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Abstract

We study effort and risk-taking behaviour in an economy with a continuum of

principal-agent pairs where each agent exerts costly hidden effort. When the industry

productivity is uncertain, agents have motivations to match the industry average ef-

fort, which results in contractual externalities. Contractual externalities have welfare

changing effects when the information friction is correlated and the industry risk is

not revealed. This is because principals do not internalize the impact of their choice

on other principals’ endogenous industry risk exposure. Relative to the second best,

if the expected productivity is high, risk-averse principals over-incentivise their own

agents, triggering a rat race in effort exertion, resulting in over-investment in effort and

excessive exposure to industry risks relative to the second best. The opposite occurs

when the expected productivity is low.
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1 Introduction

It is important to understand the sources of industry boom and bust cycles, especially in

lights of the recent episodes in the high tech and the finance industries. In these situations,

the excited anticipation of the arrival of a “new technological era” of high productivities leads

to over-investment and excessive risk-taking in the corresponding industry. This “overheat-

ing” in economic activities often contrasts with a subsequent crash where real investments

and risks are substantially reduced. These pro-cyclical investment and risk-taking cycles

have significant social and economic consequences (eg, the great recession of 2007-2009).

To explore the social inefficiency of industry boom-bust cycles, the theoretical literature

focuses on the welfare changing effect of various pecuniary externalities in the presence of var-

ious financial frictions. In this paper, we propose a model of externality similar to pecuniary

externalities but working through contractual arrangements and information frictions in the

time of large positive industry productivity shocks. The model captures the pro-cyclical

investment and risk-taking phenomenon, finds its properties and economic conditions under

which it might arise. For example, the model predicts that social inefficient boom-busts

occur in industries with many firms and exposed to high volatile common shocks. It also

predicts excessive correlated risk-taking behaviour during the booms. Existing empirical

evidence supports these theoretical predictions. Hoberg and Phillips (2010) find that boom-

bust cycles are more likely in industries with many firms and when the common industry

productivity shocks are noisy and predictions of these shocks are often imprecise (or even

wrong). Bhattacharyya and Purnananda (2011) have documented between 2000 and 2006,

the period of financial industry boom, idiosyncratic risks have dropped by almost half while

systematic risk have doubled among US commercial banks. That is, the excessive risk-taking

during the boom period is found to be correlated among firms in the same industry.

The externality in our model arises endogenously through the contractual arrangements

between a continuum of principal and agent pairs in an industry. Specifically, we model a

setting where the industry experiences a large productivity shock, a feature that is commonly

associated with major technological innovations. Each firm in this industry has a principal

and owns a project. Each principal offers a contract to a risk-averse agent who exerts

costly and hidden effort. The industry productivity shock affects the return to effort of all

agents in this industry. This contractual environment has two notable characteristics. First,

it involves many principal-agent pairs which allows us to examine strategic interactions

among independent firms in an industry.1 Second, when the return to effort is uncertain

1This contrasts with setups with one principal and many agents (eg, team incentives) or many principals
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and is unknown to everyone in the economy (i.e., the productivity shock is uncertain and

unobserved), an agent’s effort choice affects the level and the riskiness of his firm’s output

as well as the level and, potentially, the riskiness of his own compensation.

In this setup, each firm offers a contract that is based on a noisy signal of its agent’s

individual performance as well as a noisy signal of the average industry performance. In

reality, there are a variety of circumstances where the noise in the signal about the average

performance is quite large. For example, a hype around a new technology may cause a run

up in the average stock price of the firms in an industry, without revealing the underlying

industry productivity, eg, the dot.com boom in 1990s. The same hype would also generate

a run up in individual stock prices that reflect agent-specific performances. In these cir-

cumstances, principals would be unsure whether the run up is fundamental or hype driven,

and all signals could be very noisy. However, the difference between the agent-specific and

the average performance signals, reflecting relative performance, can be quite informative.

As a result, contracts are effectively weighted towards the more precise relative performance

information.

Contracts that incorporate the industry average performance, ie, reflecting relative per-

formance, incentivise agents to work harder but at the same time introduce a distinctive

motive for agents to match each other’s effort. This is because the industry productivity

shock affects the marginal return of effort for the agents. When the industry shock gets

riskier, an agent’s project output becomes riskier and so does the industry average output.

The difference, however, is less risky if the agent does not deviate from the industry aver-

age effort too much. By matching the industry average effort as close as possible, an agent

can reduce his exposure to the industry productivity shock. This potentially introduces a

feedback loop between individual and the industry average effort among agents. Therefore,

given the contracts, an agent has to trade off performing well to get incentive pay versus

performing to the industry average to shield himself from too much industry risk exposure.

The motivation of agents to match the industry average effort creates an externality in

setting incentives among principals in the industry. The externality arises because principals

take the industry average effort as given and do not take into account the impact of their

choices on it. This externality has two opposing effects on the amount of performance

incentives in equilibrium relative to the second best where a planner can coordinate the

contracts for all principals in the industry. The first effect arises because principals do

not take into account the industry risk exposure of other principals in the industry. When

and one agent (eg, common agency).
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principals are risk averse, they have to trade off incentivising their agents to work harder

versus exposing themselves to more industry risks in their projects. As discussed earlier,

agents can hedge out the industry risk by matching the industry average effort. This means

that principals are left with all the industry risk. When principals choose stronger incentives,

they would expect a higher output but also a larger industry risk exposure for themselves,

which is a cost they internalize. Note that stronger incentives also result in larger industry

risk exposures for other principals in the industry via the feedback loop between individual

and industry average effort, which principals do not internalize. That is, when setting

incentives, a principal optimally chooses her own risk-return tradeoff ignoring her impact

on increasing other principals’ industry risk exposure. By comparison, in the second best, a

planner sets incentives by taking into account the feedback loop between industry average

and individual effort choices. This means, relative to the second best, a principal has a

tendency to provide stronger incentives for her agent.

The second effect goes in the opposite direction and arises because each principal per-

ceives a unilateral deviation from the industry average as being too costly. To see why,

suppose a principal increases her choice of incentive above the industry average unilater-

ally. This will incentivize her agent to work harder than the industry average which in turn

exposes the agent to more industry risk. The principal has to compensate her agent for

bearing this risk. By comparison, the cost of providing incentive is lower in the second best.

A planner would recognize that a coordinated increase in incentives would extract more

effort from agents without exposing them to higher industry risk. Hence, relative to the

second best, the incentive provision could be lower in the decentralized equilibrium due to

this cost consideration. However, depending on which of the two effects dominates, the equi-

librium incentive provision, and hence efforts elicited from agents, could be either excessive

or insufficient relative to the social optimum.

The first effect dominates if the expected industry productivity is high, eg, during a

boom. In this case, a principal is more concerned in incentivising her own agent to worker

harder to reap the high productivity benefit. She would like to elicit high effort from her

agent by increasing performance incentives. Their increased incentives trigger a rat race

in effort in the whole industry. The equilibrium effort exertion by agents is excessive rela-

tive to the second best. By contrast, when the expected industry productivity is low, eg,

during a recession, principals are more concerned about the cost of providing incentives

and less so about the incentive provision. The logic is then reversed and the race is to

the bottom: relative to the second-best, incentive provision in equilibrium is too low, lead-

ing to insufficient effort. The planner can, therefore, improve the total welfare by making
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performance-based incentives countercyclical: enforcing lower (higher) performance-based

incentives among principals during booms (busts).

The socially suboptimal incentive provision in our model is crucially related to the fact

that the productivity shock is correlated across all projects in the industry.2 This assumption

is empirically justified for industries that have experienced a major technological innovation

like the dot.com or mortgage industries. To see how correlated productivity shocks are

important from a theoretical perspective, consider the case when productivity shocks are

purely systematic and common across projects. In this case, if an agent matches the in-

dustry average effort level, his performance relative to the industry average will not contain

any exposure to the common productivity shock. Since contracts are effectively based on

agents’ performance relative to the industry average, agents can remove the systematic risk

embedded in their performance-based compensations by matching their peers’ effort-choice

level.3 This incentive to offset the systematic risk from their compensations by agents is the

underlying cause for effort- and (systematic) risk-taking rat race during booms (and race

to the bottom during busts). By contrast, as we show in an extension of the model, when

productivity shocks are idiosyncratic across projects within the industry, agents do not have

motivation to match the industry average effort. In this case, since productivity shocks are

uncorrelated, if an agent matches the industry average effort level, his performance relative

to the industry average still contains the exposure to his firm’s idiosyncratic productivity

shock. Consequently, agents cannot remove the exposure to idiosyncratic productivity shocks

in their compensations by matching their peers and hence have no reason to be influenced

by their peers’ effort choices. This unique prediction on excessive (insufficient) undertaking

of systematic risks during booms (busts) is well supported by the data.4

In our model an agent’s effort choice and the riskiness of his project are tightly linked.

