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Abstract

Consider a set of agents who play a network game repeatedly. Agents may not know the

network. They may even be unaware that they are interacting with other agents in a network.

Possibly, they just understand that their payoffs depend on an unknown state that in reality

is an aggregate of the actions of their neighbors. Each time, every agent chooses an action

that maximizes her subjective expected payoff and then updates her beliefs according to what

she observes. In particular, we assume that each agent only observes her realized payoff. A

steady state of such dynamic is a selfconfirming equilibrium given the assumed feedback.

We characterize the structure of the set of selfconfirming equilibria in network games and we

relate selfconfirming and Nash equilibria.
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∗We thank Federico Bobbio, Yann Bramoullé, Ben Golub, Sebastiano Della Lena, Paola Moscariello, Alessandro

Pavan, Yves Zenou, and seminar participants at 24th CTN Workshop in Aix–en–Provence, Bergamo, Bocconi, CI-

SEI in Capri, Milano Bicocca, Milano Cattolica, 7th European Meeting on Networks in Cambridge; 5th, Marseille,

Nazarbayev University, NSE at Indiana University, Pompeu Fabra, Siena, UTS Sydney, Venice [altri seminari? cias-

cuno controlli i suoi]. Pierpaolo Battigalli, Fabrizio Panebianco, and Paolo Pin gratefully acknowledge funding from,

respectively, the European Research Council (ERC) grant 324219, the Spanish Ministry of Economia y Competi-

tividad project ECO2017-87245-R, and the Italian Ministry of Education Progetti di Rilevante Interesse Nazionale

(PRIN) grants 2015592CTH and 2017ELHNNJ.

1



1 Introduction

Social networks can be quite complex objects. Think about friendship networks, networks of people

interacting online (as Twitter, Facebook, Instagram, . . . ), or even at networks of firms (input-

output or R&D networks). These networks easily consist of thousands (or millions) of agents or

firms interacting, and agents very rarely know how the network is shaped. In this paper we provide

a novel approach to analyze how incomplete information about the network shapes behavior and

learning processes. We propose a framework in which agents may ignore how the network affects

their payoffs, how the network is shaped or, as extreme cases, even that they are interacting in a

network. We analyze how agents use feedbacks they may receive to act as good as they can, to learn

how to play, and we characterize behavior under different settings of local and global externalities.

1.1 Examples of applications of the model

To be more specific about our modeling approach, let us introduce an example that will guide us

through the whole discussion. Imagine an online social network, like Twitter, with many users. Let

us consider a simultaneous-moves game, in which each user i decides her level of activity ai ≥ 0 in

the social network.1 The payoff that agents get from their activity depends on the social interaction.

In particular, active user i receives idiosyncratic externalities, that can be positive and negative,

from the other users with whom she is in contact in the social network. The externality from user i

to user j is proportional to the time that they both spend on the social network, ai and aj . Sticking

to a quadratic specification, that allows for linear best replies, let us assume that the payoff of i

from this game is2

ui(ai,a−i) = αiai −
1

2
a2
i +

∑
j∈I\{i}

zijaiaj . (1)

In equation (1), I is the set of agents in the social network and ai is the level of activity of i ∈ I,

while αi represents the individual pleasure of i from being active on the social network in isolation,

which results in the bliss point of activity in autarchy. For each j ∈ I\ {i}, there is some exogenous

level of externality from j to i denoted by zij . We say that j affects i, or that j is a peer of i, if

zij 6= 0.

Later on, in this paper, we will also consider an extra global term in the payoff function

ui(ai,a−i) = αai −
1

2
a2
i +

∑
j∈I\{i}

zijaiaj + β
∑

k∈j∈I\{i}

ak. (2)

1Even if online social networks have a dominant role in our societies, there is a very scarce literature based on

game theory that models the incentive of people in these platforms. We are aware of some attempts by computer

scientists, stemming from the early era of this form of interaction, as Fu et al. (2007). In the economic literature, the

only paper that we know on this is Tarbush and Teytelboym (2017), which does not focus on the interaction between

the activity of users, but on the endogenous formation of contacts.
2This is the class of linear quadratic network games originally analyzed in the economic literature by Ballester

et al. (2006), as we discuss in the next section.
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We can interpret this extra term as an additional pleasure that i gets from being member (even if

not active) of an online social network that is overall popular.

In this paper, the network described by the matrix Z of all the zij ’s is exogenous. As a first

approximation, this fits a directed online social network like Twitter or Instagram, where users can-

not decide who follows them. Under this interpretation, i receives positive or negative externalities

from those who follow her, that are proportional to her activity. We assume that player i does not

know any of the zij ’s, either because she does not see who is following her,3 or because she knows

her followers but she does not know the sign of this externality (i.e. whether each of her followers

likes or not what she writes). Player i acquires popularity from being active or not in the social

network. Payoff represents what i can indirectly observe about her own popularity (i.e. likes that

she receives, people congratulating with her in real world conversations, and so on. . . ). We imagine

that i cannot choose the style of what she writes, since she just follows her exogenous nature. In

this interpretation, ai represents the amount of tweets that i writes, and this can make her more

or less popular for those who follow her, according to how her style combines with the (typically

unobserved) tastes of each of her followers.

Since we are going to analyze learning dynamics and their steady states, we also have to specify

what agents observe after their choices, because this affects how they update their beliefs. Twitter

user i typically observes perfectly her own activity level ai, but she may not observe the sign

of the externalities and the activity of others. However, she gets indirect measures of her level of

popularity that come from her conversations and experiences in the real world, where her popularity

from Twitter affects her social and professional real life. If the players are small firms using Twitter

for advertising, they will observe their actual profits. Players of this game may have wrong beliefs

about the details of the game they are playing (e.g. the structure of the network, or the value of

the parameters) and about the actions of other players. With this, they update their beliefs in

response to the feedback they receive, which will be their (possibly indirectly measured) payoff.

This updating process may lead to a learning dynamic that does not converge to a Nash equilibrium

of the game.

We propose an online social network as our leading example, but there are other possibile cases

in which incomplete information about the network is key. One case can be a network of firms,

where the feedbacks are observed profits, and actions may be levels of production, setting prices, or

R&D activities.4 Many firms are competitors, experiencing local substitutabilities in their choices,

3Actually, both Twitter and Facebook have recently made it more difficult for users to access this information (see

these two recent articles from the Verge, respectively about Twitter and Facebook). There are online social networks

like Reddit, which do actually not provide this information at all to their users. Reddit, in particular, provides a

measure to each user, that they call karma, which is apparently based on how many other people follow, and how

much they like, what that user posts. However, the algorithm on which this measure is based is not public.
4These specific applications have been considered specifically in the literature, each with ad hoc assumptions and
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some are complementors, for which local complemetarities are shown, and for some of them it may

not be clear the kind of strategic interaction. Sometimes the firm does not have an idea of the set

of all her competitors or complementors. Moreover firms often tend to hide their investment plans

and R&D choices to some of their partners, while each firm observes its own profits. In this case

each firms ignore important aspects of the network, and incomplete information plays a critical role

and suboptimal choices are likely to be implemented.

1.2 Scope of the model

In light of the above mentioned examples, we propose a model in which agents may ignore any

arbitrary piece of information about how the network is shaped and how it affects payoffs. We just

require agents to know that their payoff depends on own actions and on some payoff state (that in

turn depends on network and neighbors’ actions, but agents may ignore it). Actions are based on

conjectures about this payoff state and best respond to them. Still, agents receive some feedback,

i.e. their profits, and good conjectures must be compatible with the feedback received, that is, they

must be confirmed by the evidence agents get. Actions and conjectures profiles that satisfy these

requirements constitutes a selfconfirming equilibrium. Notably, in a selfconfirming equilibrium

agents best respond to conjectures that can be wrong, but still believed as true since confirmed by

the evidence agents get.

In a framework in which just local externalities are at work (i.e. positive or negative peer

effects), there exists a discontinuity in what agents learn from their feedback about their neighbor-

hood depending on whether they are active (choosing a positive action) or inactive (choosing a null

action). In details, active players are always able to exactly infer from the feedback the level of

the payoff state affecting them, even if they may have a totally wrong conjecture about how many

neighbors they have or what their neighbors choose. We say that they have correct shallow conjec-

tures, but possibily wrong deep conjectures, also because, theoretically, they may ignore that they

are playing on an network. On the other hand, inactive agents receive a totally uninformative feed-

back, that may induce them to persist in an inactivity trap, making wrong conjectures confirmed,

and keeping them out of a best reply. This has strong consequences in terms of actions profile

that can be played by agents who try to have conjectures confirmed. We find that, if the game

displays just local complementarities, as in the example from (1), then the set of selfconfirming

equilibria coincides with the set of Nash ones. However, if also local substitutabilities are at play,

then any arbitrary set of agents can stay inactive and be confirmed in her conjecture. In this case

different approaches from ours. For example, Bimpikis et al. (2019) consider Cournot competition, while Nermuth

et al. (2013), Lach and Moraga-González (2017) and Heijnen and Soetevent (2018) consider Bertrand competition on

multiple markets, modelling the environment as a network with local externalities. This is the same approach that

Westbrock (2010) and König et al. (2019) use to model R&D local interactions between firms.
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inactivity is a best reply to own confirmed conjectures, but not to others’ actions. Moreover, given

the linearity of best replies, we can characterize the equilibrium action profiles as Nash equilibria of

reduced games in which just an arbitrary set of agents is considered to stay active. We also discuss

how the structure of the (unknown) network adjacency matrix determines the existence of these

equilibria.

We then study what happens when agents display an explicit dynamic of conjectures, mimicking

the fact that agents try to learn what is payoff relevant to them. We consider the case of best reply

dynamics in which conjectures at a given period are the conjectures that would have been confirmed

in the previous period. It must be noticed that, as discussed in the paper, any adaptive learning

dynamics, if it converges, it does so to a selfconfirming equilibrium. We then provide conditions

on the adjacency matrix for convergence and stability of such dynamics. Again, what we find is

the possibility of inactivity traps. Consider, as a matter of example, the case of firms competition

(or online social networks). If, for some unfortunate case, an agent experiences a negative payoff

from interaction because some of her competitors (or some of her followers), among those providing

negative externalities to her, played high actions (either being aggressive on the market or giving

negative feedback online), then she may choose to abstain from interacting, even if conditions on

the market (or on the platform) may improve. However, by abstaining, our agent, will never know

that it could be profitable to turn active again.5

Models of games on network have mainly focused on the impact of local externalities, since

global ones just change welfare without altering the first order conditions and the optimal choice.

However, when agents get feedbacks, and when feedbacks involve payoffs, the presence of global

externalities may impact the way in which conjectures are confirmed. In terms of our setting, a

problem is not solely characterized by its first order condition, but also by the structure of the

payoff function. For simplicity we consider just the case of positive local and global externalities.

Even in this simple case, agents ignoring important features of the network may have many possible

conjectures about the relative size of the two externalities. Most importantly, we find that active

agents are no more able to perfectly induce the size of the local externality, and thus can rationally

choose suboptimal acitons. We get an important result: by changing how agents conjecture how

central they are in the network, they can play higher or lower levels of actions than predicted by

a Nash equilibrium, and these wrong conjectures can be confirmed by their feedback. In the case

of positive externalities, then, having agents thinking to be more central, than what they actually

are, is welfare improving. If we consider the example of online social networks, this may help

explaining why firms always try to send to their users messages to make them believe that they

5Actually, for the online application, this inactivity trap is perceived by the platforms, at the point that many of

them, after some period of inactivity of agents, start sending emails about what is happening on the online social

network to provide a positive signal and make agents more prone to be active again.
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are very connected, so to increase their level of activity. At the same time, using the investing

firms network, one can get an intuition of why firm under(over)–invest with respect to what would

be the optimal plan, since they may under(over)–estimate what their neighbors do, without being

corrected by the feedback that they receive.

