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Abstract

We study competition in price-quality menus when consumers privately know their valuation
for quality (type), and are heterogeneously informed about the & ers available in the market.
While brms are ex-ante identical, the menus bered in equilibrium are ordered so that more
generous menus leave more surplus uniformly over types. More generous menus provide quality
more &' ciently and generate a greater fraction of probts from sales of low-quality goods. By
varying the level of informational frictions, we span the entire spectrum of competitive intensity,
from perfect competition to monopoly. More competition may raise prices for low-quality goods;
yet, consumers are better b, as their qualities also increase.
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1 Introduction

Price discrimination through menus of products at di! erent prices is a widespread practice across
many industries. Examples include Right seats with di erent classes of service, electronic printers
with various processing speeds, and automobiles in standard or deluxe versions.

The benchmark setting where the seller is a monopolist was Prst studied by Mussa and Rosen
(1978). This paper considers consumers who der in their appreciation of quality and shows that
the monopolistOs probt-maximizing policy involves downward distortion of quality for all consumers,
except for those who value it the most. Thus purchasers of printers with the highest value for speed
enjoy the €' cient speed; all othersO printers are ifieciently slow. The optimal distortions resolve a
trade-o! between extracting rents from consumers with high willingness to pay, and providing more
€' cient qualities to the others.

Much of the price discrimination we observe in practice occurs, however, not in the textbook
monopoly setting, but in the presence of competition. A range of models have therefore been de-
veloped to study price discrimination in settings where market power is limited by competition;
see, among others, Champsaur and Rochet (1989), Rochet and Stole (1997, 2002) and Armstrong
and Vickers (2001) (the next subsection gives a detailed account of this literature}. An assump-
tion maintained throughout this body of work, as well as in much of the large empirical literature
on competition with di! erentiated products following Berry, Levinsohn and Pakes (1995), is that
consumers enjoyperfect (and therefore homogeneous) information about the bers available in the
market.

The aim of our paper, by contrast, is to study competitive price discrimination in settings where
consumers areheterogeneouslyinformed about the o! ers available in the market. That is, due to
information frictions, consumers dil er on which (and how many) brms they know. Aware of the
information heterogeneity among consumers, competing bPrmsl @r price/quality menus to maximize
probts.

Information heterogeneity on the consumer side has long been recognized as an important driver
of market power by bPrms, and has been widely documented empirically (see, for example, De los
Santos, Hortaésu and Wildenbeest (2012) and the references therein). Its importance for empirical
work studying consumer demand and industry conduct is increasingly recognized (see, for instance,
Sovinsky Goeree (2008) and Draganska and Klapper (2011)). Theoretical work on competitive price
discrimination with heterogeneous information sets, however, has to date been missing.

Model and Results

To isolate the € ects of information heterogeneity on competition, we assume that consumer
tastes only dil er with respect to their valuation for quality. That is, consumers have no ObrandO

!See also Stole (2007) for a comprehensive survey.



preferences, and so evaluate!@rs from dil erent brms symmetrically (any consumer is indi erent
between two contracts with di! erent Prms that have the same price and quality). This assumption
contrasts with works such as Rochet and Stole (1997, 2002) and Armstrong and Vickers (2001) who
capture imperfect competition by allowing consumer heterogeneity not only over OverticalO prefer-
ences (for quality) but also over OhorizontalO preferences (for brands). Our approach is not only
di! erent from these earlier works, but it leads to a tractable theory of competitive price discrimina-
tion, with new and distinctive empirical implications (more on this below).

While we conbne attention to canonical Mussa-Rosen type preferences for quality, we permit
consumer heterogeneity over information sets to take a general form. In particular, we do not restrict
ourselves to a particular Omatching® process determining which Prms belong to the information set
of each consumer. To achieve this level of generality, we introduceales functions, which capture
in reduced form the information heterogeneity among consumers about Prms®ers. For each type
of consumer, the sales function determines the mass of sales of a brm as a function of the ranking
(or quantile) occupied by the indirect utility induced by its contract relative to the cross-section
distribution of indirect utilities in the market (as induced by the contracts of all other brms). The
sales functions introduced in this paper play a role similar to that of matching functions in the
macroeconomics literature?

Importantly, we consider a broad class of sales functions, requiring only that sales are bounded
away from zero atany quantile (capturing the idea that each brm is the only brm that some con-
sumers are aware of), and that sales strictly increase in the ranking of the indirect utility induced
by the brmOs contract. These two mild assumptions, together with the ranking property alluded to
above, are satisbped by natural random matching models, such as the sample-size search model of
Burdett and Judd (1983), the urn-ball matching model of Butters (1977), and the on-the-job search
model of Burdett and Mortensen (1998). It is worth reiterating that, because sales in our model
depend onordinal properties of indirect utilities, our approach is distinct (and in a sense orthogonal)
to the horizontal di! erentiation approach followed by most of the literature (as mentioned above)
where sales depend owrardinal properties of indirect utilities.

An equilibrium in our economy consists of a distribution of menus such that every menu in
its support is a probt-maximizing response to that distribution. As consumer preferences are un-
observed, the menus bered by Prms have to satisfy the self-selection constraints inherent to price
discrimination. Such constraints create a link between the contracts designed for each consumer
type.

The equilibrium distribution over menus that bPrms o! er is non-degenerate (and in fact atomless).
In equilibrium, Prms are indi! erent among a continuum of menus. The cross-section distribution
over menus (or, if we follow a mixed strategy interpretation, the PrmsO randomization procedure) is

2See Petrongolo and Pissarides (2001) for a survey of matching functions, and their associated micro-foundations.
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determined so as to guarantee that all equilibrium menus generate the same expected probts.

Any probt-maximizing menu balances sales volume, rent extraction, and "eciency considera-
tions. As in the case of monopoly, a menu trades!o €' ciency and rent extraction across consumer
types (as implied by the self-selection constraints). Competition introduces another trade-b: For
each consumer type, rent extraction must be traded b against sales volume.

A prmOs trade-bs can best be understood by considering how probts depend on the indirect
utilities left to consumers. Importantly, we bnd that a PrmOs probt function satisPemcreasing dif-
ferencesin the indirect utility left to low and high-type consumers. Intuitively, leaving more indirect
utility to high types relaxes incentive constraints, and enables brms to decrease the distortions in
quality provision present in the low-type contracts. This, in turn, increases the PrmsO marginal probt
associated with increasing the indirect utility left to low types, as marginal sales generate greater
surplus.

Building on this monotonicity property, our main result characterizes an equilibrium of this
economy, which, under mild qualibcations, is the unique one. This equilibrium, which we call the
ordered equilibrium, displays three important properties. First, all menus o ered by brms are ordered
in the sense that, for any two menus, one of them leaves more indirect utilityuniformly across types.
Second, more generous menus (i.e., menus that leave more indirect utility to all types) provide more
€" cient (or less distorted) quality levels. Third, more generous menus generate a greater fraction of
probts from sales of low-quality goods.

Our model is also amenable to natural comparative statics exercises. We can use two related
measures to capture the degree of competition in a market. The brst, and more conventional one,
is the total mass of competing bPrms. The second measure is the degree of informational frictions
faced by consumers, which captures how large their information sets are likely to be. As one should
expect, we show that as the degree of competition increases, the equilibrium distribution of menus
assigns higher mass to menus that generate more indirect utility to consumers and er more € cient
quality provision.

In the limit as competition becomes perfect, the equilibrium distribution converges to the
Bertrand outcome, in which quality provision is €" cient for all types of consumers, and marginal-
cost pricing prevails. In the opposite limiting case, as competitive pressures vanish, the equilibrium
distribution approaches the monopolistic outcome of Mussa and Rosen (1978). Our model, therefore,
spans the entire spectrum of competitive intensity, from perfect competition to monopoly.

Empirical Implications

A key feature of our model is that price and quality provision are substitute instruments for
competing for consumers. Accordingly, we can employ our equilibrium characterization to investigate
how the degree of competition & ects the brmsO choice of competitive instrument (price or quality),
delivering novel empirical implications. To describe these implications, consider a market where
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multi-product retailers o! er two goods of dl erent qualities, a low-quality (or baseline) good and a
high-quality good (superior version).

Interestingly, when competition is not too intense, bPrms that charge higher baseline prices!er
higher baseline quality. Therefore, quality is the main competitive instrument employed by brms
to attract low-valuation consumers. Relatedly, brms that charge smaller baseline prices (thus of-
fering lower quality) charge higher prices for the superior version of the product. Accordingly, the
correlation between the prices of the baseline and superior versions megative

Perhaps unexpectedly, more competition may have price-increasind ects. This is a consequence
of the previous observation, together with the fact that more competition increases the baseline
qualities ol ered by bPrms. While competition implies that consumers are better b, prices and
qualities jointly increase.

By contrast, when competition is su' ciently intense, the baseline price bered by a brm is a U-
shaped function of the price of the superior version of the product. As such, some Prms in equilibrium
o! er baseline goods at similar prices, but with large quality di erences.

Extensions

The model described above takes as exogenous the process that determines the information sets
of consumers. We develop two extensions that endogenize the amount of information possessed
by consumers. The brst allows consumers to engage in information acquisition. In this setting,
consumers can undertake costly investment to increase the size of their sample dfers in the sense of
prst-order stochastic dominance. The proportions of sales to high and low types is then endogenous:
high types have more to gain by investing, collect larger sample sizes, and are thus over-represented
in terms of sales relative to their proportion in the population. The second extension allows for an
endogenous choice of advertising by Prms. In this setting, we are able to revisit a question raised
by Butters (1977) regarding the €' ciency of advertising. We show that the equilibrium level of
advertising is ine" ciently low relative to that which would be chosen by a planner able to control
the intensity of advertising, but not the o! ers chosen by brms (i.e., that a planner would choose to
subsidize advertising).

The rest of the paper is organized as follows. Below, we close the introduction by brieRy reviewing
the most pertinent literature. Section 2 describes the model. Section 3 describes our main results
and empirical implications. Section 4 develops the extensions, and Section 5 concludes. All proofs
are in the Appendix at the end of the document.

1.1 Related Literature

This paper brings the theory of nonlinear pricing under asymmetric information (Mussa and Rosen
(1978), Maskin and Riley (1984) and Goldman, Leland and Sibley (1984)) to a competitive set-
ting where consumers are heterogeneously informed about the ers made by brms. Other related
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literature includes:

Competition in Nonlinear Pricing. This article primarily contributes to the literature
that studies imperfect competition in nonlinear pricing schedules when consumers make exclusive
purchasing decisions (exclusive agency). In one strand of this literature, Prms® market power stems
from comparative advantages for serving consumer segments. In Stole (1995) such comparative
advantages are exogenous, whereas in Champsaur and Rochet (1989) they are endogenous, as brms
can commit to a range of qualities before choosing prices.

Another strand of this literature generates market power by assuming that consumers have pref-
erences over brands - see Spulber (1989) for a one-dimensional model where consumers are distributed
in a Salop circle, and Rochet and Stole (1997, 2002), Armstrong and Vickers (2001), and Yang and
Ye (2008) for multi-dimensional models where brand preferences enter utility additively. These
papers study symmetric equilibria, and show that (i) the equilibrium outcome under duopoly lies
between the monopoly and the perfectly competitive outcome, and that (ii) when brand preferences
are narrowly dispersed, quality provision is & cient and cost-plus-bxed-fee pricing prevails.

Our model 0! ers an alternative to the aforementioned papers, as market power in our model
originates from the heterogeneity of consumer information regarding the brmsQ ers. Ours results
di! er in many respects. First, there is menu dispersion in equilibrium. Second, although ex-ante
identical, brms are endogenously segmented with respect to the generosity of their menus, quality
provision, and probt share across consumer types. Our model is tractable and amenable to com-
parative statics, leading to empirical implications incompatible with models where consumers avail
themselves of all & ers in the market.

There is, of course, other work recognizing that consumers may not be perfectly informed about
ol ers in competitive settings? The works of Verboven (1999) and Ellison (2005) depart from the
benchmark of perfect consumer information by assuming that consumers observe the baseline prices
ol ered byall bPrms, but have to pay a search cost to observe the price of upgrades (or add-on prices).
The focus of these papers is on the strategic consequences of the holdup problem faced by consumers
once their store choices are made. By taking quality provision as exogenous, these papers ignore the
mechanism design issues that are at the core of the present article. Katz (1984) studies a model
of price discrimination where a measure of low-value consumers are uninformed about prices while
other consumers are perfectly informed. Heterogeneity of information thus takes a very particular
form in this model, and price dispersion does not arise (when quantity discounting is permitted, a
unique price schedule is bered in equilibrium).

Assuming perfect consumer information, Stole (1991) and Ivaldi and Martimort (1994) study

3See Borenstein (1985), Wilson (1993) and Borenstein et al (1994) for numerical results in closely related settings.
“There is also work where consumers have imperfect information about offers in the absence of competition. Most

closely related to our paper, Villas-Boas (2004) studies monopoly price discrimination where consumers randomly

observe either some or all elements of the menu.



duopolistic competition in nonlinear price schedules when consumers can purchase from more than
one brm (common agencyy. In a related setting, Calzolari and Denicolo (2013) study the welfare

el ects of contracts for exclusivity and market-share discounts (i.e., discounts that depend on the
sellerOs share of a consumerQOs total purchases). The analysis of these papers is relevant for markets
where goods are divisible and/or exhibit some degree of complementarity, whereas our analysis is
relevant for markets where exclusive purchases are prevalent (e.g., most markets for durable goods).

Price Dispersion. We borrow important insights from the seminal papers of Butters (1977),
Salop and Stigitz (1977), Varian (1980) and Burdett and Judd (1983), that study oligopolistic com-
petition in settings where consumers are dierently informed about the prices d ered by brms. In
these papers, there is complete information about consumer preferences, and brms compete only on
pricesS Relative to this literature, we introduce asymmetric information about consumersO tastes,
and allow brms to compete on priceand quality.

Competing Auctioneers. McAfee (1993), Peters (1997), Peters and Severinov (1997) and
Pai (2012) study competition among principals who propose auction-like mechanisms. These papers
assume that buyers perfectly observe the sellersO mechanisms, and that the meeting technology
between buyers and sellers is perfectly non-rival. This last assumption is relaxed by Eeckhout and
Kircher (2010), who show that posted prices prevail in equilibrium if the meeting technology is
su' ciently rival. A key ingredient of these papers is that sellers face capacity constraints (each seller
has one indivisible good to sell), and d er homogenous goods whose quality is exogenous. Our paper
di! ers from this literature in three important respects. First, sellers in our model control both the
price and the quality of the good to be sold. Second, we assume away capacity constraints. Third,
buyers are heterogeneously informed about the!eers made by sellers.

Search and Matching. Inderst (2001) embeds the setup of Mussa and Rosen (1978) in a
dynamic matching environment, where sellers and buyers meet pairwise and, in each match, each side
may be chosen to make a take-it-or-leave lcer. His main result shows that in€' ciencies vanish when
frictions (captured by discounting) are su" ciently small, thus providing a foundation for perfectly
competitive outcomes’ Frictions in our model have a dil erent nature (they are informational).
Yet, we obtain a convergence result similar to that of Inderst, as & ciency prevails in the limit as
consumers become perfectly informed.

Faig and Jerez (2005) study the &ect of buyersO private information in a general equilibrium
model with directed search. They show that if sellers can use two-tier pricing, private information
has no bite, and the equilibrium allocation is € cient. In turn, Guerrieri, Shimer and Wright (2010)

5See Stole (2007) for a comprehensive survey of the common agency literature.
®See, however, Grossman and Shapiro (1984) where customers not only have heterogeneous information about offers,

but also about brand preferences. Firms compete in prices and advertising intensities, but do not price discriminate.
"In contrast, Inderst (2004) shows that if frictions affect agents’ utilities through type-independent costs of search

(or waiting), equilibrium contracts are always first-best.



show that private information leads to ine" ciencies in a directed-search environment with common
values. Our model is closer to Faig and Jerez (2005), as we study private values. In contrast to Faig
and Jerez (2005), our model leads to menu dispersion and distortions.

Our paper is also related to Moen and Rosen (2011), who introduce private information on match
quality and e! ort choice in a labor market with search frictions. We focus on private information
about willingness to pay (which is the same for all brms), while workers have private information
about the match-specibc shock in their model.

2 Model and Preliminaries

The economy is populated by a unit-mass continuum of consumers with single-unit demands for a
vertically di! erentiated good. If a consumer with valuation per quality 8 purchases a unit of the
good with quality q at a price x, his utility is

u(g,x,0) " fag# x.

Consumers are heterogeneous in their valuations per quality: the valuation of each consumer is an
iid draw from a discrete distribution with support {6;,6;}, where# 6" 6, # 6, > 0, and associated
probabilities p; and p,.8 Consumers privately observe their valuations per quality. The utility from
not buying the good is normalized to zero.

A continuum of brms with massv > 0 compete by postingmenus of contracts with di! erent
combinations of quality and price. Firms have no capacity constraints and share a technology that
exhibits constant returns to scale. The per-unit probt of a Prm who sells a good with qualityg at a
price x is

x# o(0),

where ¢(q) is the per-unit cost to the brm of providing quality g. We assume thaty(3 is twice con-
tinuously di! erentiable, strictly increasing and strictly convex, with ¢(0) = ¢'(0) = 0. Furthermore,
we require that lim ¢'(d) = $ , which guarantees that surplus-maximizing qualities are interior.
We assume that PrmsO! @rs stipulate simply that consumers choose a combination of quality
and price from a menu of options. Given the absence of capacity constraints, a consumer is assured
to receive his choice. We thus rule out stochastic mechanisms as well as mechanisms which condition
on the choices of other buyers or on the loers of other Prms? Given our restriction to menus of
price-quality pairs, it is without loss of generality to suppose PrmsO menus include only two pairs:

8See Appendix B for the case of a continuum of types.
®There is no loss of generality in considering deterministic mechanisms, provided that one assumes that each con-

sumer can contract with at most one firm. The difficulties associated with stochastic mechanisms in environments
where consumers can try firms sequentially (e.g., a consumer might look for a second firm if the lottery offered by the

first firm resulted in a bad outcome) are discussed in Rochet and Stole (2002).
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M " (g, %), (O, Xp)) % (Rt & R)?, where (g5, X;,) is the contract designed for the typek ' {I, h}.1°
Furthermore, every menu has to satisfy the following incentive compatibility constraints: For each

type k' {l,h},

ICk: U(Og, Xg, ) = max Ok éql;# X
E$ {L,h}

This constraint requires that type-k consumers are better b at choosing the menu €, X;) rather than
the menu designed for typd € k. Menus must also be individually rational (IR), i.e. u(Qe, Xx,0x) ) O
for eachk. Accordingly, no brms d er contracts that generate negative paybs to consumers. A menu
M that satisbes the IC and IR constraints is said to beimplementable The set of implementable
menus is denoted byl.

As will be clear shortly, it is convenient to denote by F be the (possibly degenerate) cross-section
distribution over menus prevailing in the economy. This distribution has support S contained in the
set of implementable menusl. The distribution over menus F induces, for each typek, a marginal
distribution over indirect utilities

Fr(etg) " Probz[M :u(oy, Xk, 0k) * ]

We denote by $, + R the support of indirect utilities o ! ered to type-k consumers, and byf ;. the
density of Fy, whenever it exists.

