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Abstract: We study a Bayesian coordination game where agents receive private infor-

mation on the game’s payoff structure. In addition, agents receive private signals that

inform them of each other’s private information. We show that once agents possess these

different types of information, there exists a coordination game in the evaluation of this

information. Even though the precisions of both signal types is exogenous, the precision

with which agents forecast each other’s actions in equilibrium turns out to be endogenous.

As a consequence, there exist multiple equilibria which differ with regard to the way that

agents weight their private information to forecast each other’s actions. Finally, even

though all players’ signals are of identical quality, it turns out that efficient equilibria are

asymmetric.

Keywords: Coordination Games, Equilibrium Selection, Primary Signals, Sec-

ondary Signals

This version: September 23, 2015

1 Introduction

Games with strategic complementarities give players a strong incentive to choose mutually

consistent strategies. In reality, such choices are often complicated by the fact that players

know neither the game’s exact payoffs nor the other player’s actions. In such environments

1We thank Martin Hellwig for comments and for spotting an error. We also received helpful com-

ments and questions from Brian Cooper, Alia Gizatulina, Olga Gorelkina, Alexander Morell, seminar

participants in Bonn, the 2015 Game Theory Conference in Stony Brook and the EEA conference in

Mannheim.
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player’s have to rely on different “pieces” of private information to predict the other

player’s actions and thus their own payoffs from playing a particular strategy. That is,

players try to sense whether and to which extend, the other player may be “leaning”

towards a particular action or that the other player might “misunderstand” the game,

or, respectively, may be under the “wrong impression” as to the situation. The current

paper studies how players use diverse pieces of private information in coordination games.

Players receive two types of private information (i) a “primary signal” that informs them

of the game’s payoff structure and (ii) a new “secondary signal” that informs players of

each other’s private believes over the games payoff structure. Where the “secondary”

signal informs one player of the believes, biases, optimism and “wrong impressions” that

the other player may have concerning the game. The key prediction of our model is that

such heterogeneous pieces of information induce a coordination game in the evaluation

of this information. As a consequence, there emerge multiple equilibria which differ with

regard to the way that agents weight their private information to forecast each other’s

actions. And, even though all players’ signals are of identical quality, it turns out that

efficient equilibria are asymmetric.

Compared to the literature, we find that the new signal type, which partially informs

players of each other’s believes regarding the games payoffs, changes the predictions as

to which equilibria are played. In particular Rubinstein (1989) and Carlsson and van

Damme (1993), show that players play unique symmetric threshold equilibria in coordi-

nation games where agents rely only on “primary information” which informs them of

the game’s payoff structure. In the current game, where players receive both “primary”

signals on the game’s unknown coefficients and “secondary” signals which allow agents

to partially observe each other’s information, we show that there emerges a coordination

game regarding the evaluation of this information. In particular, there emerges a class of

asymmetric equilibria in which agents weight their private information asymmetrically.

The significance of this new equilibrium class lies in the fact that asymmetric equilibria

Pareto-dominate the symmetric ones with which they coexist.

More precisely, the players of Rubinstein (1989) and Carlsson and van Damme (1993)

reason only indirectly about each other. They receive a signal regarding the game’s

payoffs, which they use to update their beliefs regarding the game’s coefficients. Second,

knowing that the other agent’s signal is correlated with their own, they use their signal to

infer the other player’s posterior beliefs. In the present paper, we argue that players

usually know more than that. Often players can observe directly parts of the other

player’s observation. That is, in the context of the coordinated attack interpretation of
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the Rubinstein (1989) “electronic mail game”, the general may observe that his messenger

is off to a “good start”. Thus, the chances that he eventually arrives at the other camp are

better than usual. Put differently, the sender of the “primary message” knows that the

other player most likely received a message indicating that a particular game was chosen.

Or, alternatively, one general can observe from a distance that someone entered the other

general’s camp. While he cannot be sure whether it was his messenger or someone else,

this observation induces him to revise upward the probability with which the other general

received the news. On the other hand, if the sender sees that the messenger is off to a

bad start, then he knows that it is less likely that the message will reach its receiver.

