Banks Exposure to Interest Rate Risk and the Transmission of Monetary Policy

Augustin Landier (Toulouse) David Sraer (Princeton) David Thesmar (HEC Paris)

What we do in the paper

• What is income gap?:

 Δ (cash flows) = (interest sensitive assets – liabilities) x Δ short rate

income gap

- Effect on cash-flows potentially large:
 - bank-level data (BHC) over 1986-2011
 - Aggregate gap = +20% of aggregate assets
 - +100bp → earnings = + 0.2 x 100bp = +0.2% of assets
- Our question: how does it affect lending ?

Contributions

- Document income gap
 - with bank-level data; large panel
 - Cross-section vs. time-series
 - Hedging seems minor:
 - Gap x interest affects cash flows & stock prices
 - Purnanandam (07), Begeneau & al (12), English&al (13)

- Show impact on lending
 - Using cross-sectional variation in income gap & time variation in interest rates
 - Failure of M&M in banks
 - Kashyap & Stein (95,00), Campello (01)

literature

- Monetary policy channel
 - use micro data to control for credit demand
 - kashyap&stein (95,00): size, liquidity
 - campello (02): internal capital markets
- Interest rate risk:
 - Non financials: chava-purnanandam (07); chernenko&faulkender (11)
 - Flannery&James (84); Vickery (2008); English&al. (2012)
 - purnanandam (07): capital structure.
 - begeneau, piazessi, schneider (12): speculation
- Investment-to-cash flow sensitivity in CF

Roadmap

1. Documenting income gap

2. Effect on lending

BHC "Call Reports" codebook

Schedule HC-H—Interest Sensitivity¹

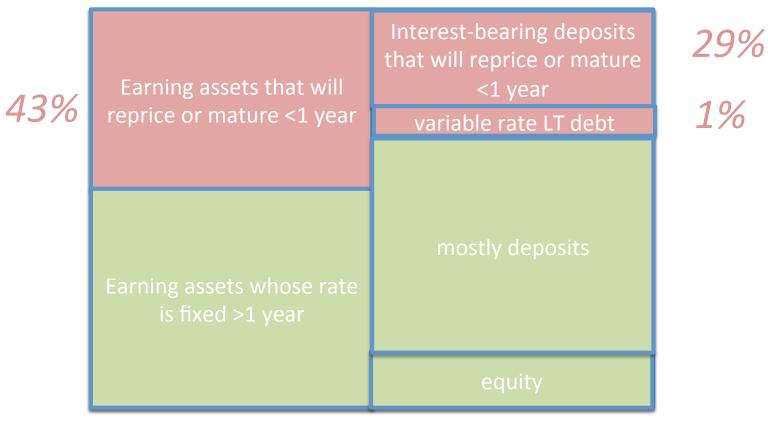
	<u> </u>
Dollar Amounts in Thousands	BHCK
1. Earning assets that are repriceable within one year or mature within one year	3197
2. Interest-bearing deposit liabilities that reprice within one year or mature within one year included	
in item 13.a.(2) and 13.b.(2) on Schedule HC, Balance Sheet	3296
3. Long-term debt that reprices within one year included in items 16 and 19.a on Schedule HC,	
Balance Sheet	3298
4. Variable-rate preferred stock (includes both limited-life and perpetual preferred stock)	3408
5. Long-term debt reported in Schedule HC, item 19.a on the Balance Sheet that is scheduled to	
mature within one year	3409

Bank holding companies with foreign offices have the option of excluding the smallest of such non-U.S. offices from co ule. Such bank holding companies may omit the smallest of their offices in foreign countries when arrayed by total asset assets of the excluded offices do not exceed 50 percent of the total assets of the bank holding company's assets in for 10 percent of the bank holding company's total consolidated assets as of the report date.

