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Abstract

A Principal seeks to design a mechanism for an agent (with pri-
vately informed cost) and a supervisor/intermediary (with a noisy
signal of the agent’s cost) that collude on both participation and re-
porting decisions. Under weak belief restrictions which generalize the
assumption of passive beliefs, the problem reduces to selecting weakly
collusion-proof (WCP) allocations that satisfy interim participation
constraints. We characterize WCP allocations, and use this to show
that it is valuable to employ the supervisor. Delegation is optimal,
but only if supplemented by an appeal/dispute settlement mechanism
mediated by the Principal, which serves as an outside option for coali-
tional bargaining.
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1 Introduction

The potential for collusion is widely acknowledged to be a serious problem
in contexts where a Principal relies on information provided by an inter-
mediary or supervisor to make key production and compensation decisions
for an agent. Examples of such contexts abound: an investor that relies on
an investment bank or rating agency for information necessary to decide on
financing an entrepreneur; a firm owner that relies on a manager for infor-
mation needed to set production targets and compensation for workers or
suppliers; an employer that relies on a referee for a recommendation for a
job applicant; a government that relies on a regulator to advise on rates for
a public utility, or on an assessor to set tax rates for taxpayers. In all these
settings the supervisor is better informed about the agent’s productivity or
cost than the Principal, but is typically less informed than the agent in this
regard. Eliciting the supervisor’s information becomes problematic when he
is willing to misreport information in exchange for a bribe. The question
arises whether it is still possible or desirable for the Principal to usefully
elicit the supervisor’s information. If so, how should the incentives for the
supervisor and agent be designed? When can such mechanisms completely
overcome the collusion problem? Does the presence of collusion rationalize
a decentralized arrangement where the Principal does not contract directly
with the agent, and instead delegates this authority to the supervisor (as in
franchising arrangements)? Or does such decentralization need to be supple-
mented by some centralized safeguards?

This problem has been studied in the literature, on the basis of an as-
sumption that supervisor and agent collude only with respect to reporting
decisions, after they have independently committed to participate in the
mechanism. This is referred to as interim collusion. Here it is presumed that
collusion over both participation and reporting decisions — referred to as ex
ante collusion — is not possible. In many contexts it would be difficult for
the Principal to preclude collusion over participation decisions, e.g. where
the supervisor and agent have a prior relationship or know each other before
they respond to the Principal’s contract offer. Even in situations where the
supervisor and agent do not know each other previously, and the Principal
can get them to independently commit to participating, there may be ways to
elicit more information from them at the participation stage. Motta (2009)
argues in a class of models of interim collusion that the problem of collusion
can be costlessly overcome by such mechanisms.
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The purpose of this paper is to study the problem with ex ante collusion.
We consider a setting where the agent produces a divisible good at a constant
unit cost whose realization is known to him privately, and the Principal and
the supervisor have a prior over this cost which is continuously distributed
over some interval. The supervisor updates this prior by being able to cost-
lessly observe a noisy signal of the agent’s cost, where the signal can take a
finite number of possible realizations. The agent also observes the realiza-
tion of this signal, so the coalition of supervisor and agent is characterized
by one-sided asymmetric information. The supervisor and agent can enter
into a side-contract which coordinates on joint participation and cost/signal
reports to the Principal, as well as a private side payment, following a pri-
vate cost report made by the agent to the supervisor. The side contract is
designed and offered by the supervisor to the agent, though we subsequently
show that our results extend to contexts where they are designed instead by a
third party that maximizes a weighted sum of their interim payoffs. The side
contract and the internal communication and transfers within the coalition
are unobserved by the Principal. Nevertheless, the presence of asymmetric
information frictions within the coalition allows some room for the Principal
to manipulate the side contract. All parties are risk neutral. This setting is
contrasted to early formulations of the collusion problem (e.g., Tirole (1986),
Laffont and Tirole (1993)) by the absence of any hard information, and trans-
action costs of collusion that are entirely endogenous.

In such environments the Principal can in general design a grand contract
(GC) for both the supervisor and agent, in which noncooperative play forms
the outside option for bargaining within the coalition over a side contract.
We show restrictions on beliefs within the coalition consequent on rejection of
offered side contracts are needed for collusion to be costly for the Principal.
Specifically, there exists beliefs that vary with the particular side contract
offered, in such a way that collusion is effectively deterred.3 Since the Prin-
cipal cannot really control beliefs of the supervisor and agent, such solutions
to the problem are unlikely to be be relevant. We therefore restrict beliefs to

3This requires rejection of any non-null side contract offer to be associated with the
belief that the supervisor will subsequently exit, whence the agent is offered a highly
lucrative contract by the Principal. On the other hand, if no such side contract is offered,
the agent believes the supervisor will participate, and that they will play a noncooperative
equilibrium of the grand contract recommended by the Principal. With such beliefs, the
agent is motivated to reject any non-null side contract. Anticipating this, no such side
contract is offered.
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be independent of the side contract offered, or whether or not it is offered,
which generalizes the assumption of passive beliefs employed in a number of
previous papers (e.g., Laffont and Martimort (1997, 2000), Faure-Grimaud,
Laffont and Martimort (2003)). Our analysis generalizes the passive belief
assumption by allowing for side-contracts to be rejected by some types of
agents on the equilibrium path, to address the problem recently highlighted
by Celik and Peters (2011) that restrictions that prevent equilibrium-path
rejections may entail a loss of generality.4 We propose a notion of Weak
Perfect Bayesian Equilibrium (WPBE(w)) which incorporates such a restric-
tion. We show this restriction corresponds to the notion of weak collusion
considered in much of the existing literature on collusion, in which the out-
side options for bargaining within the supervisor-agent coalition do not vary
with side-contract offers, and are determined by a truthful noncooperative
equilibrium of the grand contract designed by the Principal. By designing
the grand contract which forms a backdrop to side contract negotiations, the
Principal is able to exercise some control over the nature of resulting collu-
sion. We show that attention can be restricted to allocations that (besides
satisfying interim participation constraints for the supervisor and agent) are
weak-collusion-proof (WCP): which leave no room for profitable collusion,
if offered as a direct revelation mechanism in the grand contract. We shall
refer to such allocations as implementable with weak collusion. WCP allo-
cations can be characterized by a set of individual incentive constraints (for
the agent) and coalitional incentive and participation constraints.

We use this characterization to prove the following results:

(a) Delegation to the supervisor (DS) is strictly dominated by not appoint-
ing any supervisor (NS).5 Hence delegation cannot be rationalized as
an optimal response of the Principal to weak ex ante collusion. This
can be contrasted to the optimality of delegation with interim collusion,
when there are two possible types of the agent and two possible signals
of the supervisor (Faure-Grimaud, Laffont and Martimort (2003)).6

4They show examples of collusion among members of a cartel where a proposed cartel
agreement is rejected with positive probability. Such rejections serve to communicate
information within the cartel.

5If side contracts are designed by a third party that maximizes a weighted sum of the
supervisor and agent’s payoffs, the same result applies for delegation to the third party, as
long as the third party assigns a positive welfare weight to the supervisor’s payoff. When
the supervisor is assigned a zero welfare weight, DS turns out to be equivalent to NS.

6With weak ex ante collusion in the two-type-two-signal case, it can be shown that the
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(b) Centralized contracting with the supervisor and agent (CS) strictly dom-
inates NS, so it is valuable for the Principal to employ the supervisor
and induce full revelation of information, despite ex ante collusion.

(c) Sufficient conditions are provided for collusion to be costly for the Prin-
cipal: the support of the conditional cost distribution is independent of
the supervisor’s signal, conditional distributions satisfy suitable mono-
tonicity and monotone likelihood properties, and the Principal’s gross
benefit function exhibits sufficient curvature.

(d) Any allocation that is implementable with weak collusion can be imple-
mented by a modified form of delegation, in which the Principal com-
municates and transacts with only the supervisor on the equilibrium
path. This corresponds to a ‘normal’ hierarchical delegation arrange-
ment where the Principal asks the supervisor to initially communicate
and transact with the agent, and then submit a joint participation
decision and cost-cum-signal report to the Principal on behalf of the
coalition. These reports determine an output target and aggregate
payment for the coalition made by the Principal to the supervisor, who
subsequently relays the output target and makes a corresponding out-
of-pocket payment to the agent. The mechanism leaves open the room
for the agent to trigger a switch to a centralized mechanism (the grand
contract) where both agent and supervisor make independent reports
to the Principal. This may be thought of as an ‘appeals’ or ‘dispute
settlement’ procedure mediated by the Principal, which is not activated
in equilibrium but plays a key role by determining outside options for
coalition partners when they negotiate a side-contract.

(e) Given outside options determined in this manner, the allocation of
bargaining power within the coalition does not affect the set of im-
plementable allocations with weak collusion. This implies that the
rules determining the matching of supervisors and agents are irrelevant
— whether agents select supervisors (so agents have more bargaining
power), or supervisors select agents (whence supervisors have more bar-
gaining power), or whether they are externally assigned to one another
(where they have equal bargaining power). This is an implication of
weak collusion, where outside options are independent of bargaining

Principal never benefits from appointing a supervisor.
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power. In strong collusion (Dequiedt (2007), Che and Kim (2009))
where the side contract designer can commit to playing the subsequent
grand contract in suitable ways, outside options depend on the allo-
cation of bargaining power, which thereby ends up affecting the set of
implementable allocations.

Related literature on mechanism design with collusion can be classified
by the context (auctions, team production or supervision), the nature of
collusion (ex ante or interim, weak or strong collusion), and whether type
spaces are discrete or continuous. Auctions and team production involve
multiple privately informed agents and no supervisor. For auctions, Dequiedt
(2007) considers strong ex ante collusion with binary agent types and shows
that efficient collusion is possible, implying that the second-best cannot be
implemented. In contrast, Pavlov (2008) considers a model with continuous
types where the second-best can be implemented with weak ex ante collusion,
and Che and Kim (2009) find the same result with either weak or strong ex
ante collusion with continuous types. Team production with binary types is
studied by Laffont and Martimort (1997), who show the second best can be
implemented with weak interim collusion; this analysis is extended to a public
goods context in Laffont and Martimort (2000) where the role of correlation of
types is explored. Che and Kim (2006) show how second-best allocations can
be implemented in a team production context with continuous types in the
presence of weak interim collusion. Quesada (2004) on the other hand shows
strong ex ante collusion is costly in a team production model with binary
types. Mookherjee and Tsumagari (2004) show delegation to one of the
agents is worse than centralized contracting in the presence of weak ex ante
collusion. The logic of this result is similar to that underlying our result that
delegation to the supervisor is worse than not appointing a supervisor. Their
paper also considers delegation to a supervisor who is perfectly informed
about the costs of each agent, and show that its value relative to centralized
contracting depends on complementarity or substitutability between inputs
supplied by different agents. The current paper differs insofar as there is only
one agent, and there is asymmetric information within the supervisor-agent
coalition owing to the supervisor receiving a noisy signal of the agent’s cost.
This friction in coalitional bargaining plays a key role in the current paper.

In the context of collusion between a supervisor and agent, existing mod-
els (with the exception of Mookherjee-Tsumagari (2004)) have explored in-
terim collusion only. Faure-Grimaud, Laffont and Martimort (2003) consider
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a model with binary types and signals (with full support for conditional
distributions), a risk-averse supervisor where collusion is costly, where (un-
conditional) delegation turns out be an optimal response to collusion. Celik
(2009) considers a model with three types and two signals (where the sup-
port of conditional distributions depends on the signal), and risk neutral
supervisor and agent, in which unconditional delegation is dominated by no
supervision, which in turn is dominated strictly by centralized contracting
with supervision. Celik’s results are similar to ours, but he considers interim
rather than ex ante collusion. Our results can be viewed as finding that the
results he derived in the context of interim collusion with a special informa-
tion structure happen to obtain quite generally with ex ante collusion and
continuous types. The need to examine ex ante rather than interim collusion
is highlighted by Motta (2009) who shows that collusion can be rendered
costless in models with discrete type and signal spaces and interim collusion,
by using mechanisms where the Principal offers a menu of contracts to the
agent which the latter must respond to before colluding with the supervisor.

The paper is organized as follows. Section 2 introduces the model, fol-
lowed by Section 3 which defines and characterizes WCP allocations. It also
provides a game theoretic foundation for this notion, but this part of the pa-
per can be skipped by those more interested in the main results concerning
optimal allocations. The main results are presented in Section 4 for the polar
model, where optimal allocations are always interior and the supervisor has
all the bargaining power within the coalition. Section 5 then considers a num-
ber of extensions, where side contracts are designed and offered by a third
party maximizing a weighted sum of supervisor and agent’s payoffs, where
the supervisor may exhibit altruism towards the agent, and where the Prin-
cipal’s gross benefit function is linear (whereby optimal allocations are never
interior). Finally, Section 6 concludes with a summary, some applications of
our results, and directions for future work.

2 Model

2.1 Environment

We consider an organization composed of a principal (P ), an agent (A) and
a supervisor (S). P can hire A who delivers an output q ≥ 0 at a personal
cost of θq. P ’s return from q is V (q) where V (q) is twice continuously dif-
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ferentiable, increasing and strictly concave satisfying limq→0 V
′
(q) = +∞,

limq→+∞ V
′
(q) = 0 and V (0) = 0. These conditions imply that q∗(θ) ≡

argq maxV (q)− θq is continuously differentiable, positive on θ ∈ [0,∞) and
strictly decreasing. In Section 5.4 we shall describe how the results are mod-
ified when V is linear and subject to a capacity constraint.

θ is a random variable whose realization is privately observed by A. It
is common knowledge that everybody shares a common prior F (θ) over θ
on the interval Θ ≡ [θ, θ̄] ⊂ <+. F has a density function f(θ) which
is continuously differentiable and everywhere positive on its support. The
‘virtual cost’ H(θ) ≡ θ + F (θ)

f(θ)
is assumed to be strictly increasing in θ.

S plays no role in production, and costlessly acquires an informative signal
η about A’s cost θ. The set of possible realizations of η is Π, a finite set with
#Π ≥ 2. It is common knowledge that the realization of η is observed by
both S and A. a(η | θ) ∈ [0, 1] denotes the likelihood function of η conditional
on θ, which is common knowledge among all agents. a(η | θ) is continuously
differentiable and positive on Θ(η), where Θ(η) denotes the set of values of θ
for which signal η can arise with positive probability. We assume Θ(η) is an
interval, for every η ∈ Π. Define θ(η) ≡ inf Θ(η) and θ̄(η) ≡ sup Θ(η). We
assume that for any η ∈ Π, a(η | θ) is not a constant function on Θ, and there
are some portions of θ with positive measure such that a(η | θ) 6= a(η

′ | θ)
for any η, η

′ ∈ Π. In this sense each possible signal realization conveys
information about the agent’s cost. The information conveyed is partial,
since Π is finite.

The conditional density function and the conditional distribution function
are respectively denoted by f(θ | η) ≡ f(θ)a(η | θ)/p(η) (where p(η) ≡∫ θ̄(η)

θ(η)
f(θ̃)a(η | θ̃)dθ̃) and F (θ | η) ≡

∫ θ
θ(η)

f(θ̃ | η)dθ̃. The ‘virtual’ cost

conditional on the signal η is h(θ | η) ≡ θ + F (θ|η)
f(θ|η)

. We do not impose

any monotonicity assumption for h(θ | η). Let ĥ(θ | η) be constructed from
h(θ | η) and F (θ | η) by the ironing procedure introduced by Myerson (1981).

All players are risk neutral. P ’s objective is to maximize the expected
value of V (q), less expected payment to A and S, represented by XA and XS

respectively. S’s objective is to maximize expected transfers XS − t where t
is a transfer from S to A. A seeks to maximize expected transfers received,
less expected production costs, XA + t − θq. Both A and S have outside
options equal to 0.

In this environment, a feasible (deterministic) allocation is represented
by (uA, uS, q) = {(uA(θ, η), uS(θ, η), q(θ, η)) ∈ <2 × <+ | (θ, η) ∈ K} where
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K ≡ {(θ, η) | η ∈ Π, θ ∈ Θ(η)}, uS, uA denotes S and A’s payoff respectively,
and q represents the production level. P ’s payoff equals uP = V (q) − uS −
uA − θq. These payoffs relate to transfers and productions as follows: uA ≡
XA + t− θq;uS ≡ XS − t;uP ≡ V (q)−XS −XA.