The key feature of our model is that there is heterogeneity in the information possessed by
consumers about the menus bered by bPrms. We take a reduced-form approach to modeling this
heterogeneity. In particular, we introduce the sales function

%(ug|Fr, v, pr) ,

which determines the mass of sales to typ&-consumers obtained by a brm that (i) d ers a contract
with indirect utility u; when (ii) the cross-section cdf of indirect utilities to k-types is Fy, (iii)
there is a v-mass of brms in the market, and (iv) there is ap,-mass of typek consumers. For
expositional reasons, we defer to the next subsection a detailed discussion about sales functions. We
will then clarify how di ! erent matching technologies between brms and consumers lead to! drent
sales functions, and detail the economic and technical assumptions that debne the class of sales
functions considered in this paper.

A brm that faces a cross-section distribution of menug* (with marginal cdf over type-k indirect
utilities Fx) chooses a menu (@, X;); (0, Xx)) ' T to maximize probts

Z %(U(Ch, Xk, k) IFk, v, Pr) &(Xk # ©(0)) - 1)
k=l,h

10 Suppose a seller offers a menu with more than two price-quality pairs and that at least one type chooses two or
more options with positive probability. It is easily verified that there exists a menu, with a single option intended for
each customer type, which yields the same payoff to each type but strictly increases the seller’s profit. See Lemma 1

below.



The next debnition formalizes our notion of equilibrium in terms of the cross-section cdf over
menus prevailing in the economy.

Definition 1 [Equilibrium]  An equilibrium is a distribution over menus F* (with marginal cdf over
typek indirect utilities Fj) such thatM ' suppF %1 implies that M maximizes (1).

Accordingly, an equilibrium is described by a distribution over menus such that every menu in
the support of this distribution maximizes brmsO probts.

Remark 1 The equilibrium debnition above renders itself to multiple interpretations. In one in-
terpretation, Prms follow symmetric mixed strategies by randomizing over menus according to the
distribution F. Another interpretation is that each brm follows a pure strategy that consists in
posting the menu associated with a given quantile of the distributiof. Alternatively, Prms might
randomize over djferent subsets of the suppor§ according to the conditional distributions induced
by F.

The next subsection is devoted to the sales functions described above.

2.1 Sales Functions

A number of consumer search/matching models have been proposed to resolve both the Diamond
and the Bertrand paradoxes (according to which the equilibrium outcome in oligopolistic markets
coincides with the monopolist and the perfectly competitive solutions, respectively).! One key
common feature of these approaches is that consumers are!drently informed about the o! ers
made by bPrms. In order to derive robust predictions, we proceed by identifying properties of sales
functions that hold across a number of natural matching technologies. To clarify ideas, consider the
following examples, where, to simplify the exposition, we assume that the cross-section distribution
of indirect utilities is continuous.

Example 1 [Generalized Burdett and Judd (1983)] Let each consumer observe the menus of
a sample of brms independently and uniformly drawn from the set of all brms. For each consumer,
the size of the observed sample js' {0,1,2,...} with probability w;(v), where w;(v),w2(v) > 0 for
all v.> 0. The distribution over sample sizes&(v) " {w;(v):j =0,1,2,...} is indexedv, so as to
allow the mass of bPrms in the market to ffect the amount of information observed by consumers.
Consumers select the best contract among all menus in their samples.

In this case, the sales function faced by bPrms has the functional form

#
%(ug|Fr, v, pPg) = % ""ZJ &w; (V) éFk(Uk)j%l.
j=1

1 See Diamond (1971) and Bertrand (1883).



The next example presents an important special case of the Burdett-Judd matching technology.

Example 2 [Poisson-Burdett-Judd] The Poisson-Burdett-Judd search model adds to the search
model of Example 1 the feature that the size of the sample observed by each consumer is distributed
according to a Poisson law with means av, where 5 > 0:

wi(v) = (51_;;1!\/)] dexp{#B4a} for j=0,12....

Accordingly, as the mass of Prmg increases, consumers observe larger samples of menus with higher
probability (in the sense of likelihood ratio dominance). The parameters measures how an increase
in the mass of brms gjects the distribution of sample sizes. The sales function of the Poisson-
Burdett-Judd model is:

%(UklFr, V. Pk) = P 85 dexp{# S av a1 # Fi(ux))} .

The Burdett-Judd matching technology of the previous examples has been widely employed in
the industrial organization literature. The next example describes the urn-ball matching model of
Butters (1977), popular in the macro/labor literature.

Example 3 [Generalized Butters (1977)] Let the menu qgffered by each brm be observed by
exactly n ) 1 consumers. The sizen subset of consumers reached by each bPrm is uniformly (and
independently) drawn from the set of alln-size subsets of consumers. When the number of Prms and
consumers in the market is large (with ratiov), Butters (1977) shows that the sales function faced
by bPrms has the functional form

%(Ug|Fr, Vv, pPr) = pr an dexp{#nava(l# Fi(ug))}.
In the original Butters (1977) model, n is set to one.

It is interesting to note that the Generalized Butters and the Poisson-Burdett-Judd matching
technologies can imply identical sales functions. Another natural model of heterogenous information
comes from the labor search literature.

Example 4 [Burdett and Mortensen (1998)] The Oon-the-job searchO model of Burdett and
Mortensen (1998) studies a dynamic economy in continuous time in which consumers receive ads
(each ad describes the menu of a particular Prm) according to independent Poisson processes with
arrival rate A. Consumers must make purchasing decisions as soon as an ad arrives, and there is no
recall. Each matched consumer purchases continuously from the seller until the match is dissolved.
This can occur exogenously due to an event which arrives at Poisson rate Alternatively, consumers
may switch brms if they receive (at rate)\) an ad describing a more attractive menu. There is a
common discount rate equal tor.
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It follows from the analysis of Burdett and Mortensen (1998) that the steady-state outcome of
this economy can be modeled as a static competition game whose sales function has the functional
form

1 1
%(u|F = Dy &y 8 .
o(uklFr, V. Pr) = Prdy @ ~+ Nava(l# Fk(uk))] {w r+ \ava(l# Fr(up)

The examples above share a number of features. First, the mass of sales is linear in the mass
of consumers in the market. Intuitively, these matching models rule out OexternalitiesO among
consumers!? Second, sales functions depend on; only through the rank in the distribution of
indirect payo! s to type k, F; (uz). This Oranking propertyO corresponds to an assumption that
consumers are concerned only for the utility of consumption net of transfers (and thus pick the best
ol er available based on these features), and not with other characteristics of a prmOseo such as
transportation costs or the brmOs identity. Third, sales arstrictly increasing in the ranking occupied
by a given indirect utility.

These three features, together with some other technical requirements satisbed by the examples
above, debne the class of sales functions considered in this paper.

Assumption 1 Let F be a distribution over menus with sup@ %1, and marginal distribution over
type-k indirect utilities Fy, with support $ ;.
At any continuity point ug ' $j of Fg, the sales function%(ux|F,V, px) can be written as

%(UklFr, Vipk) " Pr@ (Fr(ui)lv), 2)
where thekernel' (y|v) : [0,1]& R ., R .:
1. is continuously differentiable and bounded,

2. for eachv > 0, is strictly increasing in y with derivative ' | (y|v) bounded away from zero at
anyy' [O,1].

At any point where F, is discontinuous (i.e., has an atom), sales are determined according to uniform
rationing rule. '3

A crucial ingredient of Assumption 1, shared by all examples discussed above, is that, for each
consumer type, Prms with the lowest indirect utility ranking make a positive number of sales. That

12Quch “externalities” might arise due to “word of mouth” or other peer effects.
In the example above, this corresponds to the assumption that consumers evenly randomize across identical offers.

Formally, if ux € T is a mass point of Fy, then
!

-1 Fy (uk)
® (Ug|Fk,V,pPe) = Pr - Fr(ug) — lim Fp () /| A(ylv)dy.

ik Tuk im gyl Uy Fi (k)

Finally, set @ (uk|Fk:V1pk) = Pr - A(1|V) if U > Og for all O, € Tk, and <I>(uk|Fk,v,pk) = Pk - A(O‘V) if 0 < Ug < O
for all Gy € Tg.
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is, ' (O]v) > 0. This assumption reRects the fact that each brmOd er is observed with positive
probability by a consumer who has no other ¢ ers. Note that the IR and IC constraints guarantee
that the lowest indirect utility is weakly positive, so that each consumer of type k does better by
buying the contract (g, X) rather than buying nothing.

Also important is the assumption that the mass of sales is strictly increasing in the indirect
utility ranking, as required by Part 2. This means that better deals lead to more sales. This rules
out the Diamond Paradox, according to which all brms d ering the monopolistic (Mussa-Rosen)
menu constitutes an equilibrium. More generally, this property also implies that no equilibria exist
in which a positive mass of bPrms post the same menu. As a result, equilibriaecessarily involve
dispersion on menus.

It is worthwhile reiterating that the Oranking propertyO of sales functions imposed by Assumption
1 distinguishes our model from spatial models of competition (such as Hotelling or dierentiated
Bertrand). In such models, the mass of sales obtained by each brm is a function of the proble of
cardinal indirect utilities o ! ered to each consumer type. In contrast, in our model the mass of sales is
a function of the quantiles (relative to the cross-section) associated with the indirect utilities d ered
by a brm (i.e., it depends onordinal properties of indirect utilities).

Remark 2 While the literature has found it convenient to model competition with a mass of Oin-
PnitesimalO brms, our analysis applies just as well to models with Pnitely many brms. In such
cases, the sales function gives a brm@spected number of sales to typk. To give a further exam-
ple, suppose (abusing slightly notation) that ' N\{ 0, 1} identical Prms compete for a unit-mass of
consumers. Consumers are aware of each brm independently with probability' (0,1). The sales
function in this case is given by

%(ur|Fr, v, pr) = Pr 2 &(@éFy(ug) +1 # )",

which satisPes Assumption 1. With Pnitely many Prms, the solution concept of DePnition 1 then
corresponds to symmetric Nash equilibria. For consistency, the analysis below considers the case of
a continuum of prms.

In the baseline model described above, the information possessed by consumers is determined by
an exogenousmatching technology. Subsection 4.1 extends this model to allow consumers to engage
in information acquisition.

2.2 Incentive Compatibility and Indirect Utilities

A key step in our analysis is to formulate the PrmsO maximization problem in terms of the of indirect
utilities o! ered to consumers. To this end, denote by

" arg max 0, 49# (0),
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the €' cient quality for type- k consumers, and letSi* " 6y, éq,‘%# go(q;f‘) be the social surplus associated
with the e" cient quality provision. The next lemma uses the incentive constraints and the optimality

of equilibrium contracts to map indirect utilities into quality levels.

Lemma 1 [Incentive Compatibility] Consider a menuM = {(q;, X;), (qn, Xx)} in the support of
the equilibrium distribution over menus, F, and let u, " u(qs, X, 8x). Then, for all k' {I,h},

u, # u

—5 (L # Ti(up # up) &g, ©)

O = 1p(up# u) a

where 1,(2) is an indicator function that equals one if and only if z > q& a- 0, and 1,(z) is an
indicator function that equals one if and only if z < ql&é— 0.

The result above is standard in adverse selection models. Consider some mekl ' supp ()
ol ered in equilibrium. If the IC ; constraint does not bind under M , then probt-maximization by
Prms implies that the quality provision to the other type of consumer (i.e., type#Kk) is €' cient under
M . However, if the IC; constraint does bind underM , then the quality to consumers of type#k is
chosen to make typek consumers indl erent between either contract. These facts are summarized
in equation (3). Using this equation, we may henceforth letq; (u;, u,) denote the quality supplied
to type k when the indirect utilities o! ered are (;, uy).

In light of Lemma 1, we can describe each menu in the support oF in terms of the indirect
utilities induced by M . Accordingly, we shall write M = (u;,u) to describe the menuM =
((q, X1) , (G, X1)), where the map betweengOs andiOs follows from equation (3). In a similar fashion,
for convenience, we will more often refer to the marginal distribution over indirect utilities, Fy, rather
than to the distribution over menus F.

Two natural benchmarks play an important role in the analysis that follows. The prst one is the
static monopolistic (or Mussa-Rosen) solution. Under this benchmark, the quality provided to low
types, denote it g, is implicitly dePned by:

90!(qlm) = max {91 # F;; & 0, 0} . 4)

We interpret g = 0 as meaning that low-type consumers are not served under the monopolistic
solution. In turn, quality provision for high types is e" cient: ¢ = ¢~ Finally, recall that, in the
monopolistic solution, the indirect utility left to low types is zero, u;® = 0 (as the IR is binding),
and the indirect utility left to high types is uj* = ¢ & 0, as the IC;, is binding. Written in terms
of indirect utilities, the menu M ™ " (0,q" & 0) is the monopolist (or Mussa-Roser) menu.

The second benchmark is the competitive (or Bertrand) solution. Under this benchmark, quality
provision is €' cient to both types, and brms derive zero probts from each contract in the menu.
Written in terms of indirect utilities, the menu M & " (S& S is the competitive (or Bertrand)
menu. We can now proceed to characterizing the equilibrium of our model.
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3 Screening and Competition

This section contains our main results. We start by studying the PrmsO probt-maximization problem.
We then characterize equilibrium, study its main properties, and conduct a number of comparative
statics exercises. The last subsection discusses equilibrium uniqueness.

3.1 Firm Problem

For each menuM = (u;, uy) o! ered in equilibrium, let

Sk(ug,up) " Ok adk(ug, up) # p(g(ug, up)) 5)

be the social surplus induced byM for each consumer type, where the quality levelgy.(u;, uy) are
computed according to (3). We can then write the probt from typek consumers produced by the
menuM = (uy,up) as Sp(u;, up) # ug.

Employing Lemma 1 and Assumption 1, we can rewrite the PrmOs probt-maximization problem
(in response to the cross-section cdfOs over indirect utilitiesF;, F;}) as that of choosing menus
(ug, up) to maximize

w(UnUn) " Y Pk (Fr(ur)lv) &(Sk(u, up) # uy) (6)
k=l,h
subject to the constraint u, ) u;) 0. This constraint guarantees that menus are individually ratio-
nal. Together with the debnition of the surplus function S;(u;, u), this constraint also guarantees
that menus are incentive compatible, as required by implementability.

To better understand the brmsO trade-os, we will now analyze the brst-order conditions asso-
ciated with (6). We will follow the common practice in mechanism design of assuming that IG is
slack in equilibrium, in which case IC, is the only potentially binding constraint. As will become
clear, this is indeed true in any equilibrium of this economy. Assuming di erentiability of F; for each
k' {l,h} (which, as we will prove shortly, holds in any equilibrium of this economy), the Prst-order
conditions for the brmOs problem are

pr & 1 (Fr(up)lv) & n(up) &(SE# up) # pr & (Fr(up)lv) + prd (Fi(u)lv) égi(uz,uh) =0 (7

sales gains profit losses - -
efficiency gains

for u;, and

pra 1 (Fi(uplv) af j(u) a(S(ug, up) # w) # pra (Fi(uplv) + ppa (Fi(uplv) é—gij(ul,uh) =0 (8)

sales gains profit losses

efficiency losses

for u;. Intuitively, the brmsO choice of menus balances sales, probt, ant @ency considerations.
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First consider the brst-order condition for high types, given by equation (7). The brst two terms
in (7) are familiar from models without asymmetric information on type. By increasing the indirect
utility up, the brm increases sales (the brst term), but decreases probts (the second term). The third
term captures the € ect of an increase inu; on the quality o! ered to low-type consumers. When
IC, is slack (i.e.,up, >u;+ # Géql&), high types have no incentive to imitate low types, and this term
is zero. Let us then focus on the complementary case where }ds binding. As implied by probt
maximization, the low-type quality is set to satisfy the constraint u, ) u;+ # 6 &g with equality. As
a consequence, an increase iny, relaxes this constraint and allows the brm to marginally increase
the quality to low-type consumers by

dq(ur, up) _ <1>
ouy, #0)
Therefore, the & ciency gains from increasing the quality of high types are generated by the decrease
in distortions of the contract to low types, and equal

pra (Fi(up)lv) <91i¢900(q)> > 0,

which is the third term in equation (7).

(9)

Let us now consider the Prst-order condition for low-type utilities, given by equation (8). The
prst two terms are familiar from (7). In contrast to (7), however, increasing u; has the @ ect of
tightening the incentive constraint IC 5, which implies that the quality distortion present in the low
typesO contract has to increase. This'eciency loss is the third term in equation (8). By the same
reasoning as above, this term has the same magnitude as (9), but the opposite sign.

Equations (7) and (8) thus capture the role of private information about consumer preferences
in the PrmsO choice of menus. One way to see this is to contrast the brst-order conditions above with
the case where information asymmetries are absent. In this case, each PrmOs problem of determining
the indirect utility to leave to each consumer type would be completely separable; we would have
Si(u;,up) = S& and the third terms in (7) and (8) would be zero. Instead, when consumer types are
private information, the problems of choosingu; and u;, are interdependent (as implied by incentive
constraints). Our equilibrium analysis of the next subsections will clarify how Prms simultaneously
resolve the & ciency-rent-extraction and the rent-extraction-sales-volume trade-é s in equilibrium.

As a step towards characterizing equilibria, we establish the increasing tierences property of
expected probtsr which was discussed in the Introduction.

Lemma 2 [Increasing di ! erences] Consider any two implementable menugu}, u}) and (u?, u?),
with u? >u! and u? >u}. Then we have

7 (uf,up) # m (uf,up)) 7 (uf,ui) # m(uf,up) . (10)

If some incentive constraint binds for at least one of these menus (i.eu? # ui 7 [gf&- 6,g%4a 0]
for somei ' {1,2}), then the inequality in (10) is strict. Otherwise, (10) holds with equality.
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The intuition for this result can be easily understood from the brst-order conditions derived
above. For simplicity, suppose that IC;, is binding for both menus (i.e., uﬁL # u% < #eqf‘ for i
{1,2})." In this case,q = “%“ and increasingu, from u} to u raises the quality supplied to the
low type. This increases the marginal probt of raisingu; for two reasons. First, the sales gains from
raising u; (which is the brst term in (8)) go up as u increases. Second, the"eciency losses from
raising u; (which is the third term in (8)) go down (in absolute value) as uy increases. This is so
because the cost of qualityp is convex, in which case a marginal reduction in low-type quality has
less ¢ ect on surplus when this quality is closer to its brst-best level. Theseleects are summarized
by the cross derivative of the probt function = at any menu for which IC;, is binding:

2 ! o L
Tomatn) = byt (u) & 1 (Fi(u)lv) (91 ##*‘;(W)) + Pl (FZE;%')VQ 4@ 50

as can be directly computed from either (7) or (8)!®> The brst term captures the € ect of u;, on the

sales gain from raisingu;, while the second term captures the kect of u;, on the €' ciency loss from
raising u;. Both terms are positive (and the second is necessarily strictly positive).
In contrast, if no incentive constraints bind at some menu {;, uy), the probt function 7 exhibits

. w2
constant di! erences: m.,%

= 0. In this case, as established by Lemma 1, optimality requires
that qualities are bxed at their €' cient levels to both consumer types, and the kects ofu; and uy,
on probts are completely separable.

Before moving to equilibrium characterization, we will make use of Lemma 2 to establish that,
in any equilibrium, the distributions over indirect utilities, F; and Fj, are absolutely continuous,
and have support on an interval that starts at the indirect utility associated with the monopolistic

(Mussa-Rosen) menu.

Lemma 3 [Support ] In any equilibrium of this economy, the marginal cdf over indirect utilities for
type k' {l,h}, F, is absolutely continuous. lts support is$ ;, = [u?*, @], where @, < S;ﬁ‘.

The lemma above has a number of important implications. First, because the distributionsF,
are absolutely continuous, no equilibria exist in which a positive mass of brms post the same menu.
Second, the minimum indirect utilities o! ered in equilibrium are those induced by the monopoly
menu. The arguments in the proof, contained in the appendix, are familiar from models of price
dispersion under complete information, e.g., Varian (1980).