Descriptive Statistics

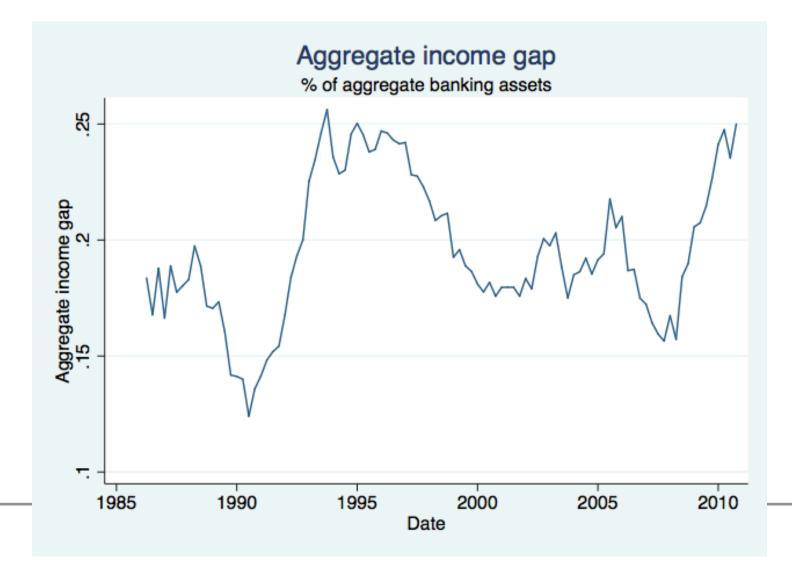
- mean gap = 13% of assets
- Cross-sectional dispersion: p25=0%, p75=25%
- Aggregate gap = 20% of aggregate assets

How come average gap is >0 ?


 ST liabilities do not include transaction and savings deposits (rightly so: Hannan&Berger (1991))

"Average bank" in the BHC data

Assets


Liabilities

1%

Time-series of income gap

How much information is there?

- Our measure of Income gap is noisy:
 - Ignores exact repricing dates. (yearly horizon)
 - Hedging can mitigate accounting income gap impact.
- First look at impact on income directly:
 - Follows literature (Kashyap & Stein, Campello, etc.)
 - Regress Δcash flow_{it} on Income Gap_{it-1} x ΔFedFunds_{t-k}
 - Control for:
 - Bank Size_{it-1} x ΔFedFund_{st-k}, k=0,1,...,4
 - Bank Equity Ratio_{it-1} x ΔFedFund_{st-k}, k=0,1,...,4
 - All variables normalized by lagged total assets

Noisy (5c per \$ of gain), yet strongly significant

			Δ Inte	$rest_{it}$	
	All	Small	Big	No Hedge	Some Hedge
$Gap_{it-1} \times \Delta FedFunds_t$.018***	.018***	.016	.035***	.014
	(3)	(2.9)	(.77)	(3.3)	(1.6)
$Gap_{it-1} \times \Delta FedFunds_{t-1}$.039***	.039***	$.027^{*}$.031***	.047***
	(6.3)	(5.9)	(1.7)	(3.1)	(4.9)
$Gap_{it-1} \times \Delta FedFunds_{t-2}$.0035	.0033	.02	.0077	00023
	(.76)	(.67)	(1.5)	(.96)	(034)
$Gap_{it-1} \times \Delta FedFunds_{t-3}$.0078	.005	.022	0057	.013*
	(1.6)	(1)	(1.5)	(64)	(1.9)
$Gap_{it-1} \times \Delta FedFunds_{t-4}$	0083*	0075	023	.0032	021***
	(-1.8)	(-1.6)	(-1.5)	(.43)	(-3.2)
N	28588	24931	3657	8237	12770
r2	.11	.11	.12	.13	.094
Sum of gap coefficients	.05	.05	.06	.07	.05
p-value of gap coefficients	0	0	0	0	0
p-value of equality test		.83	3		.19
Sum of size coefficients	0	0	0	0	0
p-value of size coefficients	0	0	.23	.63	0
Sum of equity coefficients	0	01	.02	0	.05
p-value of equity coefficients	.88	.83	.88	.92	.09

