Do Online Social Networks Increase Welfare?

Manuel Mueller-Frank (joint with Mallesh Pai)

IESE Business School

October 2014
Introduction

- Social networks affect personal outcomes (health) and economic outcomes (income, employment)
Introduction

- Social networks affect personal outcomes (health) and economic outcomes (income, employment)
- Online social networks have become tremendously successful in creating a large active user base
 - Facebook over 1.3 billion MAUs
 - Twitter over 270 million MAUs
 - WeChat over 430 million MAUs
Social networks affect personal outcomes (health) and economic outcomes (income, employment)

Online social networks have become tremendously successful in creating a large active user base
- Facebook over 1.3 billion MAUs
- Twitter over 270 million MAUs
- WeChat over 430 million MAUs

What happens on online social networks?
- Users generate vast amounts of information
- Facebook daily average: 4.5 billion "likes", 5 billion shared items, 350 million pictures
Introduction

- Social networks affect personal outcomes (health) and economic outcomes (income, employment)

- Online social networks have become tremendously successful in creating a large active user base
 - Facebook over 1.3 billion MAUs
 - Twitter over 270 million MAUs
 - WeChat over 430 million MAUs

- What happens on online social networks?
 - Users generate vast amounts of information
 - Facebook daily average: 4.5 billion "likes", 5 billion shared items, 350 million pictures
 - Average user’s friends generate: 712 "likes", 790 shared items, 55 pictures daily
Online social networks filter the generated information of friends and display only a relatively small subset.

- Facebook’s "Newsfeed", WeChat’s "Moments"...
Online social networks filter the generated information of friends and display only a relatively small subset.

- Facebook’s "Newsfeed", WeChat’s "Moments"...

The more information is generated, the higher the OSNs control on social information flows.

What are the objectives and incentives of OSNs?
Online social networks filter the generated information of friends and display only a relatively small subset
- Facebook’s "Newsfeed", WeChat’s "Moments"...

The more information is generated, the higher the OSNs control on social information flows

What are the objectives and incentives of OSNs?
The main revenue source of OSNs is advertising
- 92% in case of Facebook
"If people share more, the world becomes more open and connected. And a world that’s more open and connected is a better world. These are still our core principles today"
"If people share more, the world becomes more open and connected. And a world that’s more open and connected is a better world. These are still our core principles today" Mark Zuckerberg (2010)
"If people share more, the world becomes more open and connected. And a world that’s more open and connected is a better world. These are still our core principles today" Mark Zuckerberg (2010)

"...we expect that advertising funded search engines will be inherently biased towards the advertisers and away from the needs of the consumers"
"If people share more, the world becomes more open and connected. And a world that’s more open and connected is a better world. These are still our core principles today" Mark Zuckerberg (2010)

"...we expect that advertising funded search engines will be inherently biased towards the advertisers and away from the needs of the consumers" Brin and Page (1998)
In literature the network is typically modeled as inert conduit.

We model an online social network as strategic agent with own incentives.

Question: How do financial incentives of OSNs affect social information flows and social welfare?
In literature the network is typically modeled as inert conduit.

We model an online social network as a strategic agent with own incentives.

Question: How do financial incentives of OSNs affect social information flows and social welfare?
Introduction: Approach and Main Question

In literature the network is typically modeled as inert conduit

We model an online social network as strategic agent with own incentives

Question: How do financial incentives of OSNs affect social information flows and social welfare?

- OSN enable social learning and hence might increase welfare
Introduction: Approach and Main Question

- In literature the network is typically modeled as inert conduit
- We model an online social network as strategic agent with own incentives
- **Question:** How do financial incentives of OSNs affect social information flows and social welfare?
 - OSN enable social learning and hence might increase welfare
 - But OSN might distort information towards more lucrative but welfare inferior outcomes
Two firms $j = 1, 2$

- each firm offers a product with quality q_j drawn iid from $[0, 1] = Q$
- Realized qualities known to firms, unknown to consumers
The Model: Firms and Consumer

- Two firms \(j = 1, 2 \)
 - each firm offers a product with quality \(q_j \) drawn iid from \([0, 1] = Q\)
 - Realized qualities known to firms, unknown to consumers

- Mass of consumers
 - Share common prior over \(Q^2 \)
The Model: Firms and Consumer

- Two firms $j = 1, 2$
 - each firm offers a product with quality q_j drawn iid from $[0, 1] = Q$
 - Realized qualities known to firms, unknown to consumers