3.2 Ordered Equilibrium

We construct an equilibrium in which bPrms that cede high indirect utilities to high types also cede
high indirect utilities low types. We say that equilibria that satisfy this property are ordered.

¥ The intuition for the case where the low types’ incentive constraint binds is similar. However, we will show that

this constraint does not bind in equilibrium.
B Differentiability of F; holds in equilibrium, but is not assumed in the proof of Lemma 2.
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Definition 2 [Ordered Equilibrium ] An equilibrium is said to be ordered if, for any two menus
M = (ug,up) and M ' = (uj, u}) offered in equilibrium, u; < u; if and only if u, <u}. In this case,
the menu (uj, u}) is said to be more generousthan the menu (uy, uy,).

As the next proposition establishes, there always exists a unique ordered equilibrium. We then
identify below natural conditions under which the ordered equilibrium is the only equilibrium of the
economy. Ordered equilibria have the following important property.

Remark 3 [Support Function ] In every ordered equilibrium, the support of indirect utilities offered
by Prms can be described by a strictly increasing and bijectiveipport function 6; : $5,, $,; such
that, for every menuM = (u;,up) in $;& $,, u; = a;(uy).

Remark 3 tells us that there is a strictly increasing function @ that determines the utility o ! ered
to the low type as a function of the utility of the high type. We bnd it notationally convenient to
denote the identity function by @, (uy) = uy, forall u, ' $5,. Proposition 1 characterizes the unique
ordered equilibrium of the economy.

Proposition 1 [Equilibrium Characterization ] There exists a unique ordered equilibrium. In
this equilibrium, the support of indirect utilities o ffered by bPrms is described by the support function
o, : [uy', @], [0, a] that is the unique solution to the dfferential equation

Bl (up) = Sl(Uz(Uh)éUh)# o, (uy) 1# %iﬁ(ﬂl(uh),uh) 12)
Sp# Up 1# «L(Gi(up), un)
with boundary condition &;(u}’) =0.
The equilibrium distribution over menus solves
" (Fa(up)lv) _ > k=1, Pr &(Sk(0, Up") # Ul (13)
" (O]v) > h=t.n Pr &Sk (Gr(up), up) # 6x.(up))’

and the supremum pointay, is determined byF (@) = 1.

The existence of an ordered equilibrium is intimately related to the increasing di erences property
of brmsO probt functions established in Lemma 2. Intuitively, if a Prm!lcers a higher payd to the
high type, it should also do so for the low type; i.e., equilibrium d ers should be ordered. The
di! erential equation (12) (together with the boundary condition ;(u}*) = 0) describes precisely the
relationship between these paybs. Equation (13) then describes the marginal distribution over
high-type payo! s F;, and thus the distribution over the menus d ered by Pbrms. We now sketch the
main arguments in arriving at Proposition 1.

Proof Sketch of Proposition 1. We proceed in three steps. First, we construct the support
function d;(3. In the second step, we derive the equilibrium distribution over menus. In the last
step, we show that Prms cannot benebt from deviating to an out-of-equilibrium menu.
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Step 1 Constructing the support function

Because of the ranking property of kernels, it follows that in any ordered equilibrium with support
function §;(3,
" (Fr(up)lv) =" (Fu(8i(up))[v) . (14)

The equation above implies that sales to each typé are proportional to the probability of that type
pr. Accordingly, the support function @;(§ describes the locus of indirect utility pairs (4;(uy), uy)
such that the proportion of sales to each type is constant.

Di! erentiating the expression above, we obtain

"1 (Fr(ug)lv) &f x(up) 4 "1 (Fa(@g(up)) Iv) &F o (80(up)) 17
" (Fr(up)v) " (Fu(@i(up)) [v)

Intuitively, the slope of the support function, d’n}(uh), equals the ratio between the semi-elasticities

(15)

0i(uy) =

of sales with respect to indirect utilities for each type of consumer.
The brst-order conditions (7) and (8) provide an alternative expression for these semi-elasticities.
Evaluated at the locus (@(uy), uy), with the help of (14), equations (7) and (8) can be rewritten as

o, &1 (FEOKUDIY) & ((8(u)
g " (Fr(Br(un) V)

for k = h and k = |, respectively. In equilibrium, the optimality of PrmsO menus requires that

a(Sk(G;(up),up) # up) = P # P é—gii(ﬁl(uh)vuh)- (16)

the support function &;(3 simultaneously satisbes the brst-order conditions (16) and equation (15).
Combining these two equations leads to the dierential equation (12) which describes how the utility
of the low type relates to the utility of the high type in the equilibrium menus.

From Lemma 3, we know that the least generous menu in equilibrium is the Mussa and Rosen
menu (0,u}"). Hence, we require that the solution to (12) satisfy the initial condition &;(u}") = 0.
Finally, one can show that the solution to the di! erential equation (12) satisbesu'guh) > 0, which
means that the menus (f(uy), u,) are indeed ordered.

We also need to verify that IC; is never binding in any menu (@¥(u), uy). Indeed, we are able
to show that, for all u;, ' [u}*, @3],

u, # ﬁl(uh) * g, # ﬁl(ﬂh) < S;‘%# Sl&< - Géq;‘;‘,

which, by Lemma 1, implies that IC; is slack at any equilibrium menu (see the proof in the Appendix
for details).

Step 2 Constructing the distribution over menus

In view of the support function &;(§, we can describe the equilibrium distribution over menus
in terms of the distribution of indirect utilities to high type consumers, F,(3. The key idea in
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the construction is to choose, for eachu,, the quantile Fj,(uy) in a way that all menus o! ered in
equilibrium lead to the same expected probts as the Mussa-Rosen memd ™. This is re3ected in
the indi! erence condition (13). Importantly, we bnd that' (Fp(ug)|v) = ' (Fi(8; (ug))|v) is strictly
increasing inuy; or equivalently, by the indi! erence condition, probts conditional on sale

Py (S; (G (Up) ,up) # 0, (Up)) + Pr(Sk (G (Up) ,Ug) # Up)

are strictly decreasing inuy. Together with Assumption 1.2, this guarantees thatF, (3 is indeed an
increasing function.

In order to complete the construction of F; (8, we need to determine the support of high type
indirect utilities, $,. By Lemma 3, $, is a closed interval of the form L}, @,], so we are only left
to compute the upper limit of $, @,. In the Appendix, we show that the solution to the di! erential
equation (12) satisPesuiS¥) = S& that is: When high types receive their Bertrand utility S%,
so do low types. This property implies that the right-hand side of the indil erence condition (13)
approaches inbnity asuy, , Sf;. This, together with the boundedness of' (ay) for each v (as
required by Assumption 1.3), guarantees that there exists a uniqueug< S & for which F(a) = 1.

Step 3 Verifying the optimality of equilibrium menus

Finally, we verify that no seller has a probtable deviation. Observe brst that no deviation to a
menu that leads to indirect utilities outside of the range $; & $ = [u]", O, (85)] & [u}", @,] can be
optimal. Consider therefore a menu (J}, u}l) " $,&$ ), with ui € oy (u!h). We show in the Appendix
that the gains from this deviation relative to the equilibrium menu (d;, (u!h) , u!h) equal

w(wh) e 9 (wy, )
x(uy, ub) # (g (uh),u :#/ / T30 PR Gy dy,
(ug, up) # (8 (uy) , uy,) y iy Ouou,

which is non-positive by virtue of the increasing-di erences property established in Lemma 2. This
completes the proof of Proposition 1. Q.E.D.

It is worth noting some interesting features of the equilibrium characterized in the above propo-
sition. First, the support function &; (§ does not depend on the function' (ay). Accordingly, the
function &; (d is invariant to the matching process that determines the consumersO information sets.
However, the supportS of equilibrium menus doesdepend on the function' (&y), but only through
the supremum indirect utility a1, (determined by the indi! erence condition (13)). As revealed by
condition (13), the function ' (4}) also plays an important role in determining the cross-section
distribution over menus prevailing in the economy.

In what follows, we focus attention on the ordered equilibrium described above. In subsection
3.6, we present a complete characterization of the equilibrium set, and show that little (if anything)
is lost by restricting attention to the ordered equilibrium.
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3.3 Equilibrium Properties

Recall from the best-response analysis of subsection 4.1 that, ceteris paribus, increasing the indirect
utility of high and low types have opposing € ects on how much Prms optimally distort the quality
in low-type contracts. Which of these countervailing € ects prevails in equilibrium?

Our characterization in Proposition 1 answers this question. A key property of the support
function is that §(uy) " up # 6; (up,) is strictly increasing in uy, reaching its maximum at the upper
limit of $,, @,. Intuitively, this reRRects the fact that competition for high types is percer than
competition for low types in equilibrium, as high-type consumers Ohave more surplus to shareO with
Prms. An immediate consequence is that, whenevdiC ;, binds, the quality provided to low types,

d(up)
#6 '

q (6; (up) ,up) = (17)

is strictly increasing in u,. Proposition 2 below formalizes these claims and derives an implication
for brmsO probts.

Proposition 2 [Equilibrium Properties] The following properties hold in the ordered equilibrium.

1. E" ciency: Menus for which consumers earn higher payffs are more ¢gficient. In partic-
ular, there exists uj, ' (u?,S;f‘) such that the social surplus produced by low-type contracts,
Si(6;(uy), up), is strictly increasing in u;, wheneveru, < uj, and such thatS;(6;(us), up) = Sf‘
wheneveruy, ) u¢.'6

2. Probts: Firms which offer more generous menus obtain a larger fraction of their probts from
low-type consumers.

The Prst statement in Proposition 2 establishes the existence of a threshold;j on the high-
type indirect utility above which equilibrium menus are e" cient. Recall that, by Lemma 1, €' cient
quality is supplied to low types if and only if

5(up) ) - 0 agk

Therefore, the threshold u§ solvess(us) = - 6 agx.

The second statement in Proposition 2 shows that Prms sort themselves in equilibrium according
to the composition of their probts. It establishes that brms that d er more generous (or equivalently,
more &' cient) menus derive a higher share of probts from low-type consumers. As menus become
more generous, the ratio of probts derived from low and high types approaches the upper bound and

5 Whether the threshold ug belongs to the support Y, = [u7", 0] depends on the kernel A (-|v). See Proposition 5
below, which discusses equilibrium uniqueness and provides necessary and sufficient conditions (in terms of primitives)

for a, > uj.
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Figure 1: The equilibrium support function @,;(§. The dotted line is the 45-degree line.

is constant at this level for all menus that provide quality €" ciently for both types (i.e., those menus
for which uy ) ug).

Figure 1 illustrates the proposition above. This bgure represents the entire graph of the support
function, {(d; (ug),up) : uy' [u;?,S,f‘)}; which of these d ers are made in equilibrium depends on
the supremum point @,.

While, in an ordered equilibrium, more €' cient menus are always better for consumers, pricing
patterns are perhaps more subtle. The reason is that price and quality provision aresubstitute
instruments for competing for consumers. To see how prices vary across equilibrium menus, debne
the prices of the low and high quality goods respectively by

X (up) 0; agy (G; (up) ,up) # G; (up), and

Xp (Up)

0, éq%# up
for up, ' [u™,S%. We bnd the following.

Corollary 1 [Equilibrium Prices] There existsug ' (u}',uj] such that the price of the low
quality good x; (uy) is strictly increasing in uy if u, * uﬁ, and strictly decreasing otherwise. In
contrast, the price of the high quality goodx;, (uy) is strictly decreasing in u; over [u}?, S,f‘).

The corollary above reveals what contract feature (price or quality) dil erent brms use to compete
for marginal consumers. Firms of low generosity (i.e., those for whichi, * u¢) compete more percely
on quality provision, while brms of high generosity compete more bercely on prices. This is reRected
by the fact that, for u * uﬁ, the price and the quality of the low-quality good strictly increase in the
generosity of the menu. In turn, for u, > u ;{f, the quality of the low-quality good weakly increases,
but its price strictly decreases, in the generosity of the menu. These facts are illustrated in Figure 2.
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Figure 2: The low-type quality schedule (full curve and left-side Y-axis)) and the low-type price

(dotted curve and right-side Y-axis) as a function of the generosity of the menuuy,.

The reason why the price of the low-quality good is initially increasing in the menuOs generosity
relates to the shape of the support functionujd(gd. Crucially, the support function @y (8 is convex
and has zero derivative atuy’, the Mussa-Rosen indirect utility.!”!® This implies that, for low
values of u;, the low-type quality increases fast, while low-type payd s @ (u;) increase slowly in
uy. Necessarily, therefore, the price of the low-quality good has to increase iny, as dictated by
incentive compatibility. In turn, for high values of uj, quality provision to low types increases at a
lower rate than indirect utilities, implying that prices have to decrease in u,. Finally, that the price
of the high-quality good x;, (u,) is decreasing follows straightforwardly because the high-type quality
remains bxed at its & cient level.

The next subsection studies how the distributions over menus (and its support) vary with the
degree of competition in the market. It shows that more competition leads to higher paybs for
consumers and lower distortions in quality provision. Moreover, by varying the degree of competition
in the market, we span the entire spectrum of competitive intensity, from perfect competition to

I A simple intuition for why 0; (-) is convex is as follows. As the generosity of the menu increases, so does the social
surplus generated by the low-type contract (as established in Proposition 2). This implies that, relative to high-types,
sales to low-types become increasingly attractive for firms (as the surplus to be shared with consumers from each sale
increases). Therefore, relative to high types, competition for low types get fiercer as uj, increases. This is reflected in

the fact that as menus become more generous, the indirect utilities left to low-types increases faster in uy,.
8Ty get intuition on why 0 (up) — 0 as U, — U}, consider the case where U > 0. By increasing the generosity of

the menu, the firm trades off profits per sale against the increased probability of a sale. For menus in a neighborhood

of the monopoly menu (0, u3*), increasing Uy has only a second-order effect on the profitability of a sale, since uj* is an

interior maximizer of these profits. Increasing u;, however, leads to a first-order loss in profits per sale. Indifference
over menus therefore requires that the increase in high-type indirect utility be an order of magnitude larger than the

increase in low-type indirect utility for the same gain in the probability of a sale.

22



monopoly. Besides conbrming standard intuitions, these results are instrumental for the distinctive
empirical predictions presented in subsection 3.7.

3.4 Comparative Statics

Before stating results, we introduce a mild regularity condition on the kernel' (y|v). This condition
controls for how sales functions change with the mass of brms.

Condition 1 [VM] V-Monotonicity: The kernel ratio
C(ylv)

R(yIV) " ;
(Olv)

is strictly increasing in v for all y' (O, 1].

Intuitively, this condition means that, relative to the least generous menu in the cross-section,
the proportional gains in sales from & ering a contract whose indirect utility lies in some quantile
y > 0 increases with the mass of competing bPrmg. This captures the idea that, as the number
of competing Prms increases, consumers are likely to have larger information sets, in which case
increasing the generosity of the ber has a larger impact on sales (relative to the monopolistic ber).

The monotonicity requirement of Condition VM is satisbed by the Generalized Burdett-Judd
matching model provided that, for any % > v, the sample size distribution & (%) dominates the
distribution &(v) in the likelihood-ratio order. In particular, this assumption is satisbed by the
Poisson-Burdett-Judd matching model (and, therefore, by the Butters model, which shares a similar
sales function). It is also satisbed by the Burdett-Mortensen matching model.

The next result establishes that, when competition increases, (i) Prms more often!@r menus
that lead to high indirect utilities for both consumer types, and (ii) the support of equilibrium
expands. As implied by Proposition 2, the mass of brms that ber ine" cient qualities in equilibrium
decreases as competition gets Percer.

Proposition 3 [Competition and Distortions: Comparative Statics ] Assume that condition
VM holds, and denote byF; and B, (with supports $; and $;,) the equilibrium distributions over
indirect utilities when the mass of brms isv and 9, respectively. If v > @, then

1. F; brst-order stochastically dominates®,, with $ + $, for k' {I,h}

2. the fraction of brms offering inefficient qualities is weakly lower for massv: i.e., Fy(uf) *

B, (ug)."

191f the IC-threshold u§ belongs to support Yj = [u}*, 0], an increase in V can be shown to strictly decrease the
mass of firms offering inefficient qualities. See Proposition 5 below for necessary and sufficient conditions (in terms of

primitives) under which Gy > uf.
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The proposition above captures changes in the degree of market competition by varying the mass
of brms,v. An alternative and intimately related notion of competition keeps v bxed, but varies the
level of frictions of the random matching technology. This is explored in the next remark.

Remark 4 [Frictions and Distortions ] We say that the matching technology associated with the
kernel ' (y|v) is less frictional than the matching technology associated with the kerndl (ylv) if for
ally' [0,1],

" (ylv) ) O (ylv)

' (Olv) 7 O(0v)
This condition describes how sales functions change as the consumersO information sets get larger (in

a probabilistic sense). In the Generalized Burdett-Judd model, the matching technology becomes less
frictional as the distribution of sample sizes increases in the sense of likelihood ratio dominance. In
the Poisson-Burdett-Judd model, the level of frictions is captured by the paramete#, which measures
how the mass of brmy impacts the average sample size observed by consumers. In the Butters model,
the level of frictions is captured by the parameten, which is the number of consumers aware of the
menu of each bprm.

Proposition 3 can be recast in terms of the degree of frictions of the matching technology: As the
matching technology becomes less frictional, e.g. whe# or n increase, the distributions of indirect
utilities increase in the sense of prst-order stochastic dominance, and the fraction of Prmsffering
efficient qualities increases.

3.5 Limiting Cases: Perfect Competition and Monopoly

The next proposition studies limiting properties of equilibria as the mass of prms in the market
converges to zero or inbnity. These properties hold independently of Condition VM.

Proposition 4 [Competition and Distortions: Limiting Cases ]

1. If limy, oR(1]v) = 1, then, as the mass of brms converges to zere,, 0, the equilibrium
distribution over menus converges to a degenerate distribution centered at the monopolistic
(Mussa-Rosen) menuM ™. In particular, the fraction of Prms o ffering inefficient menus is
one for small enoughv.

2. If limy4 R(ylv) = $ for all y*' (0,1], then, as the mass of bPrms grows largey , $
the distribution over menus converges to a degenerate distribution centered at the competitive
(Bertrand) menu M & In particular, the fraction of Prms o ffering efficient menus converges to
one.

The brst part of Proposition 4 investigates the limit properties of equilibrium whenv, 0. It
requires that the proportional gains in sales from @ ering the most generous contract in the cross-
section, relative to d ering the least generous contract, converges to zero when the mass of competing
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Prms approaches zero. This is a weak condition satisbed by the matching technologies of Examples 2,
3 and 4. It also holds for the Generalized Burdett-Judd matching technology of Example 1 provided
that the collection of sample size distributions{&(v) : v > 0} satisbes weak regularity conditions?
the Poisson-Burdett-Judd matching technology is a particular case.

To understand the result, note that, as the mass of bPrmsv approaches zero, the support of
h-type indirect utilities converges to u}’, the Mussa-Rosen indirect utility. As a consequence, the
distribution over menus approaches a degenerate distribution centered at the monopolistic menu.
When the parameters of the price-discrimination problem dictate that g™ = 0 (see equation (4)),
low types are excluded in the limit asv, O.

The second part of Proposition 4 investigates the limit properties of equilibria whenv , $ . It
requires that the proportional gains on sales, relative to the least generous contract, from!aering
a contract at any quantile y > 0, grows large asv , $ . This condition is satisbed by the Gen-
eralized Burdett-Judd matching technology provided that weak regularity conditions are satisbec?!
the Poisson-Burdett-Judd matching technology is again a particular case. The condition is also
satisbed by the Butters matching technology. However, the condition is not satisPed by the Burdett-
Mortensen matching technology. Under this technology, the distribution over the menus that Prms
ol er converges to a non-degenerate distribution. It can be shown however that the distribution over
indirect utilities in the buyer-seller relationships that persist in the steady-state equilibrium indeed
converges to a degenerate distribution centered at the Bertrand mend?