The paper is structured as follows. In Section 2 we discuss the related literature. Section 3

presents our baseline model, while Section 4 discusses the maintained assumption of the model.

We characterize the set of selfconfirming equilibria in Section 5, and we study the learning process

in Section 6. In Section 7 we analyze a more general model that accounts for global externalities.

Section 8 concludes. We devote appendices to proofs and technical results. Appendix I analyzes

properties of feedback and selfconfirming equilibria in a class of games including as special cases

the linear quadratic network games that we consider. In Appendix J we study what happens when

players have more information about the network structure introducing rationalizability. Appendix

K reports existing and novel results in linear algebra, that we use to find sufficient conditions

for reaching interior Nash equilibria in network games. Appendix L contains the proofs of our

propositions.

2 Related literature

We model interaction with linear quadratic network games. We focus on this class because it has

very well known properties, and it has been used for modeling a variety of different environments

where strategic interaction is local and can be described by a network structure, as surveyed by

Zenou (2016) and Bramoullé and Kranton (2016). Moreover, the property of this class of games put

them in the broader class of nice games (Moulin, 1984), for which we provide in Appendix I some

general results. Bramoullé et al. (2014) show that, if we focus only on best reply correspondences,

then there are many other payoff structures that have the same Nash equilibria of linear quadratic

network games. However, we focus on selfconfirming equilibria (SCE), and, as will be clear from

the explanation in next section, we cannot abstract from the specific original payoff function of

network games, as introduced in the economic literature by Ballester et al. (2006).

Before we relate to other papers, a terminological clarification is necessary. Following

Battigalli et al. (2015), we call “selfconfirming equilibria” the steady states of learning processes

when static or dynamic games are played recurrently, independently of what assumptions are made

about feedback (monitoring) at the end of each one-period play (see also Battigalli et al. 1992).

This, therefore, encompasses what used to be called “conjectural equilibrium,” which describes

(imperfect) feedback explicitly, as well as the original “selfconfirming equilibrium” of Fudenberg

and Levine (1993), who implicitly maintain that the whole path of play is observed at the end of

each period. In an SCE, agents best respond to confirmed conjectures that may be inconsistent
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with sophisticated strategic reasoning. The latter has been added to SCE relating it to rational-

izability. Rationalizable SCE represents states at which it is true and commonly believed (given

the interactive knowledge about the game) that agents are rational and their conjectures are con-

firmed (e.g., Esponda 2013). A weaker refinement of SCE just requires that agents best reply

to confirmed conjectures consistent with common belief in rationality, but possibly inconsistent

with common belief in the confirmation of conjectures (e.g., Battigalli 1987, Battigalli and Guaitoli

1997). This is SCE with rationalizable conjectures.6 We mostly focus on SCE. We analyze SCE

with rationalizable conjectures in Section Appendix J. Lipnowski and Sadler (2019) apply SCE and

rationalizable SCE to games where feedback about the actions of others is described by a network

topology: agents observe only the actions of their peers (neighbors), but their payoff may depend

on everybody’s actions and it is not observed ex post.We instead assume that agents observe (only)

their realized payoff and that the network describes how the payoff of each agent is affected by the

actions of other agents.7 McBride (2006) applies SCE (called “conjectural equilibrium”) to games

of network formation with asymmetric information. In his model, agents observe (only) the private

information of other agents they link to, and possibly of agents to whom they are indirectly linked.

We instead assume that the network is exogenous and actions are activity levels. We allow for

information incompleteness, but – except for Section Appendix J – we do not assume that agents

are necessarily aware of states of nature (e.g., the possible network structures) or reason about

them. Frick et al. (2018) apply a refinement of rationalizable SCE to analyze a model with asym-

metric information and assortative matching. The refinement is obtained by assuming that agents

neglect the assortativity of matching when they make inferences from feedback. Foerster et al.

(2018) shares elements of Lipnowski and Sadler (2019) and of McBride (2006). Like the former,

agents observe other agents to whom they are linked, but also observe public links. Like the latter,

theirs is a model of network formation. They assume that beliefs satisfy a kind of rationalizable

SCE condition. Unlike those papers, however, Foerster et al. (2018) do not explicitly analyze the

equilibria of a non-cooperative game, but rather adopt a reduced-form notion of stability akin to

Jackson and Wolinsky (1996).

3 Basic Framework

Consider a finite set of agents I, with cardinality n = |I| and generic element i. Agents are located

in a network Z ∈ Z ⊆ RI×I , where Z is the compact set of all possibile networks, here expressed

6Unlike SCE, rationalizable SCE lacks a learning foundation. SCE in rationalizable actions, instead, can be

justified as the result of convergent learning processes in repeated games played by myopic agents under common

strong belief in rationality.
7There are other differences: unlike Lipnowski and Sadler (2019), we analyze static (one-period) games. Also,

when we analyze strategic reasoning we just consider SCEs consistent with common belief in rationality, whereas

rationalizable SCE also requires common belief in the confirmation of conjectures.
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as adjacency matrices. Each agent i ∈ I chooses an action ai from a compact interval Ai = [0, āi],

where the upper bound āi is “sufficiently large”.8 For each i ∈ I, A−i := ×j 6=iAj denotes the set

of feasible action profiles a−i = (aj)j∈I\{i} for players different from i. For each i ∈ I, we posit a

compact interval Xi := [xi, x̄i] ⊂ R of payoff states for i, with the interpretation that i’s payoff

is determined by her action ai and by her payoff state xi according to a utility function

vi : Ai ×Xi → R, (3)

where vi is strictly quasi-concave in ai and continuous.9 The payoff state xi is in turn determined

by the actions of i’s neighbors and is unknown to i at the time of his choice. In details, for each

agent i ∈ I, given the parameter space Z, we consider a continuous parameterized aggregator of

the co-players’ actions

`i : A−i ×Z → Xi (4)

such that its range `i (A−i ×Z) is connected.10 With this, we derive the parameterized payoff

function
ui : Ai ×A−i ×Z → R,

(ai,a−i,Z) 7→ vi (ai, `i (a−i,Z)).

Thus, xi = `i (a−i,Z) is the payoff-relevant state that i has to guess in order to choose a subjectively

optimal action. With this, for each Z ∈ Z,
〈
I, (Ai, ui,Z)i∈I

〉
is a nice game (Moulin, 1979), and〈

I,Z, (Ai, ui)i∈I
〉

is a parameterized nice game. We let

ri : Xi → Ai

xi 7→ arg maxai∈Ai vi (ai, xi)

denote the continuous best reply function of player i ∈ I. To choose an action, subjectively

rational agents must have some deterministic or probabilistic conjecture about the payoff state

xi. We refer to conjectures about the state xi as shallow conjectures, as opposed to deep

conjectures, which concern the specific network topology Z and the actions of other players

a−i. In our framework, given the continuous best-reply function and the connectedness of Xi, it is

sufficient to focus on deterministic shallow conjectures. Indeed, for each i ∈ I, for every probabilistic

8Note that in the network literature it is common to assume Ai = R+. However, for the games we consider, we

can always find an upper bound ā on actions such that the problem is unchanged when actions are bounded above

by ā. Even for the case of externalities with complementarities, we assume constraints on the parameters so that

assuming an upper bound on actions is without loss of generality.
9That is, vi is jointly continuous in (ai, xi) and, for each xi ∈ [xi, x̄i], the section vi,xi : [0, āi] → R has a unique

maximizer a∗i (that typically depends on xi), it is strictly increasing on [0, a∗i ], and it is strictly decreasing on [a∗i , āi].

Of course, the monotonicity requirement holds vacuously when the relevant subinterval is a singleton.
10Since the range of each section `i,Z must be a closed interval, we require that the union of the closed intervals

`i,Z (A−i) (Z ∈ Z) is also an interval, which must be closed because Z is compact and `i continuous.
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conjecture µi ∈ ∆ (Xi), there exists a corresponding deterministic conjecture x̂i ∈ Xi that justifies

the same action a∗i as the unique best reply 11, that is, x̂i is such that

ri(x̂i) = argmax
ai∈Ai

Eµi [vi(ai, ·)]. (5)

We assume that the game is repeatedly played by agents maximizing their instantaneous payoff.

After each play agents get some feedback. Let M ⊆ R be an abstract set of “messages”. The

information obtained by agent i ∈ I at the end of each period, after taking action ai is described

by a feedback function fi : Ai × Xi → M .12 We assume that each agent i ∈ I knows how her

payoff depends on her action and on her payoff state, that is, we assume that i knows function vi,

but we do not assume that i knows Z. Actually, from the perspective of our analysis, agent i might

even ignore how the payoff state xi is formed and, as an extreme case, that a network may even

play a role, because we are not modeling how i reasons strategically.13 Assuming that i knows how

her feedback is determined by the payoff state given her action, if she receives message m after

choosing and recalling action ai, she infers that the state xi belongs to the “ex post information

set”

f−1
i,ai

(m) :=
{
x′i ∈ Xi : fi

(
ai, x

′
i

)
= m

}
.

This completes the description of the object of our analysis. The structure

NG =
〈
I,Z, (Ai, Xi, vi, `i, fi)i∈I

〉
is a (parameterized) network game with feedback, or simply network game. Our analysis

depends on assumptions about the payoff functions and the feedback functions described in Section

4. Section Appendix I contains a more general analysis.

3.1 Selfconfirming equilibrium

We analyze a notion of equilibrium which is broader than Nash equilibrium. Recall that our

approach allows for the possibility of agents who are unaware of the full game. In equilibrium—

i.e., in a steady state—agents best respond to conjectures consistent with the feedback that they

receive, which is not necessarily fully revealing.

Definition 1. A profile (a∗i , x̂i)i∈I ∈ ×i∈I (Ai ×Xi) of actions and (shallow) deterministic con-

jectures is a selfconfirming equilibrium (SCE) at Z if, for each i ∈ I,

1. (subjective rationality) a∗i = ri (x̂i),

11See the discussion in Section I.1
12Here the assumption that M is a set of real numbers is without loss of generality, because the same holds for the

set of payoff states Xi.
13We relate to strategic reasoning in Section Appendix J.
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2. (confirmed conjecture) fi (a∗i , x̂i) = fi
(
a∗i , `i

(
a∗−i,Z

))
.

The two conditions require that 1) each agent best responds to her own conjecture; 2) the

conjecture in equilibrium must belong to the ex-post information set, so that the expected feedback

coincides with the actual feedback at `i
(
a∗−i,Z

)
. We say that a∗ = (a∗i )i∈I is a selfconfirming

action profile at Z if there exists a corresponding profile of conjectures (x̂i)i∈I such that (a∗i , x̂i)i∈I
is a selfconfirming equilibrium at Z, and we let ASCE

Z denote the set of such action profiles. Also,

for any adjacency matrix Z ∈ Z, we denote by ANE
Z the set of (pure) Nash equilibria of the (nice)

game determined by Z, that is,

ANE
Z :=

{
a∗ ∈ ×i∈IAi : ∀i ∈ I, a∗i = ri

(
`i
(
a∗−i,Z

))}
.