- Mass of consumers
 - Share common prior over Q^2
 - Each consumer samples one product at no costs
 - Sampling reveals quality
The Model: Firms and Consumer

- Two firms $j = 1, 2$
 - each firm offers a product with quality q_j drawn iid from $[0, 1] = Q$
 - Realized qualities known to firms, unknown to consumers

- Mass of consumers
 - Share common prior over Q^2
 - Each consumer samples one product at no costs
 - Sampling reveals quality
 - Sampling other product at cost c_i drawn iid from $[0, 1]$
 - Select highest quality product among those sampled
The Model: Firms and Consumer

- Two firms $j = 1, 2$
 - each firm offers a product with quality q_j drawn iid from $[0, 1] = Q$
 - Realized qualities known to firms, unknown to consumers

- Mass of consumers
 - Share common prior over Q^2
 - Each consumer samples one product at no costs
 - Sampling reveals quality
 - Sampling other product at cost c_i drawn iid from $[0, 1]$
 - Select highest quality product among those sampled
 - Utility is given by quality of chosen product minus search costs
There are two types of consumers

- Mass 1 of early movers
- Mass λ of late movers
The Model: The Online Social Network

- There are two types of consumers
 - Mass 1 of early movers
 - Mass λ of late movers
- All consumers are active on an OSN
 - Each early consumer announces on the OSN the product he purchased

Organic virality:
With probability v_B, each late consumer independently observes the purchases of $k = 1$ uniformly drawn early consumer. Late consumers update their belief over Q_2 rationally.
There are two types of consumers
 - Mass 1 of early movers
 - Mass λ of late movers

All consumers are active on an OSN
 - Each early consumer announces on the OSN the product he purchased

Organic virality: With probability v_B each late consumer independently observes the purchases of $k = 1$ uniformly drawn early consumer
 - Late consumers update their belief over Q^2 rationally
After observing their qualities firms simultaneously select their banner advertising expenditures m_1^d, m_2^d.
The Model: Banner Advertising

- After observing their qualities firms simultaneously select their banner advertising expenditures m_1^d, m_2^d.
- Prior to sampling, each consumer observes a display ad of firm 1 independently with probability

$$\frac{m_1^d}{m_1^d + m_2^d}$$
The Model: Banner Advertising

- After observing their qualities firms simultaneously select their banner advertising expenditures m_1^d, m_2^d
- Prior to sampling, each consumer observes a display ad of firm 1 independently with probability

$$\frac{m_1^d}{m_1^d + m_2^d}$$

- Consumers rationally update their beliefs according to the display ad they have seen
Sponsored virality: With probability \((1 - \nu_B)\nu_S\) each late consumer independently observes the purchase of \(k = 1\) early consumer.

Social advertising allows firms to bias what late movers see.
The Model: Social Advertising

- **Sponsored virality:** With probability \((1 - v_B) v_S\) each late consumer independently observes the purchase of \(k = 1\) early consumer.
- Social advertising allows firms to bias what late movers see.
- Firms simultaneously select their social advertising expenditures \(m_1^s, m_2^s\).
 - Let \(\phi_j\) be the measure of early consumers that bought product \(j\).
The Model: Social Advertising

- **Sponsored virality**: With probability \((1 - \nu_B)\nu_S\) each late consumer independently observes the purchase of \(k = 1\) early consumer.
- Social advertising allows firms to bias what late movers see.
- Firms simultaneously select their social advertising expenditures \(m_1^s\), \(m_2^s\).
 - Let \(\phi_j\) be the measure of early consumers that bought product \(j\).
 - Conditional on observing a social ad, each late mover observes a purchase of product 1 independently with probability

\[
\frac{\phi_1 m_1^s}{\phi_1 m_1^s + \phi_2 m_2^s}
\]
OSN selects v_B, v_S and k

Product qualities realized, revealed to firms
The Model: Timing

1. OSN selects v_B, v_S and k
2. Product qualities realized, revealed to firms
3. Firms simultaneous choose m^d_j, m^s_j
The Model: Timing

1. OSN selects $ \nu_B, \nu_S$ and k
2. Product qualities realized, revealed to firms
3. Firms simultaneous choose m^d_j, m^s_j
4. Early movers see display ads, sample and select a product
The Model: Timing