Importantly, Propositions 3 and 4 show how our model captures the entire spectrum of industry
competitiveness. Whenv is small, competition is weak, and we obtain the sensible prediction that
prmsO behavior is close to that of a brm with complete market power. Whenis large, equilibria
approach the outcome of a perfectly competitive market.

Remark 5 [Vanishing Frictions ] Similarly to Proposition 3, Proposition 4 can be recast in terms

of the degree of frictions of the matching technology. In the case of the Poisson-Burdett-Judd and
the Generalized Butters matching technologies (where frictions can be modeled parametrically), we
say that frictions vanish as3,$ andn,$ , respectively. Accordingly, in the limit as frictions
vanish, the distribution over menus converges to a degenerate distribution centered at the competitive
(Bertrand) menu M &

2 A sufficient condition is that the l;-limit of Q(v) as v — 0 has support {0, 1}.
2L A sufficient condition is that the li-limit of Q(V) as Vv — oo has support {2,3,...}.
22The proof is available upon request. As described in Example 4, the Burdett-Mortensen model is a dynamic model

in which dynamic relationships persist only until the match exogenously terminates or the consumer receives a better
offer. Intuitively, as v becomes large, consumers receive offers very frequently in expectation and hence a relationship
in which the consumer earns a payoff bounded below the efficient surplus can be expected to last only a short while.
This explains why the distribution over payoffs earned by consumers in the relationships that have formed and not yet

broken in the steady state equilibrium of a Burdett-Mortensen economy converges to the Bertrand payoffs.
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Before describing empirical implications, the next subsection discusses the important issue of
equilibrium uniqueness, and identibpes the only possible source of equilibrium multiplicity in our
model.

3.6 Equilibrium Uniqueness

In a nutshell, the next proposition shows that, when the mass of Prmsv is small, the ordered
equilibrium is the unique equilibrium. In turn, when the mass of brms is large, there are equilibria
which are not ordered. As will be clear below, the uniqueness of equilibria crucially depends on
whether the incentive constraint IC; binds for all menus d ered in the ordered equilibrium. In
the case of multiplicity, all equilibria exhibit the same distribution over contracts for each type of
consumer as the ordered equilibrium. Therefore, all equilibria induce the same marginal distribution
over indirect utilities to each type of consumer, and the same ex-ante probts for brms.

Proposition 5 [Incentive Constraints and Equilibrium Uniqueness ] Assume that condition
VM holds, and that lim,» ¢R(1]v) = 1 and lim,s R(1|v) = $ .?2* Then there exists a threshold
v¢ > 0 on the mass of competing Prms such that:

1. if v* v€ the IC-threshold uj satisbesuj ) @, and the downward incentive constraint (1C;,)
is binding for all menus gfered in the ordered equilibrium. In this case, the only equilibrium is
the ordered equilibrium.

2. if v>v¢, the IC-threshold uj, satisPesuj < @, and the downward incentive constraint (1C,)
is slack for all menus in the ordered equilibrium withu;, > u§, and binding for u; * ug. In
this case, there exist multiple equilibria that dffer only in the menus for whichu, > u§ (i.e.,
the efficient menus). However, all equilibria (including the non-ordered ones) lead to the same
marginal distributions over indirect utilities Fx(g, and the same ex-ante probts for Prms.

The proof, contained in the Appendix, shows that in any equilibrium, when the mass of brms is
small (i.e., v * v©), the support of utilities of type- k consumers,$ ;, is contained in [u}*, u¢]. Using
the increasing di erences property (see Lemma 2), we show that this implies that all equilibria are
equal to the ordered equilibrium.

In contrast, when the mass of brms is large (i.e.y > v¢), some menus bered in the ordered
equilibrium exhibit non-binding incentive constraints. Consider such a menu (&(uy), uy), in which
caseuy ' (ug, ). For this menu, the probt function 7(u;, up) is locally modular, i.e. its cross-
partial derivative is zero. As a result, for some (small)e > 0, both the menus @ (u, # ¢),u;) and
(6;(up), uy # ) are probt-maximizing for the bPrm. Based on the ordered equilibrium, we can thus
construct a non-ordered equilibrium by replacing the menus @iuy), uy) and (6;(u, # ), u, # ) by

2 This is technical condition is satisfied by the matching technologies of Examples 1 2, 3 and 4.
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their non-ordered counterparts (@ (u, # ), u,) and (6;(uy), u, # €). Proposition 5 conbrms that this
is the unique source of multiplicity of equilibria in our economy.

Remark 6 [Frictions and Uniqueness of Equilibrium ] The statements above can be recast in
terms of the degree of frictions of the matching technology. Namely, in the case of the Poisson-
Burdett-Judd and the Generalized Butters models, the uniqueness result of Proposition 5 holds if and
only if the friction parameters 5 and n are small enough.

3.7 Empirical Implications

Taken together, the results above deliver interesting empirical implications. To describe them, con-
sider a market where multi-product retailers o er two goods of dl erent qualities, a low-quality (or
baseline) good and a high-quality good (superior version). Our prst implication follows directly from
Proposition 2.

Empirical Implication 1 [Qualities and Probt Shares ] Firms that o ffer baseline (low-quality)
goods of higher quality obtain a larger fraction of their probts from baseline goods.

Combining Corollary 1 with Propositions 2, 3 and 4 generates the following empirical implica-
tions.

Empirical Implication 2 [Qualities and Prices ] There existsv?' (0, v°] such that:

1. If competition is not too intense (i.e., v < v%), the price charged for the baseline good is an
increasing function of its quality.

2. If competition is not too intense (i.e., v < v9), the price of the baseline good is a decreasing
function of the price of the superior version.

3. If competition is sufficiently intense (i.e., v > v %), the price of the baseline good is a U-shaped
function of the price of the superior version.

To understand this implication, recall from Corollary 1 that the price charged for the baseline
good is increasing in the generosity of the menu ifu, * u;’f, and decreasing otherwise. In turn,
Propositions 3 and 4 imply that the equilibrium support of type- h indirect utilities, $,, is contained
in the interval [u™,u¢) if and only if v is small enough (i.e.,v < v9). Accordingly, whenever
competition is not too intense, the price charged for the baseline good is an increasing function of
its quality, and a decreasing function of the price of the superior version. Notice by Proposition 5
that these facts hold independently of any equilibrium selection (asv? * v¢, which means that the
ordered equilibrium is the unique equilibrium).
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When, in turn, competition is su" ciently intense (i.e., v > v¢), the support of type-h indirect
utilities, $,, is a superset of @’,?,u;{). Because, by Corollary 1, the baseline price is an inverse
U-shaped function of the menuOs generosity, it follows that the baseline pricé ered by a brm is a
U-shaped function of the price of the superior version. Notice by Proposition 5 that ifv is too large
(i.e., v > v°) v9), this result hinges on selecting the ordered equilibrium (as there is equilibrium
multiplicity for menus in the range u; >u¥).

Perhaps unexpectedly, more competition may have price-increasing! ects.

Empirical Implication 3 [Price-Increasing Competition] If competition is not too intense
(i.e., v < v%), more competition leads to higher prices for the baseline good (in the appropriate
probabilistic sense)?*

Yet, consumers are better &, as qualities increase faster than prices, leading to higher indirect
utilities (in the appropriate probabilistic sense identibed by Proposition 3). Finally, note by Propo-
sition 5 that this fact holds independently of any equilibrium selection (as the ordered equilibrium
is the unique equilibrium).

The empirical implications described above arise from the interplay between heterogeneity of
information about market o! ers and asymmetric information regarding consumer tastes. We hope
that these implications may by useful for empirical work trying to assess to what extent the market
power enjoyed by bPrms stems from heterogeneity of information or other sources (such as brand
preferences).

4 Extensions

The analysis so far assumed that consumer information is exogenous. This simplibcation was useful
to isolate the € ects of competition on the brmsO pricing and quality provision. In this section, we
endogenize consumer information, and show that the main insights of our analysis naturally extend
to this more general environment.

The endogeneity of consumer information stems from two dierent sources. First, consumers
may invest in information acquisition, so as to learn the d ers available in the market. Second, Prms
may invest in advertising, so as to better inform consumers about their bers. The next subsections
show that we can easily incorporate information acquisition by consumers, or endogenous advertising
by Prms, in our model of competitive nonlinear pricing.

%4 Formally, let us denote by G; and G, the equilibrium distributions over the prices of the low quality good offered
by firms when the mass of firms is v and V, respectively. Then, whenever Vv < v < v ¢, G; first-order stochastically

dominates Gl.
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4.1 Information Acquisition by Consumers

For simplicity, we consider the binary-type model studied in Section 3, and assume that consumer
information is generated by the Burdett-Judd random matching model of Example 1.

We model information acquisition by assuming that, after learning their willingness to pay for
quality, consumers can make investments that &ect the size of their information sets (i.e., the
sample of brms they are aware of}° If a consumer invests nothing, his sample size distribution
is & = {w? :] =0,1,2,...}, where w? > 0 is the probability of observing a sample ofj Prms.
The distribution &° captures, in probabilistic terms, the information obtained spontaneously by
consumers about the ders available in the market. We assume thatwg > %; i.e., if a consumer
makes no investment, then he is more likely to observe no!e@r than one or more @ ers.

Investing in information acquisition shifts the consumer sample-size distribution according to
prst-order stochastic dominance. Specibcally, we assume that investirg' [0, 1] generates a sample
size distribution &* = {w? :j =0,1,2,...}, where

wit (I+2)&w)  for  j=1,2...,

and w§ " 1# >, ,w;. Accordingly, investments in information acquisition scale up the probability
of sample sizes weakly larger than one.

Let consumers with low and high types investz; and z, in information acquisition. Denoting
by ' #(§ the sales kernel associated with the sample-size distributio®*, we can write the PrmsO
probt-maximization problem (in response to the cross-section cdfOs over indirect utilitiegF;, F1,})
as that of choosing a menu ¢;, u;) to maximize

D pkd *(Fr(ur) &Sk(up up) # up) = > pr &L+ 24) & O (Fr(ur)) &(Sk(ur, up) # ug),
k=Lh k=lh

where the equality above follows from the formula for the Burdett-Judd kernel in Example 1. By
letting §(zx) " pr &(1 + z;,), we can see that the PrmsO problem when consumers invest, £5,) in
information acquisition is the same as if the mass of high and low types werg;(@;) and p,(z,), and
no information acquisition was possible.

It then follows from Proposition 1 that, for any proble of investments (z;,z5), there exists a
unique ordered equilibrium, where the masses of consumers of each typp;,(p,) are replaced by
the adjusted masseq[;(z;), B,(z,)). The e! ect of information acquisition by consumers is therefore
equivalent to a change in the masses of each consumer type. In particular, the equilibrium behavior
of Prms satisbes the properties described in Proposition 2.

Of course, when information acquisition is endogenous, the brmsO choice of menus and the
consumersO investment decisions are jointly determined. To describe the consumersO investment

5 De los Santos, Hortagsu and Wildenbeest (2012) provide empirical evidence that sample-size search, as considered

here, better explains consumer behavior than other modes of search (for example, sequential).
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problem, let us assume that investingz in information acquisition costs «(z) to consumers, where
the cost function (g is continuously di! erentiable, strictly increasing and strictly convex, with
(0) = ¥'(0)=0and lim. 1¢'(z) = $ (which guarantees an interior solution). It is convenient to
denote by U;:j the random variable dePned as the highest realization out of iid draws from each
distribution Fj, for k ' {I,h}. A consumer with type k ' {lI,h} then chooses his investment in

information acquisition to maximize his payo!

# #
3 Wi dE [u,ﬂ #(2)=(1+ 2)8> W) 4B [U;U} # (2). (18)
j=1 j=1

An equilibrium with information acquisition is a triple (F,z;,z;) such that the PrmsO choice of
menus and the consumersO investment decision constitute mutual best respon&es.

Since the marginal benebt of information acquisition isuniformly larger for high than for low
types, we must havez; < z,. As a consequence, the true and adjusted masses of consumer types
satisfy

Pr . Pu(zn)

e B(z)
This implies that, relative to baseline model of Section 2, consumer information acquisition makes
high types Oover-representedO in equilibrium, i.e., Prms behave as if high-type consumers were more

frequent relative to low types than as implied by their actual masses.

4.2 Advertising and Entry by Firms

The model analyzed in the previous sections took the mass of Prmsas exogenous. An important
and realistic possibility is that the number of Prms is endogenously determined. To make things
concrete, we will consider in this subsection the model of Butters (1977), described in Example 3.
Suppose now that launching an advertising campaign cost& dollars, and that there is free entry
among Prms. Firms that do not advertise are not in the informational set of any consumers, and
therefore make zero probts. Accordingly, the decision to advertise (and pay the cod{) coincides
with the PrmsO decision of entering the market.

Let 7™ be the probt of a monopolist; i.e., the probt generated when the monopoly!@r is
accepted with probability one. Whenever the entry cost is smaller than the monopolistOs probt,
K ' (0,7™), the market operates and our model uniquely determines the level of competition in
terms of the mass of Prmg/. Indeed, the mass of brmw (K ) entering is then given by the zero-probt
condition

K=" (0|v(K)) ar™. (19)

2 The existence of an equilibrium with information acquisition follows from the Kakutani fixed-point theorem. The
proof of this claim, which key step establishes that the firms’ and consumers’ payoffs satisfy the appropriate continuity

properties, is available upon request.
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In words, Prms enter until the cost of entry is equal to the benebt. Given that all equilibrium d ers
yield the same expected probt, this benebt is equal to the expected probt generated by the monopoly
o! er (which, recall, is itself d ered in equilibrium). The existence of a uniquev (K ) is guaranteed
by the assumption that K * (0, 7#™) and because, in the Butters model, (0|v) is strictly decreasing

in v with * (0|0) = 1. The mass of entrants v (K) is then decreasing inK, while the distribution
over low-type quality is also decreasing inK in the sense of prst-order stochastic dominance (see
Proposition 3).

The free-entry version of our model described above is appropriate to address a classic question,
raised originally in Butters (1977), regarding the €' cient level of advertising/entry. Absent private
information on consumer preferences, Butters shows that the level of entry in the decentralized
equilibrium is efficient. A simple explanation (not given in Butters, but in later work such as Tirole
(1988, Section 7.3.2.1) and Stegeman (1991)) is as follows. Absent private information on preferences,
all equilibrium o! ers prescribe & cient qualities, and the social surplus generated byany sale is the
same. Because in equilibrium Prms make the same probts from any er in the equilibrium support,
we can analyze a PrmOs entry decision assuming that it makes the monopolyeo (which belongs
to the equilibrium support). Recall that the monopoly o! er only translates in sales if the der is
received by an otherwise unserved consumer, and that in this!cer the brm appropriates the full
social surplus. It then follows that the brmsO private gains from advertising coincide with the social
gains from advertising, in which case advertising/entry is € cient.

This observation no longer holds when consumer preferences are private, as studied in this
paper. Indeed, a planner able to choose the level of entryput not the menus d ered by bPrms,
will choose higher entry than the equilibrium level. To understand why, note that, as in the case of
complete information, we can study a PrmOs entry decisias if this brm were to d er the monopolist
menu (as implied by the fact that all equilibrium menus lead to the same expected probts). To
highlight the novelty of our Pnding, assume that the monopolist menu is such that only high types
are served. Therefore, as under complete information, the monopolist menu gives to the brm the
full social surplus generated by this menu. It then follows that, for a Prm that d ers the monopolist
menu, the private gains from advertising coincide with the social gains from advertising, in which
case advertising/entry is €' cient. However, recall from Proposition 2 that all other equilibrium
menus generate strictly more social surplus than the monopolist menu. As a consequence, there is
a wedge between the private and the social gains from entry/advertising for all brmsther than
the ones d ering the monopolist menu. As result, welfare will increase if the planner subsidizes
entry/advertising (even when brms are free to choose their menus once in markety.

27Tf the monopolist menu serves both low and high types, there is another effect strengthening the inefficiency
result described above. In this case, even the firm offering the monopolist menu makes an inefficient advertising/entry
decision. The reason is that this firm no longer appropriates the full surplus from the menu it offers, as high-type

consumers are endowed to informational rents. This effect is related to the work of Stegeman (1991), who considers a
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5 Conclusion

This paper studied imperfect competition in price-quality schedules in a market with informational
frictions. On the one hand, consumers have private information about their willingness to pay for
quality. On the other, consumers are imperfectly informed about the & ers in the market, which is
the source of PrmsO market power. While Prms are ex-ante identical, equilibrium menus are dispersed
and can be ranked in terms of the generosity of their contracts to all consumer types. Firms that ber
more generous menus provide moré'ecient qualities, and obtain a higher fraction of their probts from

the low-quality goods d ered in their menus. As the market becomes more competitive, equilibrium
approaches the Bertrand outcome. At the other extreme, all ders are close to the monopolistic
menu when competition is su ciently weak. As we vary the mass of brms in the market, or the
degree of informational frictions, we continuously span the entire spectrum of competitive intensity.

We build on the results above to deliver a number of empirical implications that can be useful
in assessing the source of market power enjoyed by Prms. Namely, we show that, under appropriate
conditions, (i) Prms that charge higher baseline prices ber higher baseline quality, (i) Prms that
charge smaller baseline prices charge higher prices for the superior version of the product, and that
(iii) a decrease in the degree of information frictions generatesigher prices for the baseline good.

The equilibrium characterization described above proceeded under the assumption of two con-
sumer types (with no restrictions on the probability distribution). In Appendix B, we extend our
characterization to the case of a continuum of types with a uniform distribution, and show that
our main insights remain true. The chief di" culty for analyzing other specibcations stems from the
requirement that implementable quality schedules be monotonic in consumer types. It is dicult
to identify conditions on primitives that guarantee monotonicity in more general settings (where a
closed-form description of equilibrium is not available). To ascertain the robustness of our Pndings,
we have numerically calculated equilibria for the discrete-type case with various number of types,
and di! erent distributions over consumer types. These numerical results indicate that the bndings
of this paper are robust to other distributions of consumer preferences.

There are several interesting directions for further research. First, for the sake of tractability,
we have assumed that PrmsO capacities are unconstrained, so they are able to bll all orders. Ca-
pacity constraints raise the possibility that those brms d ering the most generous menus sell out, a
possibility that consumers should in turn anticipate. An examination of these Ocongestion!eectsO
seems dl cult but worthwhile.

Second, we assumed that consumers observe the entire menu of qualitielseoed by each prm.
In practice, consumers may fail to consider all of the options that a brm bers; i.e., information

homogeneous good model where consumers have private information as to their reservation values. Stegeman too finds
that the competitive level of entry is inefficiently low, which can be attributed to the fact that the least generous (i.e.,

monopoly) offer in his model leaves positive surplus to the consumer.
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imperfections may pertain also to a consumerQOs ability to observe the entire menu. This possibility
has been explicitly recognized in empirical work (e.g., Sovinsky Goeree (2008)). In theoretical work,
Villas-Boas (2004) studies a monopolist whose consumers may (randomly) observe only the option
designed for the high or low type; extending the analysis to a competitive setting raises additional

challenges.

Third, one may hope to introduce additional dimensions to consumer preferences, such as brand
preferences, to bring the setting closer to the random utility models popular in empirical work
(for instance, suppose that, in addition to the payd s specibed in the model, consumers receive an
additional, continuously distributed, OshockOe o their payo! s from purchasing from each seller).
We expect that our main qualitative insights are robust to this possibility. More broadly, our model
ol ers a useful theoretical benchmark against which models of imperfect competition with brand
preferences can be compared.