Nice games satisfy all the standard assumptions for the existence of Nash equilibria.14 Hence, we

obtain the existence of selfconfirming equilibria for each Z ∈ Z. Indeed a Nash equilibrium is a

selfconfirming equilibrium with correct conjectures. To summarize:

Remark 1. For every Z, there is at least one Nash equilibrium, and every Nash equilibrium is a

selfconfirming profile of actions:

∀ Z ∈ Z, ∅ 6= ANE
Z ⊆ ASCE

Z .

4 Maintained assumptions

We now present some maintained assumptions, we are going to use throughout the paper. All the

(few) exceptions will be explicitly written in the text.

The network Recall that the network is characterized by an adjacency matrix Z ∈RI×I , where

entry zij specifies whether agent i is linked to agent j 6= i and the weight of this link, and we let

zii = 0 by convention. In what follows we consider the case of directed networks, so that, given

i, j ∈ I, we allow zij 6= 0, and zji = 0. Local externality weights may be an unknown parameter

of the model. We assume that there are commonly known upper and lower bounds w̄ and w in

the weighted local externalities, that can be positive or negative. We let Z ⊆ [w, w̄]I×I denote the

compact set of possible weighted networks Z. The network game is parameterized by Z ∈ Z.

Throughout the paper we play with different properties and specifications of matrix Z. To

simplify the notation we often decompose Z in a way that distinguishes between the actual links,

that specify if there is an externality between two players, and the magnitude and the sign of

this externality. We call Z0 ∈ {0, 1}I×I the basic underlying representation of the network, the

14Since the self-map a 7→ (ri (a−i,Z))i∈I is continuous on the convex and compact set A = ×i∈I [0, āi], by Brouwer’s

Theorem it has a fixed point.
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adjacency matrix whose ij element specifies whether the action of j has an externality on i. We

think of it as a link from i to j because j is one of i’s peers. Z0 is a directed network.

On top of that we build Z adding weights on the links of Z0. This can be done in several ways,

depending on how much heterogeneity we want to allow for. We will write Z = wZ0 when all links

bear the same level of externality w ∈ [w, w̄]. We will write Z = WZ0, where W is a diagonal

matrix, when we want to specify that each player i is affected by the same weight wi ∈ [w, w̄] from

all her peers, but these wi’s may be heterogeneous. We will also consider the case in which the

existing links may have weights of different signs but same intensity. That is, we write Z = S�Z0

(in which the operator � is the Hadamard product), for w ∈ [0, w̄], and S ∈ {−w,w}I×I . Finally,

when we write simply Z, we consider the case of a generic directed weighted network Z ∈Z. Many

of our results will hold for this most general case.

The parametrized aggregator For each agent i ∈ I and matrix Z ∈ Z, we model the parame-

terized aggregator of the co-players’ actions `i : A−i × Z → Xi such that the section of `i at Z

is15

`i,Z : A−i → Xi,

a−i 7→
∑

j 6=i zijaj .

Thus, the payoff-relevant state for i depends only on her neighbors’ actions. Since Xi is the

codomain of `i, we are effectively assuming that, for every Z ∈ Z,

xi ≤
∑
j∈N−i

zij āj , x̄i ≥
∑
j∈N+

i

zij āj ,

where N−i := {j ∈ I : zij < 0} denotes the set of neighbors of player i that have a negative effect

on the payoff state of i, and N+
i := {j ∈ I : zij > 0} denotes the set of neighbors of player i that

have a positive effect on the payoff state of i.

In Section 7, we consider a second aggregator that is based, in a similar way, on the actions of all

the other players, and is not based on a network structure. We will distinguish between a local

aggregator `i (the one specified above) and a global aggregator gi.

The payoff function Notice that, although the aggregator is linear, if the “proximate” best reply

function ri : Xi → Ai is non-linear,16 then also the best reply ri (`i (a−i,Z)) is non-linear in a−i.

Linearity obtains if and only if vi is quadratic in ai and linear in xi. Without substantial loss of

generality, among such utility functions we consider the following form, generalizing equation (1)

15In principle we can allow for non–linear aggregators, as in Feri and Pin (2017). However, in this paper, we focus

on the linear case.
16More precisely, not affine.
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that we discussed earlier:

vi : Ai ×Xi → R,

(ai, xi) 7→ αiai − 1
2a

2
i + aixi.

(6)

with αi > 0 for each i ∈ I,

Definition 2. A network game with feedback NG is linear-quadratic if the utility function of

each player has the linear-quadratic form (6), up to non strategic additional terms.

In this case, the proximate best-reply function is

ri (xi) =


0, if xi ≤ −αi,
αi + xi, if −αi < xi < āi − αi,
āi, if xi ≥ āi − αi.

(7)

From this we can derive the best reply to the actions of others given Z:

ri (`i (a−i,Z)) =


0, if

∑
j 6=i zijaj ≤ −αi,

αi +
∑

j 6=i zijaj , if −αi <
∑

j 6=i zijaj < āi − αi,
āi, if

∑
j 6=i zijaj ≥ āi − αi.

(8)

In Section 7 we will add the global aggregator in the payoff function, but in a way that will not

change the best reply of the players.

The feedback We now discuss the most important properties of the feedback we assume to hold

in our framework.

Definition 3. Feedback fi satisfies observability if and only if player i is active (OiffA) if

section fi,ai is injective for each ai ∈ (0, āi] and constant for ai = 0; fi satisfies just observable

payoffs (JOP) relative to vi if there is a function v̄i : Ai ×M → R such that

∀ (ai, xi) ∈ Ai ×Xi, vi (ai, xi) = v̄i (ai, fi (ai, xi))

and the section v̄i,ai : M → R is injective for each ai ∈ Ai. A network game with feedback NG

satisfies observability by active players if feedback fi satisfies OiffA, for each player i ∈ I, and

it satisfies just observable payoffs if fi satisfies JOP for each player i ∈ I.

In a game with just observable payoffs, because of injectivity of the feedback function, agents

infer their realized payoff from the message they get, but no more than that. That is, inferences

about the payoff state can be obtained by looking at the preimages of the payoff function. For

example, the feedback could be a total benefit, or revenue function

fi : Ai ×Xi → R,

(ai, xi) 7→ αiai + aixi,
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with the payoff given by the difference between benefit and activity cost Ci (ai):

vi : Ai ×Xi → R,

(ai, xi) 7→ fi (ai, xi)− Ci (ai).

Under the reasonable assumption that agent i knows her cost function, when she chooses ai and

then gets message m, she infers that her payoff is v̄i (ai,m) = m− Ci (ai). Thus, each section v̄i,ai
(ai ∈ Ai) is indeed injective. If the feedback/benefit function is fi (ai, xi) = αiai + aixi, then it

satisfies observability if and only if i is active. Until Section 7, we maintain the assumption that

fi = vi and that the game satisfies just observable payoffs.

Remark 2. If NG is linear-quadratic and satisfies just observable payoffs, then it satisfies observ-

ability by active players. If NG satisfies observability by active players, then

f−1
i,ai

(fi (ai, xi)) =

{
Xi, if ai = 0,

{xi} , if ai > 0
(9)

for every agent i ∈ I and action-state pair (ai, xi) ∈ Ai ×Xi.

Most of our analysis, up to Section 7, focuses on linear-quadratic network games with feedback

and just observable payoffs (this is what we call network game). This implies that agents who

are active get as feedback a message enabling them to perfectly determine the state. Conversely,

inactive agents get a completely uninformative message.

5 A characterization of SCE

In this section we characterize the set ASCE
Z of selfconfirming equilibrium action profiles at Z. All

our proofs are derived from the results in Appendix I, which refers to the case of generic network

games without the restriction to linear best replies, and from the results in Appendix K. The

proofs are in Appendix L. We start with the simplest case in which every agent necessarily finds it

subjectively optimal to be active (that is, being inactive is dominated – see Lemma A in Appendix

I).

Proposition 1. Consider a network game such that, for every i ∈ I and for every x̂i ∈ Xi,

ri (x̂i) > 0. Then, for each Z ∈ Z, ASCE
Z = ANE

Z .17

Assume that Z = wZ0, with w > 0 and that Z0 ∈ {0, 1}I×I . In this context it is natural to

assume that minXi ≥ 0, hance that conjectures x̂i are not negative. This represents the standard

case of local complementarities studied by Ballester et al. (2006). If w (n− 1) < 1 there is a unique

17Given the stated assumptions about feedback, the same result holds also for non linear and continuous aggregators

`i and continuous and strictly quasi-concave utility functions vi.
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Nash equilibrium which is also interior. Our proposition states that, in this case, since being inactive

is not justifiable as a best reply to any shallow conjecture, then there is only one selfconfirming

equilibrium action profile, which necessarily coincides with the unique Nash equilibrium.

We now consider a more general case in which agents may be inactive. Let I0 denote the set

of players for whom being inactive is justifiable:18

I0 = {i ∈ I : min ri (Xi) = 0} .

Also, for each Z ∈ Z and a non–empty subset of players J ⊆ I, let ANE
J,Z denote the set of Nash

equilibria of the auxiliary game with player set J obtained by imposing ai = 0 for each i ∈ I\J ,

that is,

ANE
J,Z =

{
a∗J ∈ ×j∈JAj : ∀j ∈ J, a∗j = rj

(
`j

(
a∗J\{j},0I\J ,Z

))}
,

where 0I\J ∈ RI\J is the profile that assigns 0 to each i ∈ I\J . If J = ∅, let ANE
J,Z = {∅} by

convention, where ∅ is the peudo-action profile such that (∅,0I) = 0I .
19 We relate the set of

selfconfirming equilibria to the sets of Nash equilibria of such auxiliary games.

Proposition 2. Given a network game, for each Z ∈ Z, the set of selfconfirming action profiles

is

ASCE
Z =

⋃
I\J⊆I0

ANE
J,Z ×

{
0I\J

}
,

that is, in each SCE profile a∗, a subset I\J of players for whom being inactive is justifiable choose

0, and every other player chooses the best reply to the actions of her co-players. Therefore, in each

SCE profile a∗ and for each player i ∈ I,

a∗i = 0⇒ xi ≤ −αi,

a∗i > 0⇒

αi +
∑
j∈I

zija
∗
j > 0 ∧ a∗i = min

āi, αi +
∑
j∈I

zija
∗
j


 . (10)

In every SCE we can partition the set of agents in two subsets. Agents in J ⊆ I are active,

i.e., they choose a strictly positive action, agents in I \ J instead choose the null action. Start

considering the latter. Since they play a∗i = 0, they get null payoff independently of others’ actions.

Since every conjecture is consistent with this payoff, their conjecture is (trivially) consistent with

their feedback. As for agents in J , since they choose a strictly positive action a∗i > 0, they receive

a message that enables them to infer the true payoff state xi; with this, they necessarily choose the

18This definition is consistent with Lemma A in Appendix I. In Section I.1 we discuss also the more general case

of probabilistic conjectures and why not applying it to our context is without loss of generality.
19As we do in set theory with the empty set, when we consider functions whose domain is a subset of some index

set I, it is convenient to have a symbol for the pseudo-function with empty domain. For example, if I = N, such

functions are (finite and countably infinite) sequences, or subsequences, and ∅ is the empty sequence.
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objective best reply to their neighbours actions, whether or not they are aware of them. Note that,

if being inactive is justifiable for every agent (I0 = I), then 0I ∈ ASCE
Z for every Z ∈ Z.