This is because the productivity of effort is random and correlated across firms, and thus

when an agent increases his effort, both the expected return and the systematic risk expo-

2That is, the productivity shock is systematic rather than idiosyncratic in nature. In this paper we treat

the industry shock and the systematic shock as the same and use the terms interchangeably.
3In the less extreme case, when the risk in the productivity shock is correlated across projects, a sim-

ilar result holds. In this case, agents reduce (instead of eliminate) the systematic risk embedded in the

performance-based compensation by matching the average effort level in the industry. We focus on the case

where the productivity shock is common for ease of exposition.
4To our best knowledge, only one other line of literature predicts excessive undertaking of systematic

risks and the prediction is one-sided about booms. This literature studies the incentive for banks or bank

managers to take on excessive risk collectively that causes the financial crisis due to bailouts (Acharya and

Yorulmazer (2007); Acharya and Yorulmazer (2008); Farhi and Tirole (2011); and Acharya et al. (2011)).
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sure of the project are higher. We view this feature of the model desirable when studying

excessive risk taking from a social perspective, especially considering that episodes of over

(under) investment at the industry and/or the economy level are often observed together

with excessive (insufficient) risk taking. In this way our setup and conclusions are different

from those models where agents can choose effort and level of risk separately.5 We acknowl-

edge that in some settings agents can choose risk and return of the projects separately,

however in other settings agents have to choose a portfolio of risk and return together. Put

differently, agents may have to trade off investing effort in high-risk-high-return projects

versus low-risk-low-return projects. By treating the risk-return as a portfolio, our frame-

work complements and contributes to the understanding of sub-optimal risk-taking in the

principal-agent framework. Importantly, we find that agents in our framework are only inter-

ested in taking a suboptimal amount of systematic rather than idiosyncratic risks since they

can offset systematic risk exposures by matching the industry average effort. Additionally,

in our framework sub-optimal risk taking arises due to contractual externalities as opposed

to nonlinearities in payoff schedules.

We also conduct comparative-static analysis to illustrate the equilibrium properties and

developing new empirical testable hypotheses. For example, one of the equilibrium properties

is that principals are exposed to the entire industry risk but share idiosyncratic risks with

agents. This indicates that when idiosyncratic risks are very high, contracting is mainly

for risk sharing. This predicts that all else equal, industry with higher idiosyncratic risks,

contracts are less sensitive to relative performance variables. Further, in our model, principals

are concerned about agents’ endogenous risk-taking and would like agents to internalize the

industry risk embedded in the projects. There are several empirical predictions based on

this mechanism. For example, the model predicts that higher industry volatility indicates

that contracts contain less relative performance pay especially when principals are more risk-

averse. This is because principals are the one who shoulder the bulk of the industry risk. This

also implies when the industry expected productivity is high and volatile, principals would

like their agents to have a positive exposure to it and when the industry productivity is low

and volatile, principal would like their agents to have a negative exposure to it. Empirically

this predicts that agents are more likely to be rewarded by good industry performance,

but less punished by the bad industry performance. The condition for the wedge between

private and social optimum also give some empirical predictions on when to expect boom or

bust. For example, social inefficiency is more likely in an industry where the industry-wide

5See Diamond (1998); Biais and Casamatta (1999); Palomino and Prat (2003); and Makarov and Plantin

(2010).
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productivity is expected to be high and volatile and hard to contract upon. We also show

the robustness of the main insights of our model by varying the informativeness of the signal

about the industry productivity. When the industry productivity signal is more informative

about the underlying productivity factor, the impact of the externality is reduced and the

wedge between the equilibrium and the second-best effort and risk-taking is narrowed. In

fact, when the noise in the industry productivity signal approaches zero, the second best is

achieved. This implies that excessive or insufficient investment is less of a concern for mature

industries where there is less uncertainty about the industry productivity.

Relation to the literature. Our paper is related to the growing literature that studies

the welfare effects of pecuniary externalities. This literature is based on the seminal papers

of Stiglitz (1982), Greenwald and Stiglitz (1986), Geanakoplos and Polemarchakis (1985)

and Arnott, Greenwald and Stiglitz (1994), which establish general conditions of welfare

changing pecuniary externalities.6 In that literature, agents do not internalize their impact

on equilibrium prices when choosing their actions. In our paper, principals do not internalize

their impact on the industry average effort, also an equilibrium outcome, when choosing

their own contract terms. In a frictionless economy, variation in prices generates transfers

across agents without welfare impact. Pecuniary externality creates welfare effect if there are

market frictions such as borrowing constraints where an agent fails to internalize the impact

of his action on other agents’ borrowing constraint via prices. Similarly, in a standard

contracting setup without information frictions on the correlated industry productivity risk,

variation in the industry average effort should not have welfare impact since its movement

generates a transfer between principals and agents. However, when there are information

frictions on the correlated industry productivity, contractual externality has an impact on

social welfare. This is because principals do not internalize the impact of their contracts

on the risk exposure and the cost of incentive provisions of other principals in the same

industry. As a result, our model generates a different type of externality that works through

correlated information frictions, and provides conditions under which this externality drives

a wedge between social and private equilibrium outcomes. In fact, we show that when the

information friction is removed, that is, when the industry shock is revealed, contractual

externalities do not have any welfare impact. By pinpointing contractual externality and

6There is an explosion of this literature due to the growing interests in studying social inefficiency of

booms-busts. This includes but not limited to the following:, Krishnamurthy (2003); Caballero and Krish-

namurthy (2001; 2003); Gromb and Vayanos (2002); Korinek (2010); Bianchi (2010); Bianchi and Mendoza,

(2011); Stein (2012); Gersbach and Rochet (2012); He and Kondor (2013); Farhi and Werning (2013). Davila

(2011) and Stavrakeva (2013) have nice summaries of this literature.
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its welfare effect under information friction, our model has different empirical and policy

implications from the existing pecuniary externality literature about booms-busts cycles.

Since the results in our paper hinge on the fact that contracts put some weight on

the industry average, our paper is closely related to the literature on relative performance

(starting with Holmström 1979; 1982). We contribute to this literature theoretically by

studying the contractual externality among multiple principal-agent pairs and empirically by

offering a potential explanation of the existing empirical puzzles. The theoretical extension

has many unique predictions. For example, in our model, agents are rewarded for good

industry performance but not punished for bad ones. In contrast, in the single principal-

agent relative performance model, under corresponding assumptions, agents would not be

rewarded by what seems to be luck rather than effort. The difference is due to the externality

in contracting. In our model, a principal would like to expose her agent to some industry

risk, not to reward (punish) her agent for good (bad) industry performance but to make

the risk-averse agent internalize the risk he is taking. Empirically, our model matches data

better. For example, it has been found that CEOs are rewarded for good industry shocks

(Bertrand and Mullainathan (2001)) but less so for bad ones (in Garvey and Milbourn

(2006)).7 Furthermore, early empirical evidence on relative performance evaluation using

limited executive compensation data has found little evidence of its usage. For example,

Gibbons and Murphy (1990); Prendergast (1999); Aggarwal and Samwick (1999) offer little

empirical support for the theoretical findings in the relative performance literature. Recently,

De Angelis and Grinstein (2010) and Gong et al. (2010) use more detailed disclosure data

on executive compensations and find that about 25% to 34% of their respective sample firms

use some forms of relative performance evaluation, indicating that the relative performance

is used but its usage is limited. Our paper offers a potential resolution for the empirical

and theoretical divide in this literature. In our model, principals would like the agents to be

exposed to the industry risk to internalize the risks they are taking, rather than eliminate

the industry risk completely from agents’ contract as predicted in the traditional theoretical

literature on relative performance. That is, the net usage of the industry index could be quite

small in observation. In fact, the comparative statics based on our theory produces a host

of new testable cross-sectional predictions on the use of relative performance. For example,

our model predicts that with more risk-averse principals, higher industry risk, the less we

7This line of empirical literature has suggested various explanations to this puzzling phenomenon such

as CEO setting their pay. Our model not only provides an alternative (and rational) explanation but

also generates new empirical predictions. For example, it predicts this phenomenon is more pronounced in

industries where industry shocks are large and with more risk-averse principals.
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observe relative performance in practice (that is, the pay sensitivity to relative performance

variable is lower).

Many contracting situations involve rivalrous agency where principals hire agents who

compete on behalf of principals. The literature on rivalrous agency (for example, Myerson

(1982), Vickers (1985), Freshtman and Judd (1986; 1987), Sklivas (1987), Katz (1991),

among others)) has examined the strategic aspect of incentive provision among principals to

explore implications for oligopolistic conducts. Our paper differs in two aspects. First, the

interactions among agents in our model arises endogenously via contracts that are based on

correlated information, even though principals do not engage in direct competition. Second,

our focus is different. We explore implications of contractual externalities for aggregate

inefficiencies.8

The structure of the paper is as follows. In section 2, we present the model. In section

3, we lay out agents’ and principals’ optimization problems. In section 4, we study the

case when the signal about the industry productivity is noisy. We solve for the optimal

linear contract under the equilibrium and the second best, compare the two and present

some comparative static results. In section 5, we study the case when the signal about

the industry productivity is informative, and present some numerical results. Section 6

concludes.