Finally, while we focused on sales of goods with variable quality, our results extend to other
contexts where information heterogeneity makes sense. A natural application, for instance, is to labor
markets where workers have private information about their productivities, and are heterogeneously
informed about the job o! ers available in the market. Contracts might pay wages based on the
workerOs output. In such settings, our results indicate dispersion ovet ers, with brms endogenously
segmenting themselves relative to (i) the indirect utility left to all worker types, (ii) the e " ciency of
el ort provision induced by their contracts, and (iii) the share of surplus obtained from workers with
di! erent productivity levels.
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Online Appendix - Not for Publication

6 Appendix A: Proofs

Throughout, we economize notation by suppressing the dependence &§(uy|F, v, pr) on (Fg, Vv, pPx)
for eachk ' {lI,h}; we simply write %. (uz) = %(ug|Fx,V, pr).

Proof of Lemma 1. If the low type is o! ered the quality g, then payo! s must satisfy IC ,, i.e.,
Up) u;+ #0q. (20)

On the other hand, IC; requires that
u; ) u; # # 0q,. (21)

The brm would like to make its ol er as € cient as possible subject to the paybs it delivers to the
consumer.

If up,# u, < #," #0g% then ol ering the & cient quality g for the low type is inconsistent with
(20), and the Prm does best to choose the highest possible value. That is, the brm chooses quality
g (ug, uy) which satisbes (20) with equality, or

up, # U

q (ug, up) oy

If u,# u;) #;, then the constraint (20) does not bind, and the Prm chooses low-type quality
' ciently: q (u;,uy) " o Similarly, let #, " #6q% If u,# u, > #,, then asking the quality g¥
for the high type violates (21), and so the best the brm can do is to choosg, (u;, uy) debPned by

u, # U
#o o

o (U, up) "

If u,# u; < #,, the brm o ers the high-type an ¢ cient quality: q, (u;,up) " q;‘;‘. Q.E.D.
Proof of Lemma 2. To see this claim, note that (u;,u?) # = (u;, u},) equals

% (u) (St (ug,u3) # Sy (ug,up))
+ (% (ujy) # %, (uy)) (Sk (U uz) # uf)

+W%(Ui)< Sn (1, ) # U )

# (Sp, (U, up) # uj)

(22)

The cross-partial ———S; (u;, Up,) is positive if up# u; < # 0ql and zero otherwise. Thus the prst line

u" up,
of (22) is strictly increasing over u; such that u,l1 #u* # eql and constant otherwise. The function
Sk (4u3) is strictly increasing if o, (u;, 2) > q,f‘ and constant otherwise. Thus the second line in

(22) is increasing inu;. The cross-partial Sh (ug, up) is positive if u, # u; > # eqh and is zero
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otherwise. Thus the third term is strictly increasing over u; such that u? # u; ) # 9q,&l and constant
otherwise. These arguments imply the result. Q.E.D.

Proof of Lemma 3. We divide the proof in bve steps.
Step 1 No mass points in the distribution of high-type gfers.

We begin by showing that F;, has no mass points. Assume towards a contradiction there is an
atom of brms d ering 4y,

We brst show that, if a brm makes an equilibrium ¢ er (&;,t;), for some value uj, then
Sp(ty, &,)# &, > 0. Suppose not. Then it must be thatS; (e, &,)# & * 0 (in caseS, (t, tp)# &, * 0
and S;(&;, &) # & > 0, ol ering only the option designed for the low type improves the sellerOs ex-
pected probt because high types accept such an er with positive probability). Hence, « (¢, &) * O.
This contradicts seller optimization. Indeed, the seller could & er a menu which yields the Mussa
and Rosen utilities (u;", u7") and obtain a payo! at least as large as S;f‘# u;') %, (0) > 0.

Next, notice that S;(tt, &) # & ) 0. If not, the seller can probt by d ering the menu
(g,%;) = (0,0) and (g, Xz) = (0% 0,0%# ). Irrespective of whether the low type Pnds it in-
centive compatible to choose the option (00), the seller is guaranteed an expected probt at least as
high as under the original menu.

These two observations imply that = (&; + &, &, + ¢) > w (&, ) for ¢ > 0 su' ciently small,
contradicting the optimality of (<u;, &,). To see this, note that 7 (t; + ¢, &, + €) must be bounded
below by

(6, by) # € [%, (8, + €) + % (&, + €)]
+( Sp(th, ) # &y # ) [%, (8, + €) # %, (81,)],

Since %, (&, + ) # %, (t,,) is bounded above zero ag . 0, and sinceS,(t;, &) # &, > 0, the
expression above is greater thanr (t;, t,) whenevere is su' ciently small.

Step 2 No mass points in the distribution of low-type dfers.

First, we show that there are no mass points inF; at any u; > 0. Suppose towards a contradiction
that F; has a mass point at somai=> 0. Take a brm that o! ers (&, &) . Since, as reasoned above,
Si(&, &) # &) 0, we can consider two cases.

Case 1: Sj(t, &) # &, > 0.

As noted in Step 1, the expected probt conditional on selling to a high type must also be positive.
Notice that in this case 7 (t; + ¢, &, + ¢) is bounded below by

(b, 8) # €[, (8 + €) + % (& + €)]

+( Sy, ap) # & # ) (% (8 + ) # % (1))
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Since% has a mass point atuy, and sinceS;(tt;, &) # & > 0, the expression above is strictly greater
than « (&, &) for ¢ > 0 su' ciently small.

Case 2: Si(ty, wp)# & =0. Let {(q,X;), (G, Xn)} = {( (&, &) , X (87, &5)) , (0 (41, &) , Xp (811, 6)) }
be the menu d ered by the brm. Consider a deviation to the menu{ (g, X; + ), (g, X)} for some
e' (0,&;). This menu generates the same expected probts from high types and is accepted with
positive probability by low types. Moreover, since S, (tt;, &) # &, > 0 (see Step 1) the seller makes
positive probts whether a low-type buyer chooses the optiond;, X; + ¢) or (¢, Xz). Thatis, expected

probts from low types are strictly positive under the deviating o er.

Finally, we show that there can be no mass point inF; at zero. Assume towards a contradiction
that F;(0) > 0. From Step 1 (i.e., since there are no mass points in the distribution of high-type
o! ers), menus (;,uy) ' {0} & [¢,$ ) are then o ered with positive probability . It is easy to see that
there is x > 0 such that S;(0,u;) > x for all u, ' [£,$ ). Therefore, for small > 0 the di! erence
m(n,up) # 7(0,up) is

(% () # % (0) [S; (1, ur) # n]
#9% (0) (S; (0, up) # Sy (n,up) # n).
We can taken®suchthat ' (0, %) implies that the brst line of (23) is at least (% (0..) # % (0)) (%) >
0. Moreover, the second line of (23) converges to 0 ag. 0, which shows a probtable deviation.

(23)

Step 3 The supports$ ;. are intervals.

Suppose for a contradiction that one or both of the supports are disconnected sets. Assume that
$, is disconnected. Then there areyj and u;’ in $,; with u; < u ' such that (u;,ui')/ $; = 0. Consider
values uj, and u}} such that (u}, u}) and (u}', u}}) are optimal. From Steps 1 and 2 and Lemma 2 we
may assume that% (u)) = % (u), %, (u}) = %, (u}) and u; * u;.

If uj, < uj} then there is e > 0 for which 7 (u} # ¢,u}l # ) > «(u},u}). Thus assume that
u, = uy. Forany e' (0,u; # uj), optimality requires = (uj' # £,u}) * «(u}',u}). This implies that
. (ui,ul) > g%, i.e. 1C, binds. Thus 25*’1(:;“%) < 0 at (u},uj}), which implies (using % (uj) =
% (ui')) that m (Auj + (1 # M) uf',up) > Am(uj,ul) + (1 # M\ (uf,uf) for A (0,1). Hence, @}, u})

is not optimal. The proof that $;, is connected is analogous and omitted.

Step 4 The minimum of the supports$; and $ , are, respectively,u;” =0 and uj".

Let u; and u;,, be the minimum of the supports of$; and $ , respectively. It follows from Steps
1 and 2 and from Lemma 2 that (u;, u;) is an optimal menu. IR requiresu; ) 0, and we next show
that u; = 0. To see this, suppose thatu; > 0 and note that u, ) u,;. Since % (0) = % (u;) and
%, (u, # u;) = %, (u,), we haver (0,u, # u;) > = (u;,u;), a contradiction. Hence indeedu; = 0
and sou, ) 0 maximizes

% (0) S; (0, up) + %, (0) (Sn (0, up) # up) . (24)
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Sinceu}" is the only maximizer of (24), the claim follows. We have thus established that, for each
k' {l,h}, the support $; is equal to [u;", @], where g, > u .

Step 5 F; and F;, are absolutely continuous.

We will show that F; is Lipschitz continuous (the proof that F; is absolutely continuous is
analogous and omitted). Notice that from 2. in Assumption 1 it su" ces to show that%, is Lipschitz
continuous. For that, it is enough to show that there are positive valuesKk and ¢ such that, for all
u,' $pandalle’ (0,0), %, (up+ &) # %, (uy) <K e .

First, we claim that we may Pnd a constantS, > 0 such that we haveSy, (uj,u;) # u;, ) S,

for every optimal menu (u}, u!h). The claim follows by the same logic as in Step 1. If the claim

1
o

does not hold, we may Pnd a sequence of optimal menusij{, uy) such that S, (uj,uy) # u; *
Taking a subsequence if necessary, assume that!{,u?) , (u% u$). By the continuity of %, (Steps
1 and 2) and the continuity of S (for k ' {I,h}) we conclude that (uf, u%) is optimal and that
Sp (& u$) # ué = 0. However, we showed in Step 1 that such a menu cannot be optimal.
— " S (1, Tp)
Next, let 6 > 0 and debneg;, := SUP (5, )8 { (0. [+ Fiin( 1) ‘M .

Uh

Take any equilib-
rium menu (u;, uy) ' $;& $4. Notice that, for €' (0,9), 7 (u;,up + €) is

% (u;) [Si(ug, up + €) # U]+ %, (Up + €)[Sp(u, up + €) # up # €]
) % (ug) [Si(uz, up) # Uil + %, (Up) [Sk(ug, up) # up) ] _
#%, (81,) (§n+1) e +[%, (up + &) # %, (U](S, # (§+1) €)

Sincen (U, up + €) * x(u;, uy) we have:

Yo (Un + 2) # %, (Un) , % (Br) (En +1) _ % (B4) (€ + 1)
5 S # (Eptl)e  Sp#(&+1)d°

Since Part 3 of Assumption 1 implies%, (8;,) < +$ , it is then easy to see that our claim holds
provided K is su' ciently large and § su' ciently small. Q.E.D.

Proof of Proposition 1. As explained in the proof sketch contained in the text, we divide the
proof in three steps.

Step 1 Constructing the support function.

Necessity of (7) and (8). We Prst show that %, (§ and % (8 are continuously di! erentiable.
By Assumption 1.2, this implies that each Fj (u;) is continuously di! erentiable as well. Hence, the
prmOs probts (u;, uy) as debned by (6) are continuously dierentiable, with brst-order conditions
given by (7) and (8).
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We focus on the claim that %, (3 is continuously di! erentiable, as the case 0% (g is analogous.

Let u, ' $, and suppose thatu; = @; (u), so that (u;, uy) is an optimal menu. Note that for any

' R, we have

% (U) [Si(ug, up + €) # wl+ %, (U + &) [Sp(u, up + ) # up # €]

= % () [Si(uz, up) # ul + %, (up) [Sp(u, up) # up]
+9% (up) [Si(ug, up + ) # S(ug, up)l + %, (Up) [Sp(up, up + &) # e # Sp(ug, up)]
+[%, (un + &) # %, (Up)][Sn(us, up + €) # up # €].

Sincen (u;, ug) ) m(u;, up + €), we have

[%, (up + &) # %, (Up)][Sp(u, up + €) # up # €]

* 9% () [Si(ug, up) # Si(ug, up + €)1 + %, (Up) [Sk(ug, Up) # Sp(ug, up + €) + €].
Next, for any ¢ ' R such thatu, + ' $4, let u;g = @ (u, + €). Thus, we have

% (Upg) [Si(upg up + €) # Upgl + %, (Up + €) [Sp(Uie, Up + ) # up # €]

= % (U8 [Si(uie Un) # Upgl + %, (Up) [Sn(Uie Un) # Up]
+9% (U &) [Si(Ur e, Up + &) # Sj(Urg, Up)] + %, (Up) [Sp(Uie Un + €) # e # Sp(Urg, Up)]
+[ %, (U + &) # %, (Up)] [Sn(uie, Up + ) # up # €].

Sincen (U Uy + €) ) m(U;e Up), We have

[%, (up + €) # %, (Up)][Sp(Uie, U + €) # Up # €]
) % (Ue) [Si(Upe Up) # Si(Upe, Up + €)]+ %, (Up) [Sp(Uie, Up) # Sp(Uie, Uy + €) + €].

For the right derivative we now considere > 0 (the case of the left derivative is analogous). For any
e su"' ciently small, we haveS,(u;,u, + ) # u, # ¢ > 0 (to see this, consider the argument in Step
1 of the proof of Lemma 3). For all suche, we have

( % (Urg) [Si(Uze up) # S(uge up + €)] )
+ %, (Up) [Sn(ure Un) # Sp(uie Up + €) + €] %, (U, + €) # %, (uz)
€[Sn(ure Up + €) # Uy # €] €
( % (Ur) [Si(ur, up) # Si(uy, up + €)] )
+ %, (Un) [Sk(uy, up) # Sp(ug, up + €) + €]

e[Sp(ug,up + &) # up # €]
Next, note that @; (§ must be continuous by Lemma 3, since eaclr, is continuous andF; (6; (uy)) =
Fy (up) for all u,. Henceu;g. u;ase. O, implying that the right derivative of %, (uy) is equal
to
#9 (u) “H) 4 0g, (uy) (19 S )

‘uh

Sp(uz, up) # uy,
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The left derivative can similarly be shown to take the same value, i.e.%, (u) is di! erentiable at uy,.
Using our assumption that IC; is slack, we can thus conclude that

# % (uy) “LLtn) 4 og, (u,)

o/ -

%6, (Up) S%# Uy (25)

oy o W) (1o S N
alu) = Si(ug, up) # u; (26)

Recall that @, < S;f‘ by Lemma 3. Moreover, we must haveS;(u;, u,) # u; > 0 wheneveru, > 0
(this follows from the argument in Step 2, Case 2 of Lemma 3). Hence, both derivatives are Pnite

overuy ' (uy,a).

Verifying (15). Next we want to verify that @; (uy) is di! erentiable with derivative given by
(15). Indeed, note from (26) that % (u;) is strictly positive at u; = @, (uy) for any u, ' (U, @,).

Thus, by the implicit function theorem, ('mi (up) = %, which is precisely (15).
l

Existence and properties of solution to ODE. As described in the main text, (7), (8) and
(15) imply that the support function @i; must satisfy

0(uy) = h (& (un),up), (27)
where

Sy(up up) # up L 1# ZLB (U, up)
& " 1
Sh# Un 1# 2L (ug, up)

h (U, up) = (28)

and where we impose the boundary conditiorug(u;*) = 0. We now show that there exists a unique
solution o; (3 on [u}", SB.
Forany ¢' (O, S;%), the function h (49 is Lipschitz continuous on

((e)" {(ujup) ' [0,SH& [UP, SE# €):up<uy}.

Hence, by the Picard-Lindelef theorem, for anye (O,S,f), and for any (u;, up) in the interior of
( (e), there is a unique local solution to&}(uh) = h(6; (uy),up). Local uniqueness will extend to
global uniqueness, guaranteeing that the equilibrium we construct is the only ordered equilibrium.
Now consider@(uh) = h(&; (us) ,up) with initial condition 6u; (u;") = 0 and note the existence
of » > 0 such that a unique solution exists on {i7*, u;* + 7] where (@ (us) ,u,) remains in ( (0). We
now show that h (g, (ug) ,u,) remains bounded and that (@ (uy),uy) remains in ( (0) also asuy
increases toS¥, implying the existence of a global solution tou) (u,) = h (&, (us) , up) on [u, S§.
We further show that h (&; (uy) , up) remains strictly positive on [u??, S,f‘) (as explained in the main
text, this ensures that the equilibrium we construct is ordered). The problem should be considered

for two regions ofuy,: we show that there exists a valueu§ ' (u7, S& such that u§ # o, (u$) = qf# ¢
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and such that u, # 6; (up) < qf‘# 6 for uy ' [u}’,uf). We then show that uy # 0; (up) > qf#e for
up>uj.

First, we show that, for uj, > u ™, provided uy, # 6, (us) remains belowg# 6, then h (&, (us) , up)
remains in (0,1). First, note that S;(&; (uy),up) # 6; (uy) remains strictly positive: this follows
because ﬁ [S; (6; (up) ,up) # 6; (up)] > 0 wheneverS; (4; (uy) ,up) # 6; (up) is su' ciently close to
zero. Secondh (4, (ug) ,uy) remains below 1 because

S&# up, # (S (8 (up) ,up) # 6; (up))
0o # o (o) # (0,0 (8 (Up) , up) # o (q (6, (up) ,up))) # G (8, (ug) ,up) #6

Onali# o (0 # (0n0p (8; (un) , up) # o (g (8; (up) , up)))
> 0 (29)

and Z- 2L (6 (Up) ,up) > 5k (6 (un) , up) whenever uy, # 6 (up) < qf# 6. Finally, to check that
h (6; (up) , up) remains strictly positive, we note that %TS;Z (6; (up) ,up) < 1 provided uy # 6; (uy) >
uy*, which is guaranteed in turn by the initial condition and that h (&, (u), us) remains less than 1.

We now verify the existence ofu§ ' (up, S& for which u$ # o, (u$) = g*# 6. Suppose that
there is no such valueu$. Then the equalities in (29) must continue to hold for all u, ' (uy*, SH.
Since these expressions are bounded above zero, we must h&€d; (uy) ,uy) # 0; (uy) < 0 asuy
approachesS%, contradicting the observation in the previous claim.

Next, consider extending the solution to uy ' (uz,S,‘f‘). It is easily checked that @ (uy) =
SE# o (SE# up) with a = % * (0,1) satisbesup(uy) = h (8; (up) , ux) and remains in ( (0)
(that @, (us) remains below S follows becauseS&# 6, (u,) = a(S&# uy) > 0).

The extension of the solution tou;, ' (ug,, S;%) completes the construction of the support function.
We can then check that the incentive constraintI1C; (i.e., (21)) is globally satisped, as we do next.

The Incentive Constraint IC; is globally satisfied. The above showed that there isuj, '
(u, S for which uy, # 6,(us) < # 698 for all u, <u§. For u, ' [u$,S% we have

up # O(up) = (up # SO+ o (S&# uy) . (30)
Notice that the derivative of the RHS of (30) w.r.t. uy is 1# « > 0. Hence (30) achieves its maximum

at u, = S& and its maximum is given by

*

ap
S&# S&= # o+ / " (00 # ¢(0)) dq < # O
q

Thus we conclude thatuy, # 6,(uy) ' (# 0d% # 0% for all u, ' (u$, S§. Therefore, the incentive
constraint (21) does not bind along the curve (i (uy) , uy) .