2.2 Mechanism in the Absence of Collusion

Consider as a benchmark the case where A and S do not collude, and P
designs contracts for both. We call this organization NC (no collusion).
Owing to risk-neutrality of all parties and concavity of V , P can restrict
attention to a deterministic grand contract:

GC = (XA(mA,mS), XS(mA,mS), q(mA,mS);MA,MS)

where MA (resp. MS) is a message set for A (resp. S). This mechanism
assigns a deterministic allocation, i.e. transfers XS, XA and output q, for any
message (mA,mS) ∈MA ×MS. MA includes A’s exit option eA ∈MA, with
the property that mA = eA implies XA = q = 0 for any mS ∈MS. Similarly
MS includes S’s exit option eS ∈MS, where mS = eS implies XS = 0 for any
mA ∈ MA. The set of all possible deterministic grand contracts is denoted
by GC.

A grand contract induces a Bayesian game of incomplete information be-
tween A and S. Let p(η) denote a set of beliefs held by S regarding the
distribution of θ, in states where signal η has been realized. The posterior
beliefs of S based on Bayesian updating of prior beliefs on the basis of obser-
vation of η alone are denoted by p∅(η). The two can differ when S receives
additional information, e.g., based on whether A agreed to participate.

Definition 1 A Bayesian equilibrium of the game played by A and S in state
η relative to beliefs p(η) is a set of functions c ≡ (mA(θ, η);mS(η)) (where
mA maps K into MA, while mS maps Π into MS) such that the following
conditions are satisfied for all θ ∈ [θ(η), θ̄(η)]:

mA(θ, η) ∈ arg maxmA∈MA
[XA(mA,mS(η))− θq(mA,mS(η))] (1)

mS(η) ∈ arg maxmS∈MS
Ep(η)[XS(mA(θ, η),mS)] (2)

where Ep(η) denotes expectation taken with respect to beliefs p(η). C(p(η); η)
denotes the set of Bayesian equilibria corresponding to the beliefs p(η) in state
η.
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The timing of events in NC is as follows.

(NC1) A observes θ and η, S observes η.

(NC2) P offers the grand contract GC ∈ GC, and for any η ∈ Π recom-
mends a Bayesian equilibrium c(p∅(η); η) relative to posterior beliefs
p∅(η) based on Bayesian updating by S on the basis of observation of
η alone.

(NC3) A and S play the recommended Bayesian equilibrium.

The order of the timing between (NC1) and (NC2) can be interchanged
without altering any of the results. If P offers a null contract to S (defined by
the property that MS is the empty set and XS = 0), this is an organization
without a supervisor, which we will denote by NS. Such an organization
obviously leaves no scope for collusion between A and S.

It is well-known that in (NC) the Principal can restrict attention to
direct revelation games, where MA,MS reduce to reports of private infor-
mation, besides participation decisions. Define the second-best allocation
(uSBA , uSBS , qSB) as follows:

uSBA (θ, η) =

∫ θ̄(η)

θ

qSB(y, η)dy,

E[uSBS (θ, η) | η] = 0

and
qSB(θ, η) ≡ q∗(ĥ(θ | η)) = arg max

q
[V (q)− ĥ(θ | η)q]

where ĥ(θ | η) is constructed from h(θ | η) and F (θ | η) by the ironing
procedure. It is well-known that this is the optimal allocation in (NC). It
turns out that in (NC) it is possible for the second-best to be implemented
as a unique Bayesian equilibrium.7

2.3 Mechanism with Ex Ante Collusion

Now we describe the game played with (ex ante) collusion. Collusion takes
the form of communication and side-contracting between A and S, which

7A proof is available on request.
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takes place before they respond to P’s offer of the grand contract (including
participation decisions). This is distinguished from (interim) collusion where
they do not collude on their participation decisions, but collude on the reports
they send to P and enter into side payments in the event of joint participation.

The game with ex ante collusion is different from the game without col-
lusion following stage NC2. At that point, A and S can enter into a side-
contract in which A sends a message to S following which they jointly decide
on participation, reporting and side-payments. The side-contract is unob-
served by P. As in existing literature, we assume the side-contract is costlessly
enforceable. Moreover we assume S has all the bargaining power vis-a-vis A:
S can make a take-it-or-leave-it offer of a side-contract. This assumption
turns out to be inessential: Section 5.2 explains how the same results ob-
tain with side contracts offered by an uninformed third party that assigns
arbitrary welfare weights to the supervisor and agent.

After S offers the side contract, A retains the option of rejecting it; given
that A’s true cost is not known to S, this still enables A to earn some rents.
This information friction within the coalition plays a key role in our analysis.
If A rejects the side contract, they subsequently play the game associated
with the grand contract non-cooperatively. If A were to reject the side-
contract, some information regarding the realization of θ may be communi-
cated to S. Hence their subsequent noncooperative play of the grand contract
would be a Bayesian equilibrium relative to beliefs which could differ from
p∅(η).

The game in the presence of collusion replaces (NC3) above (while (NC1)
and (NC2) are unchanged) by the following three-stage subgame (conditional
on any η ∈ Π):

(i) S offers a side-contract SC which determines for any θ̃ ∈ Θ(η) to be pri-
vately reported by A to S, a probability distribution over joint messages
(mA,mS) ∈ MA ×MS, and a side payment from S to A.8 Formally, it
is a pair of functions {m̃(θ̃, η), t(θ̃, η)} where m̃(θ, η) : Θ(η)× {η} −→
∆(MA × MS), the set of probability measures over MA × MS, and
t : Θ(η) × {η} −→ <. The case where S does not offer a side con-
tract is represented by a null side-contract (NSC) with zero side pay-
ments (t(θ, η) ≡ 0), and (deterministic) messages (mA(θ, η);mS(η)) the
same as those in the Bayesian equilibrium of the grand contract rec-

8The option of randomizing over possible messages is useful for technical reasons. Ow-
ing to quasilinearity of payoffs, there is no need to randomize over side transfers.
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ommended by the Principal. We abuse terminology slightly and refer
to the situation where no side contract is offered as one where NSC is
offered.

(ii) A either accepts or rejects the SC offered, and the game continues as
follows.

(iii) If A accepts the offered SC, he sends a private report θ
′ ∈ Θ(η) to

S, following which the SC is executed. If A rejects SC, S updates his
beliefs to p(SC; η) which is restricted to be p∅(η) if NSC was offered
in stage (i) above.9 A and S then play a Bayesian equilibrium c of the
grand contract relative to beliefs p(SC; η).

The notion of Weak Perfect Bayesian Equilibrium (WPBE) of the game
with collusion requires beliefs and continuation strategies to be specified cor-
responding to all information sets of the game.10 Hence we need to specify
how these are decided off the equilibrium path. On the equilibrium path,
post-rejection beliefs are obtained upon applying Bayes rule if the SC offered
in equilibrium is rejected with positive probability by A. But there is a lot
of leeway in beliefs following rejection of off-equilibrium-path side contract
offers. The specific notion of collusion depends critically on how such beliefs
are formed, since these determine A’s outside options in bargaining with S
over a side contract. In the next section we shall impose a weak restriction
on beliefs, and show that it corresponds to a notion of weak collusion proof
(WCP) allocations.

It is worth mentioning that in the presence of ex ante collusion, the Prin-
cipal can do no better than to confine attention to a static revelation mech-
anism when selecting a grand contract. We do not provide a formal proof,
as the argument is a familiar one.

3 Weak Collusion Proof Allocations

3.1 Definition of WCP

We first provide a definition of weak collusion proofness. The notion can
be explained quite simply: an allocation is weakly collusion proof if the

9This ensures that it is immaterial whether or not NSC was accepted or rejected, since
in either case they play the grand contract non-cooperatively with prior beliefs.

10For definition of WPBE, see Mas-Colell, Whinston and Green (1995, p.285).
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supervisor cannot benefit from offering a non-null side contract when the
Principal selects a grand contract based on the associated direct revelation
mechanism (i.e., when agent and supervisor make consistent reports about
the state, the allocation corresponding to that state is chosen). This requires
the null side contract to be the optimal side contract for S, when the outside
option of A corresponds to his payoff resulting from the allocation.

Before proceeding to the formal definition, note that a deterministic allo-
cation can be represented by payoff functions (uA(θ, η), uS(θ, η)) of the true
state (θ, η) combined with the output function q(θ, η), as these determine
the Principal’s payoff function uP (θ, η) ≡ V (q(θ, η)) − uS(θ, η) − uA(θ, η) −
θq(θ, η), and the aggregate net transfers of S (equals uS(θ, η)) and A (equals
uA(θ, η) + θq(θ, η)). For technical convenience we consider randomized allo-
cations, though it will turn out they will never actually need to be used on
the equilibrium path. In a randomized allocation, (uA(θ, η), uS(θ, η), q(θ, η))
denotes the expected payoffs of A, S and the expected output, conditional on
the state (θ, η). For (conditional expected) allocation (uA(θ, η), uS(θ, η), q(θ, η)),
define functions (X̂(m), q̂(m)) on domain m ∈ M̂ ≡ K ∪ {e} (where K ≡
{(θ, η) | θ ∈ Θ(η), η ∈ Π}) as follows:

(X̂(θ, η), q̂(θ, η)) = (uA(θ, η) + θq(θ, η) + uS(θ, η), q(θ, η))

(X̂(e), q̂(e)) = (0, 0)

(X̂(θ, η), q̂(θ, η)) denote corresponding expected values of the sum of pay-
ments XS + XA made by the principal, and the output delivered, in state
θ, η. Also, let ∆(M̂) denote the set of the probability measures on M̂ , and
use m̃ ∈ ∆(M̂) to denote a randomized message submitted by the coalition
to P. With a slight abuse of notation, we shall denote the corresponding
conditional expected allocation by (X̂(m̃), q̂(m̃)), which is defined on ∆(M̂).
m̃ = (θ, η) or e will be used to denote the probability measure concentrated
at (θ, η) or e respectively.

S’s choice of an optimal (randomized) side-contract can be formally posed
as follows. For any η ∈ Π, the side-contracting problem P (η) is to select
(m̃(θ | η), ũA(θ, η)) to maximize S’s expected payoff

E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η]

subject to m̃(θ | η) ∈ ∆(M̂),

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂(m̃(θ
′ | η))
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for any θ, θ
′ ∈ Θ(η), and

ũA(θ, η) ≥ uA(θ, η)

for all θ ∈ Θ(η). The first constraint states truthful revelation of the agent’s
true cost to S is consistent with the agent’s incentives, and the second con-
straint requires A to attain a payoff at least as large as what he would expect
to attain by playing the grand contract noncooperatively. Recall that the
grand contract must satisfy XA(eA,mS) = q(eA,mS) = 0 for any mS and
XS(mA, eS) = 0 for any mA. Hence S has the option of shutting down pro-
duction altogether, implying that the expected payoff earned by S in the
problem above is non-negative, conditional on any η.

Let the maximum payoff of S in the side contracting problem in state η
be denoted by V (η).

Definition 2 The (conditional expected) allocation (uA(θ, η), uS(θ, η), q(θ, η)) :
K → <2 × <+ is weakly collusion proof (WCP ) if for every η ∈ Π: (m̃(θ |
η), ũA(θ, η)) = ((θ, η), uA(θ, η)) solves problem P (η) in which S achieves a
maximum payoff of V (η) = E[uS(θ, η) | η].

3.2 Characterization of WCP Allocations

We now characterize WCP allocations. This requires us to define a family
of ‘modified’ virtual cost functions, representing the effective cost incurred
by the coalition in delivering a unit of output to P, following selection of an
optimal side-contract.

Definition 3 For any η ∈ Π, Y (η) is a collection of coalitional shadow
cost (CSC) functions π(· | η) : Θ(η) → < which satisfy the following
property. For any function in this collection, there exists a real-valued func-
tion Λ(θ, η) which is non-decreasing in θ ∈ Θ(η) with Λ(θ(η) | η) = 0 and
Λ(θ̄(η) | η) = 1, such that

π(θ|η) ≡ θ +
F (θ | η)− Λ(θ | η)

f(θ | η)
(3)

Equation (3) modifies the usual expression for virtual cost h(θ|η) ≡ θ +
F (θ|η)
f(θ|η)

by subtracting from it the non-negative term Λ(θ|η)
f(θ|η)

. Intuitively, with
collusion between S and A, it is as if P procures the good from a single entity,
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consisting of the coalition of S and A. If A’s outside option payoff in the side-
contracting problem were 0 instead of uA(θ, η), S would incur a cost of h(θ|η)
in arranging for delivery of one unit of the good. P’s problem of procuring the
good would then reduce to contracting with a single agent with an unknown
cost of h(θ|η). This is worse for P compared with the situation where there
is no supervisor at all — in the latter context, P would be contracting with
A alone who incurs a cost of θ rather than h(θ|η). This is the well-known
problem of double marginalization of rents (DMR), arising due to exercise of
monopsony power by S in side-contracting with A. As elaborated later, this
is why delegating the right to contract (with A) to S cannot result in any
improvement for P compared to the situation where no S is employed.

To limit DMR, P contracts with both S and A, and provides A with an
outside option (of uA(θ, η)) that effectively raises his bargaining power vis-a-
vis S while negotiating the side contract. Meeting a larger outside option for
A effectively induces S to deliver a higher output to P: this is what paying
a higher rent to A necessitates. The extent of DMR is then curbed: the
shadow cost for the coalition in delivering a unit of output to P is lowered.
This lowering of the virtual cost is represented by the subtraction of the term
Λ(θ|η)
f(θ|η)

from what it would have been h(θ|η) under delegated contracting. The

derivative of Λ(θ | η) represents the Kuhn-Tucker multiplier on A’s (type θ)
participation constraint in S’s problem of selecting an optimal side contract.
Since the multiplier is non-negative, the Λ(θ | η) function is non-decreasing.

However, π(θ|η) is not the correct expression for the shadow cost of out-
put for the coalition, if it is non-monotone in θ. In that case, it has to be
replaced by its ‘ironed’ version (Myerson (1981)), using the distribution func-
tion F (θ|η). Let the corresponding ironed version of π(θ|η) be denoted by
z(θ|η): we call this a coalitional virtual cost function.

Definition 4 For any η ∈ Π, the set of coalitional virtual cost (CVC)
functions is the set

Z(η) ≡ {z(· | η) ironed version of some π(· | η) ∈ Y (η)}.

of functions obtained by applying the ironing procedure to the set Y (η) of
CSC functions.11 Denote by Θ(π(· | η), η) the corresponding pooling region
of θ where π(·|η) is flattened by the ironing procedure.

11The ironing procedure ensures these functions are continuous and non-decreasing.
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As the next result shows, every WCP allocation satisfies coalitional par-
ticipation and incentive constraints corresponding to some coalitional virtual
cost function z. Combined with an individual incentive compatibility con-
straint for A, and a constraint that output must be constant over regions of
constancy of z, these coalitional constraints characterize WCP allocations.

Proposition 1 The allocation (uA, uS, q) is WCP if and only if the following
conditions hold for every η. There exists a CVC function z(·|η) ∈ Z(η) such
that

(i) For every (θ, η), (θ
′
, η
′
) ∈ K ≡ {(θ, η) | θ ∈ Θ(η), η ∈ Π},

X(θ, η)− z(θ | η)q(θ, η) ≥ X(θ
′
, η
′
)− z(θ | η)q(θ

′
, η
′
)

X(θ, η)− z(θ | η)q(θ, η) ≥ 0

where
X(θ, η) ≡ uA(θ, η) + uS(θ, η) + θq(θ, η)

(ii) For any θ, θ
′ ∈ Θ(η),

uA(θ, η) ≥ uA(θ
′
, η) + (θ

′ − θ)q(θ′ , η)

(iii) q(θ, η) is constant on any interval of θ which is a subset of the corre-
sponding pooling region of the CVC function z.

Conditions (i) and (ii) represent the coalitional incentive and participation
constraints corresponding to contracting with a single agent with a unit cost
of z. Condition (ii) is the individual incentive compatibility constraint for A.
Condition (iii) states that the output must be constant over every interval
in the pooling region.