No difference between large&small banks

			A.T. /		
			Δ Inte		
	All	Small	Big	No Hedge	Some Hedge
$Gap_{it-1} \times \Delta FedFunds_t$.018***	.018***	.016	.035***	.014
	(3)	(2.9)	(.77)	(3.3)	(1.6)
$Gap_{it-1} \times \Delta FedFunds_{t-1}$.039***	.039***	$.027^{*}$.031***	.047***
	(6.3)	(5.9)	(1.7)	(3.1)	(4.9)
$Gap_{it-1} \times \Delta FedFunds_{t-2}$.0035	.0033	.02	.0077	00023
	(.76)	(.67)	(1.5)	(.96)	(034)
$Gap_{it-1} \times \Delta FedFunds_{t-3}$.0078	.005	.022	0057	.013*
	(1.6)	(1)	(1.5)	(64)	(1.9)
$Gap_{it-1} \times \Delta FedFunds_{t-4}$	0083*	0075	023	.0032	021***
	(-1.8)	(-1.6)	(-1.5)	(.43)	(-3.2)
N	28588	24931	3657	8237	12770
r2	.11	.11	.12	.13	.094
Sum of gap coefficients	.05	.05	.06	.07	.05
p-value of gap coefficients	0	0	0	0	0
p-value of equality test		.83	3		.19
Sum of size coefficients	0	0	0	0	0
p-value of size coefficients	0	0	.23	.63	0
Sum of equity coefficients	0	01	.02	0	.05
p-value of equity coefficients	.88	.83	.88	.92	.09

Hedging does not matter – not surprising here

	Δ Interest _{it}					
	All	Small	Big	No Hedge	Some Hedge	
$Gap_{it-1} \times \Delta FedFunds_t$.018***	.018***	.016	$.035^{***}$.014	
	(3)	(2.9)	(.77)	(3.3)	(1.6)	
$Gap_{it-1} \times \Delta FedFunds_{t-1}$.039***	.039***	$.027^{*}$.031***	.047***	
	(6.3)	(5.9)	(1.7)	(3.1)	(4.9)	
$Gap_{it-1} \times \Delta FedFunds_{t-2}$.0035	.0033	.02	.0077	00023	
	(.76)	(.67)	(1.5)	(.96)	(034)	
$Gap_{it-1} \times \Delta FedFunds_{t-3}$.0078	.005	.022	0057	.013*	
	(1.6)	(1)	(1.5)	(64)	(1.9)	
$Gap_{it-1} \times \Delta FedFunds_{t-4}$	0083*	0075	023	.0032	021***	
	(-1.8)	(-1.6)	(-1.5)	(.43)	(-3.2)	
Ν	28588	24931	3657	8237	12770	
r2	.11	.11	.12	.13	.094	
Sum of gap coefficients	.05	.05	.06	.07	.05	
p-value of gap coefficients	0	0	0	0	0	
p-value of equality test		.83	3		.19	
Sum of size coefficients	0	0	0	0	0	
p-value of size coefficients	0	0	.23	.63	0	
Sum of equity coefficients	0	01	.02	0	.05	
p-value of equity coefficients	.88	.83	.88	.92	.09	