2 Model

In this section, we describe our setup, information environment, and equilibrium defini-

tion.

2.1 The Setup

There is a continuum of principals in an industry. Each principal owns a firm which

in turn owns a project. There is also a continuum of agents who are able to obtain a fixed

reservation utility in a competitive labor market. The principal hires an agent to work on the

project and offers the agent a contract. Each principal, agent and project triplet is indexed

8Our model differs from the study of ‘common agency’ (Pauly (1974); Bernheim and Whinston (1986))

where multiple principals share the same agency since our principals do not share any agents. Furthermore,

this literature studies contracting when externality is given. In our model, externality arises endogenously

through contracting. Our paper is also different from the contract theory literature on (rank order) tour-

naments (Akerlof (1976); Lazear and Rosen (1981); Green and Stokey (1983); Nalebuff and Stiglitz (1983);

and Bhattacharya and Mookherjee (1986)) where they study one principal and many agents.
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by i ∈ [0, 1]. The principal’s objective is to maximize her expected utility which is based

on the expected final value of the project. Principals are potentially risk averse, and their

utility is given by us (w) = − exp (−rsw) where rs ≥ 0.9

There are three dates t = 0, 1, 2. At t = 0, principal i offers agent i ∈ [0, 1] a contract. We

assume that contracts are offered simultaneously. Agent i observes his contract and decides

whether to accept or reject it. If he accepts the contract, he chooses hidden effort denoted by

ei on project i. Agent i’s effort is costly and the cost is specified as C (ei) = e2
i /2. We assume

that all agents have identical CARA preferences so that u (wi, ei) = − exp (−r (w − C (ei)))

where r ≥ 0. 10 At t = 1, two payoff-relevant public signals about project i are revealed.

One is about agent i’s performance and the other is about the average performance of all

projects in the industry. We assume that these signals are contractible and determine agent

i’s compensation. All agents are paid at time 1. At t = 2, the final values of all projects are

realized and principals receive their payoffs. For simplicity we assume no discounting.

2.2 Production Technology

We assume that project i generates output Vi, which is a random function of agent i’s

unobservable effort and two stochastic shocks,

Vi = V (ei, h̃, ε̃i). (1)

The randomness arises from a common random variable h̃, and a project-specific random

variable ε̃i. We interpret h̃ as a common productivity shock to all projects and ε̃i as an

output shock specific to the individual project. In the rest of the paper, we call h̃ the

industry shock or the systematic shock as it cannot be diversified away. The important

assumption is that ∂2Vi/(∂h∂ei) 6= 0, ie, the state of nature that is common across agents,

affects the productivity of effort. This specification is meant to capture the uncertainty

about industry productivity after a technological innovation.

Our results are based on a linear specification where Vi = h̃ei + ε̃i. In our model, the

random variable h̃ is normally distributed with mean h̄ > 0 and variance σ2
h (ie, precision

τh = 1/σ2
h). The random variable ε̃i is normally distributed with mean zero and variance

9In presence of contractual externalities risk-neutrality is not an innocuous assumption. Later in the

paper, we discuss differences in the results when rs = 0 and rs 6= 0.
10Note that we allow for risk-averse principals. There are a number of reasons why principals might be

risk-averse or act as if they are risk-averse. Banal-Estanõl and Ottavinani (2006) have discussed these in

details, which include concentrated ownership, limited hedging, managerial control, limited debt capacity

and liquidity constraints, and stochastic productions.
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σ2
ε (ie, precision τε = 1/σ2

ε ). To show that the result on contractual externality is crucially

dependent on the productivity shock being common across projects, we also analyze an

alternative specification where the productivity function is Vi = k̃iei + ε̃i. Here k̃i is a

project-specific random term.

Note that in our specifications, the productivity shock enters multiplicatively with effort.

When σh = 0, the specification for output in our model is standard. In the more general case

where σh > 0, higher average effort generates a higher return, but since the productivity of

effort is random it also leads to higher volatility. Here, we have in mind a broad interpretation

of effort as choosing the scale of the project, eg, by devoting more resources (time, personnel,

etc.) to it.

2.3 Information Structure

In our model principals receive contractible signals about the output of their projects,

as well as the average output of the industry. We assume that the industry average reveals

the industry productivity shock h̃ with noise. The idea is that after major technological

innovation there is uncertainty about industry productivity and it is difficult to assess the

realization of this uncertainty through public signals such as industry stock price indices,

which themselves are very noisy.

Specifically, we assume that there are two noisy signals on outcomes of the projects in the

industry which principals can contract on. The first is a noisy signal of project i’s outcome,

ie, agent i’s performance, given by

si = h̃ei + ε̃i + ζ̃ , (2)

where the signal noise term ζ̃ is normally distributed with mean zero and variance σ2
ζ (ie,

precision τζ = 1/σ2
ζ ). It is common to all projects, ie, an industry-wide noise, reflecting

that the difficulty is in assessing the industry-wide (rather than project-specific) technology

shock.

The second is a noisy signal of the industry average project outcome, ie, the average

performance of all agents, given by

t = h̃e+ ζ̃ , (3)

where e =
∫ 1

0
eidi is the average effort of all agents. Note that since the outputs of all

projects are observed with correlated noises, the industry average output is also observed

with noise ζ̃. This industry signal reveals the industry productivity h̃ with noise.
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Technically, this environment is equivalent to the one in which the principal observes a

signal about the agent’s performance relative to his peers, ie, pi = si − t = h̃ (ei − e) + ε̃i

and a noisy signal of the average performance which is t. When the common noise ζ̃ is

extremely volatile, especially relative to the project-specific noise ε̃i, we show later that the

contract puts more weight on relative information pi which is more precise, rather than the

project-specific or the average signal. Intuitively, when there is a great uncertainty about

the industry productivity, it is relatively easy to assess an agent’s performance relative

to his peers. That is, the information on the ranking of agents is more precise than the

information on an agent’s absolute performance level. Empirically, we observe that stock

analysts are better at ranking stocks than pricing stocks (Da and Schaumburg (2011)).

The finance literature is more successful in explaining cross-sectional equity returns while

the equity premium remains a puzzle. Moreover, this information structure parsimoniously

captures the tournament-like incentives that agents face in the real world. For example, the

ranking of businesses, university programs, fund managers, doctors in different specialities,

and even economists of different vintages, is prevalent when there is also (possibly quite

noisy) information on their individual performance.

2.4 Equilibrium Definition

We restrict attention to linear compensation contracts which is common in the theoretical

literature on principal-agent models. We assume that agent i’s compensation contract has

three components. The first component is a fixed wage Wi. The other two components, aipi

and bit, condition the agent’s payment on the realization of the two signals. Therefore, agent

i’s total compensation Ii is given by

Ii (ai, bi,Wi) = aipi + bit+Wi,

where ai measures the power of performance-based pay and bi measures the power of industry-

based pay. Agent i’s utility is given by u (Ii − C (ei)) where Ii is his income and C (ei) is

the cost of exerting effort ei.

Now we are ready to specify agent i’s optimization problem. We assume that agents’

reservation utility is u
(
Ī
)
. Agent i accepts contract (ai, bi,Wi) if his expected utility from

accepting the contract exceeds his reservation utility

E [u (Ii (ai, bi,Wi)− C (ei (ai, bi,Wi)))] = E [u (aipi + bit+Wi − C (ei (ai, bi,Wi)))] ≥ u
(
Ī
)
,

where ei (ai, bi,Wi) is the optimal effort choice conditional on accepting the contract. That
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is,

ei (ai, bi,Wi) = arg max
ei≥0

E [u (aipi + bit+Wi − C (ei))] . (4)

We define an equilibrium of the model as follows.

Definition 1: An equilibrium consists of contracts (a∗i , b
∗
i ,W

∗
i ), effort choices e∗i = ei (a

∗
i , b

∗
i ,W

∗
i )

for each i ∈ [0, 1] and average effort e =
∫ 1

0
e∗i di such that given e the contract solves princi-

pal’s problem who chooses (ai, bi,Wi) to maximize E [us (Vi − Ii)] subject to E [u (Ii − C (ei))] ≥
u
(
Ī
)
, where ei = ei (ai, bi,Wi) (given in (4)) and Vi = h̃ei (ai, bi,Wi) + ε̃i.

We begin our analysis in section 3 by first solving the agents’ and principals’ problems

in the contractual environment discussed above. In section 4, we obtain analytical results

when the signal about the industry average is not informative ie, τζ = 0. We discuss how

the equilibrium effort level compares with the second-best optimum and present results on

comparative statics. In section 5, we present some numerical results when the signal about

the industry average is informative and show the intuition obtained in section 4 is robust.

3 Agents’ and Principals’ Problems

In this section we first solve agents’ equilibrium effort choices for a given contract. We

then characterize principals’ choice of optimal contract.