In the rest of this section, we shall provide the game-theoretic founda-
tion for focusing attention on WCP allocations. It can be skipped by those
interested in our main results concerning the principal’s mechanism design
problem, where the outcome of such mechanisms are described by resulting
WCP allocations that satisfy interim participation constraints.
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3.3 Belief Restrictions Underlying WCP Allocations

We first explain the need for restricting off-equilibrium-path beliefs. In the
absence of any such restrictions, we can use the notion of a Weak Perfect
Bayesian equilibrium (WPBE) of the game with collusion. If the mecha-
nism design problem is stated as selection of an allocation subject to the
constraint that it can be implemented as the outcome of some WPBE, it is
presumed that the Principal is free to select continuation beliefs and strate-
gies for noncooperative play of the grand contract following off-equilibrium
path rejections of offered side contracts by S to A.

Definition 5 The organization with ultra-weak collusion (UWC) is the
game in which stage (NC3) following any η ∈ Π is replaced by the three-stage
collusion game described above, in which the beliefs p(SC; η) and Bayesian
equilibrium c(SC; η) played following off-equilibrium-path rejection of any SC
can be specified by P (subject to the constraint that c(SC; η) ∈ C(p(SC); η)).

Collusion can then be deterred completely, with appropriate selection
of off-equilibrium-path continuations. A heuristic description of how the
second-best payoff can be achieved by the Principal as a weak PBE is as
follows. P selects a grand contract and recommends a noncooperative equi-
librium of this contract in which (i) conditional of participation by S, non-
cooperative play results in the second-best allocation; (ii) S is paid nothing;
and (iii) if S does not participate, P offers A a ‘gilded’ contract providing
the latter a high payoff in all states. On the equilibrium path S always of-
fers a null side contract. If A rejects any offer of a non-null side-contract,
they mutually believe that subsequently S will not participate in the grand
contract, and A will receive the gilded contract. This forms a weak PBE
as rejection of any non-null side contract is sequentially rational for A given
A’s belief that S will exit following any rejection. And exit is sequentially
rational for S given his belief that A will reject the side contract and they will
subsequently play the grand contract noncooperatively where S will be paid
nothing. Essential in this equilibrium is the way that continuation beliefs
and strategies following the null side contract (where S does not exit) differ
from those following any non-null side contract offer.

Proposition 2 The second-best allocation can be implemented in (UWC).
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The assumption made often in the literature (e.g., Faure-Grimaud, Laf-
font and Martimort (2003)) of passive beliefs requires beliefs and continu-
ation play following rejection of side-contract offers to not vary with the
side-contract offered, and for the beliefs to be the same as the posterior be-
liefs resulting from Bayesian updating based on observation of η alone. Such
a restriction rules out implementation of the second-best along the lines of
Proposition 2.

Faure-Grimaud, Laffont and Martimort (2003), however, restrict atten-
tion to side contracts offered that are always accepted by A on the equilibrium
path. Celik and Peters (2011) have shown in the context of a model of a two-
firm cartel that this restriction may entail a loss of generality. In contrast to a
standard principal-agent setting where agent outside options are exogenous,
the consequences of rejection of a side-contract subsequently results in A and
S playing a noncooperative game and are thus endogenous. Rejection of a
side contract by some types of A can communicate information to S about
A’s type, affecting subsequent play and resulting payoffs in the noncooper-
ative game. Celik and Peters show that there can be collusive allocations
amongst cartel members which can only be supported by side-contract offers
which are rejected with positive probability on the equilibrium path.

We thus allow for side contract offers that might be rejected by some
types of A and accepted by others. This is combined with the following
restriction on beliefs.

Definition 6 A WPBE(w) is a Weak Perfect Bayesian Equilibrium (WPBE)
satisfying the following restriction on beliefs (conditional on realization of
any η): (a) there is a pair of beliefs p(η) and Bayesian equilibrium c(η) ∈
C(p(η); η) which results in the noncooperative play of the grand contract
following rejection of any non-null side contract offered by S, where (b)
(p(η), c(η)) = (p∅(η), c∅(η)) if S offers a null side-contract on the equilibrium
path.

Definition 7 An organization with weak collusion (WC) is the game in
which attention is restricted to WPBE(w) outcomes of the continuation game
following choice of a grand contract by P in stage (NC2).

Criterion (a) imposes the restriction that there is a common continuation
belief and Bayesian equilibrium of the grand contract, following rejection of
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any non-null side-contract.12 Criterion (b) additionally requires this contin-
uation to be the same as the continuation that results when S offers a null
side-contract on the equilibrium path.13 In this case, the consequences of
rejection are independent of the side contract offered, and are taken as given
by the Principal.

One could argue that it would be reasonable to expand the scope of (b)
and also require (p(η), c(η)) = (p∅(η), c∅(η)) whenever a non-null SC is of-
fered and accepted by all types of A on the equilibrium path. Evidently, the
definition of WPBE(w) is consistent with this stronger version of (b). How-
ever, it is not needed for the results that follow. The Faure-Grimaud, Laffont
and Martimort (2003) assumption of passive beliefs (where rejection of any
offered SC is followed by beliefs (p∅(η), c∅(η))) is therefore consistent with
WPBE(w). Their approach can be rationalized by an underlying restriction
to side contract offers that are either accepted by all types, or rejected by all
types. So WPBE(w) may be viewed as a generalization of the assumption
of passive beliefs, when one allows rejection of SCs by some types on the
equilibrium path (in order to address the Celik-Peters criticism).

We now show that with this restriction on beliefs, the Celik-Peters criti-
cism can be addressed: there is no loss of generality in confining attention to
side-contract offers that are accepted by all types on the equilibrium path.

Lemma 1 Given any grand contract, and any allocation resulting from a
WPBE(w) in which S’s side contract offer is rejected with positive probability
on the equilibrium path, there exists another WPBE(w) resulting in the same
allocation in which the side contract offered by S is accepted by all types of
A on the equilibrium path.

The argument resembles the standard one underlying the Revelation Prin-
ciple: offering a new side-contract S̃C which mimics the outcomes resulting
from rejection of an original side-contract (SC), can result in acceptance by
all types of A and the same resulting allocation. How can this be recon-
ciled with the Celik-Peters (2013) demonstration of a collusive allocation for

12This is irrespective of whether or not this rejection occurs on the equilibrium path.
If it does, whereby subsequent continuation beliefs are determined by Bayes Rule, (a)
requires the same beliefs to ensue from rejection of some other non-null SC.

13Criterion (a) by itself is insufficient to allow collusion to have any bite, since the
construction used in proving Proposition 2 satisfied (a). Hence part (b) is additionally
required to avoid the conclusion of Proposition 2.
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a two-firm cartel which is the outcome of a side-contract that is rejected
with positive probability in equilibrium, which cannot be achieved by some
other side contract that is not rejected on the equilibrium path? There are
two main differences between our respective formulations of side-contracting.
First, in our model S rather than some third-party offers the side-contract.
In the latter case, a participation constraint for S has to be respected. In
our model S offers the SC, so there is no need to incorporate a participation
constraint for S. However this difference would disappear in the version of our
model to be considered later, where side contracts are designed and offered
by a third party. The second reason is the WPBE(w) restriction we have
imposed. The construction of the example in Celik-Peters (2013) hinges on
beliefs following rejection that vary with the side-contract in question, con-
trary to what WPBE(w) requires.14

The next step is to observe that the collusion-proofness principle — which
states that P can do no better than to restrict attention to noncooperative
equilibria of grand contracts that do not provide S with an incentive to offer
a non-null side contract — holds for organizations with weak collusion. This
simplifies the analysis of P’s problem of designing a mechanism for such an
organization.

Lemma 2 An allocation (uA, uS, q) is a WPBE(w) outcome if and only if
there exists a grand contract GC satisfying the following two properties:

(i) In any state η ∈ Π: participation and truthful reporting by all types
of S and A constitutes a Bayesian equilibrium relative to beliefs p∅(η)
obtained by updating on η alone, which results in state-η allocation:
(uA(·, η), uS(·, η), q(·, η));

14To elaborate further, their example rests on the following feature. Rejection of the
side contract analogous to our S̃C (by the uninformed party) results in coalition members
playing the grand contract noncooperatively with beliefs p∅, whereas rejection of the equi-
librium side contract is followed by noncooperative play with a different set of beliefs (the
same as on the equilibrium path p∗). If the two side contracts were associated with the
same post-rejection continuation beliefs, the argument underlying Lemma 1 would apply,
implying that the S̃C contract would support the same allocation as the equilibrium side-
contract. Their construction is based on the implicit assumption that the designer of the
side-contract will disclose information regarding the type reported by the other party for
some side contracts (e.g., the equilibrium side contract), and not others (e.g., S̃C) when
a given party is the only one to reject the side contract. However, it is not clear whether
or on what grounds this assumption can be justified.
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(ii) there is a WPBE(w) of the resulting side-contracting game in which S
offers no side-contract for any η ∈ Π.

The argument is straightforward. Lemma 1 ensures that without loss of
generality attention can be focused on WPBE(w) in which the equilibrium
side contract, if offered in any state η, is not rejected by any type of A. Then
there is no room for further coordination by S and A which improves the
expected payoff of S while meeting A’s acceptance and incentive constraint.
If the resulting allocation were offered directly in the grand contract, there
would be no scope for S to benefit from any further side-contract.

Lemma 2 implies that implementable allocations in the game with weak
collusion coincide with WCP allocations satisfying interim participation con-
straints for both A and S.

Proposition 3 An allocation (uA, uS, q) is implementable in the weak collu-
sion game, if and only if it is a WCP allocation satisfying interim participa-
tion constraints

E[uS(θ, η)|η] ≥ 0 for all η (4)

uA(θ, η) ≥ 0 for all (θ, η) (5)

4 Main Results

We are now in a position to present our main results. In this section we will
compare the following organizational alternatives:

(a) No Supervisor (NS): where P does not employ S and contracts with A
alone on the basis of his own prior information F over A’s cost θ. This
is a special case of the preceding model where XS ≡ 0,MS ≡ ∅ in the
grand contract. It is well known that P attains an expected profit of
E[V (qNS(θ)) − H(θ)qNS(θ)] where qNS(θ) is defined by the property
V ′(qNS(θ)) = H(θ). We shall denote this profit by ΠNS.

(b) Delegated Supervision (DS): Here P contracts with S alone, and dele-
gates to S the authority to contract with A and make production deci-
sions. It is a special case of the preceding model where XA ≡ 0,MA ≡ ∅
in the grand contract. S enters into a side-contract with A, and then
responds to P’s contract offer with a message regarding the joint real-
ization of θ and η, or some summary of the two variables. Here A has

21



no outside option of rejecting the side contract and participating in the
grand contract, which increases the bargaining power of S with A. We
shall denote the resulting profit of P by ΠDS.

(c) Centralized Supervision (CS): This is the unrestricted version of the
model considered so far, where P offers a grand contract involving both
S and A. A now has an outside option of rejecting the side contract
offered by S and participating in the grand contract noncooperatively.
We shall denote the resulting profit of P by ΠCS.

We will also assess these relative to the benchmark of no collusion, which
is associated with the second-best allocation defined previously. The associ-
ated profit will be denoted ΠSB. Since S has access to information about A’s
cost that is valuable in contracting with A, it is obvious that ΠNS < ΠSB,
i.e., hiring S is valuable if there is no collusion. We now compare the three
alternatives above against one another, and will subsequently assess them
relative to the second-best.

Proposition 4 ΠDS < ΠNS: delegated supervision is worse for the Principal
compared to hiring no supervisor.

The result of Faure-Grimaud, Laffont and Martimort (2003) therefore
does not extend to the setting of our model with ex ante collusion, risk
neutrality and continuous types. The intuitive reason is simple. Ex ante
collusion implies that in contracting with P, the supervisor is subject to
an ex post participation constraint: he can accept or reject the contract
offered by P after he has learnt the realization of A’s cost θ. This results in
double marginalization of rents (DMR): A earns rents owing to his private
information regarding θ with respect to S, and then S earns rents owing to his
private information regarding his costs of procuring from A (which depend
on the realizations of θ and η). In DS, the Principal effectively contracts
with a single agent whose unit cost equals ĥ(θ|η) which is the ironed version

of h(θ|η) ≡ θ+ F (θ|η)
f(θ|η)

, who can decide whether to participate after observing

the realization of his unit cost. Since h(θ|η) > θ almost everywhere (which
implies the same is true for its ironed version ĥ(θ|η)), delegated supervision
amounts to contracting with a single supplier whose cost is uniformly higher,
compared to contracting with the agent alone in the absence of the supervisor.
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While it is relatively easy to show that DS cannot dominate NS, the proof
establishes the stronger result that DS is strictly dominated by NS.15

Proposition 5 ΠNS < ΠCS: the Principal is strictly better off hiring S and
contracting directly with both S and A, compared to hiring no supervisor.

This states that P always benefits from hiring S despite the presence of ex
ante collusion between S and A. Combining with the previous result, it fol-
lows that S is valuable only provided P does not delegate authority to S: it is
essential that P contracts simultaneously with A as well, thus providing A an
outside option which raises A’s bargaining power within the coalition. This
limits the DMR problem by countervailing S’s tendency to behave monop-
sonistically with respect to A. By raising A’s outside option, the coalitional
virtual cost z is reduced, allowing an increase in output delivered, and raising
P’s expected payoff.

This helps explain how contracting directly with both S and A helps re-
duce the DMR problem inherent in DS which rendered it inferior to NS.
However, it does not help explain why it manages to do so sufficiently that
CS ends up being superior to NS. The explanation for this is more subtle,
arising from P’s ability to profitably utilize S’s superior information concern-
ing the agent’s cost with a simple mechanism. This arises ultimately from
the discrepancy between relative likelihoods of different cost states by P and
S, which they use to weight different states in computing their respective
payoffs.

It may help to outline the WCP allocation that can be used by P. Starting
with the optimal allocation in NS (which corresponds to the special case of CS
where Λ(θ | η) is chosen equal to F (θ | η), ensuring that the CSC and CVC
functions both reduce to the identity function (π(θ|η) = z(θ|π(·|η), η) = θ)),
P can construct a small variation in the CVC function z in some state η∗,
raising it above θ for some interval ΘH and lowering it for some other interval
ΘL, both of which have positive probability given η∗. The corresponding
quantity procured q(θ, η∗) is set equal to qNS(z(θ|η∗)), the quantity procured
in NS when the agent reported a cost of z(θ|η∗). This corresponds to raising

15The proof of strict domination is also straightforward in the case that h(θ|η) is con-
tinuous and nondecreasing in θ over a common support [θ, θ̄] for every η. In that case an
argument based on Proposition 1 in Mookherjee and Tsumagari (2004) can be applied. In
the general case there are a number of additional technical complications, but the result
still goes through.
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the quantity procured from the coalition over ΘL and lowering it over ΘH .
Payments to the coalition are set analogously at XNS(z(θ|η∗)), what the
agent would have been paid in NS following such a cost report.16 The agent is

offered the associated rent: uA(θ, η∗) =
∫ θ̄
θ
qNS(z(y|η∗))dy. By construction,

this allocation satisfies the agent’s incentive and participation constraints, as
well as the coalitional incentive constraint.17

Proposition 1 ensures such an allocation is WCP, provided S’s interim par-
ticipation constraint is satisfied. The variation over ΘL lowers rents earned
by S, and over ΘH raises them. Since S does not earn any rents to start with
(i.e, in NS), it is necessary to construct the variation such that S’s expected
rents in state η∗ do not go down. The rate at which S’s rents vary locally
in state θ with the quantity procured equals F (θ|η∗)

f(θ|η∗) .18 Intuitively this is the
saving that can be pocketed by S when procuring one less unit of the good
from A. Maintaining S’s expected rent therefore implies a marginal rate of
substitution between output variations over ΘL and ΘH that equals the ra-
tio of the (average) conditional inverse hazard rates F (θ|η∗)

f(θ|η∗) over these two
intervals respectively.