Placebo Regression: Non Interest Income

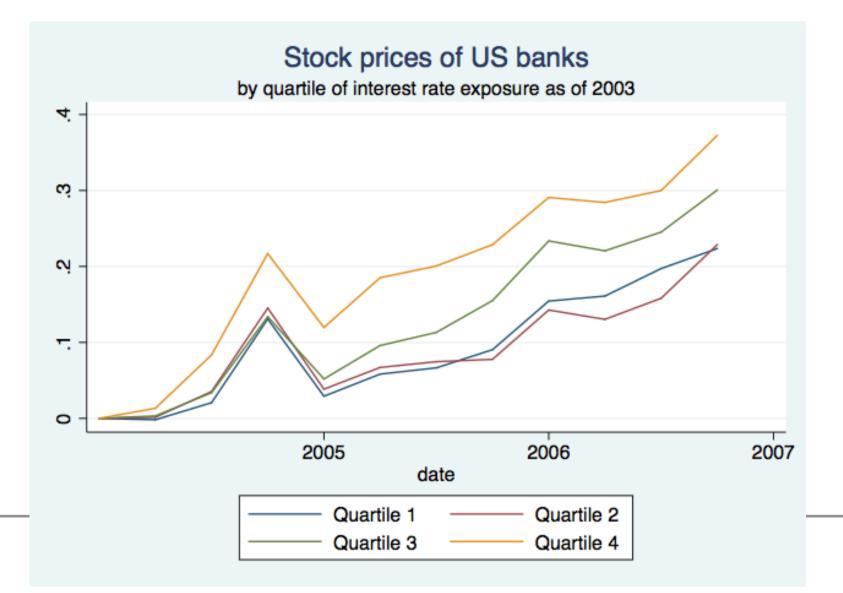
	ΔN	on Inter	est $Income_{it}$	
All	Small	Big	No Hedge	Some Hedge
0083	0077	036	029	.013
(54)	(51)	(47)	(-1.4)	(.45)
.04**	$.042^{**}$.11	.071***	.0066
(2.4)	(2.5)	(1.5)	(3.1)	(.2)
.0033	.0012	037	00013	.00046
(.24)	(.09)	(44)	(0062)	(.017)
013	02	.013	039	.028
(99)	(-1.5)	(.23)	(-1.5)	(1.3)
031**	018	087	0028	075**
(-2)	(-1.3)	(-1.1)	(16)	(-2.3)
22671	20993	1678	7704	8699
.91	.91	.91	.9	.89
0	0	03	0	02
.58	.85	.69	.96	.32
4	.7	1		.44
0	0	02	0	0
.25	.66	.17	.61	.22
.14	.07	.48	04	.4
.2	.5	.2	.76	.05
	$\begin{array}{c}0083 \\ (54) \\ .04^{**} \\ (2.4) \\ .0033 \\ (.24) \\013 \\ (99) \\031^{**} \\ (-2) \\ 22671 \\ .91 \\ 0 \\ .58 \\ 0 \\ .25 \\ .14 \end{array}$	AllSmall 0083 0077 (54) (51) $.04^{**}$ $.042^{**}$ (2.4) (2.5) $.0033$ $.0012$ $(.24)$ $(.09)$ 013 02 (99) (-1.5) $.031^{**}$ 018 (-2) (-1.3) 22671 20993 $.91$ $.91$ 0 0 $.58$ $.85$ 0 0 $.25$ $.66$ $.14$ $.07$	AllSmallBig 0083 0077 036 (54) (51) (47) $.04^{**}$ $.042^{**}$ $.11$ (2.4) (2.5) (1.5) $.0033$ $.0012$ 037 $(.24)$ $(.09)$ (44) 013 02 $.013$ (99) (-1.5) $(.23)$ 031^{**} 018 087 (-2) (-1.3) (-1.1) 22671209931678.91.91.9100 03 .58.85.69.25.66.17.14.07.48	0083 0077 036 029 (54) (51) (47) (-1.4) $.04^{**}$ $.042^{**}$ $.11$ $.071^{***}$ (2.4) (2.5) (1.5) (3.1) $.0033$ $.0012$ 037 00013 $(.24)$ $(.09)$ (44) (0062) 013 02 $.013$ 039 (99) (-1.5) $(.23)$ (-1.5) 031^{**} 018 087 0028 (-2) (-1.3) (-1.1) (16) 22671 20993 1678 7704 $.91$ $.91$ $.91$ $.91$ $.91$ 0 0 03 0 $.58$ $.85$ $.69$ $.96$ $.71$ 0 0 02 0 $.25$ $.666$ $.17$ $.61$ $.14$ $.07$ $.48$ 04