3.1 Agents’ Effort Choice

Given contract (ai, bi,Wi) agent i’s compensation is:

Ii = aipi + bit+Wi = ai

(
h̃ (ei − e) + ε̃i

)
+ bi

(
h̃e+ ζ̃

)
+Wi, (5)

and agent i chooses ei to maximize:

E
[
u
(
ai

(
h̃ (ei − e) + ε̃i

)
+ bi

(
h̃e+ ζ̃

)
+Wi − C (ei)

)]
. (6)

Computing the expectation in the above expression, agent i’s problem in (6) can be restated

as choosing ei to maximize:

aih̄ei + (bi − ai) h̄e+Wi − C (ei)−
1

2
r

(
(ai (ei − ē) + biē)

2 1

τh
+ a2

i

1

τε
+ b2

i

1

τζ

)
. (7)

From (7) we see how a given incentive package shapes agent i’s exposure to various sources

of risks. His risk exposure to the common productivity shock (h̃) depends on (i) the power of
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the performance-based pay ai times the difference between his effort and the average effort

(ei − ē), and (ii) the power of industry-based pay bi times the average effort in the industry

ē. His risk exposure to the common noise ζ̃ depends solely on the power of industry-based

pay while his risk exposure to the idiosyncratic noise ε̃i depends solely on the power of

performance-based pay. From this we can see that to lower his compensation risk coming

from the industry productivity shock agent i has incentive to match the industry average

effort ē. Put differently, agent i is able to completely hedge his exposure to the industry

risk that comes through his performance pay, although he might still be exposed to some

industry risk that comes through his industry-based pay. At the same time, this hedging

possibility creates a matching motivation among effort choices of agents. Taking the first-

order condition and solving for ei, we obtain agent i’s effort choice as

ei =
aih̄+ r

τh
(ai − bi) aiē

1 + r
τh
a2
i

. (8)

Note that agent i’s effort is increasing in ē, the average effort exerted by all the other agents

when the power of the performance pay exceeds that of the industry-based pay. Thus, when

the average effort increases, agent i’s best response is to increase his effort.

Typically, the more risk averse an agent is (i.e., the higher r is) and/or the more volatile

the industry shock becomes (i.e., the lower τh is), the lower effort level he will choose. This

is because by lowering his effort, the agent reduces his exposure to the industry risk. This

effect is captured by the term r/τh in the denominator of (8). In our setup, the term r/τh is

also in the numerator capturing the fact that when r is higher or τh is lower, an agent has a

stronger incentive to match the average effort to hedge the industry risk if his compensation

has higher sensitivity to the performance-based pay than the industry-based pay. Through

this second effect, for a given contract (ai, bi), the agent’s effort may increase when his risk

aversion is higher or the industry productivity shock becomes more volatile.

One thing to note is that the performance-based pay, ai, has two opposing effects on

agent i’s effort choice. Increasing ai makes agent i work harder as his pay is more sensitive

to the magnitude of his outperformance relative to the industry average. This is captured

by the numerator in (8). However, at the same time, it causes agent i to bear more industry

risks by deviating more from the industry average. This increase in risk exposure causes

agent i a larger disutility and induces him to work less. This effect is reflected by the

denominator in (8). Both effects are associated with the industry risk 1/τh. As we show

later, these two effects underly the externalities that principals have to face when writing

the compensation contracts. Note that in the limit as the industry risk approaches zero, the

strategic interaction among agents disappears and our model delivers the standard result
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where agent i’s effort is determined by his performance pay and the productivity of his

effort, ie, aih̄.

3.2 Principals’ Choice of Optimal Contract

Now we turn to the principals’ problem. Principal i chooses the contract terms (ai, bi,Wi)

to maximize her expected utility:

E [us (Vi − Ii))] (9)

subject to agent i’s participation constraint: E [u (Ii − C (ei))] ≥ u
(
Ī
)

where ei is given by

(8).

We proceed to solve the equilibrium contract terms (ai, bi,Wi). Using (5) we obtain

principal i’s final payoff as

Vi − Ii = h̃ei + ε̃i − ai
(
h̃ (ei − e) + ε̃i

)
− bi

(
h̃e+ ζ̃

)
−Wi.

Computing expectations, principal i’s problem in (9) can be stated as

max
ai,bi,Wi

(1− ai) h̄ei + (ai − bi) h̄e−Wi

−1

2
rs

(
(ei − ai (ei − ē)− bie)2 1

τh
+ (1− ai)2 1

τε
+ b2

i

1

τζ

)
, (10)

where ei is given by (8). Using (7) and agent i’s individual rationality constraint we obtain

−aih̄ei + (ai − bi) h̄e−Wi = −C (ei)−
1

2
r

(
(ai (ei − ē) + biē)

2 1

τh
+ a2

i

1

τε
+ b2

i

1

τζ

)
− Ī .

We substitute the above equation into (10) and simplify it further as

max
ai,bi

h̄ei − C (ei)−
1

2
rs

(
(ei − ai (ei − ē)− bie)2 1

τh
+ (1− ai)2 1

τε
+ b2

i

1

τζ

)
−1

2
r

(
(ai (ei − ē) + biē)

2 1

τh
+ a2

i

1

τε
+ b2

i

1

τζ

)
− Ī . (11)

The above expression has an intuitive interpretation as it is principal i’s and agent i’s

combined surplus. The first term is the expected output of the project, the second term is the

cost of agent i’s effort, and the next two terms are the disutilities from the risk exposures

of the agent and the principal respectively. The following proposition characterizes the

equilibrium contract.

Proposition 1: Given h̄, r, rs, there exists τ̄h such that for all τh > τ̄h there exists a

unique equilibrium contract which is symmetric.
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In this paper we will restrict attention to situations where the equilibrium is unique.

Proposition 1 guarantees the existence of a unique equilibrium as long as the industry risk

is not too large.11 Note that once the values of h̄, r, rs are fixed, Proposition 1 guarantees

that there is a unique equilibrium no matter what the values of τε and τζ are.12

4 Equilibrium without Industry-Based Pay

Often major technological innovations introduce extreme difficulties for economic agents

to assess the industry productivity. We capture this feature by allowing the signal about the

industry productivity shock to be extremely noisy, that is, by letting its precision τζ be zero.

As a result, b∗i = 0, that is, contracts do not include an industry-based pay component.13

In this case, principals do not have any information about h̃ directly, and both signals si

and t are uninformative by themselves. However, their difference pi is informative because

it is unaffected by the common noise ζ̃. Consequently, principals can only assess how much

better or worse their agent is performing relative to the average and have to base agents’

compensation on this information alone. In section 5, we relax this assumption and study

the equilibrium results when τζ is larger than zero.

To solve her problem, principal i takes ē as given and chooses the optimal linear contract

which we denote by a∗i . The following proposition characterizes the equilibrium contract and

effort levels.

Proposition 2: When τζ = 0, under the conditions in Proposition 1, a unique symmetric

equilibrium contract exists and satisfies

h̄2

r
τh

(a∗)2 + 1
(1− a∗)

(
1− rs

τh
a∗
)
− 1

τε
(ra∗ − rs (1− a∗)) = 0. (12)

Moreover, a∗ ∈ (0, 1) and the equilibrium effort level is e∗ = ē = a∗h̄.14

11When the industry risk is large, it is possible to construct examples of multiple equilibria. The multi-

plicity of equilibrium contracts is an interesting possibility that is worth studying further in a future work.
12This is because terms that are higher order with respect to τ̄h do not depend on these variables.
13The contract term b∗i is set to zero since t is uninformative. The analysis in this section also applies to

the case where the industry signal is not contractible.
14We emphasize that τ̄h does not depend on τε because this allows us to fix τh and perform comparative

statics with respect to τε (without losing existence and uniqueness of the equilibrium).
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4.1 Equilibrium Properties

There are several notable features of the equilibrium contract. To illustrate, we dissect

the equilibrium condition (12) into terms that are associated with the usual tradeoff between

incentives and risk-sharing. To do so we define the incentive provision as the level of com-

pensation when the sole purpose of the contract is to incentivise the agents to exert effort,

and the risk-sharing provision as the level of compensation when the purpose of the contract

is to allow risk sharing between principals and agents. The following corollary characterizes

the optimal contract in the limiting cases when only one of the two concerns dominates.

Corollary 1: When τε goes to infinity, the optimal linear contract reflects only the

incentive concern and is given by a∗i = min{1, τh/rs}. When τε goes to zero, the optimal

linear contract reflects only the risk-sharing concern and is given by a∗i = rs/(rs + r).

Corollary 1 allows us to identify the terms in the equilibrium condition (12) that corre-

spond to these two concerns:

h̄2 1
r

τh
(a∗i )

2 + 1︸ ︷︷ ︸
Cost of Unilateral Incentive Provision

(1− a∗i )
(

1− rs
τh
a∗i

)
︸ ︷︷ ︸

Incentive Provision

− 1

τε
(ra∗i − rs (1− a∗i ))︸ ︷︷ ︸
Risk-Sharing Provision

= 0. (13)

A few comments are in order. It is intuitive that the magnitude of risk-sharing provision

depends solely on the relative risk-aversions of both principals and agents, rs/(rs + r). The

magnitude of the incentive provision needs some explanation. In setting up the incentive

pay, principals would like to give agents the maximum performance pay (a∗ = 1) if they

are risk-neutral. However, in our model, principals are risk-averse and shoulder all industry

risks in equilibrium.15 Moreover, the amount of industry risk exposures in the projects are

endogenous and depend on agents’ effort choices. Since a higher-powered incentive leads an

agent to take on more industry risk which is then passed onto his principal, a risk-averse

principal would be setting incentives according to the level of the industry risk and her

appetite for it (τh/rs). This also means that the higher the industry risk, the larger the

risk-aversion of the principal, the lower the incentive provision is in equilibrium. That is,

a∗ = τh/rs. Note that this term is associated with endogenous risk-taking by agent and is

unique to our model.