Step 2 Solving for the distribution F.
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As noted above (see Step 4 in the proof of Lemma 3), the least generous equilibrium menu must
be (u",u};’) . Moreover, in equilibrium, all o! ers must yield the same expected probt

8= )" P& (0lv) &Sk, up) # up).
k=lh

Next, observe that there is a valueug > u ;" which solves

C(AV) D P A(Sk(Bi(8r), up) # i (B)) = T
k=l,h
The existence of suchug is guaranteed by the intermediate value theorem, sincékgé% " (1,$)and
since |irnuh*5;2 [Sl(ﬁl (Uh) s Uh) # ﬁl (Uh)] =lim up* S [S;%# Uh] =0
Condition (13) is then simply the requirement that

" (Fa(UAIV) > Pk &Sk(tu(un), up) # Bi(up)) = 7
k=h

for up " [uj, @] where Fp,(m,) = 1. Note then that 2 |37, , pr &(Sk(8i(ur), un) # 6k(uh))] <0
on (uy*,a,). This follows because -4 Tur [up # G;(up)] > 0 and uy, # G;(uy) > uj', and because
ﬁ%(uh) > 0. Hence, Assumption 1.1 and 1.2 imply thatF;, is uniquely debned by (13) and is
increasing and dl erentiable on (uj’, @,). Finally, F; is uniquely dePned byF;(G;(uy)) = Fn(up).

Step 3 Verifying the optimality of equilibrium menus.

It now remains to check that brms have no incentive to deviate from the putative equilibrium
strategies. By construction, all menus (i, uy) such that u,, ' [u}*, @] and u; = @; (uy,) yield the same
probt. Moreover, it is easy to show that we may restrict attention to menus (Ui' -h) [uy, @] &
[ur, 6, (8,)] . Hence, consider a menuu, u;) ' [u7, @,]& [, 6, (@,,)] such that u; € @ (uj). We
have that

/uz(uh) o (e, h)
u) ou u;

/“l(“h) aw(uz, uj) . O (&, 67" (e))
8ul

() 27 (81, )
= — " ¥ dw,d
/ / () auhaul S0

)

m(ty (up,) ,up) # m(u;,up,)

dey

U,Un

The second equality follows becauseQ 0 along the curve {(G; (uy) ,up) : up ' [u?, B,]}. The
inequality follows becauseM ) 0 for all (&;,&,) by Lemma 2. Thus a deviation to menu
(ul, h) is unprobtable. Q.E.D.
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Proof of Proposition 2. Part (i) follows from the following observations. Consider the di! erential

equation un'l (up) = h(6; (uy),up) with h given by (28). Step 2 in the proof of Proposition 1 showed
that there is u§ ' (u, S%) such that h (&, (uy),u,) < 1 for everyu, < u¢. On the other hand, for

up > u¢ we showed thatd'(u,) =1 # o > 0.

Now consider Part (ii). For u; <u§, we have

~d o ipd (R (8 (up)) V) (Si (G (Ur) , up) # Gy (Up))
dup, pr' (Fn(up) V) (SE# up)

(S&# uy)?

\Y

S

(S )’
Sz ulSu*%/miLh)O/Wl> (Sg‘# up) + (Si(6; (up) ,up) # up) 0
(Sf# up)” '

e

(
h

\%

(5
(
(

) <# ;(up) (SE# up) + (Sy(6; (up) ,up) # Oz(Uh))>

°

19%2L ,! S (4 up),u
where the Prst inequality uses Part (i) and the second useg —2 ¢ ) ) < 1 and (28). For
1%L ar (@ (un)un)

up > U, o, (uy) = S&# o (S¥# uy). Thus, the ratio between the probts from the low and high type

is (p ) which is locally constant. Q.E.D.

Proof of Corollary 1. Because the high-type quality is constant atq;f, it is immediate that x; (3
is decreasing inu,. The same is true regarding the low-type pricex; (9 at any u;, > uj (since the
low-type quality is constant at ql&). So takeu, ' [uj’,us] and note that

up # O (up)

=0 #6[(Uh).

X;(Up) = 6
Consider @ (us) = h (8, (us) ,up) with h given by (28) and note that h (0,u}*) = 0 (which implies
that 0} (uy*) = 0). Therefore, since @ (§ and h (49 are continuous,

1# 6 (up)
#0

1# h(6; (ug),up)

X; (Uh) = 6 # 0}(Uh) = 0 20 ’ # h(ﬁl(uh) ,Uh) >0

for all u, su' ciently close to uj".

We will now show that &; (g is convex for u;, < uf. Note that the convexity of @; (g implies that
there exists a uniqueu¢ ' (u7,u$] such that x; (us) > 0 if and only if u, <u z. To see whyuj (g is
convex, let us di erentiate (12) to obtain that

du St (G (up) , up) + @i (up) a( ) 7 1) Sy (G (up) , up) # G; (up,)
S&# uy S&# uy,

6! (up) = a1 '(up),
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where .
P
# LLol (G (Up) , Up)

1# oot (60 (up) , up)

1 (up) "

Recall from the proof of Proposition 2 that 1 (u;) ' (0, 1) for u; < u§ and that ﬁsl (6; (up) ,up) >
0. Moreover, straightforward di! erentiation shows that 1 '(u;) > 0. Coupled together, these facts
imply that @' (u,) > 0 for u, <u¢, as claimed. Q.E.D.

Proof of Proposition 3. We only prove 1. The proof of 2. is analogous and omitted. Since we
are considering ordered equilibrium?® it su" ces to show thatF,(u,) * B,(uy) for all uj,. Towards
a contradiction, take t; such that F; (&) > Fﬁh(ah). Without loss assume thatu;, ' $; (otherwise,
replace uy, with max $ ). Therefore, we have:

"0 V)[PS (0,up") + pr(Sk(0,up) # up)]
=" (Fa(ttn) | V) [P (S (8, O; (817)) # O (61,)) + Pr (Sp (B, Oy (B1)) # )]

and
" (019)[p;aS; (0,u7") + pr (S (0,uy*) # up)]

= (hen) 10) [pr (Sy (e, 01 (8) # 00 (81)) + Pr (Sn (8, 01 (8)) # wn)],

and hence

(B 19) - (E ) (V)

NI ECIE) (D)

On the other hand, F,(t,) > B,(t&),) implies A(IX'/((O%)'”) > A(?(gﬁg))lv) and Condition 1 implies

A(Fy(ap)v)  A(Fn(n)|0) A(Fy (ap)w) < A(En(in)]o) - -
X[y~ > AR and thus AQO[) > A , which contradicts (31). Q.E.D.

Proof of Proposition 4. We brst prove 1. Takeu = max $ ;. We have:

S (0, up") + pr (Sp (0, u") # uy) _ @y
P (Sy (b, O; (8,)) # Oy (&) + Py (Sp (8, 0y (815)) # &) (0] V)

(32)

Notice that lim ,» ¢ R(1|v) = 1 implies that the RHS of (32) convergesto 1 asv, 0. This implies that
the LHS of (32) converges to 1 and hencewdwa;) ,@,) , (0,u;’) asv, 0. The second statement in
1. follows immediately.

Next we prove 2. Take a sequencevy) , $ , and let (F,,) be the corresponding sequence
of distributions over high-type payo! s in the ordered equilibrium. Takey ' (0, 1] and let uz(y) "
F,o(y). We have:

IS (0, Uy") + P (S (0, up) # up) IR TV R,

P (S (u(y), oy (up(y))) # 6; (Ur(y))) + pPn (Sk (un(y), 6 (UR(Y))) # up(y)) ' (O]v)’

8 Using Proposition 5, it is easy to see that this result is true for any equilibrium.
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Notice that the RHS of (33) diverges to$ by assumption. Therefore, the denominator of the LHS
of (33) converges to Q which implies that (@;(u}(y)), u;(y)) converges to the Bertrand menu. The
second statement in 2. follows immediately. Q.E.D.

Proof of Proposition 5. Proposition 3 implies the following. For the unique ordered distribution
described in Proposition 1, there is a valuev® such that v * v¢ implies @, * uj, while v > v ¢ implies
@, > u . What remains to show is that, for v * v¢, the only equilibrium is the ordered equilibrium
(i.e., Part 1 of Proposition 3) as well as the unigueness claims in Part 2 (i.e., regarding menus with
payo! su, * uj and regarding the marginal distributions F;).

Let F be any distribution over menus which describes a (not necessarily ordered) equilibrium.
Let the marginal distributions over indirect utilities be given by Fj; with supports $; as given in
Lemma 3. We begin with the following lemma.

Lemma 4 Consider two equilibrium menus(u;, us), (uj,u;) ' $,& $5. If u, > uy,, then either
u;) u; or both IC, and IC, are slack for both menus (i.e.,u, # u;, uy # u; ' [of# 0, o 6]).

Proof. Supposeu; > up and u; < u,, while either u, # u; / [of# 0, g% 6] or uy # u; ¥ [o°# 0, g5# 6].
By Lemma 2, we have

g (Uz,U!h> 7w (Uivuh) > (U}U;L) + (U, Ug),
contradicting the optimality of ( u;,up,) or (uj, uj). Q.E.D.

An immediate implication of this lemma is that if ( u;, u;) is a menu for which1C; or IC}, binds
(i.e., up# u 1 [ 0, g4 0]), then there exists no other equilibrium menu (u;, u}) for which u; < u;
and u!h > Uy 0r u} > u; and u’h <uy. SinceF; and F;, are absolutely continuous by Lemma 3, we
can conclude hence thatF; (u;) = Fj, (up).

Next, note that there exists ¢ > 0 such that IC, binds for all u, * u}"+ . Thus, for every menu
(uz,up) with up, * up* + ¢, we haveF; (u;) = F;(uy). Debne a strictly increasing and continuous
function x by x (up) := Fl%1 (Fr (up)) (here we use Lemma 3 which guarantees both the continuity
of F; and Fj, and that both are strictly increasing). Using Lemma 4, it is easy to see that there can
be no menu (i, up,) with u; < s (uj" + ¢) but u; € ~(u). Thus, we have established that, for any
equilibrium menu (u;, ug), with u, <u*+ecoru; < x(U' + €), u; = s (Uy). The arguments in Step
1 of the proof of Proposition 1 then imply that « (g = d@; (4 on [u}*,u}* + ¢).

We can extend the above argument to show that all menus;, uy) with u, <u§ or u; < @ (uy)
must also be given by (5 (uy) ,up) for someu, <uj. To see this, let

Uy :=sup {u, : 2 eqm menus (uj, uy), Uy <ujp or u; < G (uy) implies u; = @y (u,)}.  (34)

As argued above,uy > uj’. Suppose with a view to contradiction that U, < ujf. Since we must
have u; ) 6, (U) for any equilibrium menu with u;, ) U, there must existp > 0 su' ciently small
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that IC, binds for all u, * u, + 7 (indeed, this must follow becauselC;, binds at (&; (03) , uy)).
The same arguments as above then imply that, for any equilibrium menu (;, u;) with u, < a, + 7
or u; < b;(uy + n), u; = @, (uy). Hence,w, cannot be the supremum in (34), our contradiction.
Thus, we have established thatuy ) uj. This establishes Part 1 of the proposition: In case
v * v¢ we haveu, * ug for all equilibrium menus, as implied by the requirement that all menus
generate the same expected probts. This also establishes our claim in Part 2 that non-ordered
equilibria di! er only in menus for whichu;, > u§ (the existence of such non-ordered equilibria is
straightforward and left to the reader).
To establish our remaining claims, we consider menus for whichi;, ) uj and u; ) G (uj). We

show that
1 O/(h u
B = ger) (3
h
. % (u
B = (36)
l

for these values ofu;, andu;. This implies that % and %, are precisely those functions determined in
Proposition 1; hence, the marginal distributions F;, are identical in any equilibrium. As a result, as
shown in the proof of Proposition 1, neither incentive constraint can bind for equilibrium menus with
up ) ug andu; ) 0 (uf) (a binding incentive constraint at (u;, uz) would imply F; (u;) = Fj, (ug),
but then u; = @, (uy) and neither incentive constraint binds at (&; (uy) , u) as shown in the proof of
Proposition 1).

It is easy to see that the equilibrium menu with high-type payo! uf is unique and equal to
(G; (ug), u;{b)?g Neither of the incentive constraints IC; or IC, bind at this menu. This allows us to
establish that (35) and (36) hold at (d; (uj) ,us). We consider (35) as the case of (36) is analogous.
We use a similar argument to that in Step 1 of the proof of Proposition 1. For anye' R such that
ug+e' $y, let (ug uj + <) be a corresponding equilibrium menu. The same arguments as in the
proof of Proposition 1 imply

( % (Up,e) [Si(Ure, U) # Sy(Upe, U + )] )
+ %, (U5) [Sh(upe Uf) # Sp(upe Uj + €) + €]

€ [Sh(UL&, usg + e) # ug # 5]
%, (U5 + <) # %, (uf)

13
( % (b, (uf)) [Su(tn (uf) , us) # Sy(an (uf) ,us + €)] )

+ %, (u$) [Sp(8; (Us) , us) # Sp(8; (us) ,ug + €) + €]
€ [Sh(fjl (uﬁ) g+ e) # up # 5]

*

2By the previous argument, any equilibrium menu (uz, uf) must satisfy u; > 0, (uj). Ifu; > 0; (ug), then IC, binds
at (U, uf) implying that F; (u;) = Fy (uf), a contradiction (since Fj (uf,) = F; (0, (uf,)) by the previous argument and

continuity of F; and Fp).
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We then use that*’

im Si(ure up) # Si(Uie Uj, + €) _ im Si(8; (u) , up) # Si(G (up) . uj + €) _ 0
& 0 £ &0 £

and

Sn(ue uf) # Sp(ue uj, + €) = Sp(6; (up) ,up) # Sp(b; (uj),up +€)=0

to conclude that
%, (uf)
Sk ug”

Next, observe that there existsny > 0 such that incentive constraints are slack for any equilibrium

%, (Uf) =

menu with up, ' [uf,uf + n]. This is obtained from (i) the above observation that if (u;,u) is a
menu for which an incentive constraint|C . binds, then F; (u;) = Fy, (up,), and (i) uj# 0; (uf) = ql&# 0
together with %, (u$) < % (&, (u5)) (equivalently, F; (u$) <F /(g (u$))).

As with the derivatives %, (u$) and % (&, (u$)), one obtains (35) and (36) on L, u$ + 7). We
then use again thatF; (u;) = Fp (up) for any menu (u;, ug) for which an incentive constraint binds
to obtain that the constraints must be slack for any equilibrium menu with u; ) uj. To see this,
let

ui” = sup {u, : 1C; and IC, are slack for all eqm. menus(uj, u},) with u}," [u$,us]}.

The above property, together with continuity of F; and Fy,, implies that, if u < @, then uf # u* ¥
(# qu‘,# Hq,f‘) for ul# satisfying F; (ul#) = Fy (uh#) However, F; and F;, must agree with functions
derived in Proposition 1 on, respectively, [u;”, 0 (u#)} and [u?j, u,ﬂ. Henceu? = (u#). This

contradicts our bnding in the proof of Proposition 1 that uf* # @, <u#) " (#0g% # 09Y). Q.E.D.

7 Appendix B: Competition and Market Coverage with a Contin-
uum of Types

The aim of this section is to extend the binary-types model developed in the paper to a continuum-
type setting, thus conbrming that our main insights are robust to this more general environment.
For tractability, we let consumer valuations be uniformly distributed in the unit interval [0 , 1], and
assume that brms costs are quadraticio(q) = %éqQ. The reason for these assumptions is the follow-
ing: Characterizing an ordered equilibrium with a continuum of types requires solving a nonlinear
partial di ! erential equation with nonstandard boundary conditions (as will be described below). For
arbitrary distributions of valuations and cost functions, this equation does not admit a closed-form

30 This follows after noticing that, for any ! > 0, there exists " > 0 such that, for all |# < ", u§ —u;» € (A$g —!, A$q;].
This follows after noticing that either both incentive constraints are slack at (U, uj, +#), or one of IC; and IC , bind,

in which case u;» = F;"* (Fp, (u§, +#)), which tends to 0; (uf,) as # — 0.
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solution, and the (few) existence results available in the literature on partial di erential equations
do not apply. While we believe that our results extend to environments other than the uniform-
guadratic, computing equilibria in such environments requires numerical techniques which are out
of the scope of this work3!

The analysis proceeds analogously to that of Section 3. Firms post price-quality menull "
((a(8),x(8) : 6" [0,1]), where g(0) is the quality, and x(#) is the price of the contract designed for
type 6. We let u(d) " 6 aq(0) # x(6) be the indirect utility of type 6. By standard arguments, a
menu M is incentive compatible (IC) if and only if the indirect utility schedule u(g is absolutely
continuous (with derivative u'(6) = q(#) almost everywhere), and convex. The set of all menu$/
that are incentive compatible and individually rational (i.e., u(#)) O forall ' [0, 1]) is denoted by
I. For convenience, and in light of incentive compatibility, we write M = u(d to describe the menu
M " ((g(f),x(9): 6" [0,1]), whereq(h) = u'(#) and x(6) = 6 au'(#) # u(6) for almost every 6.

As in the model with binary types, we model the heterogeneity of information possessed by
consumers by means of sales functions satisfying Assumption 1. For a given cross-section distribution
over menusF (with support S + 1), we denote by F (u; #) the marginal distribution over indirect
utilities for each type 6 (with support $(6)). We can therefore write a brmOs probt-maximization
problem as that of choosing an indirect utility scheduleu(d to maximize the functional

wlu] /01' (F (u(6); 0)|v) a<9 au'(h) # u(v) # ;a[u!(e)f) do. (37)

The expression above computes the total probts of a menu(d by integrating the product of the
sales volume," (F (u(#); 8)|v), with the probts per sale, x(6) # % aq(h)?, over all types ' [0, 1].

Analogously to the binary type model, we focus on ordered equilibrium, as formally debPned
below.

Definition 3 [Ordered Equilibrium] An ordered equilibrium is a distribution over menusF (with
marginal distribution over type-¢ indirect utilities F (§6)) such that

1. M =u(@' S+ Timplies that M = u(§ maximizes (37),

2. if u(@,0(3 ' S, and u(d) > a6(g) for somed' [0,1], then u(f) ) () for all "' [0,1], with
strict inequality wheneveru(6) > 0.

The Prst condition in the dePnition above is the usual probt-maximization requirement. The
second condition captures the OorderedO feature of our equilibrium: If a menu is Omore generousO to
one type of consumer, then it is more generous to all consumer types that are served by that menu.

As in the case with binary types, it is convenient to describe the supportS by indexing each
scheduleu(d ' S by the indirect utility received by the highest type 6 = 1. Accordingly, we denote

%1 Below, we derive general necessary conditions of equilibria that might be amenable to numerical analysis.
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by V (6, @) the indirect utility received by type @ in the menu where the highest typed = 1 obtains
utility a1. For a given ordered equilibrium, we refer to the bivariate function V(48 as its support
schedule Note that V (6, 8) is strictly increasing in @ at every type 6 that is not excluded (i.e,
V(6,a) > 0).

We further restrict attention to equilibria exhibiting the following OsmoothnessO properties.
We say that an ordered equilibrium is smooth if at every pair (6,w) such that V(6,8) > O the
following conditions hold: (i) the support schedule V (¢, @) is twice continuously di! erentiable in
#, and continuously di! erentiable in @, (ii) the distribution of type- 6 indirect utilities, F(§6), is
absolutely continuous with density f (§6), and (iii) the mapping F (u; #) is continuously di! erentiable
in @ for eachu.

7.1 Equilibrium Characterization

The next proposition describes a smooth ordered equilibrium.

Proposition 6 [Equilibrium Characterization - Continuum of Types ] There exists a smooth
ordered equilibrium. In this equilibrium, the support of indirect utilities o ffered by bPrms is described
by the support schedule
V (6, 8) = max Lo (18 L ) arar L #10 (38)
Y 4 40 2 4o 458 [’
with domain on [0, 1] & [, 1].