No effect, as expected

Effect on interest income leads to effect on earnings

	$\Delta Earnings_{it}$					
	All	Small	Big	No Hedge	Some Hedge	
$Gap_{it-1} \times \Delta FedFunds_t$.031***	.031***	.071*	.041***	.038**	
	(3.6)	(3.5)	(1.7)	(2.8)	(2.4)	
$Gap_{it-1} \times \Delta FedFunds_{t-1}$	$.032^{***}$	$.035^{***}$	015	$.051^{***}$.028*	
	(3.2)	(3.4)	(41)	(2.7)	(1.8)	
$Gap_{it-1} \times \Delta FedFunds_{t-2}$.0022	.0042	029	018	.019	
	(.25)	(.45)	(-1.1)	(-1.1)	(1.4)	
$Gap_{it-1} \times \Delta FedFunds_{t-3}$.011	.0079	.045	.017	.0093	
	(1.3)	(.91)	(1.4)	(.97)	(.67)	
$Gap_{it-1} \times \Delta FedFunds_{t-4}$.0017	.0014	.019	.013	012	
	(.21)	(.16)	(.61)	(.83)	(87)	
N	26992	23453	3539	7856	11975	
r2	.21	.22	.25	.24	.22	
Sum of gap coefficients	.07	.07	.09	.1	.08	
p-value of gap coefficients	0	0	.01	0	0	
p-value of equality test		.74	4		.36	
Sum of size coefficients	0	0	0	0	0	
p-value of size coefficients	0	0	.94	.48	.05	
Sum of equity coefficients	.15	.17	.16	03	.27	
p-value of equity coefficients	.17	.13	.57	.75	.18	

No effect of hedging (consistent with Begeneau et al. 2012)


	$\Delta Earnings_{it}$						
	All	Small	Big	No Hedge	Some Hedge		
$Gap_{it-1} \times \Delta FedFunds_t$.031***	.031***	.071*	.041***	.038**		
	(3.6)	(3.5)	(1.7)	(2.8)	(2.4)		
$Gap_{it-1} \times \Delta FedFunds_{t-1}$	$.032^{***}$.035***	015	.051***	.028*		
	(3.2)	(3.4)	(41)	(2.7)	(1.8)		
$Gap_{it-1} \times \Delta FedFunds_{t-2}$.0022	.0042	029	018	.019		
	(.25)	(.45)	(-1.1)	(-1.1)	(1.4)		
$Gap_{it-1} \times \Delta FedFunds_{t-3}$.011	.0079	.045	.017	.0093		
	(1.3)	(.91)	(1.4)	(.97)	(.67)		
$Gap_{it-1} \times \Delta FedFunds_{t-4}$.0017	.0014	.019	.013	012		
	(.21)	(.16)	(.61)	(.83)	(87)		
N	26992	23453	3539	7856	11975		
r2	.21	.22	.25	.24	.22		
Sum of gap coefficients	.07	.07	.09	.1	.08		
p-value of gap coefficients	0	0	.01	0	0		
p-value of equality test		.74			.36		
Sum of size coefficients	0	0	0	0	0		
p-value of size coefficients	0	0	.94	.48	.05		
Sum of equity coefficients	.15	.17	.16	03	.27		
p-value of equity coefficients	.17	.13	.57	.75	.18		

Effect on Market Values

	$\Delta MarketValue_{it}$					
	All	\mathbf{Small}	Big	No Hedge	Some Hedge	
$Gap_{it-1} \times \Delta FedFunds_t$.68**	.76**	.57	1.4^{***}	.78*	
	(2.1)	(2.2)	(.57)	(2.6)	(1.8)	
$Gap_{it-1} \times \Delta FedFunds_{t-1}$.46	.41	1	.71	.74*	
	(1.5)	(1.2)	(1.1)	(1.1)	(1.7)	
$Gap_{it-1} \times \Delta FedFunds_{t-2}$.18	.18	23	.65	062	
	(.59)	(.55)	(28)	(1.1)	(14)	
$Gap_{it-1} \times \Delta FedFunds_{t-3}$.16	.094	.27	9*	.9**	
	(.56)	(.32)	(.24)	(-1.7)	(2.5)	
$Gap_{it-1} \times \Delta FedFunds_{t-4}$.27	.31	.18	.82*	33	
	(1.3)	(1.4)	(.2)	(1.8)	(97)	
Ν	15556	13372	2184	4684	7931	
<u>r2</u>	.33	.33	.43	.34	.35	
Sum of gap coefficients	1.8	1.8	1.8	2.6	2	
p-value of gap coefficients	0	0	.04	0	0	
p-value of equality test	I .	.9	4		.37	
Sum of size coefficients	.04	03	.03	0	.08	
p-value of size coefficients	.12	.53	.72	.94	.02	
Sum of equity coefficients	3.8	4	4	4.8	4.4	
p-value of equity coefficients	.17	.2	.51	.38	.15	