On the other hand, P’s benefit from a small expansion in output de-
livered in state θ equals V ′(qNS(θ)) − θ, where qNS(θ) denotes the optimal

allocation in NS.19 This allocation satisfies V ′(qNS(θ)) = H(θ) ≡ θ + F (θ)
f(θ)

,
the virtual cost of procurement without conditioning on information regard-
ing η. Hence P’s marginal benefit from output expansion in state θ equals
the unconditional inverse hazard rate F (θ)

f(θ)
. This implies that P’s marginal

rate of substitution between output variations over ΘL and ΘH equals the
ratio of the (average) unconditional inverse hazard rates F (θ)

f(θ)
over these two

16Specifically, XNS(z(θ|η)) = z(θ|η)qNS(z(θ|η)) +
∫ θ̄
z(θ|η)

qNS(y)dy.
17This requires checking that there exists a CSC function π(θ|η) corresponding to some

distribution function Λ(· | η) on [θ(η), θ̄(η)] such that z(θ | η) is the ironed version of
π(θ | η). This is true, since we can select Λ(θ | η) = (θ− z(θ | η))f(θ, η) +F (θ, η), which is
strictly increasing over ΘL and ΘH for a sufficiently small variation of z from the identity
function. Then Λ(· | η) is a distribution function, which generates π(θ|η) = z(θ | η) since
z(θ | η) is a non-decreasing function.

18S’s interim rent in state η equals the expected value conditional on η of
XNS(z(θ|η))−uA(z(θ|η))− θqNS(z(θ|η)), i.e., equals E[{(z(θ|η))−h(θ|η)}qNS((z(θ|η))−∫ θ̄
z(θ|η)

qNS(z)dz|η].

19This follows from the fact that ∂XNS(z(θ|η))
∂z = z(θ | η)qNS

′
(z(θ | η)), implying that

the marginal increase in payment evaluated at z(θ, η) = θ equals θ times the marginal
output change.
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intervals. The informativeness of S’s signals implies that P’s marginal rate
of substitution differs from S’s in some state η∗ over some pair of intervals
ΘL,ΘH . Hence there exist variations of the type described above which raise
P’s expected payoff, while preserving the expected payoff of S.

The next question is whether it may be possible for P to attain the second-
best payoff using a WCP mechanism. The following result provides a set of
sufficient conditions when this is not possible.

Proposition 6 ΠCS < ΠSB: P cannot attain the second-best payoff in CS if
the following conditions hold:

(i) The support of θ does not vary with the signal: Θ(η) = Θ for any η ∈ Π;

(ii) there exists η∗ ∈ Π such that f(θ|η∗) and f(θ|η∗)
f(θ|η)

are both strictly de-
creasing in θ for any η 6= η∗; and

(iii) V
′′′

(q) ≤ (V
′′

(q))2

V ′ (q)
for any q ≥ 0.

Condition (i) states that the support of θ does not vary with η, while
(ii) is a form of a monotone likelihood property: there is a signal realization
η∗ which is ‘better’ news about θ than any other realization, in the sense of
shifting weight in favor of low realizations of θ. It additionally requires that
the conditional density f(θ|η∗) is strictly decreasing in θ, i.e., higher realiza-
tions of θ are less likely than low realizations when η = η∗. (ii) is satisfied for
instance when θ has a uniform prior and there are just two possible signal
values satisfying the standard monotone likelihood ratio property. Condition
(iii) is satisfied if V is exponential (V = 1− exp(−rq), r > 0). It corresponds
to the assumption of ‘non-increasing absolute risk aversion’ of the Principal’s
benefit function.

The proof develops necessary conditions for implementation of the second
best given the distributional properties (i) and (ii). If the outputs must be
second-best, they must be a monotone decreasing function of the (ironed)
virtual cost ĥ(θ | η) in the second-best setting. If they also satisfy the
coalitional incentive constraints, they must be monotone in CVC z(θ | η).
These conditions imply the existence of a monotone transformation from ĥ
to z, and enable S’s ex post rent to be expressed as a function of ĥ alone.
Condition (iii) is used to show that this rent function is strictly convex which
in turn is used to show that the expected rents of S must be strictly higher
in state η∗ than any other state.
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5 Extensions

5.1 Implementation via Modified Delegation

We now show that the optimal allocation can be implemented by a modified
form of delegation, where P communicates and transacts only with S on the
equilibrium path. In this arrangement, S is ‘normally’ expected to contract
on behalf of the coalition {S,A} with P, sending a joint participation decision
and report of the state (θ, η) to P after having entered into a side contract
with A. However A has the option of circumventing this ‘normal’ procedure
and asking P to activate a grand contract in which A and S will send inde-
pendent reports and participation decisions to P. The presence of this option
ensures that A has sufficient bargaining power within the coalition; it does
not have to be ‘actually’ used, i.e., on the equilibrium path. This mechanism
can implement any implementable allocation as a WPBE(w) outcome.

The argument is quite simple, and outlined as follows (we omit a formal
proof). Take any WCP allocation (uS(θ, η), uA(θ, η), q(θ, η)) defined on K
which satisfies interim participation constraints, and let aggregate payments
to the coalition be X(θ, η) = uA(θ, η)+uS(θ, η)+θq(θ, η). Let the associated
grand contract be denoted as follows. The message spaces are M̃S, M̃A, where
M̃S = Π ∪ {eS} and M̃A = K ∪ {eA}. Both S and A report η, and A
additionally reports θ. P cross-checks the two η reports, and conditional
on these agreeing with one another, transfers are set in the obvious way
corresponding to the allocation (uS(θ, η), uA(θ, η), q(θ, η)), e.g., when neither
party exits, both report η and A reports θ, X̃S(θ, η) = uS(θ, η), X̃A(θ, η) =
uA(θ, η) + θq(θ, η), q̃(θ, η) = q(θ, η), otherwise these are all zero.

This ‘original’ grand contract can be augmented as follows. A is offered
a message space MA = M̃A ∪ {∅}, while S is offered MS = M̃S ∪ K ∪ {e}.
The interpretation is that if mA = ∅, A decides not to communicate directly
with P. And if mS ∈ K ∪ {e}, S decides to submit a joint report (θ, η)
(or else communicates a joint shutdown decision e) to P on behalf of the
coalition. The choice of mA = ∅,mS ∈ K ∪ {e} will correspond to the
‘normal’ delegation mode.

When the normal delegation mode is in operation, i.e., mA = ∅,mS ∈
K ∪ {e}, P will communicate and transact with S alone. Hence transfers
and output assignments in the augmented mechanism are defined as follows:
(XS, XA, q) equals (X̃S, X̃A, q̃) on M̃S × M̃A, (0, X(mS), q(mS)) if mA =
∅,mS ∈ K ∪ {e}, and (−T,−T, 0) otherwise where T is a large positive

26



number. The last feature ensures that A and S will always coordinate on
either the normal delegation mode, or the grand contract.

It is easy to check that this augmented mechanism has a WPBE(w) where
both S and A opt for the normal delegation mode, S offers A a side contract
with mS(θ, η) = (θ, η) ∈ K and u∗A(θ, η) = uA(θ, η) for all (θ, η), which A
accepts. To see this note first that if S and A play this augmented grand
contract noncooperatively, A will never select mA = ∅, since this results in a
negative payoff for A no matter what S does. If mA = ∅,mS ∈ K ∪ {e}, A is
committed to producing a positive quantity while not getting paid anything,
while mA = ∅,mS ∈ M̃S implies XA = −T, q = 0. And given that A
does not select mA = ∅, neither will S select mS in K ∪ {e}, owing to the
large penalty T for mis-coordination. Hence rejection of a side contract will
result in noncooperative play of the original grand contract, with respect to
prior beliefs (given the belief restrictions in WPBE(w)), which results in the
desired payoffs.

Hence A has an outside option of earning uA(θ, η) by rejecting any side
contract offered by S. This (along with the fact that the allocation is WCP)
implies that the side contract offered by S in equilibrium is optimal for S.
The reason is that the outcome of any feasible side contract in the normal
delegation mode was also attainable as the outcome of some feasible side
contract in the original mechanism.

The fact that S could not profitably deviate from the equilibrium side-
contract

It is possible to modify this mechanism slightly to ensure that this is the
unique WPBE(w) outcome. It can be shown that there exists a (original)
grand contract which implements the desired allocation uniquely as a nonco-
operative Bayesian equilibrium.20 Transfers in the normal delegation mode
of the augmented mechanism can be modifed as follows: (XA, XS, q) equals
(−ε,X(mS) + δ, q(mS)) when mA = ∅,mS ∈ K ∪ {e}, where δ > ε > 0.
Noncooperative play will then necessarily result in the truthful Bayesian
equilibrium of the original contract. And δ > ε implies that the coalition
benefits from the normal delegation mode. Hence S must offer A a side-
contract where they agree to play the normal delegation mode. So unique
implementation is possible at negligible cost to P, since ε and δ − ε can be
chosen to be arbitrarily small.

20A proof of this is available on request.
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Proposition 7 Any implementable allocation with weak collusion can be im-
plemented as a WPBE(w) outcome of the modified delegation mechanism
described above, where P communicates and transacts with S alone on the
equilibrium path. It can be implemented as the unique WPBE(w) outcome at
arbitrarily small cost to P.

5.2 Side Contracts Designed by a Third Party, and
Alternative Allocations of Bargaining Power

We now explain how the preceding results extend when the side contract is
designed not by S, but instead by a third-party that manages the coalition
and assigns arbitrary welfare weights to the payoffs of S and A respectively.
Such a formulation has been used by a number of authors to model collusion,
such as Laffont and Martimort (1997, 2000), Dequiedt (2006) and Celik and
Peters (2011). An advantage of this approach is that it allows an evaluation
of the effects of varying the allocation of bargaining power between colluding
partners.

Our results extend to such a setting, under the following formulation of
side contracts designed by a third party. We assume the third-party’s objec-
tive is to maximize a weighted sum of S and A’s interim payoffs. The third
party designs the side contract after learning the realization of η.21 Both S
and A have the option to reject the side contract, in which case they play
the grand contract noncooperatively. The WPBE(w) notion is extended as
follows: if S rejects the offered side contract, they play the noncooperative
equilibrium recommended by P based on prior beliefs. Consequences of re-
jection by A are the same as assumed previously.22 This formulation is the
natural extension of the assumption of passive beliefs underlying WPBE(w),
whereby rejection of a side contract by either S or A will result in reversion
to noncooperative play of the grand contract without any further updating
of beliefs (except of course when rejection does occur on the equilibrium path
with positive probability).

Letting α ∈ [0, 1] denote the welfare weight assigned by the third-party to

21This assumption can be dropped without affecting the results, since it can be shown
the third-party can use cross-reporting of η by S and A to learn its true value.

22Implicit in this formulation is the assumption that a party that rejects a side contract is
not told by the third party whether the other party rejected or accepted the side contract,
or what reports the latter sent. Moreover, a party that accepts the side contract is not
bound in any way, if the other party rejected it.
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A’s payoff, the side contract design problem reduces to selecting randomized
message m̃(θ, η) and A’s payoff ũA(θ, η) to (using the same notation for the
formulation P (η) of side contracts in Section 2):

maxE[(1− α)[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η)] + αũA(θ, η) | η]

subject to m̃(θ | η) ∈ ∆(M̂),

ũA(θ, η) ≥ uA(θ, η)

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂(m̃(θ
′ | η))

E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η] ≥ E[uS(θ, η) | η].

Besides modifying the objective function, this formulation adds a participa-
tion constraint for S. We refer to this as problem TP (η;α). It is straightfor-
ward to check that Lemma 2 extends: an allocation is a WPBE(w) outcome
if and only if A and S’s interim participation constraints are satisfied, and
the null side contract is optimal in TP (η;α) for every η. Hence the definition
of WCP can be extended to WCP(α) by requiring the null side contract to
be optimal in TP (η;α) for every η.

We now claim that the set of implementable allocations unaffected by
the allocation of bargaining power. This also implies that all our preceding
results extend to side contracts designed by a third party.

Proposition 8 The set of WCP(α) allocations is independent of α ∈ [0, 1].

The reasoning is straightforward. Consider any α ∈ (0, 1). It is easy to
check that a given allocation is WCP(α) if and only if there is no other allo-
cation attainable by some non-null side contract which satisfies the incentive
constraint for A, and which Pareto-dominates it (for A and S) with at least
one of them strictly better off. The same characterization applies to any
α′ ∈ (0, 1), implying that the set of WCP(α) allocations is independent of
α ∈ (0, 1). The transferability of utility then can be used to show that the
set of WCP allocations for interior welfare weights are also the same at the
boundary.23

23If an allocation is WCP(1) but not WCP(α) for some interior α, there must exist a
non-null side contract SC∗ which allows S to attain a strictly higher payoff, which leaves
A’s payoff unchanged. Then there exists another feasible non-null side-contract which
gives A a slightly higher payoff in all states, which meets S’s participation constraint.
Hence it is possible to design a feasible side contract that raises A’s expected payoff, so
the original allocation could not have been WCP(1).
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5.3 Altruistic Supervisors

Now consider a different variant, where S offers a side-contract to A, but
S is altruistic towards A rather than just concerned with his own income.
Suppose S’s payoff is uS = XS + t + α[XA − t − θq], where α ∈ [0, 1] is the
weight he places on A’s payoff. A on the other hand is concerned with only
his own income: uA = XA − t− θq.

Our analysis extends as follows. It is easy to check that the expression
for coalitional shadow cost is now modified to

πα(θ|η) ≡ θ + (1− α)
F (θ | η)− Λ(θ | η)

f(θ | η)

instead of π(θ|η) in Definition 3. In DS, the corresponding expression for
the cost of procuring one unit from S is modified from h(θ | η) to hα(θ |
η) = θ + (1 − α)F (θ|η)

f(θ|η)
. As long as α < 1, this is strictly higher than θ, so

DS will still continue to result in a lower profit than NS. The proof that CS
dominates NS also goes through in toto.

It is interesting to examine the effect of changes in the degree of altruism
on P’s payoffs. An increase in α lowers S’s shadow cost of output in DS
hα(θ | η), which benefits P. This is intuitive: the DMR problem becomes
less acute with a more altruistic supervisor. Note that with perfect altruism
α = 1, and the DMR problem disappears: DS then becomes equivalent to
NS.

On the other hand, an increase in altruism cannot benefit P in CS. The
set of WCP allocations can be shown to be non-increasing in α. Take any
WCP allocation corresponding to α: the following argument shows that it
is a WCP allocation corresponding to any α

′
< α. Let z(θ | η) be the

CVC function that is associated with the allocation at α, i.e., it is the ironed
version of πα(θ|η) corresponding to some distribution function Λα(·|η) on
[θ(η), θ̄(η)]. We can then select

Λα′ (θ | η) =
α− α′

1− α′
F (θ | η) +

1− α
1− α′

Λα(θ | η)

when the altruism parameter is α
′
, which is a distribution function since

α > α
′
. This ensures that the same CSC and CVC function is available when

the altruism parameter is α
′
, since by construction πα(θ|η) = πα′ (θ|η). Hence

the allocation satisfies the sufficient condition for WCP when the altruism
parameter is α

′
.
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Finally, if α = 1, the CSC function πα coincides with the identity function
θ, the cost of the agent in NS. We thus obtain

Proposition 9 In CS, P ’s optimal payoff is non-increasing in α. In DS,
P ’s optimal payoff is increasing in α. When α = 1, P ’s optimal payoffs in
DS, NS and CS coincide.

5.4 Linear Benefits

So far we have assumed that V is strictly concave, satisfying Inada conditions
so as to guarantee interior allocations. We now briefly describe how preced-
ing results extend when V is linear upto some capacity limit, and optimal
allocations are typically non-interior. This case is relevant for an indivisible
project where q refers to the probability of the project being carried out,
or to financial contexts where q denotes a revenue stream accruing to the
Principal.