The equilibrium distribution over menus for the highest type solves

(F(m V) _ I (39)
© (0lv) I (9 avi(0,8) # V(0,8) # 1 a[Vi(0, w)]2> do’

where the supremum point of$ (1), denoted @, is determined byF (&;1) = 1.

Equilibrium Construction. The equilibrium construction under a continuum of types closely
mirrors that of the binary type model from the previous section. First, the ordered nature of
equilibrium, together with the ranking property of kernels, implies that

C(F(1)v) =" (F(V(0,); 0)|v) (40)

at every pair (¢,w) such that V(0,@) > 0. Di! erentiating the expression above with respect toug
leads to the continuous analogue of equation (15):

(R D) & (B1) [ 1 (F(V(0,8); 0)|v) & (V (0, 8); 0) e

Va(0, 8) = ' (F (3 1)|v) - (F(V(6,8); 0)|v) |

(41)
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which states that the partial derivative of the support schedule with respect to wat (¢, @) equals the
ratio between the semi-elasticities of sales with respect to indirect utilities between the highest type
and type 6.

Second, for a smooth equilibrium, the optimality of equilibrium menus implies that the following
Euler equation must hold at any (¢, @) where V (6, @) > 0O:

"1(F(V(6,@);0)|v) &f (V(6,w);0) é<9 avi(0,e) # V(6,0) # %(Vl(G, 0))2>

sales gains

= " (F(V(0,m),0)lv) + ' (F(V(0,8);0)|v) é;e{@# Vi(0,8)}. (42)

profit losses

efficiency effect
Analogously to the prst-order conditions (7) and (8), the Euler equation above identibes the
three d ects that determine the PrmsO optimal choice of menus. The Prst term captures thé et
of generosity on sales, while the second! ect accounts for the é ect of generosity on probts per
sale. More interestingly, the third term captures the € ect of increasing the indirect utility of type
6 on the quality distortions of its OadjacentO types (as implied by incentive constraints). Similarly
to the binary type model, the optimality condition alone is not enough to sign the €' ciency € ect:
While increasing the indirect utility of type @ allows the Prm to decrease quality distortions to its
Olower neighborsO, it also tightens the IC constraints of its Oupper neighborsO (which leads to higher
distortions).
Combining the ranking condition (41) with the optimality condition (42) leads to the follow-
ing partial di! erential equation, that the support schedule has to satisfy in any smooth ordered
equilibrium:
2# Vi1(1,8) ,08Vi(0,8) # V(0,8) #  &\Vi(,8))*

Va(0,8) =
2(0.8) = SV, 0 Ye

(43)

The partial di! erential equation above is the analogue of the ordinary dierential equation (12) from
Proposition 1. Guided by the binary type model, we posit that the support schedule has to satisfy
the following boundary conditions:

2
V <0, i) = max {92# 6+ 411’0}’ \Y; <9, ;) = % Vi(l,8) =1, and V(1,8)=m@. (44)

The Prst boundary condition in (44) states that the Mussa-Rosen menu is the OlowestO menu in
the support S (in the sense that it provides the lowest indirect utility to every type). Intuitively,

the Prm that o! ers the least generous menu is preferred to any other brm known to the consumer.
Therefore, this Pbrm must d er the monopoly menu. The second boundary condition guarantees that
equilibrium menus approach the Bertrand (or €' cient) menu as brms relinquish the total surplus
to consumers. The third boundary condition requires that the highest type is d ered the € cient
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Figure 3: The quality schedules associated withugs {0.25,0.3,0.35,0.4,0.45,0.5}, from the bottom
to the top curves, respectively. The bottom curve is the Mussa-Rosen quality schedule, while the top
curve is the Bertrand quality schedule. The schedules loered in equilibrium are those with @* @.

quality in all menus in S. The last boundary condition requires that the solution to (43) be consistent
with the dePnition of the support scheduleV (4, a).

The support scheduleV (6, @) in equation (38) solves the partial di! erential equation (43) subject
to the boundary conditions in (44). In the proof of Proposition 6, contained in the Appendix, we
formalize the equilibrium construction sketched above. Most importantly, we establish that the Euler
equation (42) is a necessary and sucient condition that any menu that maximizes (37) has to satisfy,
and rule out deviations to menus that d er out-of-equilibrium contracts to any type.

Finally, similarly to Proposition 1, the indi ! erence condition (42) guarantees that all menus
o! ered in equilibrium lead to the same total probts as the Mussa-Rosen menu. As before, the
matching technology, captured by the kernel' (y|v), determines the upper limit in the support of
indirect utilities to the highest consumer type, @, as well as its cumulative distribution function,
F (=; 1). By virtue of the ordered nature of the equilibrium, the distribution over indirect utilities of
any type #' [0,1) can be recovered from equation (40).

7.2 Equilibrium Properties

Let us start our discussion of equilibrium properties with the relationship between generosity and
distortions. To do so, let us consider the collection of quality schedules

q(f,@) " Vi(6,8) = max {ZgaéeJr (1# 2;) ,0}, (45)
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indexed by the indirect utility o ! ered to the highest type. First, we see that wheneveg(6, ) > 0

we have that
0q(6,e) _ 1# 0 S

0o 2w
Therefore, as in the binary type model, distortions decrease for all types as bPrmd er more generous

0.

menus. Figure 3 above depicts some quality scheduled ered in equilibrium.
We now consider the ¢ ects of competition on market coverage. From (45), the range of types
served by a menu with highest-type utility @ is the interval [«(wd), 1], where

a(@) =1 # 2@ (46)

It follows from (46) that «(@) is decreasing inug Therefore, Prms segment themselves according
to the range of consumer types served by their menus, which we caithclusiveness As such, more
generous brms, as captured by,are also more inclusive, in the sense that they serve a larger range of
types. At one extreme lies the Mussa-Rosen menu, which is the least generous and the least inclusive
equilibrium menu. At the other extreme lies the menu associated with highest-type indirect utility

@, which is the most generous and most inclusive menu!red in equilibrium. This is illustrated in
Figure 3 above.

Finally, and analogously to the binary-type model, brms that o er more generous menus make
more sales to consumers with low willingness to pay. Formally, for eacl#' ' (0, 1), the share of
probts obtained from consumers with typed ' [0, 6'] is increasing inu. We collect these bndings in
Proposition 7.

Proposition 7 [Equilibrium Properties ] The following properties hold in the ordered equilibrium
of Proposition 6.

1. E" ciency: Menus for which consumers earn higher pay@s are more ¢ficient, i.e., q(,B) is
increasing in v, strictly wheneverd < 1 and qg(6, ) > 0.

2. Inclusiveness : Firms that o ffer more generous contracts serve a larger set of consumers, i.e.,
the range[«(md), 1] of types served expands ag increases.

3. Probts: Firms that offer more generous menus derive a greater share of probts from con-
sumers with low willingness to pay, i.e., relative to total probts, the ratio of probts derived
from consumers with types in any interval of the form[0, #'], where ' < 1, is increasing in @.

7.3 Comparative Statics

The continuous-type model of this section enables us to study how the range of types served in
equilibrium, [ «(@), 1], which we call market coverage is a ected by competition.
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The next proposition shows that the equilibrium market coverage monotonically approaches
its competitive level as the mass of brms increases. At one extreme, as, 0, the equilibrium
market coverage approaches its monopolistic level, where only consumers with willingness to pay in
the interval [% 1] are served. At the other extreme, asv , $ , the equilibrium market coverage
approaches its & cient level, i.e., full market coverage.

Proposition 8 [Competition and Market Coverage: Comparative Statics ] Consider the
smooth ordered equilibrium of Proposition 6, and assume that condition VM holds. Denote by (3 6)
and P(46) the equilibrium distributions over indirect utilities of type # when the mass of brms iw
and 9, respectively.

1. If v > %, then F(406) brst-order stochastically dominates®(46) for all ' [0,1]. In particular,
the equilibrium market coverage[«(@), 1], expands asv increases.

2. If lim, gR(1|v) = 1, then, as the mass of bPrms converges to zer@,, 0, the equilibrium
distribution over menus converges to a degenerate distribution centered at the monopolistic
(Mussa-Rosen) menu. In particular, the equilibrium market coverage monotonically converges
to its monopoly level.

3. If limys R(ylv) = $ for all y ' (0,1], then, as the mass of bPrms grows largey , $
the distribution over menus converges to a degenerate distribution centered at the competitive
(Bertrand) menu. In particular, the equilibrium market coverage monotonically approaches
[0, 1], i.e., full market coverage.

Similarly to Section 3, the results above can be recast in terms of the levels of frictions of the
matching technology, as discussed in Remarks 4 and 5.

Proofs of results for continuum-types model

7.4 Outline

The goal of this section is to prove Proposition 6. We start in Section 5.5 deriving necessary conditions
for a smooth ordered equilibrium for a general type distribution and cost function. As we will see,
these necessary conditions involve a solution to a partial dierential equation which relates the quality
schedule of a certain menu to its generosity. In Section 5.6 we specialize to the uniform quadratic
case. We start by postulating a closed-form solution to this partial di erential equation, and we
check it is a solution in Section 5.6.1. Given this solution, we are able to propose an equilibrium
allocation in Section 5.6.2. The rest of the appendix is then devoted to verifying that we have an
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equilibrium. In Section 5.6.3 we verify that all menus in the support of the proposed allocation
yield the same probt. Next, in Section 5.6.4 we invoke a calculus of variations existence theorem to
show that the Prms® problem has a solution. Finally, in Sectio?? we show that the only menus
satisfying calculus of variations necessary conditions for an optimum are those found in the support
of the putative equilibrium menus. This shows that all equilibrium menus maximize brm probts, as
required.

7.5 General Necessary Conditions

Here we will derive the analogue for a continuum of types of the support function obtained in the
case of a binary type space. As described in the main text, the brms® problem is to choose an
indirect utility schedule u(#) to maximize

/. " (F (u(0); 0) lv) &0 aui(0) # o(u(0)) # u(b)) ah(0)do, (47)

where ' is the kernel of the matching technology, ¢(g) is the cost of producing a good of quality
g, and h(0) is the density of type @ (with support [, #). In order to ease the notation below we
suppress the dependence of on v, writing ' (F (V(8,u); 8)) for ' (F (V(6,u); 6) |v).

We posit that in equilibrium each Prm is indi! erent between choosing any schedule in some
support S. Each of the scheduleau(#) in S are strictly increasing and weakly convex inf (that is,
there is an implementable direct-revelation mechanism delivering an indirect utility u()).

We can conveniently describe the supportS by indexing each schedule by the indirect utility
received by type # Denote by V (6, u) the indirect utility received by type 6 when type # obtains
utility u. Note that V(#,u) = u. The set of indirect utility schedules is then

S={V(,u):u" [e" %},

where @" is the Mussa-Rosen indirect utility of type # and $% is the Bertrand indirect utility of
type # &% max, {Q’éq# cp(q)}. Given that we wish to characterize a smooth equilibrium, we look
for a support scheduleV (6, u) which is twice continuously di! erentiable at every point such that
V(6,u) > 0.
It is a property of the ordered equilibrium that for any two types 6,8 ' [0, # such that
V(6,u),V(F,u)> 0
(F(V(O,u);0) = (F <V(9‘: u); é’)) . (48)
It is an implication of (48) that
e F O =0. (49

That V (&, u) = u implies
PRV ;)= (F(u;8).
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Di! erentiating with respect to u leads to
(R (V(0,u); 0)) & (V(6,u);0) &Va(6,u) = ' (F(u; @) &f (V (B u);0). (50)

Optimality implies that every menu V(6,u) ' S has to satisfy the following Euler equation at
any 6 whereV (6,u) > 0:

(R (V(G,u); 0)) & (V(6,u); 0) &0 &Vi(0,u) # o (Vi(6, 1) # V(6,u)) h(0) # * (F (V (6, u); 6)) &h(6)

= d% {" (F(V(8,u);0)) (6 # ¢'(Vi(6,1))) &h(6) } . (51)

Because of (49), it follows that

% {* (F(V(8,u);0) &(0# ©'(V1(0,u))) ah(6) }

d | .
=" (F V(O u)0) a, {(0# ¢'(Va(8,u))) &h(0) } . (52)
Plugging (52) into (51) and manipulating leads to:

(R (V(9,u);0) h(8) + & {(6# ' (Vi(6,u))) &h(h)}

TEFNog) S VONN= G W # o (i@, ) # V(0.0) ah@) (53)
Let us choosed = #in (53) to obtain that:
vl . d ! A _
F(8) (g = NOF (O3 0L &), o

' (F (u;9) — (PanBu)# o (Vi(Bu) # u)ah(B)

Note that

(' (F (V(0,u); )

i . %1 ,- !(F (U;@)) ) . B
F V0.0 0) af (V (0, u),9)> S Fuf) af (V(0,u); &) = Va(,u), (55)

F(u;8)
where the equality follows from (50).
Dividing (54) by (53), and using the relation (55), we then obtain that

(6 aV1(6,u) # o (Va(6, 1)) # V(6,u)) 8h(6) h(B+ J{(Vi(6,u) # &' (Vi(6,u)) &n(O)}, ¢

V0D B # o (M@ W) # V) BB hE)+ L {((0,0) # SV ) dr(E))

We posit that in the ordered equilibrium the highest type #is always assigned the & cient quality
level. The PDE is then

(6 &Vi(6, u) # o (Va(6, 1) # V (6, 1)) dh(6) h(B)+ a {LVi(8,u) # @' (Va(6, 1)) &h(9)} ¢
(%# u) ah(® h(8) + & {(Vi(6,u) # ' (Vi(6, 1)) 8h(O)}
(56)

VQ(G, U) =

57



Denote by @" the indirect utility of type #in the Mussa-Rosen schedule. The PDE (56) has to
be solved in the rangeu ' [@™, %4, 6' [9, # with boundary conditions

V(6,8 = max 0 aq# o(0), (57)
_— 1# F(0)) .
V(0,8™) = m%x (9# h(9)> aq# «(q), (58)
Vi(#u) = Vi(P (59)
and
V(#u) = u. (60)

The boundary condition (57) states that the Bertrand schedule is the OsupremumO contract in
the support S. The boundary condition (58) states that the Mussa-Rosen schedule is the OinbmumO
contract in the support S. The boundary condition (59) requires that the type & receives the same
quality (which is the e" cient one) in all contracts in S. The boundary condition (60) requires that
the solution to (56) is consistent with the depbnition of V (6, u). Conditions (56)-(60) are necessary
conditions for a smooth ordered equilibrium when there is a continuum of types. Unfortunately, the
well known existence and uniqueness results for partial dlierential equations do not apply. In order
to make progress in this df' cult problem, we restrict attention to the linear quadratic case in the
next section.

7.6 Uniform-Quadratic Case

Assume that production costs are quadratic, ©(qQ) = % ag?, and types are uniformly distributed,
6 3 U[0,1].
The PDE (56) becomes

2# Vi (B u) 08&Vi(0,u)# 3 aVi(6,u)*# V(0,u)

Va(6, ) =
A e R VATTAT) Iy

; (61)

with domain on [0, 1] & [3, 3].

The proposed solution to the PDE above subject to the boundary conditions (57)-(60) is

1 1 1
% = &+ (1# - |+ u+ # 1
0.0 4éua9 ( Zéu> &+ u 44u

7.6.1 Verification of the Partial Differential Equation

Let us brst compute partial derivatives:

1 1
Vv =~ a0+ (1# 2
16,0) Zéuae ( 2éu>’ 62)
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and

1 1 1
AP+ — A+ i
4 au? 2 au? 4 4u?

Let us brst verify the boundary conditions. To verify (57), note that %% = % Therefore,

V2(9, U) = #

1 1 1
V(9,%)=V <9, ) = Z &’ =max 0aq# = aj’.
2 2 q 2

H -1
To verify (58), note that @™ = ;. Therefore,

1
V(h,a™) =V (e) =0°# 0+

=

— £ 4 1,.
2 Z_m?( (2a0#1)aq#§aq.

To verify (59), note that

To verify (60), note that

1 1 1
= — + —+t U+ — = u.
VL= g+ 18 orut o # 1=

To verify that (61) is satisped, note that

6 &Vy (6, u) # % a(\Vi(6,u))%# V(6,u)

1 1 1 1 1 \\?
=pal-———a+ (1# - | )| # & a9+ (1#
9a<2aua9 < 2é1u>> 2a<zaua9 < 2éu>>

1 1 1
#-—a’# (1# — |&9#H u#t — +1,
4au ( 2éu> 4au

which, after some algebra, can be shown to be equal to

1 1 1 1
“#u)al# a0’ + & +1#
(2 ) ( 4 4u? 24u? 4éu2>

BecauseV;1(# u) = Vi1(6,u), it follows that (61) holds.

<; # u) av(6,u).

7.6.2 Ordered Equilibrium

Next, we use the family of curves ¥ (6, as))!$[071] for o i %] to propose the equilibrium distribu-
tion over menus F. From (54) and the knowledge ofV we obtain a unique @' (%, 3) such that
fff (m; 1)de = 1. Therefore, in the proposed equilibrium, the brms der menus N(Q-W))!s;[o,u for
o' [%, @] such that a menu less generous than\{(4, u))!$[0,1] is o ered with probability F(g;1).
The rest of this appendix veribes that no bPrm has a probtable deviation. We start verifying that all

menus inS yield the same probt
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7.6.3 Checking Indifference

Here we verify that all menus (V (4, w))!$[0’1] for o’ [i, @] lead to the same probt. We have:

) (u) " /!( )' (FIV(6,u); 6]) é<0 avi(0,u) # %a(vl(e, u) 2 # Vv (o, u)) de,

where a(u) solves
Vi(a(u),u) =0.

It is easy to verify that V («(u),u) =0.
To simplify notation, let

L (V(0,u),Vi(0,u),0) " * (F [V(6,u); 6] é<9 aV1(0,u) # %a(vl(e, w)2# V(o, u)) .

Then .
) '(u) " /-( ){L1(V(HVU),V1(9, u), 0) ava(6,u)} do

+ /! {L2(V(6,u),Vi(0,u),0) &Vi2(0,u)} do
" (u)

#L (V(a(u), u), Vi(a(u), u), a(u)) &a'(u). (63)

Integration by parts delivers that

/'( ){Lg (V(6,u), V1(6, u), 0) V1(0, u)} do
= Ly (V(6,u), Vi(0,u),0) &va(0, u)l'

' [ d
# /(u) V2(9,U) a{de [LQ (V(Q:U),V1(0,u),0)]} do.

Plugging the above into (63) and using the factV (6, u) solves the Euler equation for
every (0,u) with 8 > «(u) leads to

) '(u) = La(V(6,u),Vi(6,u),0) &V, (0, U)I-r(u)# L (V (e(u), u), Vi(a(u), u), au)) &a'(u).
Note that
Ly (V(8,u),V4(8,u),8) = * (F (V(B,u); 8)) 4@ # V4(8,u)) = 0.
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Recall that V (a(u),u) = 0. Total di ! erentiation yields
Vi (e(u), u) &a'(u) + Va(a(u),u) = 0.

Because by constructionV;(a(u),u) = 0, it follows that Vs(a(u),u) = 0. This implies
that
Lo (V(6,u), Vi(6, u),6) &Va(6, )| (,, = 0.

Finally, becauseV («(u),u) =0 and V;i(a(u),u) =0,
L (V(a(u), u), Vi(e(u), u), o(u)) = 0.

This establishes that) '(u) = 0 for all u' [%, @], implying that all proposed menus yield the same
propt.