Remark: implies earnings multiple of 25

Response to the 2004-2006 tightening:

Macro relevance: impact on aggregate bank earnings

Table 6: Explaining Aggregate Bank Earnings with Income Gap

Dependent Variable	Aggrego	te Banks	Earning	$ps / Assets_t$
	Robus	st OLS	S Newey-We	
	(1)	(2)	(3)	(4)
Fed Funds $Rate_t$.00075	1***	1*	097*
	(.1)	(-3)	(-2)	(-2)
Income $\operatorname{Gap}_{t-1} \times \operatorname{Fed} \operatorname{Funds}_t$		$.59^{***}$.59** (2.5)	.58**
Income Gap_{t-1}		009	(2.5) 009	(2.4) 0089
Trend		(9)	(57)	(54) .000017 (.42)
Observations	98	97	97	97
\mathbb{R}^2	.00016	.22		

Does it affect lending?

- Follow literature (Kashyap & Stein, Campello)
- Regress Lending Growth_{it} on:
 - Income Gap_{it-1} x Δ FedFunds_{t-k} k=0,1,...,4
 - Bank Size_{it-1} x ΔFedFund_{st-k}, k=0,1,...,4
 - Bank Equity Ratio_{it-1} x ΔFedFund_{st-k}, k=0,1,...,4

+100bp and gap from 25th to 75th → Loan Growth: + 0.4 ppt.

			$\Delta \log$	g(C&I)		
	All	Small	Big	No Hedge	Some Hedge	
$Gap_{it-1} \times \Delta FedFunds_t$.013	.18	-2	.036	58	
	(.02)	(.25)	(99)	(.03)	(56)	
$Gap_{it-1} \times \Delta FedFunds_{t-1}$.82	.72	2.6^{*}	.7	1.1	
	(1.2)	(.96)	(1.7)	(.55)	(1)	
$Gap_{it-1} \times \Delta FedFunds_{t-2}$	1.1	1.1	.92	.2	.66	
	(1.6)	(1.4)	(.53)	(.14)	(.7)	
$Gap_{it-1} \times \Delta FedFunds_{t-3}$	1.4^{**}	1.3^{*}	1.5	3.3^{**}	1.9**	
	(2)	(1.7)	(.73)	(2)	(2.2)	
$Gap_{it-1} \times \Delta FedFunds_{t-4}$	-1.3**	-1.2*	-1.6	-1.7	-2.4^{***}	
	(-2.1)	(-1.8)	(77)	(-1.2)	(-2.6)	(
Ν	29614	25577	4037	8440	12994	
r2	.097	.095	.17	.081	.12	
Sum of gap coefficients	2	2	1.4	2.6	.72	
p-value of gap coefficients	0	0	.58	.03	.5	
p-value of equality test		.7	9		.25	
Sum of size coefficients	.23	.19	.96	.15	.29	
p-value of size coefficients	0	.2	0	.74	.01	
Sum of equity coefficients	-12	-12	-12	2.6	-22	
p-value of equity coefficients	.05	.07	.52	.76	0	

