
Pm (k, k′, q) = kc for every q > q̂. Suppose that the buyer offers the menuM = {(k, p) , (k′, k′c)} .
In equilibrium, type q accepts the first offer if p > Pm (k, k′, q) , and the second offer if
p < Pm (k, k′, q) .

As in the equilibrium of the benchmark model, the set of types who have not sold all
their units is of the form [q, 1] for some q ∈ [0, 1) . Thus, we continue to use (k, q) to denote
an arbitrary state of the economy (where k denotes the number of units on the table). We
also let Wm (k, q) denote the buyer’s expected payoff when the state is (k, q) . Clearly, for
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every (k, q) , Wm (k, q) satisfies

Wm (k, q) = maxq′>q,k′=0,...,k−1

∫ q′
q

[(αk + . . .+ α1) v (s)− P (k, k′, q′)] ds+∫ 1

q′ [(αk + . . .+ αk−k′+1) v (s)− k′c] ds+ δW (k − k′, q′) ,
(51)

where we set αk + . . .+ αk−k′+1 = 0 if k′ = 0.

The existence of the functions Pm (k, k′, ·) andWm (k, ·) satisfying equation (51) and the
other equilibrium conditions is established along the lines of Appendix A.
Also, we can repeat the analysis in Section 6 and Appendix D to develop an algorithm

that pins down the limiting equilibrium outcome as the bargaining frictions vanish (and the
discount factor converges to one). It follows from equation (51) that the algorithm for the
model with menus shares several similarities with the algorithm of the benchmark model
and delivers the same limiting equilibrium outcome (again, we omit the details).
Finally, we proceed as in Appendix B to show that generically all stationary equilibria

(satisfying our refinement that all the high types always agree on their decisions) of the
model with arbitrary menus are outcome equivalent to the equilibrium above (with two
offers). In particular, we first establish outcome equivalence for equilibria in which the
seller’s reservation price functions are increasing. Clearly, there is a unique equilibrium
outcome when the state is (k, q) and q is suffi ciently close to q̂. Then we assume that there
is a unique outcome when the state is (k, q) and then establish the same result for some
state (k, q′) with q′ < q until we reach the state (k, 0) . We then relax the monotonicity
assumption. An argument similar to the final part of the proof of Proposition 2 (Appendix
B) shows that it is possible to relabel the types in such a way that for any stationary
equilibrium there exists an outcome equivalent equilibrium with increasing reservation price
functions.
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