This implies that the set of selfconfirming equilibria can be characterized by means of the sets of

Nash equilibria of the auxiliary games in which only active agents are considered. If, for example,

there is a unique interior Nash equilibrium for the auxiliary game corresponding to every subset

of active players, then |ASCE
Z | = 2|I|, that is, there are exactly 2n SCE action profiles. If we allow

for strategic substitutes, then the Nash equilibria for each auxiliary game, in which only agents in

J ⊆ I may be active, can be characterized as in Bramoullé et al. (2014). Note that in this case,

some of the agents in J can be active and some inactive. Appendix I.3 discusses the equilibrium

characterization for the generalized case of non linear-quadratic network games.

Example 1. Consider Figure 1, representing a network among 4 nodes. We set αi = 0.1 for each

player i. Let us first assume that each arrow represents a positive externality of 0.2 (and arrows

point to the source of the externality), but allow agents to believe that links may also be a source

of negative externality. Then, agents may find it justifiable to be inactive. In this case we have

one NE, but 16 possible SCEs, one for each subset of the players that we allow to be active. Table

1 reports the actions of players in each case (we omit redundant pairs and singletons). Note that

player 3, when active, always plays the same action a3 = 0.1, because she is not affected by any

externality. Other players, instead, play differently when active, according to who else is active.

Figure 1: A network between 4 nodes. Every arrow is for an externality of equal magnitude and

sign.

Consider now the same network, but assume that each arrow represents a negative externality

of 0.6. In this case we have more NEs (there is no NE where all players are active, but there

are 3 NEs), but less than 16 SCEs (there are 13), because for some subset J of players (such as

J = I = {1, 2, 3, 4}) there is no SCE in which all its agents are active. Table 2 reports the actions

of players in each case (we omit redundant pairs and singletons).
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All {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2} {1, 3} {1, 4} . . . ∅

a1 0.1292 0.1 0.125 0.1292 0 0.1 0.1 0.125 0

a2 0.1750 0.14 0.15 0 0.144 0.12 0 0 0

a3 0.1 0.1 0 0.1 0.1 0 0.1 0 0

a4 0.1458 0 0.125 0.1458 0.12 0 0 0.125 0

Table 1: Self confirming equilibria of the network from Figure 1, with all positive externalities of

0.2. The unique Nash Equilibrium is in bold.

{1,2,4} {2,3,4} {1, 2} {1,3} {1, 4} . . . ∅

a1 0.0625 0 0.1 0.1 0.0625 0

a2 0.025 0.016 0.04 0 0 0

a3 0 0.1 0 0.1 0 0

a4 0.0625 0.04 0 0 0.0625 0

Table 2: Self confirming equilibria of the network from Figure 1, with all negative externalities of

−0.6. Nash Equilibria are in bold.

5.1 Assumptions about the network

Next, we focus on the network Z. We list below some properties of matrix Z that are not maintained

assumptions. In different parts of the paper we will use some of these assumptions to have sufficient

conditions for the existence and stability of selfconfirming equilibria. We refer to Appendix K for

a deeper discussion on these assumptions and their implications.

Assumption 1. Matrix Z of size n has bounded values, i.e. for each i, j ∈ I, |zij | < 1
n .

Assumption 2. Matrix Z has the same sign property i.e., for each i, j ∈ I, sign(zij) = sign(zji),

where the sign function can have values −1, 0 or 1.20

Assumption 3. Matrix Z is negative, i.e. for each i, j ∈ I, zij < 0.

We recall here that the spectral radius ρ(Z) of Z is the largest absolute value of its eigenvalues.

Assumption 4. Matrix Z is limited, i.e. ρ(Z) < 1.

In Section 4 we discussed how, in some cases, we can write Z = WZ0, where W is a diagonal

matrix, and Z0 is the basic underlying topology of the network. When this is possible, matrix Z

represents a basic network combined with an additional idiosyncratic effect by which every agent

20The sign condition is the one used in Bervoets et al. (2016) to prove convergence to Nash equilibria in network

games, under a particular form of learning.
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i weights the effects of the others on her. This effect is modeled by the parameter wi.
21 The next

assumption adds an additional condition on Z0.

Assumption 5. Matrix Z is symmetrizable, i.e. it can be written as Z = WZ0, with W diagonal

and Z0 symmetric. Moreover, W has all strictly positive entries in the diagonal.

Note that if Z is symmetrizable then all its eigenvalues are real. Moreover, since W has all

positive entries, Assumption 5 implies that the sign condition (from Assumption 2) holds.

Our final assumption is discussed in Bramoullé et al. (2014) and combines Assumptions 4 and 5

above.

Assumption 6. Z = WZ0 is symmetrizable-limited, i.e. Z is symmetrizable and the matrix Z̄,

defined for each i, j ∈ I as z̄ij = z0,ij
√
wiwj, is limited.

Our previous results from Section 5, about the characterization of selfconfirming equilibria,

state that we can choose any subset J ⊆ I0 of agents and have them inactive in a SCE. However,

we cannot ensure that the other agents are active, because their best response in the reduced game

could be to stay inactive, since the Nash equilibrium of the reduced game in which only agents in

I\J are considered may have both active and inactive agents. The next result goes in the direction

of specifying under which sufficient conditions this does not happen. Given the matrix Z, and given

J ⊆ I, we call ZJ the submatrix which has only rows and columns corresponding to the elements

of J .

Proposition 3. Consider a set J ⊆ I. Assume that, for every i ∈ I there exists x̂i ∈ Xi, such

that ri (x̂i) = 0. Let us assume that ZJ satisfies at least one of the three conditions below:

1. it has bounded values (Assumption 1),

2. it is negative and limited (Assumptions 3 and 4),

3. or it is symmetrizable–limited (Assumption 6).

Then, we have the two following results:

1. the auxiliary game with player set J has a unique and strictly positive Nash equilibrium:

ANE
J,Z =

{
aNEJ

}
with aNEJ > 0;

2. (aNEJ ,0I\J) is a selfconfirming equilibrium at Z.

21Then the payoff of i ∈ I at a given profile a of the original game is

ui (a) = αai −
1

2
a2i + aiwi

∑
j∈I

z0,ijaj = αai −
1

2
a2i + ai

∑
j∈I

zijaj .
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Proposition 3 provides sufficient conditions to have an arbitrary set of active and inactive players

in a selfconfirming equilibrium. If any of the three conditions is satisfied for every subset of I, then

the set of SCEs has the same cardinality as the power set 2I , that is 2n. The first sufficient condition

in the statement is novel, while the other two were obtained respectively by Ballester et al. (2006)

and Stańczak et al. (2006), and by Bramoullé et al. (2014).

We provide here below two examples, one with all positive externalities, the other with mixed

externalities.

Example 2. Consider n players, and a random network between them, of the type Z = WZ0,

obtained from the following generating process. Z0 is undirected, generated by an Erdos and

Rényi (1960) process for which each link is i.i.d., and such that its expected number of overall links

(i.e., counted in both directions) is k · n, for some k ∈ R+. This means that the expected number

of links for each player is k. It is well known that this model predicts, as n goes to infinity, that

Z0 will have no clustering and, when k ≥ 2, a connected giant component.

W is a diagonal matrix, such that each element wi in the diagonal is positive and is generated

by some i.i.d. random process with mean µ and variance σ2. In this case, Füredi and Komlós (1981)

prove that the expected highest eigenvalue of Z, as n grows, is

E(λi) = kµ+
σ2

µ
+O

(
1√
n

)
.

Under Assumption 6, as n tends to infinity, Z is symmetrizable–limited if E(λi) < 1, which implies

that
µ− σ2

µ2
> k .

Clearly, a necessary condition for previous inequality to hold is that µ > σ2. When this happens,

as n grows to infinity, we will always have a unique NE of the game where all players are active, as

stated by Proposition 3.

Note that, since the expected clustering of Z0 goes to 0, this limiting result excludes the possibility

that there is a subset J of players, that have a dense sub–network between them, and a high

realization of wi’s, such that there does not exist a∗ ∈ ASCE
Z , for which a∗ =

{
aNEJ

}
×
{
0I\J

}
.

In fact, if this was the case, since there are only positive externalities, we would not even have an

all-active equilibrium for the whole population of n agents.

Example 3. Proposition 3 provides alternative conditions, that are only sufficient, for interior NE

in an auxiliary game in which only agents in J are considered. Figure 2 provides an example of

game that do not satisfy any of them, but still has a unique interior NE. We set αi = 0.1 for each

player i. Every blue arrow stands for a positive externality of 0.2 (so, the blue arrows represent

just the first case from Example 1). The two red arrows stand for a negative externality of 0.2.

This network game has a unique NE, and 16 SCE. Table 3 shows them all (redundant couples and

singletons are omitted).
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All {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2} {1, 3} {1, 4} {2, 3} . . . ∅

a1 0.1257 0.1 0.125 0.128 0 0.1 0.1 0.125 0 0

a2 0.1603 0.1346 0.15 0 0.144 0.12 0 0 0.1154 0

a3 0.0412 0.731 0 0.720 0.1 0 0.1 0 0.0729 0

a4 0.1336 0 0.125 0.14 0.12 0 0 0.125 0 0

Table 3: Self confirming equilibria of the network from Figure 2, with positive externalities of 0.2

and negative externalities of −0.2. The unique Nash Equilibrium is in bold.

Figure 2: A network among 4 nodes. Blue arrows are for positive externalities, red arrows are for

negative externalities.

6 Learning process

We have not considered any dynamics yet. Definition 1 of selfconfirming equilibrium, characterized

also by the conditions stated in Proposition 2, identifies steady states: If agents happen to have

selfconfirming conjectures and play accordingly, then they have no reason to move away from it.

However, we may wonder how agents get to play SCE action profiles, and if these profiles are stable.

We first notice that SCE has solid learning foundations.22 The following result is specifically

relevant for this paper (see Gilli (1999) and Chapter 6 of Battigalli (2019)). Consider a temporal

sequence of action profiles (at)
∞
t=0. Then, if (at)

∞
t=0 is consistent with adaptive learning23 and

at → a∗, it follows that a∗ must be a selfconfirming equilibrium action profile.

22See, for example, Battigalli et al. (1992), Battigalli et al. (2019), Fudenberg and Kreps (1995), and the references

therein.
23In a finite game, a trajectory (at)

∞
t=0 is consistent with adaptive learning if for every t̂, there exists some T such

that, for every t > t̂ + T and i ∈ I, ai,t is a best reply to some deep conjecture µi that assigns probability 1 to the

set of action profiles a−i consistent with the feedback received from t̂ through t − 1. The definition for compact,

continuous games is a bit more complex (see Milgrom and Roberts (1990)), who assume perfect feedback).

19



Of course, the limit of the trajectory may or may not be a Nash equilibrium. Let us now con-

sider a best response dynamics. This generates trajectories that—by construction—are consistent

with adaptive learning. With this, we prove convergence (under reasonable assumptions), hence

convergence to an SCE.

To ease the analysis we consider best reply dynamics for shallow conjectures. For each network

Z, each period t ∈ N, and each agent i ∈ I, ai,t = r (x̂i,t) is the best reply to x̂i,t. After actions are

chosen, given the feedback received, agents update their conjectures. If conjectures are confirmed

then an agent keeps her previous conjecture, otherwise she updates using as new conjecture the

conjecture that would have been correct in the previous period. In details,

x̂i,t+1 =

{
x̂i,t if ai,t = 0,

`i (a−i,t,Z) if ai,t > 0,
(11)

and, from (7) (considering that the upper bound āi is set so that it is never reached) we have simply

ai,t+1 = ri (x̂i,t+1) =

{
0, if x̂i,t ≤ −αi,
αi + x̂i,t+1, if x̂i,t > −αi.