If one player conditions his actions on the “primary signal”, which informs him of the

particular game chosen by nature, the other player will have an incentive to condition on

his “secondary signal”, which informs him of the “primary signal” that the other player

received, and vice versa. Such asymmetric evaluation of signals maximizes the precision

with which players can anticipate each other’s actions. That is, even though the precision

of both signal types is exogenous, the precision with which agents anticipate each other’s

actions in equilibrium turns out to be endogenous. Consequently, there exist multiple

asymmetric equilibria that differ regarding the way that agents weight the different types

of private information that they receive, to reason about each other’s actions.

We formalize this intuition in the context of the Rubinstein (1989) electronic mail

game. First, we introduce the basic information structure, where agents purely rely on

the correlation of their private observations to infer the other agent’s beliefs. That is, in

equilibrium, agents rely on the fact that they did not receive a confirmation of their last

message, which may mean either that their last message did not reach the receiver, or that

the receiver’s reply was lost. Within this setting, we recall the main insight, namely that

agents play a unique risk-dominant equilibrium. In the following, we refer to the basic

signals from the electronic mail game as primary signals. In the main part, we introduce

a secondary signal which allows agents to make additional inference on the other agent’s

observations. That is, we introduce a noisy signal that allows players to reason directly

about the probability with which their (primary) signal reached the receiver. For the

modified setting, players can coordinate on multiple equilibria if players observe each

other’s signal with great precision.

To interpret our findings, we compare two classes of equilibria: (i) symmetric equilibria

and (ii) asymmetric equilibria. The distinguishing feature of a symmetric equilibrium will

be that agents weight their two signal types equally. In an asymmetric equilibrium one

agent leans heavily on the secondary signal, while the other agent has an incentive to lean
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heavily on his primary signal and vice versa. The key feature is therefore that the two

signals are “cross complements”. That is, if player one relies heavily on his secondary

signal, then the other player has an incentive to rely on his primary signal. Such an

asymmetric weighting of private signals enables agents to maximize the precision with

which they can forecast each other’s actions. Finally, to emphasize the importance of the

class of asymmetric equilibria, we show that asymmetric equilibria dominate symmetric

equilibria on efficiency grounds.

Related Literature: The main contribution of the present paper is the introduction of

a new class of private signals. Namely, signals about the other player’s signals. For the

generalized signal structure we show that multiple equilibria emerge once private signals

are sufficiently precise. Moreover, we show that some of these equilibria are asymmetric.

Compared to the literature, we note that Rubinstein (1989), Carlsson and van Damme

(1993), and Frankel et al. (2003) have studied two-action coordination games, where agents

receive what we call primary signals that allow them to make inference on the game’s

unknown coefficients.2 Moreover, through the correlation of private information, agents

can reason about each other’s posteriors and actions. Regarding equilibrium selection,

these studies predict that unique symmetric equilibria are ensured once private signals are

sufficiently precise. The present example shows that the existence of secondary private

signals can invert this finding: multiple equilibria, symmetric and asymmetric, are ensured

once the private signals are sufficiently precise.

Regarding different types of signals, Morris and Shin (2004), Hellwig (2002), Metz

(2002), and Angeletos and Werning (2006) emphasize the role of public signals/common

priors in the global games framework, showing that such signals restore equilibrium mul-

tiplicity if public signals are sufficiently precise compared to the private signal; we give

an example where multiplicity arises in pure private signal environments. A further class

of signals was introduced by Minelli and Polemarchakis (2003), Angeletos and Werning

(2006), and Dasgupta (2007), who study environments where agents observe each other’s

actions. Such signals tend to induce unique equilibria in the two-player games of Minelli

and Polemarchakis (2003), where signals over each other’s actions are perfectly revealing.