1. OSN selects v_B, v_S and k
2. Product qualities realized, revealed to firms
3. Firms simultaneous choose m^d_j, m^s_j
4. Early movers see display ads, sample and select a product
5. Late movers see display ads, might see early movers choice, sample and select product
Proposition 1: In every equilibrium both firms spend the same amount on banner advertising

\[m_1^d(q, v_B, v_S) = m_2^d(q, v_B, v_S). \]
Proposition 1: In every equilibrium both firms spend the same amount on banner advertising

\[m_1^d(q, v_B, v_S) = m_2^d(q, v_B, v_S). \]

- Advertising is uninformative
- Amount spent determined by quality of the weaker firm (increasing)
• **Proposition 1:** In every equilibrium both firms spend the same amount on banner advertising

\[m_1^d(q, v_B, v_S) = m_2^d(q, v_B, v_S). \]

• Advertising is uninformative
• Amount spent determined by quality of the weaker firm (increasing)

Theorem

In every equilibrium expected social welfare is strictly increasing in the baseline virality. If the equilibrium advertising expenditures are positive, then expenditures are strictly decreasing in the baseline virality.
Proposition 2: In every equilibrium both firms spend the same amount on banner advertising and social advertising

\[
\begin{align*}
m_1^d(q, v_B, v_S) &= m_2^d(q, v_B, v_S) \\
m_1^s(q, v_B, v_S) &= m_2^s(q, v_B, v_S).
\end{align*}
\]
Proposition 2: In every equilibrium both firms spend the same amount on banner advertising and social advertising

\[m_1^d(q, v_B, v_S) = m_2^d(q, v_B, v_S) \]
\[m_1^s(q, v_B, v_S) = m_2^s(q, v_B, v_S). \]

Expected social welfare is strictly increasing in the fraction \(v_B + (1 - v_B)v_S \) of late consumers that receive social information.
Proposition 2: In every equilibrium both firms spend the same amount on banner advertising and social advertising

\[m_1^d(q, v_B, v_S) = m_2^d(q, v_B, v_S) \]
\[m_1^s(q, v_B, v_S) = m_2^s(q, v_B, v_S). \]

Expected social welfare is strictly increasing in the fraction \(v_B + (1 - v_B) v_S \) of late consumers that receive social information.

No distortion of social information, sponsored and organic information has identical "value"
Proposition 2: In every equilibrium both firms spend the same amount on banner advertising and social advertising

\[m_1^d(q, v_B, v_S) = m_2^d(q, v_B, v_S) \]

\[m_1^s(q, v_B, v_S) = m_2^s(q, v_B, v_S). \]

Expected social welfare is strictly increasing in the fraction \(v_B + (1 - v_B)v_S \) of late consumers that receive social information.

No distortion of social information, sponsored and organic information has identical "value".

Theorem

In every equilibrium total advertising revenue is decreasing in \(v_B \). Total advertising revenues are maximized at either \((v_B, v_S) = (0, 0)\) or \((v_B, v_S) = (0, 1)\) depending on \((F_Q, F_C)\).
Extension: Increasing the Density of OSN

- So far each late mover observes at most $k = 1$ early consumers
- Consider large k
So far each late mover observes at most $k = 1$ early consumers

Consider large k

Organic social information
- Observed independently with probability v_B by each late mover
- k independent draws from early consumer population
- Purchase of product 1 drawn with probability ϕ_1
So far each late mover observes at most $k = 1$ early consumers

Consider large k

Organic social information
- Observed independently with probability v_B by each late mover
- k independent draws from early consumer population
- Purchase of product 1 drawn with probability ϕ_1

Sponsored social information
- Observed independently with probability $(1 - v_B)v_S$ by each late mover
- k independent draws from early consumer population
- Purchase of product 1 drawn with probability

$$\frac{\phi_1 m_1^s}{\phi_1 m_1^s + \phi_2 m_2^s}$$
Theorem

As k grows large social advertising expenditures converge to zero in any equilibrium and for any viralities (v_B, v_S). The total advertising revenue in the maximal revenue equilibrium is smaller for large k than for $k = 1$.
Conclusion

- We model an online social network that
 - controls social information flows
 - aims at maximizing advertising revenue
Conclusion

- We model an online social network that
 - controls social information flows
 - aims at maximizing advertising revenue
- We find that in equilibrium
 - organic virality is shut down
 - social information flows are unbiased
 - but social information might be limited