Coherently with the previous analysis, this update rule states that if an agent i at time t is inactive

(ai,t = 0), past conjectures are confirmed and thus kept. In this case, that satisfies observability if

and only if a player is active (OiffA – Definition 3), the set of inactive agents is absorbing, meaning

that if an agent is inactive at time t she will remain so also at time t + 1. If instead the agent is

active (ai,t > 0), feedback is such that agents can perfectly infer the payoff state xi,t = `i (a−i,t,Z),

and so they update conjectures according to (11). This is an adaptive learning dynamics. The

result cited above implies that if the dynamics described above converges, then it must converge

to a selfconfirming equilibrium, i.e., a rest point where players keep repeating their choices.

In this section we analyze the stability of such rest points in the simplest possible case of

robustness to small perturbations, as in Bramoullé and Kranton (2007). However, we will not

consider perturbations to the strategy profile, but perturbations on the profile of conjectures.

Definition 4 (Learning process). Each player i ∈ I starts at time 0 with a belief, and beliefs are

represented by a vector of shallow deterministic conjectures x̂0 = (x̂i,0)i∈I . In each period t players

best reply to their conjectures: for each i ∈ I, ai,t = max{αi + x̂i,t, 0}.
At the beginning of each period t + 1 each player i keeps her t-period shallow conjecture if she

was inactive, and updates her conjecture to period-t revealed payoff state if she was active, that is,

x̂i,t+1 = ui(at)
ai,t
− αi + 1

2ai,t.

Even if we consider the case of linear best replies, from equations (10) and (11), the system is

not linear because

x̂i,t+1 =

{
x̂i,t if x̂i,t ≤ −αi ,∑

j∈I zijaj,t if x̂i,t > −αi ,

20



and for every other player j, we have that aj,t = max{αj + x̂j,t, 0}.
Clearly an SCE of the game, as defined in the beginning of Section 5, is always a rest point of

this learning dynamic. We now consider the stability of such rest points a∗. Say that a profile of

conjectures x̂ is justifies a∗ if, for each i ∈ I, a∗i = ri (x̂i) ..

Definition 5. A selfconfirming action profile a∗ ∈ ASCE
Z is locally stable if there are a profile of

conjectures x̂ justifying a∗ and an ε > 0 such that the learning dynamic starting from any x̂′ with

‖x̂′ − x̂‖ < ε converges back to x̂.

Notice that our notion of stability with respect to conjectures relates to the standard notion of

stability with respect to actions in the following way. First of all, since played actions are justified

by some conjectures, the only reason for these actions to change is a perturbation of the surrounding

conjectures, but this is not a sufficient condition. If all agents are active, the two definitions have the

same consequences in terms of stability, since a perturbation with respect to actions happens if and

only if every agent’s conjecture is perturbed. However, if a SCE has inactive agents, then inactive

agents who play a corner solution do not show perturbation in actions when their conjectures are

perturbed. This implies that if an action profile is stable with respect to actions perturbations,

then it is also stable under conjectures perturbations, but the converse does not hold.

6.1 Results

Each SCE is characterized by a set of active agents. So, given a strategy profile a = (ai)i∈I , let

Ia = {i ∈ I : ai > 0} denote the set of active players at profile a. For each action profile a, ZIa
denotes the submatrix with rows and columns corresponding to players who are active in a. This

allows us to characterize locally stable selfconfirming equilibria.

Proposition 4. Consider a selfconfirming equilibrium a∗ ∈ ASCE
Z . Profile a∗ is locally stable if

• assumption 4 holds for matrix ZIa∗ ;

• for some profile of conjectures x̂ justifying a∗, and for each i ∈ I\Ia∗, αi + x̂i < 0.

Intuitively, consider a sufficiently small perturbation of players’ conjectures. The first condition

ensures that active players keep being active and their actions converge back to the Nash equilibrium

of the auxiliary game with player set Ia∗ . The second condition ensures that inactive players keep

being inactive. Next, we provide alternative sufficient conditions that allow to characterize the

subsets of active agents associated to SCEs.

Proposition 5. Consider a selfconfirming profile a∗ ∈ ASCE
Z . If ZIa∗ satisfies at least one of the

three conditions below:

1. it has bounded values (Assumption 1),
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2. it is negative and limited (Assumptions 3 and 4),

3. or it is symmetrizable–limited (Assumption 6),

then a∗ is locally stable and, for every J ⊆ Ia∗, a∗∗ = (aNEJ ,0I\J) is a locally stable SCE, where

aNEJ is the unique interior Nash equilibrium action profile of the game restricted to J.

The proof is based on results from linear algebra. In fact, if an adjacency matrix satisfies one of

the conditions from Proposition 5, then also every submatrix of that matrix satisfies that property.

We know that there may be SCEs that are not Nash equilibria, because some agents are inactive

even if this is not a best response to the actions of the others. Proposition 5 tells us two additional

things. Under the stated conditions, for any given SCE a∗ with set of active agents Ia∗ , any subset

J ⊆ Ia∗ of those agents is associated to a stable SCE where all agents in J are active, and the other

agents are inactive. Second, since the empty subset of agents is trivially associated to the stable

SCE where every agent is inactive, for every network game there is always a subset J of agents

associated to a stable SCE where all and only the agents in J are active.

6.2 Examples

The following example shows that we can reach SCEs that are not NE also if the initial beliefs

induce all positive actions at the beginning of the learning dynamic.

Example 4. Consider the case of 4 players, with the network matrix Z ∈ {−0.2, 0, 0.2}I×I shown

in Figure 2, and, for every i, αi = 0.1. This is a case of general externalities, that can be positive

or negative. Figure 3 shows the learning dynamics of actions and beliefs that start from different

initial conditions. In one case (left panels) the system converges to the unique Nash equilibrium of

this game (the dotted lines), in the other (right panels) the learning dynamics put, after 2 rounds,

one player out from the active agents, and the remaining 3 converge to a selfconfirming equilibrium

which is not Nash.

The next example (which also does not satisfy the local stability conditions of Proposition 5)

shows that convergence may not occur even in a simple case of positive externalities.

Example 5. Now consider again the network from Example 1 (Figure 1), with 4 nodes. Even if

there are only positive externalities, convergence depends on the magnitude of w. If w < 1, there

is convergence. If instead w ≥ 1 there is divergence. Figure 4 shows two cases, with w = 0.9 and

w = 1 respectively, starting from the same initial beliefs. Note that, nodes/players 1 and 4 reinforce

each other, and this gives rise to an oscillating behavior of their beliefs.
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Figure 3: General strategic externalities. Starting from different beliefs on the same network (from

Figure 2), the learning process may converge to the unique Nash equilibrium (left panels) or to a

SCE which is not a Nash equilibrium (right panels). Note that at each time steps beliefs are just

a downward translation of actions, by the quantity α.

7 Local and Global externalities

In most applications the feedback that players receive is not enough to find the optimal best

response, even for active players. Users of online platforms may not understand what is the best

response to others’ activity, and a firm in a complex market may not infer optimal investment plans

just observing prices. In our context, this means that the assumption of observability if and

only if a player is active (OiffA) (Definition 3) may not hold. This analysis will bring us to two

important considerations. First, players may be more active if they (possibly erroneously) think

that they are more central in the network than they are actually are. When positive externalities

are at play this can be welafre improving for the whole society. However, and this is the second

point, if we consider adaptive learning processes, agents with too high perceived centrality may

induce the learning dynamics to become unstable.

We consider here a simple variation to our model. Starting from equation (6), we add a global

externality term with no strategic effects. For each i ∈ I, we posit an interval Yi = [y
i
, ȳi], a

coefficient β ∈ R, and we consider the following new aggregator:24

gi,β : A−i → Yi

a−i 7→ β
∑

j 6=i aj
.

We assume that every agent i ∈ I knows Yi. Then, we let yi = gi (a−i, β) and we maintain the

24This aggregator g sums up the actions of all the agents in the network except agent i. We could have considered

agent i as well, but we opted for this specification so as not to change the first order condition with respect to the

case with just local externalities. If the action of agent i is considered in the global externality, then results do not

change up to a rescaling of the coefficient αi.
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Figure 4: Only positive externalities. Starting from the same beliefs on the same network structure

(from Figure 1), the learning process may converge or not depending on the size of w: w = 0.9

in the left panel; w = 1 in the right panel. Actions are just an upward translation of beliefs, of

amount α.

assumption that xi = `i (a−i,Z). The new parameterized utility function is

vi : Ai ×Xi × Yi → R
(ai, xi, yi) 7→ αiai − 1

2a
2
i + aixi + yi

, (12)

where both xi and yi are unknown. The general form of the feedback function is

fi : Ai ×Xi × Yi →M .

Deterministic shallow conjectures for each i ∈ I are now determined by the pair (x̂i, ŷi) ∈ Xi × Yi.
Note that the best reply depends only on x̂i, but ŷi matters for the ex post inference made by i

once he has observed his feedback. We provide now the definition of selfconfirming equilibrium for

games with global externalities.

Definition 6. A profile (a∗i , x̂i, ŷi)i∈I ∈ ×i∈I (Ai ×Xi × Yi) of actions and (shallow) deterministic

conjectures is a selfconfirming equilibrium at Z and β of a network game with global externalities

if, for each i ∈ I,

1. (subjective rationality) a∗i = ri (x̂i),

2. (confirmed conjecture) fi (a∗i , x̂i, ŷi) = fi
(
a∗i , `i

(
a∗−i,Z

)
, gi
(
a∗−i, β

))
.

Notice that the rationality condition is unchanged with respect to the case of only local ex-

ternalities since best-reply conditions are not affected by the global externality term. To compare

this game with the linear-quadratic network game with only local externalities, we focus on the
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property of just observable payoffs. Then, without loss of generality we can assume that fi = vi for

every i ∈ I. With this, we can characterize the SCE set as follows:

Proposition 6. Fix Z ∈ Z and β. Every selfconfirming equilibrium profile
(
a∗i , x̂

i, ŷi
)
i∈I ∈

×i∈I (Ai ×Xi × Yi) of a network game with global externalities is such that, for every i ∈ I,

1. if a∗i = 0, then x̂i ∈ [xi,−αi] and ŷi = yi;

2. if a∗i > 0, then a∗i = αi + x̂i and ŷi = yi + a∗i (xi − x̂i).

We discuss how the presence of the global externality term in the utility function changes

radically the characterization of selfconfirming equilibria. As before, we assume that players observe

their own realized payoffs. Yet, when global externalities are present, observability by active players

does not hold anymore. Inactive players have correct conjectures about the global externality, but

may have incorrect conjectures about the local externality. Active players, on the other hand, are

not able to determine precisely the relative magnitude of the local effects with respect to the global

effects. Given any strictly positive action a∗i , the confirmed conjectures condition yields (ŷi− yi) =

a∗i (xi − x̂i). Then, in equilibrium, if agent i overestimates (underestimates) the local externality,

she must compensate this error by underestimating (overestimating) the global externality. Then,

compared to the case of only local externalities, we have that: (i) active agents choose a best

response to a (typically) wrong conjecture about x; thus, (ii) it is not possible to characterize SCE

by means of Nash equilibria of the auxiliary games restricted to the active players.