Equity and size also go in the right direction

Effect smaller on large banks but difference insignificant

			$\Delta \log$	g(C&I)		
	All	Small	Big	No Hedge	Some Hedge	
$Gap_{it-1} \times \Delta FedFunds_t$.013	.18	-2	.036	58	
	(.02)	(.25)	(99)	(.03)	(56)	
$Gap_{it-1} \times \Delta FedFunds_{t-1}$.82	.72	2.6^{*}	.7	1.1	
	(1.2)	(.96)	(1.7)	(.55)	(1)	
$Gap_{it-1} \times \Delta FedFunds_{t-2}$	1.1	1.1	.92	.2	.66	
	(1.6)	(1.4)	(.53)	(.14)	(.7)	
$Gap_{it-1} \times \Delta FedFunds_{t-3}$	1.4^{**}	1.3^{*}	1.5	3.3**	1.9**	
	(2)	(1.7)	(.73)	(2)	(2.2)	
$Gap_{it-1} \times \Delta FedFunds_{t-4}$	-1.3**	-1.2^{*}	-1.6	-1.7	-2.4^{***}	
	(-2.1)	(-1.8)	(77)	(-1.2)	(-2.6)	(
N	29614	25577	4037	8440	12994	1
r2	.097	.095	.17	.081	.12	
Sum of gap coefficients	2	2	1.4	2.6	.72	
p-value of gap coefficients	0	0	.58	.03	.5	
p-value of equality test		.7	'9		.25	
Sum of size coefficients	.23	.19	.96	.15	.29	
p-value of size coefficients	0	.2	0	.74	.01	
Sum of equity coefficients	-12	-12	-12	2.6	-22	
p-value of equity coefficients	.05	.07	.52	.76	0	

Hedging reduces sensitivity to gap, but difference is insignificant

		$\Delta \log(C\&I)$					
	All	Small	Big	No Hedge	Some Hedge		
$Gap_{it-1} \times \Delta FedFunds_t$.013	.18	-2	.036	58		
	(.02)	(.25)	(99)	(.03)	(56)		
$Gap_{it-1} \times \Delta FedFunds_{t-1}$.82	.72	2.6^{*}	.7	1.1		
	(1.2)	(.96)	(1.7)	(.55)	(1)		
$Gap_{it-1} \times \Delta FedFunds_{t-2}$	1.1	1.1	.92	.2	.66		
	(1.6)	(1.4)	(.53)	(.14)	(.7)		
$Gap_{it-1} \times \Delta FedFunds_{t-3}$	1.4^{**}	1.3^{*}	1.5	3.3**	1.9**		
	(2)	(1.7)	(.73)	(2)	(2.2)		
$Gap_{it-1} \times \Delta FedFunds_{t-4}$	-1.3**	-1.2*	-1.6	-1.7	-2.4^{***}		
	(-2.1)	(-1.8)	(77)	(-1.2)	(-2.6)	(
Ν	29614	25577	4037	8440	12994		
r2	.097	.095	.17	.081	.12		
Sum of gap coefficients	2	2	1.4	2.6	.72		
p-value of gap coefficients	0	0	.58	.03	.5		
p-value of equality test		.7	9		.25		
Sum of size coefficients	.23	.19	.96	.15	.29		
p-value of size coefficients	0	.2	0	.74	.01		
Sum of equity coefficients	-12	-12	-12	2.6	-22		
p-value of equity coefficients	.05	.07	.52	.76	0		

Credit multiplier

- How many \$ of ΔLoans do we get per additional \$ of ΔEarnings?
 - We know that \$1 of income gap \rightarrow 7 cents of earnings
 - And estimate that 1\$ of income gap \rightarrow 81 cents of loans

→ Multiplier = 0.81 / 0.07 = 11

Duration Gap vs. Income Gap

- Flows vs. stock effect ?
- When we include short and long rates x gap, only short rates x gap are significant

Robustness

- 1. Control for Liquid Assets $x \Delta FedFund$
 - Kashyap & Stein (2000), reduces obs. to 1993-2011
 - not same sample: BHC not call reports
- 2. Alternative specification used in the literature:
 - Time series of cross-sectional « loan to gap » sensitivity regressed on interest rates.

Conclusion

- Heterogeneity in income gap leads to differences in reaction to monetary policy
- When rates increase, banks with higher income gap tighten credit less
- Can be interpreted as reaction of risky investment to cash-flow shocks

 \rightarrow an instrument would be great