Angeletos and Werning (2006), and Dasgupta (2007) study public signals that partially

reveal the other player’s actions. They show that multiplicity may emerge if the public

2See Frankel et al. (2003) for a broad literature overview on equilibrium selection through what we

call primary signals. Carlsson and van Damme (1993), pp. 1008-1010, and Morris and Shin (2007) for a

detailed comparison of their “global games”, which rely on continuous distributions, with the “electronic

mail game” and its discrete information structure.

4



signal is of high quality. Kuhle (2015) gives an example where the public signal’s qual-

ity reduces the number of equilibria. Finally, we note that the aforementioned models

feature symmetric equilibria, while the current study emphasizes the existence of asym-

metric equilibria. To close, Rubinstein (1989) points out that equilibrium multiplicity

may reemerge once there is a technical upper bound for the number of exchanged mes-

sages. Similarly, multiplicity also obtains in the model of Binmore and Samuelson (2001),

where agents can decide whether or not to send electronic messages which are costly.

The paper is organized as follows. Section 2 outlines our electronic mail game. In

Section 2.1, we recall the uniqueness result for the modified game without secondary

signals. Section 3 contains the main result. Sections 5 concludes.

2 A symmetric electronic mail game

There are two players 1 and 2. Each has two actions A and B to choose from. And there

is uncertainty about which game Ga or Gb the two players are going to play. Games a and

b differ regarding their payoffs. Nature selects game a with probability 1− p and game b

with probability p < 1
2
. The game’s payoffs are:

Game Ga

A B

A M,M 0,−L
B −L, 0 0, 0

Game Gb

A B

A 0, 0 0,−L
B −L, 0 M,M

Moreover, we assume L > M > 0. Hence, players face a coordination problem in both

states of the world: if players coordinate on actions A (B) in state a (b), they receive M

each, while coordination on B (A) yields 0 to both players. However, if players fail to

coordinate, i.e., choose different actions, then the player who plays B receives −L, and the

payoff for playing A is 0. Players receive private information on the game’s fundamental

before they choose an action. The probability p, the payoff structure, and the forthcoming

communication protocol are common knowledge among players.

Before players choose action A or B simultaneously, they receive information T1 and

T2 respectively: In state a, both players get information T1 = T2 = 0. In state b, one

player is randomly selected with probability 1
2
, and informed of the true state b. The

selected player i then sends a message to player j. The message, however, is lost with

probability ε. Upon receiving a message, player j sends a confirmation back to player

i which is also lost with probability ε. These messages are exchanged until finally one
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message is lost and communication ends. Players 1 and 2 now choose their actions based

on the number of messages T1 and T2 that they received.

The present game therefore differs from the Rubinstein (1989) game in that it is

random which player spots the actual game selected, and starts to inform the other

player. Moreover, we assume that both players do not know who was selected to send the

first message.3 This symmetric structure accommodates a more natural interpretation

of the asymmetric equilibria that players play once we introduce secondary signals that

inform players about each other’s primary signals T1 and T2. That is, unlike Rubinstein

(1989), we endow players with signals of identical quality and assume that the probability

with which they observe the true state of nature, is the same (1/2) across players. We

make this assumption to interpret and emphasize the emergence of asymmetric equilibria

where players differ with regard to the use of their private information. The propositions

in this paper regarding the existence of multiple asymmetric equilibria continue to hold

once we set the probability with which player 1 observes the true state of nature to one

as in Rubinstein (1989). Finally, in the context of the coordinated attack interpretation

of the electronic mail game, it seems natural that players do not necessarily know that

“player 1” always observes the true state of nature first.

2.1 Rubinstein’s Equilibrium

Before turning to our main findings, we restate the uniqueness result of Rubinstein (1989)

for our symmetric mail game.

Proposition 1. There exists only one equilibrium in which player 1 plays A in the state

of nature a. In this equilibrium, both players play A, irrespective of the number of received

messages T1 and T2.

Proof. See Appendix A for the proof via induction.