Before moving on to the analysis of learning dynamics, we derive a very general result that

is independent of the actual network of peer effects. We consider the functional form of ui when

Z = wZ0, with w > 0 and Z0 unweighted network, which means that there is a common positive

externality w between all connected players:

ui(ai,a−i) = αai −
1

2
a2
i + aiw

∑
j∈I\{i}

z0,ijaj︸ ︷︷ ︸
`i(a∗−i,Z)

+β
∑

k∈j∈I\{i}

ak︸ ︷︷ ︸
gi(a∗−i,β)

. (13)

The following result applies to any possible network structure, and shows what can happen

when players know the parameters of the payoff function, w and β, but not the network structure

Z0.

Proposition 7. Consider a game with payoffs given by Equation (13), played on any network

Z0. Suppose also that parameters w > 0 and β ≥ 0 are common knowledge, with w < 1
n−1 , but

the conjecture of every player is that she is connected with every other player. Then, the strategy

profile of each player is increasing in β, it is equal to the Nash equilibrium of network Z0 when

β = 0, while, as β → ∞, the strategy profile of the unique SCE approaches the unique NE of the

game with the same payoffs, played on a complete network.
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So, no matter what the original network Z0 is, if all players believe to be central and β is large,

then the strategy profile of players approaches what they would play in the NE of the complete

network. This result is interesting because a hypothetical learning dynamic is self–reinforcing.

Players infer `i
(
a∗−i,Z

)
, from the payoff that they receive as feedback, using (13). This implies

that, converging to a SCE, as they increase their own action they infer a higher `i
(
a∗−i,Z

)
and a

lower gi
(
a∗−i, β

)
, to which they will respond with an even higher action. Nevertheless, this process

does not explode to infinity, but it reaches the NE that would be played on the complete network.

Proposition 7 is a limiting result. However, for some networks where NE and SCE can be easily

computed analytically, we can show that the actions of the SCE strategy profiles converge rapidly

to the actions of the NE for the complete network. Figure 5 shows how this happens for a regular

network and for a star network.
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Figure 5: An example on how players actions change, when they all think they are connected to

every other player, as parameter β grows. Both cases have parameters α = .1, w = .04 and n = 20.

The left panel is for the regular network with common degree 8: in blue we have the action that

would be played in the NE of the complete network; in yellow the NE of the regular network; in

green the SCE. The right panel is for the star network: in blue we have the actin that would be

played in the NE of the complete network; in yellow and green the NE profile for the center and

the spokes in the star network; in red and purple the SCE profile for the center and the spokes.

Finally, let us note that Proposition 7 is based on the assumption that players know the values

of β and w. However, if they have wrong beliefs about β, overestimating it, their actions would even

exceed those of the NE of the complete network. This is shown in the next example, where agents

do not know the true value of β and may overestimate their centrality even above the centrality

that they would have in a complete network.

Example 6. Consider three agents in a line network. Let agent 2 be at the center of the line.

Then, for every (a∗,Z, β), `2
(
a∗−2,Z

)
is proportional to g2

(
a∗−2, β

)
, always with the same ratio β

w ,

while this is not true for agents 1 and 3. We assume that each agent thinks she is playing in a

complete network, so every i ∈ I thinks that `i
(
a∗−i,Z

)
is always proportional to gi

(
a∗−i, β

)
, with
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the same ratio. In this case agents 1 and 3 believe to be more central than they actually are.

Table 4 provides the Nash equilibria for the actual network and for the complete network, and the

selfconfirming equilibrium actions for the case described above.

Line NE Complete NE SCE

a1 0.130 0.167 1.569

a2 0.152 0.167 1.679

a3 0.130 0.167 1.569

Table 4: Simulations for the case of α = 0.1, w = 0.2, and β = 1. Columns refer to 1) Nash

Equilibrium of the line network; 2) Nash equilibrium of complete network; 3) SCE in the line

network in which each i ∈ I believes that `i
(
a∗−i,Z

)
= β

wgi
(
a∗−i, β

)
.

This numerical exercise shows that if agents overestimate the impact of local externalities this

generates a multiplier effect that makes equilibrium actions increase at a level even larger that what

would be predicted in a complete network by Nash equilibrium. This is the result of how agents

misinterpret their feedbacks. In details, thinking to be in a complete network makes agents 1 and 2

overestimate local externalities. Take for instance agent 1. Given any a−1, she chooses a best reply

higher than the Nash equilibrium one since she overestimates the local externality. This high action

has the effect of increasing the global externality term for agent 3. Agent 3, by overestimating local

externality, partly attributes this higher global externality to the local externality term, and chooses

an action larger than predicted by Nash equilibrium. The choice of agent 3 increases in turns the

global externality perceived by agent 1, and so on. At the same time agent 2, as neighbors choose

higher actions, increases her own action level. This effect goes on and a multiplier effect seems to

be at place. In the limit, selfconfirming equilibrium actions are almost ten times larger than the

complete network Nash equilibrium.

7.1 Learning with Global Externalities

We now consider the learning process that originates from an adaptive updating of conjectures, as

we did for the case of only local externalities. Consider the payoff function that depends on players’

actions, with the time index and specifying xi,t and yi,t as functions of co-players’ actions:

ui,t(ai,t,a−i,t) = αai,t −
1

2
a2
i,t + ai,t

∑
j∈I\{i}

zijaj,t︸ ︷︷ ︸
xi,t

+β
∑

k∈I\{i}

ak,t︸ ︷︷ ︸
yi,t

.

To ease the analysis, we assume the same parameter α for each player and we focus on the case of

strictly positive justifiable actions. We obtain this by assuming that α > 0 and that all the elements

of Z are nonnegative. At each time, there are infinitely many profiles of feasible pairs (x̂i,t, ŷi,t)i∈I
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consistent with feedback. For each i ∈ I, and each time t ∈ N, let mi,t = fi (ai,t, xi,t, yi,t) =

ui(ai,t,a−i,t) be the message agent i receives. Then, given message mi,t−1, and considering that

agents perfectly recall their past actions, ŷi,t is uniquely determined as a function of x̂i,t. In details,

at each time period, agent i’s conjecture is a pair (x̂i,t, ŷi,t) consistent with the message received at

the previous period. We obtain

ŷi,t+1 = mi,t − αai,t +
1

2
(ai,t)

2 − ai,tx̂i,t+1 .

Then, we can just focus on the dynamics of x̂i,t, given by

x̂i,t+1 =
mi,t − ŷi,t+1

ai,t
− α+

1

2
ai,t (14)

This case does not satisfy observability if and only if a player is active (OiffA), bacause players

check a two–dimensional conjecture with a feedback, the payoff, that has a single dimension. This

leaves also freedom on the updating rule that players use. To avoid bifurcations at each time period,

we need to use simplifying assumptions on conjectures. We define

ci,t :=
x̂i,t
ŷi,t

.25 (15)

Then,

Assumption 7. For each i ∈ I and for each t ∈ N, ci,t = ci,t+1 = ci.

We call ci the perceived centrality of player i. For each player, this parameter describes

what she thinks to be the share of the activity in her neighborhood with respect to the sum of all

the actions of the population. This perceived share has a strong relationship with the Bonacich

centrality. In the unique Nash equilibrium a∗ of the game, where all actions are positive, we have

a∗i = α+ xi = α+
∑

j∈I\{i}

zija
∗
j .

The profile of Bonacich centrality measures b is the unique solution of the linear system26

bi = α+
∑

j∈I\{i}

zijbj .

So, when beliefs are correct, as in the Nash equilibrium, we have bi = ai and ci = bi−α
yi

. Now, in the

Nash equilibrium we have also 1
yi
− 1

yj
= β

aj−ai
yiyj

. If the number of players is large, we have yi � ai

and yj � aj , which implies 1
yi
' 1

yj
, and so every ci is roughly the same linear rescaling of bi.

25In doing so, we implicitly assume that players think that not all the other players play the null action ak,t = 0.

This is actually a reasonable assumption, because under positive externalities any best response ak,t should be at

least α.
26In general, independently of any game defined on the network, Bonacich centrality is a network centrality measure

that depends on a paramater α > 0. It is defined exactly as the solution of that same linear system. For a detailed

discussion on this see Dequiet and Zenou (2017)
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From equation (14), and expressing the message as the observed payoff, we get the following

learning dynamic

x̂i,t+1 = xi,t +
yi,t
ai,t
− ŷi,t+1

ai,t
. (16)

Plugging in ci,t =
x̂i,t
ŷi,t

we get

x̂i,t+1 =
ci,t

1 + ci,tai,t
(ai,txi,t + yi,t) . (17)

We define the true centrality of player i at time t as

c′i,t :=
xi,t
yi,t

.

Note that c′i,t ∈
[
0,

∑
j 6=i zij
β

]
. For this reason, we also assume that the perceived centrality of

each player i is such that ci ∈
(

0,
∑

j 6=i zij
β

]
, and this specifies the set of all admissible perceived

centralities. The dynamic, then, can be written as

x̂i,t+1 = ciyi,t
a∗i,tc

′
i,t + 1

a∗i,tci + 1
,

which implies that the conjecture x̂i,t+1 is correct only when ci = c′i,t.

We look at best responses ai,t+1 = α + x̂i,t+1, and study existence and characterization of the

steady state of this learning process. Recall that yi,t = β
∑

j 6=i aj,t. To find a fixed point we look

at the system of n equations

Hi(a
∗, c, β,Z) := α+ ci

β∑
j 6=i

a∗j

 a∗i c
′
i + 1

a∗i ci + 1
− a∗i = 0 . (18)

For comparison, we also study the system of equations that provide the Nash Equilibrium of this

network game, namely:

Fi(a
∗, β,Z) := α+

∑
j∈I

zija
∗
j − a∗i = 0 . (19)

Let A ⊂ [α,∞)I denote the set of the solutions of the system (18). We have the following result.

Proposition 8. If the system defined by (19) admits a solution, then for each vector c of perceived

centralities also the system defined by (18) admits a solution. Moreover, the system implies a

homeomorphism Φ between all profiles c and A. Homeomorphism Φ is monotone with respect to

the lattice order of the two sets.

The previous result provides information only on the steady states of our dynamical system.

Note however that the homeomorphism is implied by the particular learning dynamic that we are

assuming, which is based on constant belief centralities. Here below we show a result that provides

sufficient conditions for convergence of the learning dynamic. We impose as a sufficient condition

that local and global externalities are not too large.
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Proposition 9. If, for each player i ∈ I, 0 < ciβ(n−1) <
∑

j 6=i zij < 2, then the dynamic defined

by the learning process (18) always converges to its unique solution, which is stable.

It should be noted that the assumptions of Proposition 9 imply that |
∑

j 6=i zij | < 1, which in

turn implies that Assumption 4 holds and hence the learning dynamics of the corresponding game

with only local externalities should converge. However, if for some player the perceived centralities

are too high, still the learning dynamics defined by (18) for the global game may not converge.