We now consider the implications of assuming that V (q) = V q with
V ∈ (θ, θ̄) and q ∈ [0, 1]. For simplicity we focus on the case of a binary signal
η ∈ {η1, η2} with the monotone likelihood ratio property (a(η2 | θ)/a(η1 | θ)
is increasing in θ) and full support of θ for each signal: Θ(η1) = Θ(η2) = Θ.
The monotone likelihood ratio property implies that the distribution of θ
conditional on η2 first order stochastically dominates that on η1: F (θ | η1) >
F (θ | η2) for θ ∈ (θ, θ̄). It also implies the following ranking among the
virtual costs:

h(θ | η2) < H(θ) < h(θ | η1)

for any θ ∈ (θ, θ̄]. The same ranking is preserved after applying the ironing
transformation as well:

ĥ(θ | η2) < H(θ) < ĥ(θ | η1)

for any θ ∈ (θ, θ̄].
With linear V , the second best output schedules (qSB(θ, η1), qSB(θ, η2))

are characterized by the thresholds (θSB1 , θSB2 ) such that the output is 1 for
smaller θ than the threshold and 0 for larger θ than it where θSBi ≡ sup{θ |
V ≥ ĥ(θ | ηi)}.24 The ranking among virtual costs implies θSB1 < θNS < θSB2 .

24More precisely qSB(θ, ηi) can be the arbitrary non-increasing function on {θ | ĥ(θ |
ηi) = V } as far as it takes constant value on connected open interval of θ satisfying
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The Principal’s expected payoff in NS is (V − θNS)F (θNS) and in SB, it is

p(η1)(V − θSB1 )F (θSB1 | η1) + p(η2)(V − θSB2 )F (θSB2 | η2).

The result that delegated contracting DS is inferior to NS continues to
go through without any modification, as DS is associated with an increase
in the unit cost of delivering output by S, compared to the cost of output
delivered by A in NS. The argument used earlier to show that CS dominates
NS however cannot be applied, since output allocations in NS are not in-
terior. It turns out that a different variation can be constructed, involving
adjustment in the threshold θNS in NS to thresholds θi in state ηi, i = 1, 2
where θ1 < θNS < θ2, such that P is better off. The proof rests on showing
that such thresholds can be selected in the neighborhood of θNS such that
P’s profit rises in both states η1, η2 owing to outputs moving closer to the
corresponding second-best outputs θSB1 , θSB2 . These thresholds nevertheless
have to be selected carefully to ensure that the resulting allocation is WCP.

Proposition 10 Suppose V (q) = V q with V ∈ (θ, θ̄), with q ∈ [0, 1], and
Π ≡ {η1, η2} such that a(η2 | θ)/a(η1 | θ) is strictly increasing and Θ(η1) =
Θ(η2) = Θ. Then ΠCS > ΠNS: the Principal benefits from hiring the super-
visor.

With regard to the attainability of second-best payoffs, examples can be
constructed where this is and is not possible.25

6 Concluding Comments

We have a considered a model of weak ex ante collusion between a super-
visor and agent, where collusion arises with regard to both participation
and reporting decisions, and outside option payoffs in coalitional bargaining
are determined by noncooperative equilibria of a grand contract designed
by the Principal. We showed in such settings that the Principal can still
benefit from employing the supervisor. This requires the Principal to de-
sign a grand contract involving both the supervisor and the agent, rather

{θ |
∫ F (θ|ηi)

0
h(F−1(φ | ηi) | ηi)dφ >

∫ F (θ|ηi)
0

ĥ(F−1(φ | ηi) | ηi)dφ} (which is the pooling
region where h(θ | η) is flattered). However in our analysis, without loss of generality, our
attention can be restricted to output schedule with one threshold.

25Details are available on request.
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than delegating authority over contracting with the agent to the supervisor
in an unconditional manner. It is essential for the Principal to give both
parties suitable outside option payoffs by designing such a grand contract
judiciously. The presence of such a centralized safeguard as an option then
allows optimal outcomes to be implemented by delegating authority to the
supervisor. These results are consistent with the widespread prevalence of
delegation to information intermediaries, managers and regulators, and high-
light the importance of centralized oversight mechanisms which are necessary
supplements to mitigate ‘abuse of power’ by the concerned intermediaries.
While the commonsense justification for such mechanism is typically based
on considerations of fair treatment of agents, our analysis shows how such
mechanisms are essential to prevent inefficient output contractions and loss
of profits of the Principal owing to monopsonistic behavior by intermediaries
to whom authority is delegated.

In many contexts of hierarchical supervision or management, examples of
such oversight mechanisms are commonly observed. Taxpayers are usually
able to appeal assessments made by auditors or assessors appointed by the
government, in which taxpayers and assessors argue their respective cases
with an appellate tribunal or judge. Firms establish internal adjudication
procedures where employees can appeal decisions of their hierarchical su-
periors. The presence of such ‘rights’ is a privilege of firm’s employees not
shared by external suppliers: this may be an important distinguishing feature
of intra-firm relationships.

Additional questions arise regarding how supervisors and agents ought
to be matched. Should agents have the right to select their supervisors, or
should they be assigned by the Principal? Our analysis of consequences of
altruism of the auditor towards the agent confirms the common-sense no-
tion that the Principal should ensure absence of any overt conflict-of-interest
or likelihood of favoritism of the auditor towards the agent. This implies
the need for the Principal to check for possible external, social or personal
relationships between supervisors and agents.

Subject to such constraints, can agents be allowed to select their supervi-
sor, as commonly observed in the context of firms that are allowed to select
their financial auditor or quality-rating agency? This raises the bargaining
power of firms vis-a-vis their supervisor, compared to a system where super-
visors are externally appointed. Our model showed that optimal mechanisms
are unaffected by varying the allocation of bargaining power between the su-
pervisor and agent, once their outside option payoffs have been set by the
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‘fallback’ noncooperative outcomes of the grand contract designed by the
Principal.

This result, however, is based critically on the assumption of weak col-
lusion, where outside options are unaffected by the allocation of bargaining
power. With the alternative notion of strong collusion, this is no longer true
— when one party can make a take-it-or-leave-it offer of the side contract to
the other party, and the former can commit to threats of how that party will
behave subsequently in the grand contract should the side contract offer be
rejected. Such a solution concept may be reasonable in settings where one of
the parties is a long-lived player and develops a reputation for ‘toughness’,
while the other party is a short-term player. How our results will be modified
in the case of strong collusion remains an interesting task for future research.
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Appendix: Proofs

Proof of Proposition 1: Consider the necessity part. Suppose the allocation
(uA, uS, q) is WCP. Then the null side contract is optimal for S for every
η, so must be feasible in P (η). This implies (uA(θ, η), q(θ, η)) satisfies A’s
incentive compatibility condition. Now consider the problem P (η). The
incentive constraint

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂(m̃(θ
′ | η))

is equivalent to

ũA(θ, η) = ũA(θ̄(η), η) +

∫ θ̄(η)

θ

q̂(m̃(y | η))dy

and q̂(m̃(θ | η)) is non-increasing in θ. Then the problem can be rewritten
as

maxE[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η]

subject to m̃(θ | η) ∈ ∆(M̂) where M̂ ≡ K ∪ {e},

ũA(θ, η) = ũA(θ̄(η), η) +

∫ θ̄(η)

θ

q̂(m̃(y | η))dy ≥ uA(θ, η)

and q̂(m̃(θ | η)) non-increasing in θ. Since randomized side contracts can be
chosen, the objective function is concave and the feasible set is convex. So the
solution maximizes (subject to the constraint q̂(m̃(θ | η)) is non-increasing in
θ) the following Lagrangian expression corresponding to some non-decreasing
function Λ̃(θ | η):

L ≡ E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η)|η]

+

∫
[θ(η),θ̄(η)]

[ũA(θ, η)− uA(θ, η)]dΛ̃(θ | η)

where X̂(m̃), q̂(m̃) denote expected values of X̂(m), q̂(m) taken with respect
to probability measure m̃ over m ∈ M̂ . Note that without loss of generality,
ũA(θ, η) is a deterministic function.
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A’s incentive constraint implies ũA(θ, η) is continuous on Θ(η). Hence
integration by parts yields:∫

[θ(η),θ̄(η)]

ũA(θ, η)dΛ̃(θ | η) = Λ̃(θ̄(η) | η)ũA(θ̄(η), η)− Λ̃(θ(η) | η)ũA(θ(η), η)

+

∫
[θ(η),θ̄(η)]

Λ̃(θ | η)q̂(m̃(θ | η))dθ

= [Λ̃(θ̄(η) | η)− Λ̃(θ(η) | η)]ũA(θ̄(η), η)

+

∫
[θ(η),θ̄(η)]

[Λ̃(θ | η)− Λ̃(θ(η) | η)]q̂(m̃(θ | η))dθ.

The second equality comes from

ũA(θ(η), η) = ũA(θ̄(η), η) +

∫
[θ(η),θ̄(η)]

q̂(m̃(y | η))dy.

Next consider the effect of raising uniformly A’s outside option function
from uA(θ, η) to uA(θ, η)+∆ where ∆ is an arbitrary positive scalar. It is ev-
ident that the solution is unchanged, except that ũA(θ, η) is raised uniformly
by ∆. Hence the maximized payoff of S must fall by ∆, implying that∫

[θ(η),θ̄(η)]

∆dΛ̃(θ | η) = [Λ̃(θ̄(η) | η)− Λ̃(θ(η) | η)]∆ = ∆,

and so Λ̃(θ̄(η) | η) − Λ̃(θ(η) | η) = 1 in the optimal solution. Now define
Λ(θ | η) ≡ Λ̃(θ | η) − Λ̃(θ(η) | η). Then Λ(θ | η) is non-decreasing in θ with
Λ(θ(η) | η) = 0 and Λ(θ̄(η) | η) = 1.

This implies

L ≡
∫

[θ(η),θ̄(η)]

[X̂(m̃(θ | η))− π(θ | η)q̂(m̃(θ | η))]dF (θ | η)

−
∫

(θ(η),θ̄(η)]

uA(θ, η)dΛ(θ | η) (6)

where π(θ | η) ≡ θ + F (θ|η)−Λ(θ|η)
f(θ|η)

. This has to be maximized subject to

the constraint that q̂(m̃(θ | η)) is non-increasing in θ. This reduces to the
unconstrained maximization of the corresponding expression where the CSC
function π(· | η) is replaced by the corresponding CVC function z(· | η) using
the ironing procedure relative to the cdf F (θ | η).
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If m̃∗(θ | η) is optimal in problem P (η), there exists π(· | η) ∈ Y (η) so
that the optimal side contract m̃ = m̃∗(θ | η) maximizes

X̂(m̃(θ | η))− z(θ | η)q̂(m̃(θ | η))

where z(θ | η) ≡ z(θ | π(· | η), η). Moreover q̂(m̃∗(θ | η)) must be non-
increasing in θ and flat on any interval of θ which is a subset of Θ(π(· | η), η).

If the optimal side contract is degenerate and concentrated at (θ, η), it
must be the case that

X̂(θ, η)− z(θ | η)q̂(θ, η) ≥ X̂(m̃
′
)− z(θ | η)q̂(m̃

′
)

for any m̃
′ ∈ ∆(M̂). This implies

X̂(θ, η)− z(θ | η)q(θ, η) ≥ X̂(θ
′
, η
′
)− z(θ | η)q(θ

′
, η
′
)

X̂(θ, η)− z(θ | η)q(θ, η) ≥ 0

for any (θ, η), (θ
′
, η
′
), implying (i) in the proposition. Obviously q(θ, η) must

be non-increasing in θ and must be flat on any interval of θ which is a subset
of Θ(π(· | η), η) (implying (iii) in the proposition).

Now consider the sufficiency part. Consider any state η. Suppose there
is a CSC function π(· | η) ∈ Y (η) which is ironed to yield the CVC function
z(·|η) such that (uS(θ, η), uA(θ, η), q(θ, η)) satisfies all the conditions in the
proposition. Define (X̂(m), q̂(m)) on M̂ ≡ K ∪ {e} such that

(X̂(θ, η), q̂(θ, η)) = (uS(θ, η) + uA(θ, η) + θq(θ, η), q(θ, η))

and
(X̂(e), q̂(e)) = (0, 0).

and extend this to (X̂(m̃), q̂(m̃)) on ∆(M̂) in the obvious manner. Consider
the problem P (η) as selection of m̃(θ|η), ũA(θ, η) to maximize

E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η]

subject to
ũA(θ, η) ≥ uA(θ, η)

for any θ ∈ Θ(η),

ũA(θ, η) ≥ ũA(θ
′
, η) + (θ

′ − θ)q̂(m̃(θ
′ | η))
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for any θ, θ
′ ∈ Θ(η). For ũA(θ, η) which satisfies constraints of the problem,

we have ∫
[θ(η),θ̄(η)]

[ũA(θ, η)− uA(θ, η)]dΛ(θ | η) ≥ 0.

Then

E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η]

≤ E[X̂(m̃(θ | η))− θq̂(m̃(θ | η))− ũA(θ, η) | η]

+

∫
[θ(η),θ̄(η)]

[ũA(θ, η)− uA(θ, η)]dΛ(θ | η).

Now consider the problem of maximizing the right hand side of this inequality,
subject to the constraint that q̂(m̃(θ | η)) is non-increasing in θ. Using
the same steps in the proof of the necessity part, this can be expressed
as a problem of selecting m̃(θ|η) to maximize the Lagrangean (6) subject
to the constraint that q̂(m̃(θ | η)) is non-increasing in θ. Conditions (i)-
(iii) imply that the right-hand-side is maximized at m̃(θ | η) = (θ, η) and
ũA(θ, η) = uA(θ, η). Since∫

[θ(η),θ̄(η)]

[ũA(θ, η)− uA(θ, η)]dΛ(θ | η) = 0

when ũA(θ, η) = uA(θ, η), this shows that the left hand side of the above
inequality is also maximized at m̃(θ | η) = (θ, η) and ũA(θ, η) = uA(θ, η).
Hence (m̃(θ | η), ũA(θ, η)) = ((θ, η), uA(θ, η)) solves P (η).

Proof of Proposition 2: Let P offer the following grand contract which is a
revelation mechanism satisfying

(XA(mA,mS), XS(mA,mS), q(mS,mA);MS,MA)

where MS = Π ∪ {eS} and MA = Θ ∪ {eA}.

(i) XS(mA,mS) = 0 for any (mA,mS).

(ii) q(θ, η) = qSB(ĥ(θ | η)) and XA(θ, η) = θqSB(ĥ(θ | η)) +
∫ θ̄(η)

θ
qSB(ĥ(y |

η))dy, if (θ, η) ∈ K, otherwise both are set equal to zero.

(iii) XA(eA,mS) = q(eA,mS) = 0 for any mS.

40



(iv) (XA(θ, eS), q(θ, eS)) = (X̂A(θ), q̂(θ)) satisfies the following properties:
(a) X̂A(θ) − θq̂(θ) ≥ X̂A(θ

′
) − θq̂(θ′), (b) X̂A(θ) − θq̂(θ) ≥ 0 and (c)

there exists θ
′

such that q̂(θ
′
) = q(θ, η) and X̂A(θ

′
) > XA(θ, η) for any

(θ, η) ∈ Θ× Π.26

For any η, P recommends S and A play the Bayesian equilibrium in which
they both participate and report truthfully. Following any SC offered by
S, the consequences of rejection of this SC by A are specified by P as fol-
lows. Beliefs held are p∅(η). Continuation strategies are: S exits, A plays
the revelation mechanism according to the ‘gilded’ contract specified in (iv),
participates always and reports truthfully.

If A rejects any side-contract offer, S will subsequently earn nothing owing
to property (i). S cannot benefit from deciding to participate in the grand
contract following rejection of any SC. So it is sequentially rational for S to
exit following rejection of an offered SC.

We claim that it is optimal for S to not offer any non-null side contract.
By construction of the ‘gilded’ contract, it dominates any offered non-null
side-contract from A’s point of view in state (θ, η), unless the side-payment
t(θ, η) specified in the latter is positive. Hence S will lose money from a non-
null side-contract in any state in which it is accepted, and cannot benefit by
offering it.

Consequently, there is a Weak Perfect Bayesian equilibrium of this game
in which S never offers any side contract. This implies that S and A play
the recommended Bayesian equilibrium, and the second-best allocation is
implemented.

Proof of Lemma 1: Suppose on the equilibrium path S offers a side contract
SC∗ in some state η ∈ Π which is rejected by a set Tr ⊆ Θ(η) of types of A
with positive measure conditional on η. Let the continuation beliefs following
rejection of SC∗ be denoted p∗, and the Bayesian equilibrium of the grand
contract thereafter is denoted c∗ ∈ C(p∗) (here we are suppressing η in the
notation for expositional convenience).