15To see why this is this case, recall in equilibrium e∗i = ē. This implies that each agent’s industry risk

exposure in his compensation contract is zero in equilibrium (from (7)).
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While the incentive and the risk-sharing provisions are captured by the (labeled) two

terms in (13), the relative importance of these two provisions in the contract is indicated

by the coefficients of these two terms. To measure the importance of incentive provision

relative to risk sharing, we take the ratio of the coefficients of these two terms and ob-

tain: h̄2τε/
(
r/τh (a∗i )

2 + 1
)
. Hereafter we refer to this term simply as relative importance of

incentive provision.

It is intuitive that relative importance of incentive provision is increasing in expected

productivity h̄ (since principals are keen to get the agents to work harder) and decreasing

in idiosyncratic risk 1/τε (since risk sharing becomes more important as the amount of

idiosyncratic risk increases). Note that the industry risk 1/τh does not appear in the same

way as the idiosyncratic risk 1/τε in the relative importance. This is because principals bear

the industry risk entirely and share only the idiosyncratic risk with agents in equilibrium.

However, the industry risk affects the relative importance of incentive provision through the

term (r/τh(a
∗
i )

2 + 1), the intuition for which is not immediately apparent and needs some

explanation. Recall that this term appears in equation (8) when we solve agent i’s optimal

effort choice. It captures agent i’s disutility from taking on additional industry risk when

incentivised to work (potentially) more than the industry average unilaterally.16 Higher the

industry risk, higher this disutility. This captures the cost of providing incentives unilaterally

since a principal has to compensate her agent for this disutility. As a result when this term

increases, the cost of incentive provision increases, and consequently relative importance of

incentive provision decreases.

4.2 Comparative Statics

In the spirit of developing testable implications of the model, we derive some comparative

statics of the equilibrium. Empirically, it is possible to obtain proxies or estimates for model

parameters such as industry (marginal) productivity, industry risks and idiosyncratic risks, as

well as risk aversions of the principals and agents. For example, one can use the proportion

of institutional investors in the shareholder base of a firm as a proxy for (the inverse of)

risk aversion of the firm. The next proposition characterizes the comparative statics of the

equilibrium with respect to parameters h̄ and τε.

16Of course, in equilibrium, agents industry risk exposure in his compensation contract is zero since agents

hedge industry risk by choosing e∗i = ē. Since each principal takes other principals and agents behaviours

as given, in her view, deviating from equilibrium choice and providing stronger incentives unilaterally would

impose her agent to bear more risk and hence result in this additional cost of incentive provision.
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Proposition 3: If τh/rs > rs/(rs + r), the equilibrium contract a∗ increases in h̄ and τε.

If τh/rs < rs/(rs + r), a∗ decreases in h̄ and τε.

To understand this proposition, recall that in Corollary 1 we find that when either h̄

or τε is zero, contracting in equilibrium reflects only the risk-sharing concern, requiring

the performance-pay sensitivity to be rs/(rs + r). When h̄ or τε approaches infinity, the

contracting reflects only the incentive concern, requiring the performance-pay sensitivity to

be min{1, τh/rs} in equilibrium. Thus, the above proposition says that when the incentive

concern requires a larger (smaller) performance-pay sensitivity than the risk-sharing concern,

the power of the equilibrium contract a∗ is monotone increasing (decreasing) in h̄ and τε.

Intuitively, when h̄ and τε are increasing, that is, the expected productivity of effort is

higher and the idiosyncratic risk of the project is lower, principals are more concerned about

incentivising agents than risk-sharing, that is, the purpose of the contracting is weighted

more towards incentive provision rather than risk sharing. Since the former requires a larger

(smaller) pay sensitivity, a∗ is increasing (decreasing) in h̄ and τε. Empirically, principals

tend to be less risk-averse than agents. Hence testable implications should be that incentive

provision is increasing in expected productivity and decreasing in the idiosyncratic risks

unless in rare cases with extremely risk-averse principals. The monotonicity result established

in Proposition 3 leads to the following corollary.

Corollary 2: The equilibrium contract a∗ always takes a value between min{1, τh/rs}
and rs/(rs + r).

The comparative statics on τh is also straightforward. Algebraically, we observe that when

τh is bigger, that is, the systematic risk is lower, the magnitude of the incentive provision

is larger since principals are less concerned about endogenous risk-taking. Further, when τh

is larger, the relative importance of the incentive provision in (13) become larger, since the

unilateral incentive provision cost is lower. Thus, when the systematic risk is smaller (higher

τh), principals are more willing to give larger performance-pay compensations (larger ai).

The following proposition states this result formally.

Proposition 4: The equilibrium contract a∗ is strictly increasing in τh.

Comparative statics of the equilibrium contract a∗ with respect to agents’ level of risk

aversion parameter, r, is quite complex because of two effects through the risk-sharing pro-

vision and the incentive provision. First, since contracts impose risk on agents, as agents get

more risk averse (i.e, r becomes larger), they require reducing performance-pay sensitivities
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to improve risk sharing. This is the direct effect and is shown in (13) where a∗ = rs/(r+ rs).

Second, a larger r also increases the unilateral incentive provision cost and as a result, the

risk-sharing provision becomes relatively more important (see (13)) which is an indirect ef-

fect. As the next proposition shows, when τh/rs > rs/(rs + r), the indirect effect reinforces

the direct effect and a∗ is decreasing in r.17

Proposition 5: If τh/rs > rs/(rs + r) then the equilibrium contract a∗ decreases in r.

The risk aversion of principals, rs, on the other hand, affects the magnitude of both

incentive and risk-sharing provisions but in the opposite way as shown in (13). When the

principal becomes more risk averse, she wants to let the agent to have more exposure to the

project’s cash-flow by setting a higher due to the risk sharing provision. However, since her

agent is now incentivised to work more and take more industry risk, the more risk-averse

principal is at the same time reluctant to give stronger incentives to her agent and wants

to lower a due to this endogenous risking-taking of her agent through the incentive concern.

When τh is sufficiently large, principals are less concerned about agents’ endogenous risk-

taking and we get the following result.

Proposition 6: For τh sufficiently large,the equilibrium contract a∗ are increasing in rs.

In the limiting case where principals are risk-neutral (rs = 0), the magnitudes of incentive

and risk concerns are at their extreme values as shown below:

h̄2 1
r

τh
(a∗i )

2 + 1︸ ︷︷ ︸
Cost of Unilateral Incentive Provision

(1− a∗i )︸ ︷︷ ︸
Incentive Provision

− 1

τε
ra∗i︸︷︷︸

Risk-Sharing Provision

= 0. (14)

With risk-neutral principals, the incentive provision calls for giving agents the maximum

performance pay (a∗ = 1) since they are not concerned about their own exposure to the

industry risk and hence about the endogenous risk-taking by agents. The risk-sharing pro-

vision dictates only fixed wages for agents (a∗ = 0) from (14). The equilibrium contract

reflects the balance of these two corner solutions and the balance hinges on the expected

productivity h̄, the volatilities of the industry and the idiosyncratic shocks (1/τh and 1/τε),

and the agents’ risk aversion r. When the industry productivity is known, ie, when τh is

infinite, the optimal contract has the simple textbook solution a∗i = h̄2/
(
h̄2 + r/τε

)
.

17When τh/rs < rs/(rs + r), that is when the incentive provision requires a lower performance sensitivity,

it is possible to have a region where the equilibrium incentive is increasing in r. However, this requires

extreme and unrealistic values for risk aversion parameters.
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4.3 Comparison with the Second Best

In this section, we compare the equilibrium effort and risk-taking with the second-best

level. We define the second best as the solution to the planner’s problem where the planner

maximizes the sum of the utilities of all principals conditional on the incentive and individual

rationality constraints for the agents. Formally,

Definition 2: A second-best solution consists of a contract
(
aSB,W SB

)
and effort choice

eSB where eSB = ei
(
aSB,W SB

)
and the contract solves the planner’s problem, ie, the planner

chooses
(
aSB,W SB

)
to maximize

∫ 1

0
E [us (δ (Vi − Ii))] di, subject to E [u (Ii − C (ei))] ≥

u
(
Ī
)
, where Ii = api +W and Vi = h̃ei (a,W ) + ε̃i.