7.6.4 Existence of a Solution

We write * (u, #) for the sales function from d ering a utility u to the type 8 :* (u,0) " ' (F (u;6)).

For every @' [i 6] write (ug (6)) for the curve (V (0, w))!$[071] . We write ACJO, 1] for the space of

absolutely continuous functions from [Q 1] into R. Hence, we can write the brmOs problem as:

max / 1) (6, u (6) , u(h))do, (64)
0

u$ AC[0,1]

where
) (6,u,u) " * (u,0) {Héuﬂ# %a(uf# ul .

We consider the relaxed problem in whichu@f) = qg(#) ' R and q(¢#) need not be monotonic.
Lemma 5 invokes a calculus of variations existence theorem to show that (64) has a solution.

Lemma 5 The problem (64) has a solution.

Proof. Let A " sup,, * (u,0). It is straightforward to see that we may restrict attention to
allocations such that [9 auil# %:51(1111)2 # u} ) 0 for almost all 8. Therefore

) (6,u,u) *  Afui# %a(uﬁ] = Auﬂ(l# 1éuﬂ> # <;\> a(u)?

4
. AN . o
A# <4>a(uu) .

Hence, we may assume tha} is coercive of degree 2, that is) (6,u, u) * A# (4) &(u)? for (almost)
every (4, u, u). Furthermore, notice that ) (6, u, u) is continuous in (6, u, W) and it is concave inul The
existence of an absolutely continuous solution follows from Theorem 16.2 in Clarke (2013). Q.E.D.
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Conclusion

We will show that the solutions to (64) are the curves g (6)) for @' [% ﬁ] . Our approach is to (i)
show that we must haveu(1) ' [1,@ | for any optimal menu u%, and (ii) show that, for each value
of u&(1) " [i 7] ] the necessary condition for the menw&(6) to be optimal in (64) admits a unique
solution, which is the menu given byu, ) (). Thus, the only candidates for optima in (64) are
the curves Uz (6)), &' [1,4d], identiped above.

We now outline the proof in more detail. In the proof, we will use Theorem 18.1 in Clarke (2013),
which provides necessary conditions for optimal solutions of calculus of variations problems. Hence,
we brst check that the conditions for Theorem 18.1 hold. Next, we consider an optimal allocation
(u&(#)) and divide the analysis into Pve exhaustive cases.

Case 1 deals with u®(1) " (u% Q), ua(l)) . We show that the Euler equation (51) is necessary.
Moreover, this Euler equation leads to an ordinary di erential equation which has a unique solution,
as desired.

Case 2 deals with the possibility that u%(1) > u z(1). We show that (51) then implies u%(6) is
bounded aboveuz () for all #; hence (1%(6)) cannot be optimal.

Case 3 deals with the possibility that u®(1) < u 1 (1). We consider two cases. First, assume
that the curves (u&(6)) and (u% (9)) never intersect in (% 1). In this case, the brm could probtably

deviate by ol ering the menu (u% (9)). Second, assume that the curvesu®(6)) and (u% (0)) intersect
at some %' (% 1). In this case, our argument below implies that the bPrm could probtably deviate
by ol ering the curve (remember that we are considering a relaxed problem in which monotonicity
constraints are ignored):

48(6) = us (6) if 0> 6%
u&é(#) otherwise.
Hence we conclude that this case is not possible.

Case 4 deals with the case thatu®(1) = uz(1). This case is complicated by the fact that
the function * is not di! erentiable along the curve (1z(#)), since* (u',0) = * (u",d) whenever
min{u',u"} ) uz(#). Therefore, we have 0 =* | (Uz(A)+,0) < * 1 (Uz(0) %, 0).32 The proof is thus
divided into two cases. First, it is assumed that there is¢' ' (0, 1) such that u&(#') > uz(6"). The
Euler equation (51) then implies that u%(6) > u 3(#") for all # < ¢' and that G%(9) < 0 for su' ciently
small 6, which contradicts the optimality of ( u(0)).

Thus we may assume thatu®(#) * uz(6) for every 6. We proceed as follows. First, we use
calculus of variations necessary conditions which do not require tierentiability. 3> Roughly, when

the function * fails to be di! erentiable along the curveu®(#) we have a generalized Euler equation in

32For a function h : R% — R we write hy (a=,b) for limg_yq— w and hi (a+,b) for limgy_q+

33We follow the analysis of Clarke (2013). Definitions are given in the proof of Proposition 6 below.

h(z,b) —h(a,b)

T—a
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which a subgradienté (6) © 91* (u(6), 6) plays the role of the the derivative of * (u&(#), 6) .3* In this
case, we show that the generalized Euler equation picks the left subgradierit (u&(6), ) with respect
to u for almost every point. Hence, the fact that * is not di! erentiable along the curve (1%(9)) is
immaterial and the conclusion that (u%(#)) = ( uz(6)) follows from the argument given in Case 1.
Heuristically, our argument proceeds as follows. Suppose we have an interval [, 6] in which the
Euler equation picks a subgradienté (6) < * 1 (u&(6)«, 6) . Therefore, since* is not di! erentiable
only along the curve (ug(9)) it must be that (for 6= su" ciently close to 6 ):

u¥(0) = ug(9) 20" [0 ,6(]. (65)

Recall that the curve (uz(0)) is constructed by the Euler equation in which the subgradient* (uz(6), 6)
is selected and thatu&(H() = ug(f¢). Hence, since (0) < * 1 (uz(0)o%, 0) for every 6 ' [0 ,0(] the
curves (uz(0)) and (u’(0)) drift apart for 6 su" ciently close to 6, which contradicts (65).%°

Case 5 deals with the case thatu®(1) = us (1). We show that the function * is di! erentiable

along (u% (0) ,0>| .- Therefore, the di" culties which arose in Case 4 do not appear here and an
>3

argument analogous to the one from Case 1 implies thatu®(6)) = (u% (0)) .

Proof of Proposition 6. Write (u%(6)) for an optimal menu. We will show that for every @' [, @]
the menu (ug (6)) is optimal. Our proof will use the necessary conditions from Theorem 18.1 in
Clarke (2013). In order to use this Theorem, we must check that our primitives satisfy the following
Lipschitz condition.

Conditions for application of Theorem 18.1 in Clarke (2013). Let K > 0 be such that
¥ (ug (6),0)# * (uy (6).0)] * K |u (6) # uy (6)] for all curves (u¢ (6)) ,(uy () © ACI[0,1] and all
0. Since max,, |0 &q# 1 ac?| * % we have, for all (u¢ (6)),(uy () ' AC[0, 1], all 6,
) (6,u( (6),ug (6)) # ) (6,uy (6),up (6))]
U (0),0) ol ()% k00 u )] # 7 (0 (0).0) [0 b (0)# 540 (0)*# v, )]
* K uc (0) # uy (O)] + KA uig () # up (0)] -

Hence the Lipschitz condition (LH) in page 348 of Clarke (2013) is satisbed, allowing application of
Theorem 18.1 in Clarke (2013).

We have bve cases.

Case 1: ué(1)" (u% 1), Uﬁ(l)) .

% For a function h : R2 — R, we write %h (a,b) for all subgradients of the function x — h(x,b) at h (a,b).
3 The proof would follow essentially the steps that we just explained if we could assume that the Euler equation

picks a subgradient &($) € % ¥ (ug($),$) — #in an interval [$s,$s]. However, assuming that such property holds in an

entire interval may be with loss of generality, which makes the formal analysis below a little more complicated.
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Notice that, since u&(6) is absolutely continuous, there ise; > 0 and a neighborhood of
{(6,u%(0) ik (0)): 0 [1# 1, 1]

for which ) is C2. Thus condition (E) for a (locally C' function) in Theorem 18.1 assures the
existence of an argp®: [0,1], R for which, for almost every 6,

&1
(o) = 9) (8,u%(0) , uf*())

B ou&(h) (66)
9) (6,u®(0) , uk(9))
p%(6) U (6) : (67)

From the transversality condition (T) in Theorem 18.1 we conclude thatp%(1) = 0 and thus there
isex ' (0,e1) for which & () ' [1,2] for (almost) all ' [1# e, 1]. It follows from (67) that, for
(almost) all ' [1# e, 1], we have

p%(6)
*(u(),0))’

and henceu(#) is a Lipschitz function on this interval. Since ) (0, u(0),u(#)) is strictly concave in

w(o) = 9#(

ui(6) on this interval and * is smooth on this interval, we may apply Theorem 15.7 in Clarke (2013)
to conclude that u (#) is a smooth function for this interval. Therefore, the Euler Equation

% *(u(0),0)(0# uw(d)] = {* (u(o),0) [9 aui(o) # % a(u () # u (9)” (68)

ou (6)

holds for this interval. Let (y (6),y'(d)) be a solution of the Euler equation (68) subject toy(1) =
u&(1). The Picard-Lindelef theorem establishes that this solution is unique andy(6) = u¥(6) for all
6" [1# e9,1]. We can then extend the solution fy () ,y'(9)) to values # such that y (§) remains
strictly positive. Again, the solution is unique for these values. This establishes thatu®(6) = y ()
must be the unique function solving (68) for all6 ' [0 (u&(1)) , 1], whered (u%(1)) is the largest value
of # at which y (6) = 0. One can verify moreover that we must haveu®(#) = 0 for 0 * 9 (u%(1)).

Case 2: u&4(1) > uz(1).

To show that this is inconsistent with optimality of u®, we consider the cost function%q2 extended
over all of R. Suboptimality for this cost function implies suboptimality also for the problem when
negative @ ort is not permitted (as assumed in the model).

Using a similar argument to the one from Case 2 one can show that there exists> 0 and a
neighborhood of { (A, u%(9) ,uf(0)) : ' [1# ¢, 1]} for which an increase inu(f) does not increase
sales, that is* (u%(6),6) = A, and the Euler equation holds. Thus, the Euler equation (68) implies
u#&(h) = 2. Since from the transversality condition (T) in Theorem 18.1 we haveufi(1) = 1 we
conclude that there is an interval for which u&(9) = 6%# 6+ c. Let [6,, 1] be the largest interval with
this property.
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Next, consider the Euler equation (68) evaluated at the curve (;(0)) . Since* (uz(6),0) = A we

have:
* 196(Ug(0) %, 0)
A

thus ui, (0) > uf(0) for all ' (0,,1). Therefore 6, < 6 (u, (1)), where 6 (u, (1))is the largest value
of ¢ such that u, (¢) = 0. Recalling that «(u, (1)) satisPesuy (a (u, (1))) = 0, we conclude that,

b, (0) =2 # 0 &u, (0) # %é(uilﬂ @)*# u, (0)| < v&(0) =2,

forall ' (6,4, a(u, (1)) we have uf(#) < 0. Itis then easy to see that the seller has a probtable
deviation.

Case 3: u4(1) <u 1 ).

Proceeding exactly as in Case 2, we conclude that there is an interval@(1) for which u% is
smooth. Furthermore, we haveu§(1) = 1 and, for all ' (&,1), u%() = 2. We see that:

“1(us (6), .6)

A TR )

1 2
[9 iy (0) # 5 &(us (0)) # us (9)] ,
which shows that uy (6) * () for every 6 (0,1).

First, assume that uy () > u&(g) for all 6 for which u&(9) > 0. Write B " * (uz (1), ,1). In
this case, the brm sells to each consumer for which®(6) > 0 with probability B. Therefore, the
probt from this contract is weakly lower than the probt from a monopolist who faces a constant sales
function equal to B. Since the unique solution to the later problem is given by the curve(u% («9))
we conclude that there is a probtable deviation.

Next, assume that there is#' for which 0 < u 1 (') = u®(6") and let 6% be the greatestd' satisfying
this condition. Recall that the curve li% (8) solved:

max i) B [} [9 aui(0) # 1 a(u(0))> # u(e)} do

. (69)
s.ti u(g) = [1 u(z)dzfor all 6" [3,1]
2
which implies that (uﬂ% (9)).$[. ., Solves
max, B [e aui(0) # L a(u(0))> # u(e)] do
(3¢ ’)%ﬂ%«,n (70)

st u(d) = us (6% + [ uiz)dzfor all 6" [6%1].

was (a.e.) unique and(uﬂ% (0)) is di! erent from (MF‘(H))!$[! “1] in a subset

Since (uﬂ% (0)>!$[! *,1] 1$[ 1]
of positive measure, we conclude that % (6)) is not optimal.

Case 4: u%(1) = uz(1).

First we claim that u&%(#) * u, (0) for every 6. Suppose that there isg' ' (0,1) such that
ué(0') > u, (6" . Let %' (6", 1] be the smallestd > ¢' such that ué() = u, (). Thus notice that

* (u&(0),0) = Aforall ' (0',60%. Therefore, using an argument similar to the one from Case 1,
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we conclude thatu® is smooth in (¢', 0%). Thus, we haveu (0% * u, (%) and by the same argument
as in Case 2,u&(0) > w, (0) for all 0" (¢',0%. Therefore, uf(0) < uy, (9) forall 6" (a(u, (1)),0%
and thus there is®" (a (u, (1)) ,6%) such that 6" (oz(uﬂ ) ,@) implies u&(¢) > 0 and uf(6) < O,
a contradiction.

The rest of this proof of this case is complicated because the functioh (4 6) is not di! erentiable
along the curve (U, (6),6) . Indeed, we haved;* (u, (6),6) = [0,* 1(u, (6),.0)] .>® In this case, we
have to write Condition (E) in Theorem 18.1 in Clarke (2013) in its general form, which implies?”

i) * # * (Wk(),0) + a* (u(0),0) [9 auf (0) # %a(lm&(e))Z# u&(e)} (71)
p%0) = * (uk(9),0)[0# uf(0)]. (72)

Condition (T) implies p%1) = 0 and hence we can bnd an intervald ' [1# &, 1] for which uf(6) is
Lipschitz. We Px this interval in the analysis below. We claim that

wi(0) = #* (ud(9),0) + o r&,‘?x(.).)f [9 auf (0) # %é.(lﬂl&(G))Q# u&(G)] (73)
1P (u*(!),!
for every Lebesgue point of this interval. That is, for all § * [1# ¢, 1) for which we have a Lebesgue
point, i.e.
ot IH(O) # ()] dx
0=lim = ,
&0 2¢

we have (73). Sincep%is integrable, Theorem 7.7 in Rudin (1987) implies that almost every point is
a Lebesgue point. Hence (73) holds almost everywhere. Therefore, since non-dientiabilities occur
on a zero measure set, and since we have established in the brst paragraph of the analysis of this
Case that u® * u,, the rest of the analysis is identical to Case 1. Thus we will conclude that proof
by showing that (73) holds at every Lebesgue point op%

Towards a contradiction, consider a Lebesgue point for which

’ . (& . 1, 2, &
pf(0) < #* (ud(0),0) + *$"1%)5<!>7!)5 0 &uif () # 2a(llll&(0)) #u (9)]. (74)

Clearly we haveu®(0) = u, (6) . Next, we will show that G%(¢) = 4, () . Towards a contradiction
assume thatu§(9) € a, (). From (72) we have u§(9) = 0 # \11(578%')
* (u&(0), 0) are continuous) we can bnd an interval @ # ¢, 6 + €) for which ‘mﬁ(ﬁ) # uil, (6’)‘ >0

and hence (sincep’(d) and

% Recall that, for a function h : # — R we write %h (a, b) for all subgradients of the function x — h(x,b) at h (a,b).
3" The condition (E) from Theorem 18.1 in Clarke reads: p'($) € cd : (' ,p($)) € %II($,u* ($),u" ($)) where

%11 is the limiting subdifferential of II with respect of (u, U) (see Definition 11.10 in Clarke (2013)). The necessary
condition above follows from Exercise 18.4 in Clarke (2013) that states that the condition above implies: (p'($), p($)) €
Y% II($,u” ($),u" ($)), where %11 is a generalized subdifferential (see Definition 10.3 in Clarke (2013)) with respect to
(u, U). Given the primitives of our model, it is immediate to verify that %11 is just the set of subgradients of II with
respect to (u, U).
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forall ' (0# €60+ €) which implies that 6 is the only point that u® (B‘) = u, (9) in this interval.
Hence, (73) holds (a.e.) in this interval.

Next, assume towards a contradiction that we can bPnd a lebesgue poirtt of pf and ¢ > 0 such
that u&(9) = a, (¢) and

f(6)

B (UE(0) 00+ * 1(uy (O, 0) [0 4 (0) # 2 AE(O)># u*(0) | # ¢ (75)
g, (0)# (.

Let B, be the (smooth) arc associated with the curve ¢, (9)). Since 0 is a Lebesgue point we can
Pnd e > 0 such that for every &' (6# ¢, ) we have:

W dz _ frm@)dz, ¢ (76)
0# 6 0# 6 2

Notice that (76) implies that there is @' (6 # ¢, §) such that u® (9’) = u, (9’) Using (72) we have
for all g (9 9)

i (0) # W (F) = 0% G+ (*( e )# <(‘§EZ;9)>
) O# o# (j((e)&z?&(;))
- v o (e
| o gu (f( n;g((;)a;)) C(é):t )

(9# 9)

= GO, (7) =

where the brst inequality uses* (u&( ) 6) * * (u&(h),0) = A and the second inequality uses (76).
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Therefore, sinceufi(9) = 4, (9) we haveuﬁ‘(é”) * Ul (H) # w Therefore, we have

u, (0) # u, (9’)
= u&) # ut (9’)

= / uf(z) dz

* /' [tu]ﬂ(z)# C(G:&Z)] dz

= u,(0)# u, (@)# (i)f (0# 2) dz

= u, () #u, (5’)# <2CA> (9# @)2,

which is absurd.

Case 5: u&(1) = u%(l).

Forall #' (3,1) the numerator on the RHS of (53) is 1+ {9 # V; (6, u)} . Using (62), the last ex-
pression is 1+4 {9 # ﬁ a0 # (1# ﬁ)} = 0. Hence, from (53) we conclude that* (us (6). ) =
* 1(u% (0)g,,0) = 0. Thus we can bnd a neighborhood of{, us (9), uﬂ% (0)) 150,17 in which ) is (a.e.)
C!. Therefore, the argument in Case 1 appliesmutatis mutandis, to this case. This completes the

proof of Proposition 6. Q.E.D.

7.7 Equilibrium Properties and Comparative Statics

Proof of Proposition 7. We only need to prove (iii). Take # and u such that the g(8,u) > 0. The
probt obtained from this type as a function of u is * (u, §) a&é(u, 6), where

d(u, 6) (77)
o [0GRa (1 ) # (e (1# 55)°
# (L a0+ (1# L)a+u+ L#1) '

Therefore, we have:
d [, B 6)do
du | [6(u,6)d

. 0 (gq 80+ (1# 5,)) # 3

f1%2u #(1 4~ N2 1 A
8%+ (1# ) a0+

) # 5 (

_ % taa#l
“ du . 2
W (oG ) G (1# ) ,
' # (L a0+ (1# L)ag+u+ L#1) ]

8 u? 4u%# (0# 1)
(1#60) (12u2# 02 +20 # 1)

= 4

68



First, we claim that 12u?# (9 # 1)> > 0 for all #) «(u). Indeed, since the expression is decreasing
in 6 we have 122 # (# 1)?) 12u?# (o(u) # 1)?> =8u? > 0. Therefore, the denominator is always
strictly positive. Second notice that 4u?# (0 # 1) is strictly decreasing in @ and g(¢,u) > 0 implies
6> a(u) =1 # 2u. Therefore A2 # (# 1)? > 4u># (a(u) # 1)? = 0, which establishes that the term
above is strictly positive. Q.E.D.

Proof of Proposition 8. The proof is analogous to the proof of Proposition 4 and is omitted for
brevity. Q.E.D.
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