Now suppose S offers an alternative side contract S̃C, which agrees with
SC∗ if A reports θ ∈ Θ(η)\Tr to S, i.e., results in the same coordinated
report to P and the same side-payment as stipulated by SC∗. If instead A

26For instance, we can choose (X̂A(θ), q̂(θ)) such that (i) q̂(θ) is continuous and strictly
decreasing in θ with q̂(θ) = max(θ,η)∈Θ×Π q(θ, η) and q̂(θ̄) = min(θ,η)∈Θ×Π q(θ, η), and (ii)

X̂A(θ) = θq̂(θ) +
∫ θ̄
θ
q̂(y)dy +R for sufficiently large R > 0
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reports θ ∈ Tr, S proposes the same joint report (θ, η) they would have made
independently in c∗, with no side-payment. If S̃C is rejected by A, they play
according to (p∗, c∗) in the grand contract. This ensures consistency with
criteria (a) and (b) in the definition of WPBE(w).

If all types of A accept S̃C and report truthfully, it results in the same
allocation as in SC∗. Rejecting it results in the same continuation play of the
grand contract that resulted from rejecting SC∗. Conditional on accepting
S̃C, no type θ of A can benefit from deviating from truthful-reporting. Oth-
erwise, if θ ∈ Θ(η)\Tr benefitted from deviating, this would imply they would
have had a profitable deviation from their equilibrium response to SC∗. If
θ ∈ Tr benefits by deviating, this type would have benefitted earlier also,
either by accepting SC∗, or rejecting it and then deviating to the strategy
played by some other type of A while playing the Bayesian equilibrium of
the grand contract.

Owing to restriction (a) of Definition 6, rejection of any other side-
contract offer SC ′ will also result in the same continuation outcomes in the
grand contract. Hence the consequences of S deviating to some other side
contract offer remain unchanged. The consequences of not offering a side
contract have not changed. So it is optimal for S to offer S̃C.

Proof of Lemma 2: sketched in the text.

Proof of Proposition 3:
Necessity follows straightforwardly from Lemmas 1 and 2. To show suf-

ficiency, consider a WCP allocation satisfying participation constraints. Let
P offer the following revelation mechanism in the grand contract: XS =
XA = q = 0 if mA = eA or mS = eS. If mA 6= eA and mS 6= eS, and A
reports (θ, ηA) while S reports ηS, q((θ, ηA), ηS) = q(θ, ηS), XS((θ, ηA), ηS) =
uS(θ, ηA), XA((θ, ηA), ηS) = θq(θ, ηS) + uA(θ, ηS)− T (ηS, ηA) where T equals
zero if ηA = ηS and (θ, ηA) ∈ K, and a large negative number otherwise.
We first show property (i) of Lemma 2 holds. Consider any η. Conditional
on both S and A participating, it is optimal for S to report ηS = η since
S’s payoff does not depend on ηS. Given that S is reporting truthfully, it is
optimal for A to report ηA = η. WCP implies that the null side contract
is feasible in the side contracting problem for every η, hence it is optimal
for A to report θ truthfully, given that η is being reported truthfully. Given
that both S and A report truthfully conditional on participation, the interim
participation constraints imply it is optimal for them to always participate.
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Let this equilibrium be denoted c∗. We claim that there is a WPBE(w)
in which S always offers a null side contract, whose outcome is c∗. The
WPBE(w) restriction implies c∗ must be the consequence of rejection by A
of any offered non-null side contract. Hence uA(θ, η) is the outside option of
A which S takes as given while selecting a side contract. Since the allocation
resulting from c∗ is WCP, S cannot benefit from offering any non-null side
contract.

Proof of Proposition 4:
At the first step, note that the optimal side contract problem for S in DS

involves an outside option for A which is identically zero. This reduces to a
standard problem of contracting with a single agent with adverse selection
and an outside option of zero, where the principal has a prior distribution
F (θ|η) over the agent’s cost θ in state η. The CSC function equals h(θ|η),
and the CVC function z(θ|η) reduces to ĥ(θ|η) obtained by applying the
ironing rule to h(θ|η) and distribution F (θ|η).

Given this, P’s contract with S in DS is effectively a contracting problem
for P with a single supplier whose unit supply cost is ĥ(θ|η). P’s prior over
this supplier’s cost is given by distribution function

G(h) ≡ Pr((θ, η) | ĥ(θ | η) ≤ h)

for h ≥ θ and G(h) = 0 for h < θ. Let G(h | η) denote the cumulative
distribution function of h = ĥ(θ | η) conditional on η:

G(h | η) ≡ Pr(θ | ĥ(θ | η) ≤ h, η)

for h ≥ ĥ(θ(η) | η)(= θ(η)) and G(h | η) = 0 for h < θ(η). Then G(h) =
Ση∈Πp(η)G(h | η). Since ĥ(θ | η) is continuous on Θ(η), G(h | η) is strictly

increasing in h on [θ(η), ĥ(θ̄(η) | η)]. However, G(h | η) may fail to be
left-continuous.

Hence P’s problem in DS reduces to

maxEh[V (q(h))−X(h)]

subject to
X(h)− hq(h) ≥ X(h

′
)− hq(h′)

for any h, h
′ ∈ [θ, h̄] and

X(h)− hq(h) ≥ 0
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for any h ∈ [θ, h̄] where the distribution function of h is G(h) and h̄ ≡
maxη∈Π ĥ(θ̄(η) | η). The corresponding problem in NS is

maxEθ[V (q(θ))−X(θ)]

subject to
X(θ)− θq(θ) ≥ X(θ

′
)− θq(θ′)

for any θ, θ
′ ∈ Θ and

X(θ)− θq(θ) ≥ 0

for any θ ∈ Θ. The two problems differ only in the underlying cost dis-
tributions of P: G(h) in the case of DS and F (θ) in the case of NS. Since
θ < ĥ(θ | η) for θ > θ(η),

G(h | η) ≡ Pr(θ | ĥ(θ | η) ≤ h, η) < Pr(θ | θ ≤ h, η) = F (h | η)

for h ∈ (θ(η), ĥ(θ̄(η) | η)), implying

G(h) = Ση∈Πp(η)G(h | η) < Ση∈Πp(η)F (h | η) = F (h)

for any h ∈ (θ, h̄). Therefore the distribution of h in DS (strictly) dominates
that of θ in NS in the first order stochastic sense.

It remains to show that this implies that P must earn a lower profit in DS.
We prove the following general statement. Consider two contracting problems
with a single supplier which differ only in regard to the cost distributions G1

and G2, where G1(h) < G2(h) for any h ∈ (h, h̄). Let the maximized profit
of P with distribution G be denoted W (G). We will show W (G1) < W (G2).

Let q1(h) denote the optimal solution of the problem based on G1(h).
(i) First we show that V

′
(q1(h)) < h does not hold for any h. Suppose

otherwise that there exists some interval over which V
′
(q1(h)) < h. Then we

can replace the portion of q1(h) with V
′
(q1(h)) < h by q∗(h) with V

′
(q∗(h)) =

h, without violating the constraint that q(h) is non-increasing. It raises the
value of the objective function, since V (q1(h))− hq1(h) < V (q∗1(h))− hq∗1(h)

for h where q1(h) is replaced by q∗(h), and
∫ h̄
h
q(y)dy decreases with this

replacement. This is a contradiction.
(ii) Next we show that for any h

′ ∈ [h, h̄), there exists a subinterval of
[h
′
, h̄) over which V

′
(q1(h)) > h. Otherwise, there exists h

′ ∈ [h, h̄) such that
q1(h) = q∗(h) almost everywhere on [h

′
, h̄). Then for any h ∈ [h

′
, h̄),

V (q∗(h))− hq∗(h)−
∫ h̄

h

q∗(y)dy = V (q∗(h̄))− h̄q∗(h̄),
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since V (q∗(h))−hq∗(h) =
∫ h̄
h
q∗(y)dy+V (q∗(h̄))− h̄q∗(h̄) (which follows from

the Envelope Theorem: d[V (q∗(h))− hq∗(h)]/dh = −q∗(h)). Then

W (G1) = (1−G1(h
′
))[V (q∗(h̄))− h̄q∗(h̄)]

+ G1(h
′
)E[V (q1(h))− hq1(h)−

∫ h
′

h

q1(y)dy | h ≤ h
′
]−G1(h

′
)

∫ h̄

h′
q∗(y)dy.

Now consider output schedule q(h) such that q(h) = q1(h) for h ≤ h
′

and
q(h) = q∗(h̄) for h > h

′
. It is evident that q(h) is non-increasing in h

and generates a higher value of the objective function, since
∫ h̄
h′
q∗(y)dy >∫ h̄

h′
q∗(h̄)dy. This is a contradiction.
(iii) We show there does not exist q such that q1(h) = q almost every-

where. Otherwise, q1(h) = q almost everywhere for some q. Then

V (q)− hq −
∫ h̄

h

qdy = V (q)− h̄q,

which is not larger than V (q∗(h̄)) − h̄q∗(h̄) which equals maxq̃[V (q̃) − h̄q̃].
We can show that the value of the objective function is increased by choosing
the following output schedule q̃(h):

q̃(h) =

{
q∗(h̄) h ∈ [h∗, h̄]
q∗(h̄) + ε h ∈ [h, h∗]

where h∗ is any element of (h, h̄), and ε > 0 is chosen so that V (q∗(h̄) + ε)−
V (q∗(h̄)) > εh∗. This is possible since limε→0

V (q∗(h̄)+ε)−V (q∗(h̄))
ε

= V
′
(q∗(h̄)) =

h̄, implying existence of ε > 0 such that V (q∗(h̄) + ε) − V (q∗(h̄)) > εh∗ for
any h∗ < h̄.

Then we obtain a contradiction, since

V (q∗(h̄))− h̄q∗(h̄)

< (1−G1(h∗))[V (q∗(h̄))− h̄q∗(h̄)] +G1(h∗)[V (q∗(h̄) + ε)− h̄q∗(h̄)− εh∗]

=

∫ h̄

h

[V (q̃(h))− hq̃(h)−
∫ h̄

h

q̃(y)dy]dG1(h).

(iv) Define

Φ(h) ≡ V (q1(h))− hq1(h)−
∫ h̄

h

q1(y)dy.
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We claim that Φ(h) is left-continuous and bounded. First we show that q1(h)
is left-continuous. Otherwise, there exists h

′ ∈ (h, h̄) such that q1(h
′−) >

q1(h
′
). Now consider q̃1(h) (which is left-continuous at h

′
) such that q̃1(h

′
) =

q1(h
′−) and q̃1(h) = q1(h) for any h 6= h

′
. Defining Φ̃(h) ≡ V (q̃1(h)) −

hq̃1(h) −
∫ h̄
h
q̃1(y)dy, observe that Φ̃(h) = Φ(h) for h 6= h

′
and Φ̃(h) > Φ(h)

when h = h
′
. Then∫

[h,h̄]

Φ̃(h)dG(h) =

∫
[h,h̄]\h′

Φ̃(h)dG(h) + Φ̃(h
′
)[G(h

′
+)−G(h

′−)]

≥
∫

[h,h̄]\h′
Φ̃(h)dG(h) + Φ(h

′
)[G(h

′
+)−G(h

′−)] =

∫
[h,h̄]

Φ(h)dG(h)

with strict inequality if G(h) is discontinuous at h = h
′
. This is a contradic-

tion. This implies in turn that Φ(h) is also left-continuous. Moreover, Φ(h)
is bounded, since

Φ(h) ≤ Φ(h) ≤ V (q1(h))− hq1(h) ≤ V (q∗(h))− hq∗(h) <∞

because of h > 0, and

Φ(h) ≥ Φ(h̄) = V (q1(h̄))− h̄q1(h̄) ≥ 0

because of V
′
(q) > V

′
(q1(h̄)) ≥ h̄ for q < q1(h̄) and V (0) = 0.

(v) We claim that Φ(h) is non-increasing in h and is not constant on
(h, h̄). To show the former, note that for any h, we have

lim
ε→0+

Φ(h+ ε)− Φ(h)

ε

= lim
ε→0+

(1/ε)[V (q1(h+ ε))− (h+ ε)q1(h+ ε)−
∫ h̄

h+ε

q1(y)dy

− [V (q1(h))− hq1(h)−
∫ h̄

h

q1(y)dy]]

= [V
′
(q̂(h))− h] lim

ε→0+

q1(h+ ε)− q1(h)

ε

− q1(h+) + lim
ε→0+

(1/ε)

∫ h+ε

h

q1(y)dy

= [V
′
(q̂(h))− h] lim

ε→0+

q1(h+ ε)− q1(h)

ε
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for some q̂(h) ∈ [q1(h+), q1(h)]. This is non-positive since V
′
(q̂(h)) ≤ V

′
(q1(h+)) ≤

h and limε→0+
q1(h+ε)−q1(h)

ε
≤ 0. Because of left-continuity of Φ(h), it implies

that Φ(h) is non-increasing in h.
Next we show that Φ(h) is not constant on (h, h̄). First we consider the

case that there exists h ∈ (h, h̄) such that q1(h+) < q1(h−). Then

Φ(h+)

= V (q1(h+))− hq1(h+)−
∫ h̄

h

q1(y)dy]

< V (q1(h−))− hq1(h−)−
∫ h̄

h

q1(y)dy = Φ(h−)

The inequality follows from V
′
(q1(h+)) > V

′
(q1(h−)) ≥ V

′
(q∗(h)) = h.

Therefore Φ(h) decreases discontinuously at h, implying that Φ(h) is not
constant on (h, h̄). Second we consider the case that q(h) is continuous on
(h, h̄). Then from (ii) and (iii) above, there exists an interval (h−, h+) with
the positive measure such that q1(h) is strictly decreasing and V

′
(q1(h)) > h

on (h−, h+). Φ(h) is continuous and almost everywhere differentiable (be-
cause of monotonicity of q1(h)). At any point of differentiability,

Φ
′
(h) = [V

′
(q1(h))− h]q

′

1(h).

This is negative almost everywhere on (h−, h+). Hence Φ(h) is strictly de-
creasing in h on (h−, h+).

(vi) Now consider the contracting problem with cost distribution G2(h).
Since q1(h) is non-increasing in h, it is feasible for P to select this output

schedule when the cost distribution is G2. Hence W (G2) ≥
∫ h̄
h

Φ(h)dG2(h).

Therefore if
∫ h̄
h

Φ(h)dG2(h) >
∫ h̄
h

Φ(h)dG1(h) = W (G1), it follows that

W (G2) > W (G1). Since G1(h) is right-continuous and Φ(h) is left-continuous
and bounded, we can integrate by parts:∫ h̄

h

Φ(h)dG1(h) +

∫ h̄

h

G1(h)dΦ(h) = Φ(h̄)G1(h̄)− Φ(h)G1(h) = Φ(h̄).

Similarly for G2(h),∫ h̄

h

Φ(h)dG2(h) +

∫ h̄

h

G2(h)dΦ(h) = Φ(h̄)G2(h̄)− Φ(h)G2(h) = Φ(h̄).
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Hence ∫ h̄

h

Φ(h)dG2(h)−
∫ h̄

h

Φ(h)dG1(h) =

∫ h̄

h

[G1(h)−G2(h)]dΦ(h).

By (iv) and G2(h) > G1(h) for h ∈ (h, h̄), this is positive.

Proof of Proposition 4:

Step 1: For any η ∈ Π and any closed interval [θ
′
, θ
′′
] ⊂ Θ(η) such that

θ(η) < θ
′
< θ

′′
< θ̄(η), there exists δ > 0 such that z(·) ∈ Z(η) for any z(·)

satisfying the following properties:

(i) z(θ) is increasing and differentiable with |z(θ)− θ| < δ and
|z′(θ)− 1| < δ for any θ ∈ Θ(η)

(ii) z(θ) = θ for any θ /∈ [θ
′
, θ
′′
].