Example 7. Under the conditions of Proposition 9, we use equation (17) to run dynamical systems

converging to the SCE implicitely defined by (18). This allows us to provide a graphical illustration

of Proposition 8, for the case of three nodes. We do this for the case of a line network (where each

of the two links is bidirectional), and for the case of a complete network. We take the case from

equation (13), with β = 1 and w = .2. Figure 6 shows the results. We can start from any

pattern of perceived centralities for the three nodes. The left panel shows the profile of perceived

centralities when at least one node has maximal perceived centrality (the three faces of the cube have

different colors, according to which node has the maximal centrality). The central panel shows the

corresponding SCE conjectures x̂ when the network is a line (the node that has perceived centrality

1 in the red dots is the central node). The right panel shows the corresponding SCE beliefs x̂ when

the network is a complete triangle. The figure suggests that homeomorphism Φ (from Proposition

8) is highly non linear, because of the self reinforcement process in beliefs that we discussed in

Example 6. The figure also shows that, as stated by Proposition 8, homeomorphism Φ respects the

lattice order on the two sets.

Proposition 8 tells us that a non-negative shift in each perceived centrality will always result

in a non-negative shift in each agent’s action in the resulting SCE. However, Proposition 9 gives

an implicit warning. Too high perceived centralities may imply that the sufficient conditions for

stability are lost, and convergence to the corresponding SCE may be lost. Note also that, summing

up equation (2) for all the players, the aggregate welfare is maximized if the vector of actions

satisfies the linear system

a∗i = α+ (n− 1)β +
∑

j∈I\{i}

(zij + zij)a
∗
j .

This aspect deserves a comment, relatively to the online social networks application of our

model. Social platforms like Facebook and Twitter often provide information to users about the

activity of their peers. The social platform Reddit actually do not show followers to their users,

but only a measure of popularity that is called karma. A rationale for this marketing strategy can

be that these companies want to change the beliefs of players, making them feel more important

(i.e. central) in the social network. Even a benevolent social planner may want to set the perceived

centralities to the level for which the social optimum is achieved. However, according to our model,
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Figure 6: Simulations showing the homeomorphism of Proposition 9 for the case of 3 nodes, as

discussed in Example 7. The left panel shows vectors of preceived centralities. The central panel

shows the corresponding SCE beliefs x̂ when the network is a line (the node that has perceived

centrality 1 in the red dots is the central node). The right panel shows the corresponding SCE

beliefs x̂ when the network is a complete triangle.

if perceived centralities are too high, the system may become unstable. This is shown in the

following example.

Example 8. We replicate the same exercise that we did in Example 7, only for the case of the

complete triangle. However we do it for a wider range of perceived centralities. Figure 7 shows

that in this case it can happen that there are combinations of perceived centralities which do not

allow the laearning dynamics to converge.
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Figure 7: Simulations showing the homeomorphism of Proposition 9 for the case of 3 nodes, as

discussed in Example 8. The left panel shows vectors of preceived centralities. With respect to

Figure 6, we allow for higher values of perceived centralities. Black dots represent cases for which

the learning dynamics do not converge. The right panel shows the corresponding SCE beliefs x̂

when the network is a complete triangle. and when the learning dynamics is converging.
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8 Conclusion

In this paper we lay the basis for a novel approach to network games. Many of the applications of

those games mimic large societies with million of nodes and non regular distribution of connections.

It is natural to assume that players are not aware of the complete structure of the network; thus,

they do not perform sophisticated strategic reasoning possibly leading to a Nash equilibrium, but

just best–respond to some to subjective beliefs affected by information feedback they receive. We

analyze simple adaptive dynamics and show that in some cases they converge to stable Nash

equilibria. However, we characterize also those situations in which feasible stable outcomes are not

Nash equilibria, but rather selfconfirming equilibria in which some (if not all) players have wrong

beliefs and yet the feedback they receive is consistent with such beliefs. We also show that simple

biases in the perception of own centrality in the network may lead players to play action profiles

that are very far from the unique Nash equilibrium of the game.

One natural application of this approach is to online social platforms like Facebook and Twitter.

Using a linear quadratic structure for the payoff function we have also laid the ground for a tractable

welfare analysis of the model. However, policy implications are not straightforward if we want to

consider the long–run benefits of connections and not only about the instantaneous payoffs of the

users of those platforms.

Our analysis does not account for the strategic reasoning that agents can perform given some

commonly know features of the network. For example, known results about rationalizability imply

that, if the (nice) network game has strategic complementarities and is common knowledge, then

sophisticated strategic reasoning leads to Nash equilibrium.27 If only some aspects of the network

game are commonly known, then both strategic reasoning and learning affect the long-run outcome,

which is a kind of rationalizable self-confirming equilibrium.

27On nice games with strategic complementaries see, e.g., Chapter 5 of Battigalli (2019) and the references therein.

We address this analysis also in Appendix J.
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appendix

Appendix I Selfconfirming equilibria in parameterized nice games

with aggregators

In this section we develop a more general analysis of selfconfirming equilibria in a class of games

that contains the linear-quadratic network games with feedback. To ease reading, we make this

section self-contained, repeating some definitions from the main text.

A parameterized nice game with aggregators and feedback is a structure

G =
〈
I,Z, (Ai, `i, vi, fi)i∈I

〉
where

• I is the finite players set, with cardinality n = |I| and generic element i.

• Z ⊆ Rm is a compact parameter space.

• Ai = [0, āi] ⊆ R+, a closed interval, is the action space of player i with generic element

ai ∈ Ai.

• Xi = [xi, x̄i] ⊆ R, a closed interval, is the a space of payoff states for i.

• `i : A−i × Z → Xi (where A−i = ×j∈I\{i}Aj) is a continuous parameterized aggregator of

the actions of i’s co-players such that its range `i (A−i ×Z) is connected.28

• vi : Ai×Xi → R is the payoff (utility) function of player i, which is strictly quasi-concave

in ai and continuous,29 and from which we derive the parameterized payoff function

ui : Ai ×A−i ×Z → R,

(ai,a−i,Z) 7→ vi (ai, `i (a−i,Z)).

Thus, xi = `i (a−i,Z) is the payoff relevant state that i has to guess in order to choose a

subjectively optimal action. With this, for each Z ∈ Z,
〈
I, (Ai, ui,Z)i∈I

〉
is a nice game

(Moulin, 1979), and
〈
I,Z, (Ai, ui)i∈I

〉
is a parameterized nice game. We let

ri : Xi → Ai

xi 7→ arg maxai∈Ai vi (ai, xi)

28Since the range of each section `i,Z must be a closed interval, we require that the union of the closed intervals

`i,Z (A−i) (Z ∈ Z) is also an interval, which must be closed because Z is compact and `i continuous.
29That is, vi is jointly continuous in (ai, xi) and, for each xi ∈ [xi, x̄i], the section vi,xi : [0, āi] → R has a unique

maximizer a∗i (that typically depends on xi), it is strictly increasing on [0, a∗i ], and it is strictly decreasing on [a∗i , āi].

Of course, the monotonicity requirement holds vacuously when the relevant subinterval is a singleton.
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denote the best reply function of player i. The Maximum theorem implies that ri is

continuous.

• Let M ⊆ R be a set of “messages,” fi : Ai×Xi →M is a feedback function that describes

what i observes (a “message,” e.g., a monetary outcome) after taking any action ai given any

payoff state xi.

On top of the formal assumptions stated above, we maintain the following informal assumption

about players’ knowledge of the game:

• Each player i knows vi and fi.

Unless we explicitly say otherwise, we instead do not assume that i knows Z, or function `i, or

even that i understands that his payoff is affected by the actions of other players. However, since

i knows the feedback function fi : Ai ×Xi → M and the action he takes, what i infers about the

payoff state xi after he has taken action ai and observed message m is that

xi ∈ f−1
i,ai

(m) :=
{
x′i : fi

(
ai, x

′
i

)
= m

}
.

I.1 Conjectures

Definition A. A shallow conjecture for i is a probability measure µi ∈ ∆ (Xi). A (deep)

conjecture for i is a probability measure µ̄i ∈ ∆ (A−i ×Z). An action a∗i is justifiable if there

exists a shallow conjecture µi such that

a∗i ∈ arg max
ai∈Ai

∫
Xi

vi (ai, xi)µi (dxi) ;

in this case we say that µi justifies a∗i . Similarly, we say that (deep) conjecture µ̄i ∈ ∆ (A−i ×Z)

justifies a∗i if the shallow conjecture induced by µ̄i (µi = µ̄i ◦ `−1
i ∈ ∆ (Xi)) justifies a∗i .

Remark A. If ai 7→ vi (ai, xi) is strictly concave for each xi, then also ai 7→
∫
Xi
vi (ai, xi)µi (dxi)

is strictly concave and the map

µi 7→ arg max
ai∈Ai

∫
Xi

vi (ai, xi)µi (dxi)

is a continuous function.30

The following lemma summarizes well known results about nice games (see, e.g., Battigalli 2019)

and some straightforward consequences for the more structured class of nice games with aggregators

considered here. We include the proof to make the exposition self-contained.

30When ∆ (Xi) is endowed with the topology of weak convergence of measures.
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Lemma A. The best reply function ri : Xi → Ai is continuous, hence its range ri (Xi) is a closed

interval, just like Xi. Furthermore, for each given a∗i ∈ Ai, the following are equivalent:

• a∗i is justifiable,

• a∗i ∈ ri (Xi) (that is, a∗i is justified by a deterministic shallow conjecture),

• there is no ai such that vi (a∗i , xi) < vi (ai, xi) for all xi ∈ Xi (that is, a∗i is not dominated by

any other pure action).

Proof. With a slight abuse of notation, we let ri (µi) denote set set of best replies to (shallow)

conjecture µi:

ri (µi) := arg max
ai∈Ai

∫
Xi

vi (ai, xi)µi (dxi) .

By the Maximum theorem µi 7→ ri (µi) has a closed graph, which—under the stated assumptions—

is equivalent to upper hemicontinuity. By strict quasi-concavity, the restriction of the best reply

correspondence to the domain Xi of deterministic conjcetures is single-valued; hence, it must be a

continuous function.

Fix any closed sub-interval C ⊆ Xi. Let NDi,p (C) denote the set of actions that are not

strictly dominated by other pure actions. By inspection of the defitions, it holds that

ri (C) ⊆ ri (∆ (C)) ⊆ NDi,p (C) .

We prove that NDi,p (C) ⊆ ri (C), that is, Ai\ri (C) ⊆ Ai\NDi,p (C), which therefore implies the

thesis. Since ri is a continuous function on C, which is compact and connected, ri (C) is compact

and connected as well, hence, it is a compact interval. Therefore, it is enough to show that all

the actions below min ri (C) or above max ri (C) are dominated. Fix any ai < min ri (C), by strict

quasi-concavity,

∀xi ∈ C, vi (ai, xi) < vi (min ri (C) , xi) ≤ vi (ri (xi) , xi) .

Therefore, every ai < min ri (C) is strictly dominated by ri (C). A similar argument shows that

every ai > max ri (C) is strictly dominated by max ri (C). Since there are no other actions outside

ri (C), this concludes the proof. �

Corollary 1. Suppose that the aggregator `i is onto. Then, an action of player i is justifiable if

an only if it is justified by a deep conjecture.

Proof. The “if” part is trivial. For the “only if” part, fix a justifiable action a∗i arbitrarily. By

Lemma A, there is some xi ∈ Xi such that a∗i = ri (xi). Since the aggregator `i is onto, there is

some (a−i,Z) ∈ `−1
i (xi) such that

a∗i ∈ arg max
ai∈Ai

ui (ai,a−i,Z) .
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Hence a∗i is justified the deep conjecture δ(a−i,Z), that is, the Dirac measure supported by (a−i,Z).