Proposition 1 recalls the inductive equilibrium selection mechanism that operates

through higher-order beliefs: If player 1 plays A for T1 = 0, then player 2 also plays

A, and this induces both players to always play A when Ti > 0, i = 1, 2. That is, even

though both players Ti > 0, i = 1, 2 know that game b was selected, players still play

(A,A), despite the fact that (B,B) would be payoff-dominant. However, as in Rubinstein

(1989), there exists a second equilibrium, where both players play (B,B) all the time,

3In Appendix D, we derive our main result for the original Rubinstein (1989) game, where player 1 is

informed of the state of nature with probability 1.
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receiving a zero payoff. This equilibrium does not exist if in game Ga the payoff from

playing (B,B) is negative, rather than 0, for both players4. In this case, there exists

only one unique equilibrium, where both players play A. Such a modification of payoffs,

which may be introduced throughout the paper, would bring us closer to the formulation

of Carlsson and van Damme (1993), where there exist unique strict equilibria for certain

signal values.5

3 Observing each other’s observations

Let us now add a secondary signal Z1 and Z2 as another source of private information:

player i not only gets information Ti but also observes

Zi :=

{
Tj with probability 1− ψ
Tj + 1 with probability ψ .

The secondary signal Z1 informs player 1 of the primary signal T2 that player 2 received.

As such, the secondary signal carries two types of information. First, it allows player 1 to

reason about the true fundamental of the game. That is, through its dependence on T2,

Z1 is correlated with nature’s choice of a fundamental. Second, and more importantly, Z1

allows player 1 to look directly at T2. In turn, this direct look at T2 informs him about

the probability with which player 2 plays A or B. In the following main propositions 3, 5

and 6, we show that this “direct look” at the other player’s signal will induce asymmetric

equilibria, in which players weight their signals Z and T differently. That is, if player

1 conditions his actions mainly on his primary signal T1, then player 2 will have an

incentive to weight signal Z2 heavily and vice versa. Put differently, the signals Ti, Zj

deliver complementary information for the purpose of coordination, while the signals

Ti, Tj do only so to a lesser degree.

To underscore the significance of these asymmetric equilibria, we proceed in three

steps. First, we show that they exist. Second, we describe the symmetric equilibria, where

agents weight their signals symmetrically. Third, we show that the asymmetric equilibria

welfare-dominate symmetric equilibria. Before we study the asymmetric equilibria, we

note that the Rubinstein (1989) equilibrium carries over to the environment where agents

receive primary and secondary signals.

4This would correspond to the existence of a strict dominance region as in global games.
5See Carlsson and van Damme (1993), pp. 1008-1010, and Morris and Shin (2007) for a detailed

discussion of the relation between global games and mail games.
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Proposition 2. When information T1, Z1 and T2, Z2 are available to players, there exists

an equilibrium in which both players play A irrespective of the information received.

Proof. Suppose player 1 thinks that player 2 plays A for sure. Irrespective of (T1, Z1),

the following holds: Choosing B will yield a payoff −L, while taking action A will secure

him a payoff of M . The same argument can be made for player 2, and thus we have

established that the strategy profile (A,A) is an equilibrium.

In this equilibrium, both players receive a zero payoff, even in those situations where

they know that playing (B,B) would yield a higher payoff. However, players can use their

private signals to coordinate on an alternative class of equilibria:

Proposition 3. If the secondary signals’ precision is sufficiently high (ψ sufficiently

small), there exist two asymmetric threshold equilibria for every n ∈ {1, 2, 3, . . . }: In

one equilibrium, player 1 plays B if and only if T1 ≥ n + 1 (which implies Z1 ≥ n), and

player 2 plays B if and only if Z2 ≥ n + 1 and T2 ≥ n. Reversing the roles of players 1

and 2 yields a second equilibrium.

Proof. Let us consider the first equilibrium with cutoff n.

1. Take the behavior of player 2 as given. There are three cases to consider:

(a) T1 < n: Player 1 is sure that Z2 ≤ n and hence plays A.

(b) T1 = n: With probability 1−ψ (ψ) player 2’s information is Z2 = n (Z2 = n+1).