This definition calls for several comments. The planner’s role is limited to coordinating

the contracts written by principals. In particular, the planner must give agents incentives to

exert effort. Also, our definition requires the planner to give agents their reservation utility,

which implies that including agents’ utility in the planner’s objective would not change the

solution.

From Definition 2 we see that the planner chooses the contract term a to maximize the

sum of principals’ utility subject to incentive and participation constraints. Since principals’

optimization problems are identical, the planner’s problem can be seen equivalently as max-

imizing the utility of one of the principals taking into account that e∗i = ē = ah̄. That is, the

planner internalizes the impact of the contract term a on the industry average effort level ē

when choosing a. Thus, the planner’s problem is

max
a≥0

[
−1

2
h̄2aδ

(
a

(
1 +

(
rs
τh

))
− 2

)
− 1

2
a2 r

τε
− 1

2
(1− a)2 rs

τε

]
. (15)

The first-order condition of the problem is

h̄2

(
1− aSB

(
rs
τh

+ 1

))
︸ ︷︷ ︸

Incentive Provision

− 1

τε

(
raSB − rs

(
1− aSB

))︸ ︷︷ ︸
Risk-Sharing Provision

= 0, (16)

and the solution to the planner’s problem is:

aSB =
rs
τε

+ h̄2

r
τε

+ rs
τε

+ h̄2
(
rs
τh

+ 1
) . (17)

Like the optimal equilibrium contract, the second-best solution also reflects the incentive

and risk-sharing provisions. The following corollary summarizes the limiting results of the

second-best contract.
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Corollary 3: When τε goes to infinity, the second-best contract reflects only the incentive

concern and is given by aSB = 1/(rs/τh + 1). When τε goes to zero, the second-best contract

reflects only risk-sharing concern and is given by aSB = rs/(rs + r).

Although the second-best solution of (16) is similar to the equilibrium solution of (13)

in reflecting both incentive and risk-sharing provisions, there are two important differences.

First, the second best requires a lower magnitude of incentive provision, that is, aSB =

1/(rs/τh + 1). Second, there is no unilateral incentive provision cost. That is, contractual

externality have two opposing effects. Intuitively, the first effect arises because principals

do not take into account the industry risk exposure of other principals in the industry.

When principals are risk averse, they have to trade off incentivising their agents to work

harder versus exposing themselves to more industry risks in their projects. Stronger the

incentive they choose, higher the output they would expect, and larger the industry risk

they are exposed. Their industry risk exposure is endogenously linked to the strength of the

incentives they provide. When setting incentives, a principal optimally chooses her own risk-

return tradeoff ignoring her impact on increasing other principals’ industry risk exposure. In

the second best, a planner sets incentives by taking into account the feedback loop between

industry average and individual effort choices and consequences of industry risk exposure for

other principals in the industry. This means, the second best requires a weaker incentives

for agents.

The second effect goes in the opposite direction and arises because each principal perceives

a unilateral deviation from the industry average as being too costly. Recall, the unilateral

incentive provision cost is incurred in equilibrium when a principal, who takes the industry

average effort ē as given, considers increasing incentives and making her agent work harder

unilaterally. In this case, she realizes that by doing so, her agent’s effort is above ē and

as a result would impose industry risk on the agent, for which she has to compensate. In

the second best, this unilateral cost disappears because planner can coordinate (dictate)

incentive provision across all principals in the industry. Therefore, the relative importance

of incentive provision is higher in second best.

To summarize, the externality in the model has two opposing effects on the performance-

pay sensitivity in the contract: compared with the second best, the magnitude of equilibrium

incentive is larger because principals do not internalize their incentive provision on the av-

erage effort level and the industry exposure of other principals, consequently, provide too

much incentive, but the relative importance of the incentive provision in equilibrium con-

tracts is lower because principals do not internalize the cost of providing incentives and are
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unwilling to bear higher cost and want to free-ride. Naturally, there are excessive perfor-

mance sensitivity in equilibrium relative to the second best when the free-riding cost concern

is dominated. The next proposition gives the exact condition that characterizes when the

equilibrium contract is more sensitive to performance than the second-best contract.

Proposition 7: The equilibrium contract is more sensitive to performance than the second-

best contract (i.e, aSB < a∗), and consequently agents put more effort in equilibrium than

the second best, eSB < e∗, if and only if

h̄2 rs
τh

(
rs
τh

+ 1

)
+
rs
τh

rs
τε

(
1 +

r

τh

)
+
r

τε

(
rs
τh
− r

τh

)
> 0. (18)

Thus, if this inequality is reversed, the second-best contract is more performance sensitive

than the equilibrium contract.

The above proposition shows a pro-cyclical pattern of incentive provision, effort-making

and risk-taking in the economy. To see this, note that condition (18) is satisfied for a

sufficient large h̄ if principals are risk-averse. When h̄ is large, the incentive provision term

gets a larger weight in equilibrium than in the second-best (shown as the coefficient in front

of the incentive-concern term in equations (13) and (16)). This means that when h̄ is large,

ie, during the productivity boom, the contracting between principals and agents is more

motivated by the incentive concern. Intuitively, during this time, the expected productivity

of effort is very high, principals are more concerned with providing incentives than cutting

down incentive costs, and hence they would like to offer their own agents a contract with a

high performance sensitivity. By doing so, they do not internalize the impact of their own

incentive-provision on increasing the industry average effort, hence over-incentivise their

own agent and trigger a rat race in effort-making. Since marginal productivity of effort is

random in our model, an immediate consequence of this result is that there is excess risk-

taking behavior among agents in equilibrium. The planner, in this case, can improve the

total welfare by enforcing lower performance-based pay sensitivities in agents’ compensation

contracts.

By contrast, when h̄ is low, eg, during downturns, condition (18) is not satisfied. In this

case, since the expected productivity of effort is low, the incentive provision term gets a lower

weight in equilibrium than in the second-best. The cost of providing incentives unilaterally

becomes a major consideration for principals. Principals would like to free-ride each other in

incentive provision, offering their agents a contract with a low performance-pay sensitivity.

By doing so, principals again do not internalize the impact of their own incentive-provision

on increasing the industry average effort, and hence under-incentivise the agents relative to
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the second-best. This again triggers a race but this time causes a race to the bottom. There

is insufficient effort- and risk-taking. In this case, the planner can improve the total welfare

by enforcing contracts with higher performance based pay-sensitivities.

When principals are risk-neutral, the relative importance of the incentive provision term

in equilibrium is different from that in the second best, but the magnitude of the incentive

concern is at the same corner solution in both cases: giving the maximum incentive pay to

agents by setting a = 1. That is, externality can only affect the performance-pay sensitivity

in the contract through influencing the relative importance of the incentive provision but

not its magnitude. This is shown by comparing (14) with (19)

h̄2
(
1− aSB

)︸ ︷︷ ︸
Incentive Provision

− 1

τε
raSB︸︷︷︸

Risk-Sharing Provision

= 0. (19)

Algebraically, it is clear from the above equation that when principals are risk-neutral,

the externality creates a wedge between the equilibrium and the second best contracts only

through affecting the relative importance of the incentive provision term but not through its

magnitude. Intuitively, when principals are risk-neutral, they are not concerned by agents’

endogenous risk-taking incentivised by high performance sensitivity in pay. Therefore, risk-

neutrality of the principal is not an innocuous assumption and shuts down an important

channel through which externality has an impact. The next corollary shows that in equilib-

rium risk-neutral principals always under-provide incentives relative to the second-best.

Corollary 4: When the principals are risk neutral, the second-best contract is more

performance sensitive than the equilibrium contract.

4.4 Industry or Idiosyncratic Risk-Taking?

In this section, we show that the excessive (insufficient) effort provision is related to the

common/systematic rather than project-specific/idiosyncratic risk. To highlight the source

of externality we consider the case where the productivity shock is idiosyncratic rather than

common to the industry. Specifically, we let Vi = k̃iei + ε̃i where k̃i is a project-specific

random term which is independently and normally distributed across agents with mean k

and variance 1/τk.

Analogous to the main model, we assume that the two contractible signals are

si = k̃iei + ε̃i + ζ̃ .

and

t = kē+ ζ̃
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where ē is the average effort exerted by the agents in the industry. Clearly this is equivalent

to simply observing pi = k̃iei − kē+ ε̃i.

We can now write agent i’s compensation as

Ii = aipi +Wi = ai

(
k̃iei − kē+ ε̃i

)
+Wi). (20)

Using (20), given a contract (ai,Wi) and average effort ē, agent i chooses ei to maximize

E (u (Ii − C (ei))) .

Plugging in pi and computing the expectation in the above equation, the agent’s problem

can be restated as choosing ei to maximize

aikei − aikē+Wi − C (ei)−
1

2
r

(
(aiei)

2 1

τk
+ a2

i

1

τε

)
.

Taking the first-order condition and solving for ei, we obtain agent i’s effort choice as

ei =
aik̄

1 + r
τk
a2
i

. (21)

The above equation shows that, as one would expect, a volatile project-specific risk (1/τk)

lowers the effort level. More importantly, it shows that when the productivity shock is

idiosyncratic, there are no feedback loops between the industry average effort and an indi-

vidual agent’s effort. Therefore, the results we obtained earlier on excessive (insufficient)

effort provision can only arise in an environment where the productivity shock has a system-

atic component across projects in the industry.