Proof of Step 1

For arbitrary η ∈ Π and arbitrary closed interval [θ
′
, θ
′′
] ⊂ Θ(η) such that

θ(η) < θ
′
< θ

′′
< θ̄(η), we choose ε1 and ε2 such that

ε1 ≡ min
θ∈[θ′ ,θ′′ ]

f(θ | η)

and
ε2 ≡ max

θ∈[θ′ ,θ′′ ]
|f ′(θ | η)|.

From our assumptions that f(θ | η) is continuously differentiable and positive
on Θ(η), ε1 > 0, and ε2 is positive and bounded above. We choose δ > 0
such that

δ ∈ (0,
ε1

ε1 + ε2
).

For this δ, it is obvious that there exists z(θ) which satisfies conditions (i)
and (ii) of the statement. Define

Λ(θ | η) ≡ (θ − z(θ))f(θ | η) + F (θ | η).
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Since z(θ) is differentiable on Θ(η), Λ(θ | η) is also so. It is equal to Λ(θ |
η) = F (θ | η) on θ /∈ [θ

′
, θ
′′
]. For θ ∈ [θ

′
, θ
′′
],

∂Λ(θ | η)

∂θ
= (2− z′(θ))f(θ | η) + (θ − z(θ))f

′
(θ | η) > (1− δ)f(θ | η)− δ|f ′(θ | η)|

≥ (1− δ)ε1 − δε2.

This is positive by the definition of (ε1, ε2, δ). Then Λ(θ | η) is increasing in θ
on Θ(η) with Λ(θ(η) | η) = 0 and Λ(θ̄(η) | η) = 1. Since z(θ) is increasing in θ
by the definition, it is preserved even by ironing rule. Therefore z(·) ∈ Z(η).

Step 2: There exist η ∈ Π and an interval of θ with positive measure such
that F (θ|η)

f(θ|η)
/F (θ)
f(θ)

is increasing in θ.

The proof of Step 2

Define

A(θ | η) ≡ F (θ | η)

f(θ | η)
/
F (θ)

f(θ)
≡

∫ θ
θ(η)

f(y)a(η|y)dy

a(η|θ)F (θ)
.

If the result is false, A(θ | η) is non-increasing in θ ∈ (θ(η), θ̄(η)) for all η.
Then

∂A(θ | η)/∂θ =
1

F (θ)2a(η | θ)2
[F (θ)a(η | θ)2f(θ)

−
∫ θ

θ(η)

f(y)a(η | y)dy{F (θ)∂a(η | θ)/∂θ + f(θ)a(η | θ)}] ≤ 0

holds for θ ∈ (θ(η), θ̄(η)). Equivalently

∂a(η | θ)/∂θ ≥ f(θ)

F (θ)
[1/A(θ | η)− 1]a(η | θ).

Define Π(θ) ≡ {η ∈ Π | θ ∈ (θ(η), θ̄(η))}. By Ση∈Π(θ)a(η | θ) = 1,
Ση∈Π(θ)∂a(η | θ)/∂θ = 0. This implies that

0 = Ση∈Π(θ)∂a(η | θ)/∂θ ≥ f(θ)

F (θ)
[Ση∈Π(θ)a(η | θ)/A(θ | η)− 1],
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or Ση∈Π(θ)a(η | θ)/A(θ | η) ≤ 1 holds any for θ ∈ (θ, θ̄). Since 1/A is convex
in A and Ση∈Π(θ)a(η | θ)A(θ | η) = 1,

Ση∈Π(θ)a(η | θ)/A(θ | η) ≥ 1/[Ση∈Π(θ)a(η | θ)A(θ | η)] = 1

with strict inequality if there exists η ∈ Π(θ) such that A(θ | η) 6= 1. This
means that A(θ | η) = 1 must hold for any η ∈ Π(θ) and any θ ∈ Θ. Then
h(θ | η) = H(θ) for any (θ, η) ∈ K. This is a contradiction, since η is
informative about θ.

Step 3:

From Step 2, we can choose η∗ ∈ Π and a closed interval [θ
′
, θ
′′
] ⊂ Θ(η∗)

such that θ(η∗) < θ
′
< θ

′′
< θ̄(η∗) and A(θ | η∗) ≡ F (θ|η∗)

f(θ|η∗) /
F (θ)
f(θ)

is increasing

in θ on [θ
′
, θ
′′
]. According to the procedure in Step 1, we select δ > 0 for η∗

and [θ
′
, θ
′′
]. Then we also choose λ > 0, closed intervals ΘL ⊂ [θ

′
, θ
′′
] and

ΘH ⊂ [θ
′
, θ
′′
] ,

λ <
F (θ)

f(θ)
/
F (θ | η∗)
f(θ | η∗)

for θ ∈ ΘL ≡ [θL, θ̄L] ⊂ [θ
′
, θ
′′
]

λ >
F (θ)

f(θ)
/
F (θ | η∗)
f(θ | η∗)

for θ ∈ ΘH ≡ [θH , θ̄H ] ⊂ [θ
′
, θ
′′
]

with θ̄L < θH . These conditions are equivalent to

H(θ)− (1− λ)θ − λh(θ | η∗) > 0 for θ ∈ ΘL

and
H(θ)− (1− λ)θ − λh(θ | η∗) < 0 for θ ∈ ΘH .

Step 4: Construction of z(θ | η)

Now let us construct z(θ | η) which satisfies the following conditions.

(A) For η 6= η∗, z(θ | η) = θ for any θ ∈ Θ(η).

(B) For η∗, z(θ | η∗) satisfies

(i) z(θ | η∗) is increasing and differentiable with |z(θ | η∗) − θ| < δ
and |z′(θ | η∗)− 1| < δ for any θ ∈ Θ(η∗)
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(ii) z(θ | η∗) = θ for any θ /∈ ΘH ∪ΘL

(iii) For θ ∈ ΘL, z(θ | η∗) satisfies (a) z(θ | η∗) ≤ θ with strict
inequality for some subinterval of ΘL of positive measure, and (b)
H(z)− (1− λ)z − λh(θ | η∗) > 0 for any z ∈ [z(θ | η∗), θ].

(iv) For θ ∈ ΘH , z(θ | η∗) satisfies (a) z(θ | η∗) ≥ θ with strict
inequality for some some subinterval of ΘH of positive measure,
(b) z(θ | η∗) < h(θ | η∗) and (c) H(z)− (1− λ)z − λh(θ | η∗) < 0
for any z ∈ [θ, z(θ | η∗)].

(v) E[(z(θ | η∗)− h(θ | η∗))qNS(z(θ | η∗)) +
∫ θ̄(η∗)
z(θ|η∗) q

NS(z)dz | η∗] = 0.

We now argue there exists z∗(θ | η∗) which satisfies (B(i)-(v)). Step 3
guarantees that we can select z(θ | η∗) which satisfies (B(i)-(iv)). Since

(z − h(θ | η∗))qNS(z) +

∫ θ̄(η∗)

z

qNS(y)dy

is increasing in z for z < h(θ | η∗), and

E[(θ − h(θ | η∗))qNS(θ) +

∫ θ̄(η∗)

θ

qNS(y)dy | η∗] = 0,

the choice of z(θ | η∗) ≤ θ on ΘL (or z(θ | η∗) ≥ θ on ΘH) reduces (or raises)

E[(z(θ | η∗)− h(θ | η∗))qNS(z(θ | η∗)) +

∫ θ̄(η∗)

z(θ|η∗)
qNS(z)dz | η∗]

away from zero. For any pair of parameters αH , αL lying in [0, 1], define
a function zαL,αH (θ|η∗) which equals (1 − αL)z(θ|η∗) + αLθ on ΘL, equals
(1 − αH)z(θ|η∗) + αHθ on ΘH and equals θ elsewhere. It is easily checked
that any such function also satisfies conditions (B(i)–(iv)). Define

Q(αL, αU) ≡ E[(zαL,αH (θ | η∗)−h(θ | η∗))qNS(zαL,αH (θ | η∗))+
∫ θ̄(η∗)

zαL,αH (θ|η∗)
qNS(z)dz | η∗].

Then Q is continuously differentiable, strictly increasing in αL and strictly
decreasing in αH . By (B(v)), Q(1, 1) = 0. The Implicit Function Theorem
ensures existence of α∗L, α

∗
H both smaller than 1 such that Q(α∗L, α

∗
H) = 0.

Hence the function zα∗L,α∗H (θ|η∗) satisfies (B(i)-(v)).
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Step 5

By Step 1, z(· | η) constructed in Step 4 is in Z(η) for any η ∈ Π. Consider
the following allocation (uA, uS, q):

q(θ, η) = qNS(z(θ | η))

uA(θ, η) =

∫ θ̄

θ

qNS(z(y | η))dy

uS(θ, η) = XNS(z(θ | η))−θqNS(z(θ | η))−
∫ θ̄(η)

θ

qNS(z(y | η))dy−
∫ θ̄

θ̄(η)

qNS(y)dy.

where

XNS(z(θ | η)) ≡ z(θ | η)qNS(z(θ | η)) +

∫ θ̄

z(θ|η)

qNS(z)dz.

The construction of z(θ | η) implies that z(θ̄(η) | η) ≤ θ̄ for any η ∈ Π.
Hence

XNS(z(θ | η))− z(θ | η)qNS(z(θ | η)) ≥ 0

for any (θ, η) ∈ K and
E[uS(θ, η) | η] = 0

from (A) and (B(v)). Then (uA, uS, q) is a WCP allocation satisfying interim
PCs. Now we show that this allocation generates a higher payoff to P than
the optimal allocation in NS. P ’s resulting expected payoff conditional on
η∗ (maintaining the expected payoff conditional on η 6= η∗ unchanged) is:

E[V (qNS(z(θ | η∗)))− z(θ | η∗)qNS(z(θ | η∗))−
∫ θ̄

z(θ|η∗)
qNS(z)dz | η∗].
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With E[uS(θ, η∗) | η∗] = 0, this is equal to

E[V (qNS(z(θ | η∗)))− z(θ | η∗)qNS(z(θ | η∗))−
∫ θ̄

z(θ|η∗)
qNS(z)dz | η∗]

+ λE[(z(θ | η∗)− h(θ | η∗))qNS(z(θ | η∗)) +

∫ θ̄(η∗)

z(θ|η∗)
qNS(z)dz | η∗]

= E[V (qNS(z(θ | η∗)))− [(1− λ)z(θ | η∗) + λh(θ | η∗)]qNS(z(θ | η∗))

− (1− λ)

∫ θ̄

z(θ|η∗)
qNS(z)dz | η∗] | η∗]

− λ

∫ θ̄

θ̄(η∗)

qNS(z)dz

On the other hand,

E[(θ − h(θ | η∗))qNS(θ) +

∫ θ̄(η∗)

θ

qNS(z)dz | η∗] = 0.

P ’s expected payoff conditional on η∗ in the optimal allocation in NS is:

E[V (qNS(θ))− θqNS(θ)−
∫ θ̄

θ

qNS(z)dz | η∗]

= E[V (qNS(θ))− θqNS(θ)−
∫ θ̄

θ

qNS(z)dz | η∗]

+ λE[(θ − h(θ | η∗))qNS(θ) +

∫ θ̄(η∗)

θ

qNS(z)dz | η∗]

= E[V (qNS(θ))− [(1− λ)θ + λh(θ | η)]qNS(θ)− (1− λ)

∫ θ̄

θ

qNS(z)dz | η∗]

− λ

∫ θ̄

θ̄(η∗)

qNS(z)dz
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The difference between two payoffs is

E[V (qNS(z(θ | η∗)))− [(1− λ)z(θ | η∗) + λh(θ | η∗)]qNS(z(θ | η∗))

− (1− λ)

∫ θ̄

z(θ|η∗)
qNS(z)dz | η∗]

− E[V (qNS(θ))− [(1− λ)θ + λh(θ | η∗)]qNS(θ)− (1− λ)

∫ θ̄

θ

qNS(z)dz | η∗]

= E[

∫ z(θ|η∗)

θ

[V
′
(qNS(z))− {(1− λ)z + λh(θ | η∗)}]qNS′(z)dz | η∗]

= E[

∫ z(θ|η∗)

θ

[H(z)− {(1− λ)z + λh(θ | η∗)}]qNS′(z)dz | η∗].

The second equality uses V
′
(qNS(z)) = H(z). From the construction of

z(θ | η∗) in Step 4 and qNS
′
(z) < 0, this is positive. We have thus found an

implementable allocation generating a higher payoff to P in CS compared
to the optimal allocation in NS.

Proof of Proposition 6:
Since f(θ | η∗) is decreasing in θ, h(θ | η∗) is increasing in θ, implying

h(θ | η∗) = ĥ(θ | η∗). Since f(θ|η∗)
f(θ|η)

is strictly decreasing in θ for any η 6= η∗,

f(θ
′ |η∗)

f(θ|η∗) >
f(θ
′ |η)

f(θ|η)
for θ > θ

′
. Θ(η) = Θ(η∗) = Θ then implies

F (θ | η∗)
f(θ | η∗)

=

∫ θ

θ

f(θ
′ | η∗)

f(θ | η∗)
dθ
′
>

∫ θ

θ

f(θ
′ | η)

f(θ | η)
dθ
′
=
F (θ | η)

f(θ | η)
.

Hence h(θ | η∗) > h(θ | η) for θ ∈ (θ, θ̄] and h(θ | η∗) = h(θ | η) = θ. The
ironing procedure then ensures that ĥ(θ | η∗) > ĥ(θ | η) for any θ > θ and any
η 6= η∗. Thus ĥ(θ̄|η∗) > ĥ(θ̄|η) while ĥ(θ|η∗) = ĥ(θ|η) = θ for η 6= η∗, i.e., the
range of ĥ conditional on η∗ includes the range of ĥ conditional on η. Since
h(θ | η∗) = ĥ(θ | η∗) is strictly increasing and continuously differentiable,
q∗(ĥ(θ | η∗)) is also continuously differentiable and strictly decreasing in θ.

Suppose the result is false, and the second best allocation (uSBA (θ, η), uSBS (θ, η), qSB(θ, η))
is implementable with weak collusion. Then Proposition 1 implies existence
of π(· | η) ∈ Y (η) such that

qSB(θ, η) = q∗(ĥ(θ | η))
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XSB(θ, η)− z(θ | η)qSB(θ, η) ≥ 0

XSB(θ, η)− z(θ | η)qSB(θ, η) ≥ XSB(θ
′
, η
′
)− z(θ | η)qSB(θ

′
, η
′
)

where z(θ | η) ≡ z(θ, π(θ | η), η) and

XSB(θ, η) ≡ uSBA (θ, η) + uSBS (θ, η) + θqSB(θ, η).

Step 1: z(θ | η) ∈ [z(θ | η∗), z(θ̄ | η∗)] holds for any (θ, η).

The proof is as follows. Since ĥ(θ | η) < ĥ(θ | η∗) for any θ > θ and η 6= η∗,

qSB(θ, η∗) = q∗(ĥ(θ | η∗)) < q∗(ĥ(θ | η)) = qSB(θ, η).

Then z(θ | η∗) ≥ z(θ | η) follows from the coalition incentive constraints.
If on the other hand z(θ|η) < z(θ|η∗), there exists a non-degenerate in-

terval T of θ for which z(θ|η) ∈ (z(θ|η), z(θ|η∗)). The second-best output in
either state (θ, η) or (θ, η∗) is the first-best level q∗(θ) corresponding to cost
θ. The coalitional incentive constraints imply output must be constant over
T given η, so must equal the first-best q∗(θ) corresponding to cost θ. But
ĥ(θ, η) ≥ θ for every θ ∈ T , implying qSB(θ, η) = q∗(ĥ(θ, η)) ≤ q∗(θ) < q∗(θ),
and we obtain a contradiction.

In what follows, we denote [z(θ | η∗), z(θ̄ | η∗)] by [z, z̄].

Step 2:

Now we claim that there exists φ(·) : [h, h̄]→ [z, z̄] which satisfies

(i) z(θ | η) = φ(ĥ(θ | η)).

(ii) φ(h) is continuous, and non-decreasing in h.

(iii) h− φ(h) is non-negative and increasing in h.