Playing A secures a payoff of zero for sure; playing B yields an expected payoff

larger than (1−ψ)(−L) +ψM , which is the first player’s payoff from B, when

player 2 always plays B given Z2 > n. Thus, for ψ ≤ L
L+M

=: ψ1 playing A is

optimal.

(c) T1 ≥ n+ 1: Player 1 is sure that Z2 ≥ n+ 1 and T2 ≥ n, hence finds it optimal

to play B.

2. Equivalently, now take the behavior of player 1 as given.

(a) Z2 ≤ n: Player 2 knows that T1 ≤ n, and thus plays A.

(b) Z2 > n+ 1: Player 2 knows that T1 ≥ n+ 1, and thus plays B.

(c) Z2 = n+ 1: Here we have to take care of four sub-cases:

i. T2 = n− 1: Hence T1 = n for sure and player 2 thus chooses A.
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ii. T2 = n: Defining λψ := P (T1 ≤ n|T2 = n ∧ Z2 = n + 1) = ψ

ψ+ 1−ε
2

(1−ψ) , the

payoff for playing B can be written as λψ(−L) + (1−λψ)M . From this we

obtain a boundary ψ2 := (1−ε)M
2L−(1−ε)M > 0, which ensures that for all ψ ≤ ψ2

playing B is optimal for player 2. That is, for ψ ≤ ψ2 the expected payoff

of playing B is non-negative.

iii. T2 = n+ 1: We can repeat the same argument using µψ := P (T1 ≤ n|T2 =

n + 1 ∧ Z2 = n + 1) = ψ
ψ+(1−ε)(1−ψ) . It holds that µψ < λψ, such that for

all ψ ≤ ψ2 playing B is optimal for player 2.

iv. T2 = n+ 2: Hence T1 = n+ 1 for sure, and player 2 chooses B.

Again, we can choose ψ sufficiently small, i.e. ψ ≤ min{ψ1, ψ2}, such that the strategy

profile from the proposition is indeed an equilibrium.

To interpret the equilibria in Proposition 3 we note that players weight primary and

secondary signals asymmetrically. That is, if player 1 switches from playing A to playing

B for signal pairs T1 ≥ n+1, Z1 ≥ n, then player 2 switches from A to B for signal values

T2 ≥ n, Z2 ≥ n + 1. And, as the proof shows, signals where the trigger strategy requires

values greater or equal n+1 carry the main information regarding the other player’s signals

and actions. On the contrary, signals where the trigger strategy requires values greater or

equal n carry little information on other player’s signals. More precisely, player 1 relies

in his inference about the other player’s action on the fact that T1 ≥ n+ 1 informs him of

the fact that T2 ≥ n, Z2 ≥ n+ 1. Hence, player 1 relies on his primary signal to infer the

action of player 2. The main reason for player 1’s reliance on his primary signal T1, is that

player 2 conditions his actions on T2 ≥ n, Z2 ≥ n+ 1. That is, as steps 2.(c)i− iv in the

proof show, player 2 relies on his secondary signal to infer the action of player 1. In turn,

player 1’s reliance on the secondary signal Z1 justifies player 2’s reliance on the primary

signal... This complementarity between player 1’s primary and player 2’s secondary signal

ensures that asymmetric weighting of signals is an equilibrium. Put differently, players

face a coordination game in the weighting of their private signals; players can choose their

cutoff values Ti, Zi in a way that makes it easy for their counterpart to assess whether

their requirement for playing B is met or not. In the present case, this means leaning on

the primary signal once the opponent leans on the secondary signal and vice versa.
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4 Welfare

The main purpose of the following propositions 4-6 is to emphasize the role of asymmetric

equilibria further. First, we show that there also exist symmetric equilibria, where agents

weight their signals equally. Moreover, we show that not every configuration of cutoffs is

an equilibrium. Second, proposition 5 underscores that multiple equilibria emerge once

private signals are of high quality. Finally, proposition 6 documents that asymmetric

equilibria, in which agents exploit the complementarity between primary and secondary

signals, welfare dominate the symmetric equilibria of proposition 4.