5 Contractible Industry Signal

In the previous section, we derive a closed-form solution and explore the properties of

the model when the signal about the industry productivity is not contractible. For exam-

ple, this signal is not contractible when it is measured very noisily, ie, τζ is zero. In this

section, we relax this assumption and let τζ to be larger than zero, that is, principals re-

ceive an informative signal about the industry productivity shock. As mentioned in section

2, a general closed form solution to the maximization problems of agents’ in equation (8)

and principals’ in equation (11) is difficult to provide. In this section, we first provide a

complete characterization for the case where the signal is perfectly informative about the

industry shock, that is, τζ approaches infinity, and then illustrate the solution numerically

for intermediate values of τζ . The numerical analysis shows that when principals learn the
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industry productivity shock more precisely, the impact of the externality weakens and the

gap between the equilibrium and the second best narrows.

First, we show that in the limiting case when the industry productivity shock is revealed,

the equilibrium and the second-best result coincide.

Proposition 8: When τζ approaches infinity, that is, the signal t perfectly reveals industry

productivity shock h̃, the effort choices and contracts coincide in equilibrium and in the

planner’s solution.

In other words, if the industry productivity shock is perfectly revealed, principals are able

to completely counteract the impact of externalities among agents’ effort-taking through op-

timal contracting. To see this algebraically, we let τζ go to infinity and rewrite the principal’

objective function (11) as

h̄ei−
1

2
rs

(
(ei − aiei + ci)

2 1

τh
+ (1− ai)2 1

τε

)
−C (ei)−

1

2
r

(
(aiei − ci)2 1

τh
+ a2

i

1

τε

)
− Ī

and agent i’s effort as

ei =
aih̄+ r

τh
aici

1 + r
τh
a2
i

where (ai − bi)ē = ci. Note that ē no longer plays a role in solving the principals’ problem.

This is because principal i can completely eliminate the impact of the industry average effort

ē through choosing ci. The principals could choose a lower ci when ē is high and vice versa.

By redefining the principals’ optimization problem this way, we see that it coincides with

the planner’s problem and Proposition 8 is obvious.

It is apparent that contractual externality has no welfare changing effects when informa-

tion friction on the industry risk is removed. Here we can observe the parallel between the

workings of contractual and pecuniary externalities. In general, pecuniary externality also

does not have welfare changing effects except for conditions as established in Stiglitz (1982),

Greenwald and Stiglitz (1986), Geanakoplos and Polemarchakis (1985), Arnott, Greenwald

and Stiglitz (1994), and more recently Farhi and Werning (2013). Intuitively, in our setup,

this is because that the principals have two contracting instruments: the relative perfor-

mance pi and the average industry performance t, and face two types of risk: systematic and

idiosyncratic. Using both instruments a principal can choose optimally its agent’s exposure

to each type of risks. Since she can choose her exposure to the industry risk regardless of

the industry average effort, she is able to undo the welfare effect of contractual externality.

The planner, therefore, has no role to play in this environment.
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Next, we explicitly characterize the equilibrium solution when the industry signal is

perfectly informative of the industry productivity shock.

Proposition 9: When τζ approaches infinity, the optimal contract (a∗i , b
∗
i ,W

∗
i ) is unique.

The contract term a∗i is the unique positive root to the following equation:

H(a) = −h̄2

(
r

τh
a+ 1

)(
r

τh
+
rs
τh

)2

(a− 1) (22)

−

(
r

τh
+
rs
τh

+

(
r

τh

)2

a2

(
rs
τh

+ 1

)
+ 2

rs
τh

r

τh
a

)2(
a
r

τε
+ (a− 1)

rs
τε

)
= 0.

Given a∗i the contract term b∗i is given by:

b∗i = a∗i −
r
τh

(
1 + r

τh
(a∗i )

2
)

+ rs
τh

(a∗i − 1)
(
r
τh
a∗i + 1

)
(
r
τh
a∗i + 1

)(
r
τh

+ rs
τh

) . (23)

It is interesting to note that when bi is strictly positive, agents are rewarded for better

industry performance. In contrast, in the single-agent relative performance model, under

corresponding assumptions, agents would not be rewarded by what seems to be luck rather

than effort.18 The difference in result is due to the externality in contracting. The principal

would like to expose her agent to some industry risk, not to reward the agent for good

industry performance but to make the risk-averse agent internalize the risk he is taking. We

next use the characterisation of b∗i in the above proposition to provide an exact condition

when the industry signal gets a positive or negative weight in equilibrium.

Corollary 5: The weight on the industry signal, b∗i , is positive if and only if (18) holds.

Note the condition for a positive weight on a (perfectly informative) industry signal is

the same condition in Proposition 7, under which the equilibrium performance sensitivity

would exceed the second-best when the industry signal is not contractible. This gives a

different perspective on the results of excessive/insufficient risk taking when the industry

18In the standard relative performance model principal observes two signals: a noisy signal of the agent’s

performance and a second signal that is uninformative about the agent’s performance but correlated with

the noise term of the first signal. The second signal could be the performance of other agents working on the

project but could also be any other information correlated with the signal about the agent’s performance.

When the two signals are positively correlated, the second signal gets a negative weight. This is because

when the second signal is higher, the principal learns that the noise in the first signal is likely to be high.

Putting a negative weight on the second signal, allows the principal not to reward the agent for luck.
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Figure 1: Noisy Industry Signal (τζ): The solid and the long-dashed lines represent how the performance

sensitivity a, and effort (e) change with respect to the noise of the average industry performance signal (τζ)

in equilibrium and in the planner’s optimum, respectively. The parameters are fixed at r = 0.3, rs = 0.16,

τε = 1, h̄ = 0.6, and τh = 0.05.

signal is not contractible. Now we know that when (18) is satisfied, a principal would like

to offer her agent some positive exposure to the industry productivity risk, ie, a positive bi,

incentivising her agent to work harder since h̄ is high but also internalize the risk. However,

when the principal is constrained from giving her agent positive exposure to the industry risk,

she increases the use of performance sensitivity instead, ie, a larger ai, triggering feedback

loops in the industry average and individual agent’s effort choice, causing excessive effort

and risk level in equilibrium relative to the second best. Similarly, when a principal is

constrained from giving a negative exposure to the industry productivity risk to control

effort, the opposite would happen. She lowers the use of performance sensitivity instead,

triggering a race to the bottom, resulting in insufficient equilibrium effort and risk-taking

relative to the second best.

However, in reality, the industry signal would not have a precision of infinity nor zero.

For intermediate value of τζ , we provide a numerical example, showing how the equilibrium

and the second best incentives change with the noise in this signal. In this example, when

the noise in this signal goes down, ie, τζ increases, the impact of the externality generated

by the endogenous rivalrous agency becomes smaller as principals’ ability to span the risk

space of the agents strengthens.

The graph in Figure 1 illustrates this intuition in the case where equilibrium effort level

exceeds the second best. It shows that as the industry performance signal becomes more

precise (ie, τζ becomes larger), the total effort (e) decreases and the performance sensitivity

(a) increases in equilibrium. Notice that when the industry performance signal is available,

principals are able to make the contract more sensitive to performance. Interestingly, the

agent reduces his effort because he is now exposed to the industry risk through the industry
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performance signal. Further, as expected, the gap between the equilibrium and the second

best narrows as the impact of the externality weakens when τζ gets larger.

6 Conclusion

In this paper, we study the welfare changing effect of endogenous contractual externality.

Contractual externality in our model arises when there is a great productivity uncertainty,

for example, during major technological innovations. In times like this, the information

about the common productivity shock is extremely noisy, relative performance information

is, however, relatively precise and used in contracting between principal-agent pairs. Con-

sequently, industry average effort affect individual agent’s utility. Principals, when setting

the optimal contract for their own agents, do not internalize the impact of their incentive

provision on the average effort in the industry. This may set off the ratchet effect in effort

choices among agents. For example, risk-averse principals are eager to provide more pow-

erful incentives during booms, causing the industry average effort to be high, triggering a

rat race among agents to exert excessive effort, which results in excessive systematic risk

exposure in the economy, relative to the second-best. During recessions, the opposite might

happen: The incentive provision is too weak and the equilibrium level of effort is lower than

the second best. We find that contractual externality, similar to pecuniary externality, has

welfare changing effect only in the presence of information friction on the industry risk fac-

tor. Besides theoretical contributions, our results may offer an explanation to the boom-bust

cycle of investment and risk-taking observed in industries that experience new but uncertain

productivity shocks. These episodes are abundant in recents years. For example, following

the introduction of the Internet, the dot.com industry has been flooded with investment

which is subsequently reduced. Similarly, following the innovations in the financial products

such as asset-based securities, the financial industry has expanded significantly followed by a

sharp contraction. Compensation regulations such as enforcing counter-cyclical performance

pay could improve the total welfare.
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Appendix

In the proof we drop the subscript i when there is no room for confusion and we use the

following notation:

t =
r

τh
, v =

r

τε
, u =

r

τζ
, p =

rs
τh
, q =

rs
τε
, s =

rs
τζ
.