First we show that for any (θ, η) and (θ
′
, η
′
) such that ĥ(θ | η) = ĥ(θ

′ | η′),
z(θ | η) = z(θ

′ | η′). Otherwise, there exists (θ
′
, η
′
) and (θ

′′
, η
′′
) such that

ĥ(θ
′ | η′) = ĥ(θ

′′ | η′′) and z(θ
′ | η′) 6= z(θ

′′ | η′′). Suppose z(θ
′ | η′) < z(θ

′′ |
η
′′
) without loss of generality. By Step 1 and the continuity of z(θ | η∗), there

exists θ1 and θ2 (θ1 < θ2) such that

z(θ1 | η∗) = z(θ
′ | η′) < z(θ

′′ | η′′) = z(θ2 | η∗).
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Since z(θ | η∗) is continuous in θ and non-decreasing in θ,

z(θ
′ | η′) ≤ z(θ | η∗) ≤ z(θ

′′ | η′′)

for any θ ∈ [θ1, θ2]. The coalitional incentive constraints imply

qSB(θ
′
, η
′
) ≥ qSB(θ, η∗) ≥ qSB(θ

′′
, η
′′
)

for any θ ∈ [θ1, θ2]. On the other hand ĥ(θ
′ | η′) = ĥ(θ

′′ | η′′) implies
qSB(θ

′
, η
′
) = qSB(θ

′′
, η
′′
). Therefore qSB(θ, η∗) = qSB(θ

′
, η
′
) = qSB(θ

′′
, η
′′
)

for any θ ∈ [θ1, θ2]. This contradicts the property that qSB(θ, η∗) must be
strictly decreasing in θ.

Hence there exists a function φ(·) : [h, h̄] → [z, z̄] such that z(θ | η) =
φ(ĥ(θ | η)). Since z(θ | η∗) and ĥ(θ | η∗) are continuous in θ, φ(h) must be
continuous.

Second we show that φ(h) is non-decreasing in h. For any (θ, η) and
(θ
′
, η
′
) such that ĥ(θ | η) < ĥ(θ

′ | η′),

qSB(θ, η) = q∗(ĥ(θ | η)) > q∗(ĥ(θ
′ | η′)) = qSB(θ

′
, η
′
).

The coalitional incentive constraints then imply z(θ | η) ≤ z(θ
′ | η′).

Third we show h − φ(h) is non-negative and increasing in h. Since
qSB(θ, η∗) = q∗(ĥ(θ | η∗)) is strictly decreasing in θ, the pooling region
Θ(π(· | η∗), η∗) must be empty. Hence it must be the case that

z(θ | η∗) = θ +
F (θ | η∗)− Λ(θ | η∗)

f(θ | η∗)
,

implying
Λ(θ | η∗)
f(θ | η∗)

= ĥ(θ | η∗)− φ(ĥ(θ | η∗)).

The LHS is non-negative and increasing in θ, since f(θ | η∗) is decreasing in
θ and Λ(θ | η∗) is non-negative and non-decreasing in θ. So h − φ(h) must
be non-negative and increasing in h ∈ [h, h̄].

Step 3:

Define R(z) ≡ max(θ̃,η̃)∈K [XSB(θ̃, η̃)− zqSB(θ̃, η̃)] for any z ∈ [z, z̄]. Then

R(z(θ | η)) = XSB(θ, η)− z(θ | η)qSB(θ, η)
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and by the Envelope Theorem, R
′
(z(θ | η)) = −qSB(θ, η) = −q∗(ĥ(θ | η)). It

also implies R
′
(φ(h)) = −q∗(h). Then S’s interim payoff is

E[XSB(θ, η)− h(θ | η)qSB(θ, η) | η]

= E[XSB(θ, η)− z(θ | η)qSB(θ, η) + (z(θ | η)− h(θ | η))qSB(θ, η) | η]

= E[R(φ(ĥ(θ | η))) + (φ(ĥ(θ | η))− ĥ(θ | η))q∗(ĥ(θ | η)) | η]

with the last equality using the property of the ironing rule.
Next define

L(h) ≡ R(φ(h)) + (φ(h)− h)q∗(h).

L(h) is continuous and differentiable almost everywhere, since the mono-
tonicity implies the differentiability of φ(h) almost everywhere. If the second
best allocation is implementable with weak collusion, E[L(ĥ(θ | η)) | η] = 0
holds for any η. The first derivative of L(h) is

L
′
(h) = (φ(h)− h)q∗

′
(h)− q∗(h).

Since q∗(h) is continuously differentiable, L
′
(h) is continuous and also differ-

entiable almost everywhere and

L
′′
(h) = (φ

′
(h)− 1)q∗

′
(h) + (φ(h)− h)q∗

′′
(h)− q∗′(h).

By using V
′
(q∗(h)) = h, we can show that V

′′′
(q) ≤ 0 implies q∗

′′
(h) ≤ 0,

and 0 < V
′′′

(q) ≤ (V
′′

(q))2

V ′ (q)
implies q∗

′′
(h) > 0 and hq∗

′′
(h) + q∗

′
(h) < 0. By

φ
′
(h)− 1 < 0 and φ(h)− h ≤ 0, it follows that L

′′
(h) > 0.

The strict convexity of L then implies L(h) > L(h
′
) − (h

′ − h)L
′
(h
′
) for

any h 6= h
′
. Hence

E[L(ĥ(θ | η∗)) | η∗] = E[L(h(θ | η∗)) | η∗]
> E[L(ĥ(θ | η))− [ĥ(θ | η)− h(θ | η∗)]L′(ĥ(θ | η)) | η∗]

= E[L(ĥ(θ | η))− [ĥ(θ | η)− θ]L′(ĥ(θ | η)) +

∫ θ̄

θ

L
′
(ĥ(y | η))dy | η∗]

for any η 6= η∗. L(ĥ(θ | η))− [ĥ(θ | η)− θ]L′(ĥ(θ | η)) +
∫ θ̄
θ
L
′
(ĥ(y | η))dy is

non-increasing in θ, since

−[ĥ(θ | η)− θ]L′′(ĥ(θ | η)) < 0
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and is strictly decreasing in θ over some interval (since the ironing rule ensures
ĥ(θ | η) is continuous with ĥ(θ | η) = θ and ĥ(θ̄ | η) > θ̄). Then property (ii)
implies F (θ | η∗) > F (θ | η) for θ ∈ (θ, θ̄) and for any η 6= η∗. A first order
stochastic dominance argument then ensures

E[L(ĥ(θ | η))− [ĥ(θ | η)− θ]L′(ĥ(θ | η)) +

∫ θ̄

θ

L
′
(ĥ(y | η))dy | η∗]

> E[L(ĥ(θ | η))− [ĥ(θ | η)− θ]L′(ĥ(θ | η)) +

∫ θ̄

θ

L
′
(ĥ(y | η))dy | η]

= E[L(ĥ(θ | η))− [ĥ(θ | η)− h(θ | η)]L
′
(ĥ(θ | η)) | η]

= E[L(ĥ(θ | η)) | η].

where the last equality utilizes a property of the ironing transformation.
Therefore S must earn a positive rent in state η∗, as E[L(h(θ | η∗)) | η∗] >
E[L(ĥ(θ | η)) | η] ≥ 0. This is a contradiction.

Proof of Proposition 10

Step 1 and 2 are technical steps needed to prepare for the proof of the state-
ments in Step 3 and 4.

Step 1: There exists θ
′
, θ
′′

and ε > 0 such that

(i) θSB1 < θ
′
< θNS < θ

′′
< θSB2

(ii)For any η ∈ {η1, η2} and any ε
′ ∈ (0, ε], there exists z(· | η) ∈ Z(η) such

that z(θ | η) = θ − ε′ on [θ
′
, θ
′′
].

Proof of Step 1

The proof is based on the construction. Evidently θ < θSB1 < θSB2 < θ̄ by
V ∈ (θ, θ̄). Then choose ε > 0 which satisfies

(i) ε <
min

[θSB1 ,θSB2 ]
|f(θ|η)|

max
[θSB1 ,θSB2 ]

|fθ(θ|η)| for η ∈ {η1, η2}

(ii) ε < θNS − θSB1

(iii) ε <
F (θSB2 |η)−F (θNS |η)

f(θNS |η)
for η ∈ {η1, η2}.
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The continuous differentiability of f(θ | η) guarantees the existence of ε > 0
satisfying (i)-(iii). (i) implies that for any η ∈ {η1, η2} and for any ε

′ ≤ ε,
F (θ | η) + ε

′
f(θ | η) is increasing in θ on [θSB1 , θSB2 ]. Now we select θ

′
and θ

′′

as follows:
θ
′ ≡ θSB1 + ε

θ
′′ ≡ min{θ′′1 , θ

′′

2}

for θ
′′
1 and θ

′′
2 satisfying

F (θ
′′

1 | η1) + εf(θ
′′

1 | η1) = F (θSB1 | η1)

F (θ
′′

2 | η2) + εf(θ
′′

2 | η2) = F (θSB2 | η2).

(ii) implies θSB1 < θ
′
< θNS. By (i) and (iii), θNS < θ

′′
< θSB2 . Now for

ηi ∈ {η1, η2} and some ε
′ ∈ (0, ε], define Λ(θ | ηi) as follows

• Λ(θ | ηi) ≡ F (θ | ηi) for θ ∈ [θ, θSB1 ) ∪ (θSB2 , θ̄]

• Λ(θ | ηi) ≡ min{F (θ | ηi) + ε
′
f(θ | ηi), F (θSBi | ηi)} for θ ∈ [θSB1 , θSB2 ]

Λ(θ | ηi) is non-decreasing in θ and Λ(θ | ηi) = 0 and Λ(θ̄ | ηi) = 1. Then

π(θ) ≡ θ + F (θ|ηi)−Λ(θ|ηi)
f(θ|ηi) = θ − ε′ for θ ∈ [θ

′
, θ
′′
], since

F (θ
′′ | ηi) + ε

′
f(θ

′′ | ηi) ≤ F (θSBi | ηi).

Moreover π(θ) < π(θ
′
) for any θ < θ

′
, since π(θSB1 ) = θSB1 ≤ π(θ

′
) = θ

′ − ε′

and π(θ) > π(θ
′′
) for any θ > θ

′′
. The ironing procedure implies that z(θ |

ηi) = π(θ) = θ − ε′ on [θ
′
, θ
′′
].

Step 2: There exists θL, θU such that

(i) θSB1 < θL < θNS < θU < θSB2

(ii) (V − θ)F (θ | η1) > (V − θNS)F (θNS | η1) for any θ ∈ (θL, θ
NS)

(iii) (V − θ)F (θ | η2) > (V − θNS)F (θNS | η2) for any θ ∈ (θNS, θU)

Proof of Step 2
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By the definition of θSB1 , it is true that

(V − θSB1 )F (θSB1 | η1) > (V − θNS)F (θNS | η1).

However it does not mean that (V − θ)F (θ | η1) > (V − θNS)F (θNS | η1)
for any θ ∈ [θSB1 , θNS), unless h(θ | η1) is non-decreasing in θ. However this
inequality holds for θ sufficiently close to θNS.

∂[(V − θ)F (θ | η1)]

∂θ
|θ=θNS = f(θNS | η1)(V − h(θNS | η1))

= f(θNS | η1)(H(θNS)− h(θNS | η1)) < 0

The continuity of (V − θ)F (θ | η1) implies that there exists θL ∈ [θSB1 , θNS)
satisfying (ii). A similar argument ensures the existence of θU satisfying (i)
and (iii).

Step 3: There exists (θ1, θ2, θ̂), z(· | η1) ∈ Z(η1) and z(· | η2) ∈ Z(η2) such
that

(i) max{θ̂, θL} < θ1 < θNS < θ2 < θU

(ii) θ̂ = z(θ1 | η1) = z(θ2 | η2)

(iii) For each ηi ∈ {η1, η2}, z(θ | ηi) is increasing in θ at θi

(iv) (θ1 − θ̂)F (θ1 | η1) = (θ2 − θ̂)F (θ2 | η2)

Proof of Step 3

For θ
′
, θ
′′

and ε selected in Step 1 and θL, θU in Step 2, choose θ1 and θ2

such that

(a) max{θ′ , θL} < θ1 < θNS < θ2 < min{θ′′ , θU}

(b) 0 < (θ2 − θ1) F (θ1|η1)
F (θ1|η1)−F (θ2|η2)

< ε.

Since F (θNS | η1) > F (θNS | η2), such θ1 and θ2 always exist. Define ε1 and
ε2 as follows:

ε1 ≡ [θ2 − θ1]
F (θ2 | η2)

F (θ1 | η1)− F (θ2 | η2)

ε2 ≡ [θ2 − θ1]
F (θ1 | η1)

F (θ1 | η1)− F (θ2 | η2)
.
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Since (b) implies F (θ1 | η1) > F (θ2 | η2), 0 < ε1 < ε2 < ε. By Step 1,
we can choose z(· | ηi) ∈ Z(ηi) such that z(θ | ηi) = θ − εi on [θ

′
, θ
′′
] for

i ∈ {1, 2}. It is evident that z(· | ηi) satisfies (iii). By the definition of ε1
and ε2, it is evident that z(θ1 | η1) = z(θ2 | η2). With the definition of θ̂ such
that θ̂ ≡ z(θ1 | η1) = z(θ2 | η2), θ̂ < θ1 which satisfies (i), and (iv) is also
automatically satisfied.

Step 4:

Based on (θ1, θ2, θ̂) and z(· | ηi) in Step 3, consider the allocation

(uA(θ, η), uS(θ, η), q(θ, η))

as follows:

• uA(θ, ηi) = max{θi − θ, 0}

• uS(θ, ηi) = θ̂ − θi +K for θ ≤ θi and K for θ > θi where

K ≡ (θ1 − θ̂)F (θ1 | η1) = (θ2 − θ̂)F (θ2 | η2) > 0

• q(θ, ηi) = q̃(z(θ | ηi)) for q̃(z) satisfying q̃(z) = 1 for z ≤ θ̂ and 0 for
z > θ̂.

We claim this is implementable in the weak collusion. First consider the
agent’s participation and incentive constraint. It is evident that uA(θ, ηi) ≥ 0
for any (θ, ηi). We can also show

uA(θ, ηi) ≥ uA(θ
′
, ηi) + (θ

′ − θ)q(θ′ , η)

for any θ, θ
′

and any ηi ∈ {η1, η2}, since

max{θi − θ, 0} ≥ max{θi − θ
′
, 0}+ (θ

′ − θ) = θi − θ

for any θ
′

such that z(θ
′
, ηi) ≤ θ̂ or equivalently θ

′ ≤ θi, and

max{θi − θ, 0} ≥ max{θi − θ
′
, 0} = 0

for any θ
′

such that z(θ
′ | ηi) > θ̂ or θ

′
> θi.

Next we can check the participation constraint of S:

E[uS(θ, ηi) | ηi] = F (θi | ηi)[θ̂ − θi +K] + [1− F (θi | ηi)]K = 0.
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Finally, let us check WCP of the allocation. Define X̃(z) as follows:

X̃(z) = zq̃(z) +

∫ z̄

z

q̃(y)dy +K

where z̄ ≡ max{z(θ̄ | η1), z(θ̄ | η2)}. It satisfies X̃(z) − zq̃(z) ≥ 0 and
X̃(z)− zq̃(z) ≥ X̃(z

′
)− zq̃(z′) for any z, z

′
on possible range of z. Since

X̃(z(θ | ηi)) = θ̂ +K

for θ ≤ θi, and

X̃(z(θ | ηi)) = z(θ | ηi)q̃(z(θ | ηi)) +

∫ z̄

z(θ|ηi)
q̃(y)dy +K = K

for θ > θi, it implies that

X̃(z(θ | ηi)) = uA(θ, ηi) + uS(θ, ηi) + θq(θ, ηi).

The allocation satisfies all conditions of the allocation which is implementable
in the weak collusion. In this allocation, the principal’s payoff is

Ση Pr(η)E[V (q̃(z(θ | η)))− h(θ | η)q̃(z(θ | η)) | η]

= p(η1)(V − θ1)F (θ1 | η1) + p(η2)(V − θ2)F (θ2 | η2)

which is strictly larger than the optimal payoff in NS: (V − θNS)F (θNS) by
Step 2, θ1 ∈ (θL, θ

NS) and θ2 ∈ (θNS, θU).
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