Proposition 4. If the secondary signals’ precision is sufficiently high, there exist sym-

metric monotone equilibria for every n ∈ {1, 2, 3, . . . }, where players weight their signals

equally such that both players play B if and only if Ti ≥ n+ 1 and Zi ≥ n+ 1. There exist

no symmetric monotone equilibria, where both players play B if and only if Ti ≥ n + 1

and Zi ≥ n+ 2 (or Ti ≥ n+ 2 and Zi ≥ n+ 1).

Proof. See Appendix B.

Propositions 2-4 close our discussion on equilibrium multiplicity. As remarked earlier,

we follow Rubinstein (1989) and focus on equilibria where players always play A if nature

selects game a. This rules out equilibria, where players play B,B all the time. Regarding

the current propositions, it also rules out additional equilibria involving n = 0.

One might suspect6 that multiplicity depends on the relative precisions of primary

and secondary signals, i.e., a high ε/ψ ratio may be required. This, however, is not the

case:

Proposition 5. There exist upper bounds ε̄ > 0 and ψ̄ > 0, such that the equilibria

described in propositions 3 and 4 exist for all combinations of ε ≤ ε̄ and ψ ≤ ψ̄.

Proof. For propositions 3 and 4 to hold, we need a sufficiently small error probability for

the secondary signal, i.e., ψ ≤ min[ψ1, ψ2, ψ3], where ψ1 = L
L+M

, ψ2 = (1−ε)M
2L−(1−ε)M , and

ψ3 = (1−ε)M
L+(1−ε)M . It therefore suffices for show that the limits of ψ1, ψ2, ψ3 for ε → 0 are

positive: First, observe that ψ1 is positive and does not depend on ε. Second, lim
ε→0

ψ2 =
M

2L−M > 0. Finally, lim
ε→0

ψ3 = M
L+M

> 0.

6In the public and private information frameworks of Hellwig (2002), Morris and Shin (2004), and

Angeletos and Werning (2006), multiple symmetric equilibria emerge once public signals or priors are

sufficiently precise relative to private signals.
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Our results therefore differ fundamentally from those obtained by Carlsson and van

Damme (1993), Frankel et al. (2003), and Morris and Shin (2007), where equilibrium

selection works best once private information is very precise. The equilibria in Proposition

3 rely on a coordination game in the evaluation of this information. And this incentive

to coordinate is strongest once private signals are very informative.

Finally, we argue that asymmetric equilibria deserve special scrutiny since they are

welfare-dominant:

Proposition 6. If the secondary private signals are very precise, asymmetric equilibria

of Proposition 3 welfare-dominate the symmetric ones of Proposition 4 for every given

cutoff n. Furthermore, the asymmetric equilibria described in Proposition 3 for n = 1

welfare-dominate those where n > 1.

Proof. See Appendix C.

That is, once agents exploit the complementarity in weighting the primary and sec-

ondary signal, which gives rise to the asymmetric equilibria of proposition 3, they can

anticipate each other’s actions with great precision. This increases expected utility since

it reduces the probability that, e.g., nature selects game b, but players play (A,A), or,

worse, (A,B).

5 Discussion

In coordination games, such as the coordinated attack problem, we often have a sense as to

the believes that the other player may hold on the game that he is involved in. That is, one

player may sense that the other player is an “optimist” with regard to a certain action or,

similarly, that the other player likely holds a particular “mistaken view” of the situation.

The current model incorporates such aspects by giving players noisy information over each

other’s information. The analysis of such an information structure shows that players who

posses different pieces of information face a coordination game as to how they use their

private signals to forecast each other’s actions. This coordination game in the evaluation

of information has multiple symmetric and asymmetric equilibria. Comparison of these

equilibria shows that asymmetric equilibria, where players exploit the complementarity

between primary and secondary signals, welfare dominate symmetric ones.
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A Proof of Proposition 1

The proof is parallel to the one in Rubinstein (1989). First, we establish that player i

plays A when Ti = 0. Player i considers two possible scenarios:

1. With probability (1− p), game Ga is played.

2. With probability 1
2
pε, Player j was selected, game Gb is played, and the message

from player j to player i was lost.