Proof of Proposition 1

Note that

ei =
aih̄+ t (ai − bi) aiē

1 + ta2
i

= aih̄+ o (1/τh) .

Substituting this into (11) we obtain:

max
ai,bi

ai
(
h̄
)2 −

(
aih̄
)2

2
− 1

2

(
a2
i v + b2

iu
)
− 1

2

(
(1− ai)2 q + b2

i s
)

+ o (1/τh)− Ī .

For sufficiently large τh this function is concave in (ai, bi) and has a unique maximum (a∗, b∗)

which is identical for all principals.

Proof of Proposition 2

We know the existence part holds for Proposition 1.

We use (8) to plug in for e in the principals’ problem (11) (where b is set to zero given

that the signal t is uninformative) and take the derivative of the objective function with

respect to a to find the first-order condition as a function of ē.

In equilibrium, ē = ah̄. Therefore any equilibrium must solve for the first-order condition

and ē = ah̄. To find an equilibrium we plug ē = ah̄ in the first order condition. After

simplifying we find the equilibrium condition:

−h̄2 (a− 1) (ap− 1)

ta2 + 1
− (va− q (1− a)) = 0.

The next lemma is useful in proving the comparative statics results:

Lemma 1: Let

Ψ (a) = −h̄2 (a− 1) (ap− 1)

ta2 + 1
. (24)
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Suppose there is a unique equilibrium, then the following are true. (i) Ψ (a)−(va− q (1− a))

crosses zero from above at a∗ where Ψ is given in (24). (ii) If 1/p > q/ (v + q) then a∗ < 1/p,

otherwise a∗ > 1/p.

Proof of Lemma 1

Part (i) follows from Ψ (0) + q > 0, Ψ (1) − va < 0 and uniqueness. The proof of

(ii) is immediate if 1/p > 1. So suppose 1/p < 1. Otherwise, Ψ (a) crosses zero at 1/p < 1.

Ψ (a)−(va− q (1− a)) is above Ψ (a) for a < q/ (v + q) and is below Ψ (a) for a > q/ (v + q).

This and the fact that there is a unique equilibrium a∗ prove part (ii).

Proof of Proposition 3

Equilibrium a∗ solves

Ψ (a∗)− (va∗ − q (1− a∗)) = 0

where Ψ is given in (24). We write Ψ
(
a∗
(
h̄
)
, h̄
)

to make the dependence of Ψ and a∗ on h̄

explicit. We use similar notation for other parameters, eg, Ψ (a∗ (τh) , τh).

Taking the total derivative of the equilibrium condition with respect to h̄ we obtain

∂a∗
(
h̄
)

∂h̄
=

−∂Ψ
∂h̄

∂Ψ(a∗(h̄),h̄)
∂a

− (v + q)
.

Denominator is negative by Lemma 1 (i). By Lemma 1 (ii),

∂Ψ
(
a∗, h̄

)
∂h̄

= −2h̄
(1− a∗) (pa∗ − 1)

t (a∗)2 + 1
≷ 0

if 1/p ≷ q/ (v + q) which proves part (i) for h̄. Proof for the result on τε is entirely analogous.

Proof of Proposition 4

Taking the total derivative of the equilibrium condition with respect to τh, we obtain

∂a∗ (τh)

∂τh
=

− ∂Ψ
∂τh

∂Ψ(a∗(τh),τh)
∂a

− (v + q)
.

Denominator is negative by Lemma 1 (i). Moreover,

∂Ψ (a∗, τh)

∂τh
= h̄2 (1− a∗)

(
rs

(τh)2
a∗
)

+
(

r
(τh)2

(a∗)2
)

(
r
τh

(a∗)2 + 1
)2 > 0.
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Thus a∗ is increasing in τh.

Proof of Proposition 5

Taking the total derivative of the equilibrium condition with respect to r, we obtain:

∂a∗ (r)

∂r
=

−∂Ψ
∂r

+ 1
τε
a∗

∂Ψ(a∗(r),r)
∂a

− (v + q)
.

Denominator is negative by Lemma 1 (i). By Lemma 1 (ii), if 1/p > q/ (v + q) then

∂Ψ (a∗, r)

∂r
− 1

τε
a∗ = h̄2 (1− a∗) (pa∗ − 1)(

t (a∗)2 + 1
)2

(a∗)2

τh
− 1

τε
a∗ < 0.

Thus, ∂a∗(r)
∂r

< 0 if 1/p > q/ (v + q).

Proof of Proposition 6

Taking the total derivative of the equilibrium condition with respect to rs we obtain:

∂a∗ (rs)

∂rs
=
− ∂Ψ
∂rs
− 1

τε
(1− a∗)

∂Ψ(a∗(r),r)
∂a

− (v + q)
.

Note,

∂Ψ (a∗, rs)

∂rs
+

1

τε
(1− a∗) = (1− a∗)

(
−h̄2

1
τh
a∗

t (a∗)2 + 1
+

1

τε

)
and the above expression is strictly positive for τh sufficiently large.

Proof of Proposition 7

Proof follows from plugging aSB in the equilibrium condition (12) and checking whether

its value is positive (in which case aSB < a∗) or negative (in which case aSB > a∗).

Proof of Proposition 9:

To simplify algebra we let x = a− b. So the principals’ objective can be written as

h̄e− 1

2
e2 − r

(
(ae− xē)2 t+ a2v

)
− 1

2

(
((1− a) e+ xē)2 p+ (1− a)2 q

)
. (25)

and the first order condition yields the optimal level of effort as a function of contract terms

and the average effort

e =
ah̄+ txaē

1 + ta2
.
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Next substituting for the effort level in the objective function of (25) we obtain(
h̄

(
ah̄+ txaē

1 + ta2

)
− 1

2

(
ah̄+ txaē

1 + ta2

)2

− 1

2

((
a

(
ah̄+ txaē

1 + ta2

)
− xē

)2

t+ a2v

))
(26)

−1

2

((
(1− a)

(
ah̄+ txaē

1 + ta2

)
+ xē

)2

p+ (1− a)2 q

)
.

For a given a the above function is negative quadratic in x. Thus for a given a principals’

objective function is maximized at xa which is given by

xa =
h̄a (t (ta2 + 1)− p (1− a) (ta+ 1))

ē
(
t (ta2 + 1) + p (ta+ 1)2) . (27)

Substituting (27) for xa in (26) we reduce principals’ problem to choosing a to maximize

1

2
h̄2a (t+ p)

a (t− 1) + 2

t+ p+ t2a2 + pt2a2 + 2pta
− 1

2
a2v − 1

2
(1− a)2 q.

Taking the derivative with respect to a, we obtain

−h̄2 (ta+ 1) (t+ p)2 (a− 1)

(t+ p+ t2a2 + pt2a2 + 2pta)2 − av − (a− 1) q.

Note that the above function starts as positive and crosses to negative once. Thus the

objective function is maximized at a∗ that solves

H (a) = −h̄2 (ta+ 1) (t+ p)2 (a− 1)−
(
t+ p+ t2a2 (p+ 1) + 2pta

)2
(av + (a− 1) q) = 0.

Note that a∗ ∈ (0, 1). In a symmetric equilibrium

ē =
a∗h̄+ ta∗xa∗ ē

1 + t (a∗)2 .

Plugging for xa∗ , we obtain

ē =
h̄a∗ (ta∗ + 1) (t+ p)

t
(
t (a∗)2 + 1

)
+ p (ta∗ + 1)2 .

Using the above to substitute for ē in (27), we obtain

xa∗ =
t
(
1 + t (a∗)2)+ p (a∗ − 1) (ta∗ + 1)

(ta∗ + 1) (t+ p)
.

Thus

b∗ = a∗ − xa∗

= a∗i −
r
τh

(
1 + r

τh
(a∗i )

2
)

+ rs
τh

(a∗i − 1)
(
r
τh
a∗i + 1

)
(
r
τh
a∗i + 1

)(
r
τh

+ rs
τh

) .
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Proof of Corollary 5:

We continue to use the notation in the proof of Proposition 9. First, note that

b∗ = a∗ − xa∗ > 0⇔ xa∗ < a∗.

Using the expression for xa∗we see that

xa∗ < a∗ ⇔ p (1 + ta∗) > t (1− a∗) ,

or if and only if

a∗ >

(
t− p

t (1 + p)

)
.

Note

H

(
t− p

t (1 + p)

)
=

1

t

1

(p+ 1)3 (t+ p)2 (t+ 1)2 (pv − tv + h̄2p2 + h̄2p+ pq + pqt
)
.

Thus xa∗ ≤ a∗ if and only if(
h̄2 rs
τh

(
rs
τh

+ 1

)
+
rs
τε

rs
τh

(
r

τh
+ 1

))
≥ r

τε

(
r

τh
− rs
τh

)
.
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