Hence, we find a lower bound Ã for i’s payoff from playing A and an upper bound B̃ for

i’s payoff from playing B:

π(A) ≥
(1− p)M + 1

2
pε0

(1− p) + 1
2
pε

=: Ã π(B) ≤
−(1− p)L+ 1

2
pεM

(1− p) + 1
2
pε

=: B̃

It holds that Ã > B̃, and thus player i plays A. The induction step from t − 1 to t

is identical to the original Rubinstein one: assume that both players play A when they

receive a Ti < t. Consider that player i gets information Ti = t. For the following

argument we denote the probability that player i was informed first that game Gb is

played by κt ∈ [0, 1]. The posterior probability of player j having received information

Tj = t− 1 is given by

zt :=
κtε+ 1− κt

κt(ε+ (1− ε)ε) + 1− κt
>

1

2
.

In other words, the posterior probability of player j playing A is larger than 1
2
, and thus

playing A is optimal for player i as well: Playing A yields 0, while playing B has expected

payoff zt(−L) + (1− zt)M < 0.

B Proof of Proposition 4

We start by proving the first statement. Without loss of generality, we have to check only

if player i’s best response to player j’s equilibrium strategy is consistent with player i’s

equilibrium strategy. We have to check the following cases of information that player i

might receive:

1. Zi ≤ n: Player i knows that Tj ≤ Zi ≤ n and that j player A, hence plays A.

2. Zi = n+ 1:

(a) Ti = n: player i knows that Zj = n and that player j plays A, which leads j

to play A as well.
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(b) Ti = n + 1: Clearly Zj ≥ n + 1 and Tj ∈ {n, n + 1}. To determine the payoff

of playing B, the conditional distribution of Tj has to be taken into account:

(1− ε)2nεψ
(1− ε)2nεψ + (1− ε)2n+1ε(1− ψ)

(−L) +
(1− ε)2n+1ε(1− ψ)

(1− ε)2nεψ + (1− ε)2n+1ε(1− ψ)
M .

Hence playing B is optimal if ψ < ψ3 := (1−ε)M
L+(1−ε)M .

(c) Ti > n+ 1: thus Zj ≥ n+ 2 and Tj ≥ n+ 2. Player j plays B and the optimal

response of i is B.

3. Zi = n+ 2: Player i knows that Tj ≥ n+ 1.

(a) Zi = n+ 2 implies that Ti < n is not feasible.

(b) Ti = n: Zj ≥ n + 1 with probability ψ, hence the payoff of playing B is

(1− ψ)(−L) + ψM , which is negative for ψ < ψ1, the case when playing A is

optimal for player i.

(c) Ti > n: Therefore Zj ≥ n+ 1 for sure, and thus both players play B.

4. Zi > n+ 2: Player i knows that Tj ≥ Zi − 1 > n+ 1. It also holds that Ti ≥ n+ 1

and thus Zj ≥ n + 1. Therefore player j plays B and player i’s best response is to

play B as well.

Hence we have established the first part of the proposition for ψ ≤ min{ψ1, ψ3}.
To prove the second part of the proposition we provide a counter example: Suppose

Z1 = n+ 1 and T1 = n+ 2: player 1 now plays A. This is not a best response since player

1 knows that T2 ≥ n+ 1 and Z2 ≥ n+ 2, and thus that 2 plays B with certainty. Hence,

equilibria where players play B iff Ti ≥ n+ 1 and Zi ≥ n+ 2 cannot exist.

C Proof of Proposition 6

We prove the second part of the statement first. That is, we compute the total welfare

loss in the asymmetric equilibria of Proposition 3 given n (sum of expected surplus losses

of player 1 and 2) compared to hypothetical perfect coordination between both players.

Note that in state a neither miscoordination nor coordination on the wrong action can

occur. In state b

1. coordination on the wrong action (A,A) happens with probability

p

[
1− (1− ε)2(n−1) + (1− ε)2(n−1)ε(1 + (1− ψ)(1− ε)) +

1

2
(1− ε)2n(1− ψ)

]
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2. miscoordination (B,A) happens when T1 = n, T2 ≥ n, and Z2 = n + 1. The

associated probability is p(1− ε)2n−1εψ.

Using this, we can compute the welfare loss in equilibrium:

ln := p

{
(1− ε)2n−1εψ(2M + L)

+

[
1− (1− ε)2(n−1) + (1− ε)2(n−1)ε(1 + (1− ψ)(1− ε)) +

1

2
(1− ε)2n(1− ψ)

]
2M

}

= p(1− ε)2n−1

{
εψ(2M +L) +

[
−1 + ε(1 + (1− ψ)(1− ε)) +

1

2
(1− ε)2(1− ψ)

]
2M

}
+ p2M .

It is straightforward to see that the expression in curly brackets is negative for small ψ.

Hence, ln is increasing in n for small ψ.

The proof of the first part of the proposition requires computing the welfare loss in

the symmetric equilibria of Proposition 3 given n. Again there are two types of losses:

1. coordination on the wrong action (A,A) happens with probability

p
[
1− (1− ε)2n + (1− ε)2nε(1− ψ)

]
2. miscoordination (B,A) happens once T1 = n, T2 ≥ n, and Z2 = n + 1. Hence it

happens with probability p(1− ε)2(n−1)εψ.

Using these probabilities, we compute the welfare loss in equilibrium:

l̃n = p(1− ε)2(n−1)
{
εψ(2M + L) + (1− ε)2 [−1 + ε(1− ψ)] 2M

}
+ p2M

Note that ln − l̃n −−→
ψ→0

−p(1 − ε)2nεM < 0. Hence, for a small enough ψ it holds that

ln < l̃n, i.e., welfare is higher in the asymmetric equilibria for every given n.
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D Referee appendix

In this appendix we show that our main result, multiplicity of equilibria in the presence of

primary and secondary signals, holds for the original asymmetric version of the electronic

mail game of Rubinstein (1989). That is, we now assume that it is always player 1 who

gets informed first, i.e., gets a message in case nature draws game b. Equivalently, we set

the probability P , with which player 1 is informed first to P = 1 (rather than 1/2, which

is what we assumed in the main text). Other than that leave the signals Z, T unchanged.

Our only deviation from Rubinstein (1989) is therefore the introduction of the secondary

signal Z. Naturally, Proposition 2 holds without modification of the proof.

We now show for this simplified setting that multiple equilibria exist as in the main

text. In particular, we prove that the asymmetric equilibria described in Proposition 3

still exist:

Proposition 7. For small enough ψ there exists an asymmetric threshold equilibrium for

every n ∈ {1, 2, 3, . . . }: player 1 plays B if and only if T1 ≥ n+ 1 (which implies Z1 ≥ n)

and player 2 plays B if and only if Z2 ≥ n+ 1 and T2 ≥ n.

Proof. The proof is mostly unchanged compared to the proof of Proposition 3. There are

two exceptions:

2. Equivalently, now take the behavior of player 1 as given.

(c) Z2 = n+ 1: Here we have to take care of four subcases:

ii. T2 = n: Note that P (T1 = n|T2 = n ∧ Z2 = n + 1) = ψ, and thus, the

payoff of playing B is given by ψ(−L) + (1 − ψ)M . From this we can

determine ψ̄2 := M
L+M

> 0 such that for all ψ ≤ ψ̄2 playing B is optimal

for player 2, i.e. where the expected payoff of playing B is non-negative.

iii. T2 > n: Hence T1 ≥ n+ 1 for sure, player 2 chooses B.

Again, we can choose a small enough ψ, i.e., ψ ≤ min{ψ1, ψ̄2}, such that the strategy

profile from the proposition is indeed an equilibrium.

16