�

With this, from now on we mostly restrict our attention to (shallow, or deep) deterministic

conjectures.

I.2 Feedback properties

Definition B. Feedback fi satisfies observable payoffs (OP) relative to vi if there is a function

v̄i : Ai ×M → R such that

vi (ai, xi) = v̄i (ai, fi (ai, xi))

for all (ai, xi) ∈ Ai×Xi; if the section v̄i,ai is injective for each ai ∈ Ai, then we say that fi satisfies

just observable payoffs (JOP) relative to vi. Game G satisfies (just) observable payoffs if, for

each player i ∈ I, feedback fi satisfies (J)OP relative to vi.

If fi satisfies JOP, we may assume without loss of generality that fi = vi, because, for each

action ai, the partitions of Xi induced by the preimages of vi,ai and fi,ai coincide:

Remark B. Feedback fi satisfies JOP relative to vi if and only if

∀ai ∈ Ai,
{
v−1
i,ai

(u)
}
u∈vi,ai (Xi)

=
{
f−1
i,ai

(m)
}
m∈fi,ai (Xi)

. (a)

Proof. (Only if) Fix ai ∈ Ai. Since fi satisfies JOP relative to vi, vi,ai (Xi) = (v̄i,ai ◦ fi,ai) (Xi)

(by OP), for each u ∈ vi,ai (Xi) there is a unique message mai,u = v̄−1
i,ai

(u) (by injectivity of v̄i,ai),

and

v−1
i,ai

(u) = {xi ∈ Xi : vi (ai, xi) = u}

= {xi ∈ Xi : v̄i (ai, fi (ai, xi)) = u}

= {xi ∈ Xi : fi (ai, xi) = mai,u} = f−1
i,ai

(mai,u) ,

which implies eq. (a).

(If) Suppose that eq. (a) holds. For every ai ∈ Ai and m ∈ fi,ai (Xi) select some ξi (ai,m) ∈
f−1
i,ai

(m). Let

D :=
⋃
ai∈Ai

{ai} × fi,ai (Xi)

With this,

ξi : D → Xi

is a well defined function. Domain D is the set of action-message pairs for which the definition of

v̄i matters. Define v̄i as follows:

v̄i (ai,m) =

{
vi (ai, ξi (ai,m)) if (ai,m) ∈ D,

0 otherwise.
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By construction, eq. (a) implies that

∀ (ai, xi) ∈ Ai ×Xi, v̄i (ai, fi (ai, xi)) = vi (ai, xi) .

Hence, OP holds. Furthermore, for all ai ∈ Ai, m′,m′′ ∈ fai (Xi),

m′ 6= m′′ ⇒ ξi
(
ai,m

′) 6= ξi
(
ai,m

′)
⇒ vi

(
ai, ξi

(
ai,m

′)) 6= vi
(
ai, ξi

(
ai,m

′′))
⇒ v̄i

(
ai,m

′) 6= v̄i
(
ai,m

′)
where the first and the second implications follow from eq. (a) (ξi (ai,m

′) and ξi (ai,m
′) belong

to different cells of the coincident partitions, hence yield different utilities), and the third holds by

construction. Therefore, v̄i,ai is injective for every ai, which means the JOP holds. �

Definition C. Feedback fi satisfies observability if and only if i is active (OiffA) if section

fi,ai is injective for each ai > 0 and constant for ai = 0. Game G satisfies observability by active

players if OiffA holds for each i.

Remark C. If a network game is linear-quadratic and satisfies just observable payoffs, then it

satisfies observability by active players.

Proof. By Remark B JOP implies that, for each ai ∈ Ai,{
v−1
i,ai

(u)
}
u∈vi,ai (Xi)

=
{
f−1
i,ai

(m)
}
m∈fi,ai (Xi)

.

The linear-quadratic form of vi implies that, for every xi ∈ Xi,

v−1
i,0 (vi,0 (xi)) = Xi

∀ai > 0, v−1
i,ai

(vi,ai (xi)) = {xi} .

These equalities imply that fi,0 is constant and fi,ai is injective for ai > 0, that is, NG satisfies

observability by active players. �

Definition D. Feedback fi satisfies own-action independence (OAI) of feedback about the state

if, for all justifiable actions a∗i , a
o
i and all payoff states x̂i, xi,

fi (a∗i , x̂i) = fi (a∗i , xi)⇒ fi (aoi , x̂i) = fi (aoi , xi) .

Game G satisfies own-action independence of feedback about the state if, for each player i ∈ I,

feedback fi satisfies OAI.
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In other words, OAI says that if player i cannot distinguish between two payoff states x̂i and

xi when he chooses some given justifiable action a∗i , then he cannot distinguish between these two

states when he chooses any other justifiable action aoi . This is equivalent to requiring that the

partitions of Xi of the form
{
f−1
i,ai

(m)
}
m∈fi,ai (Xi)

coincide across justifiable actions, i.e., across

actions ai ∈ ri (Xi) (see Lemma A).

The following lemma—which holds for any game, not just nice games—states that, under payoff

observability and own-action independence, an action is justified by a confirmed conjecture if and

only if it is a best reply to the actual payoff state:

Lemma B. If fi satisfies payoff observability relative to vi and own-action independence of feedback

about the state, then for all (a∗i , xi) ∈ Ai ×Xi the following are equivalent:

1. there is some x̂i ∈ Xi such that a∗i ∈ arg maxai∈Ai vi (ai, x̂i) and fi (a∗i , x̂i) = fi (a∗i , xi),

2. a∗i ∈ arg maxai∈Ai vi (ai, xi).

Proof.(Cf. Battigalli et al. 2015, Battigalli 2019) It is obvious that (2) implies (1) independently

of the properties of fi. To prove that (1) implies (2), suppose that fi satisfies OP-OAI and let x̂i

be such that (1) holds. Let aoi be a best reply to the actual state xi. We must show that also a∗i is

a best reply to xi. Note that both a∗i and aoi are justifiable; hence, by OAI, fi (a∗i , x̂i) = fi (a∗i , xi)

implies fi (aoi , x̂i) = fi (aoi , xi). Using OP, condition (1), and OAI as shown in the following chain

of equalities and inequalities, we obtain

vi (a∗i , xi)
(OP)
= v̄i (a∗i , fi (a∗i , xi))

(1)
= v̄i (a∗i , fi (a∗i , x̂i))

(OP)
= vi (a∗i , x̂i)

(1)

≥

vi (aoi , x̂i)
(OP)
= v̄i (aoi , fi (aoi , x̂i))

(1,OAI)
= v̄i (aoi , fi (aoi , xi))

(OP)
= vi (aoi , xi) .

Since ao is a best reply to xi and vi (a∗i , xi) ≥ vi (aoi , xi), it must be the case that also a∗i is a best

reply to xi. �

Corollary 2. Suppose that G satisfies payoff observability and own-action independence of feed-

back about the state, then the sets of selfconfirming action profiles and Nash equilibrium action

profiles coincide for each Z:

∀Z ∈ Z, ASCE
Z = ANE

Z .

Proof By Remark 1, we only have to show that ASCE
Z ⊆ ANE

Z . Fix any a∗ = (a∗i )i∈I ∈ ASCE
Z and

any player i. By definition of SCE, there is some x̂i ∈ Xi such that a∗i ∈ ri (x̂∗i ) and fi (a∗i , x̂i) =

fi
(
a∗i , `i

(
a∗−i,Z

))
. By Lemma B a∗i ∈ ri

(
`i
(
a∗−i,Z

))
. This holds for each i, hence a∗ ∈ ANE

Z . �

Corollary 2 provides sufficient conditions for the equivalence between SCE and NE. Next, we

give sufficient conditions that allow a characterization of ASCE
Z by means of Nash equilibria of

auxiliary games.
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I.3 Equilibrium Characterization

If ai ∈ [0, āi] is interpreted as an activity level (e.g., effort) by player i, then it makes sense to say

that i is active if ai > 0 and inactive otherwise. Let I0 denote the set of players for whom

being inactive is justifiable. Note that, by Lemma A,

I0 = {i ∈ I : min ri (Xi) = 0} .

Also, for each Z ∈ Z and nonempty subset of players J ⊆ I, let ANE
J,Z denote the set of Nash

equilibria of the auxiliary game with players set J obtained by letting ai = 0 for each i ∈ I\J , that

is,

ANE
J,Z =

{
a∗J ∈ ×j∈JAj : ∀j ∈ J, a∗j = rj

(
`j

(
a∗J\{j},0I\J ,Z

))}
,

where 0I\J ∈ RI\J is the profile that assigns 0 to each i ∈ I\J . If J = ∅, let ANE
J,Z = {∅} by

convention, where ∅ is the peudo-action profile such that (∅,0I) = 0I .

Lemma C. Suppose that the parameterized nice game with aggregators and feedback G satisfies

observability by active players. Then, for each Z, the set of selfconfirming action profiles is

ASCE
Z =

⋃
I\J⊆I0

ANE
J,Z ×

{
0I\J

}
.

Proof Fix a∗ and let J be the set of players i such that a∗i > 0. Fix Z ∈ Z arbitrarily. Suppose

that a∗ ∈ ASCE
Z and fix any i ∈ I. If a∗i = 0, then 0 is justifiable for i, that is i ∈ I0. If a∗i > 0,

OiifA implies that fi,a∗i is injective, that is, action a∗i reveals the payoff state, hence the (shallow)

conjecture justifying a∗i is correct: a∗i = ri
(
`i
(
a∗−i,Z

))
. Thus, a∗ =

(
a∗J ,a

∗
I\J

)
is such that a∗i = 0

for each i ∈ I\J ⊆ I0, and a∗j = rj

(
`j

(
a∗J\{j},0I\J ,Z

))
> 0 for each j ∈ J . Hence,

a∗ =
(
a∗J ,a

∗
I\J

)
∈ ANE

J,Z ×
{
0I\J

}
with I\J ⊆ I0.

Let I\J ⊆ I0 and
(
a∗J ,a

∗
I\J

)
∈ ANE

Z ×
{
0I\J

}
. Since G satisfies OiffA, for each i ∈ I\J , any

conjecture justifying a∗i = 0 (any x̂i ∈ r−1
i (0)) is trivially confirmed. For each j ∈ J , a∗j > 0 is

by assumption the best reply to the correct, hence confirmed, conjecture x∗j = `i

(
a∗J\{j},0I\J ,Z

)
.

Hence,
(
a∗J ,a

∗
I\J

)
=
(
a∗J ,0I\J

)
∈ ASCE

Z . �

Appendix J Knowledge of the network and iterated strategic rea-

soning

The SCE concept does not rely, explicitly or implicitly, on strategic reasoning. Thus, some SCEs

may be supported by confirmed conjectures that are inconsistent with the assumption that other
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agents are rational and think strategically. In this section we consider what happens when agents

use the information they have about the network to perform iterated strategic reasoning and, at

the same time, to form conjectures about the unknowns that must be confirmed in a SCE. Thus we

analyze which SCEs are consistent with common belief in rationality, which may help in selecting

some SCEs when there is a multiplicity of equilibria. More specifically, when agents have some

information about the network, it is reasonable to assume that they use it to determine how they

should act. Indeed, using one step of reasoning, every agent may try to infer which actions her direct

neighbors may play, shape own conjectures accordingly, and depending on the knowledge about the

strategic interaction she is exposed to, determine the set of her own actions that are best replies

to such conjectures. Going further, she can take into account that her neighbors actions should be

best replies to conjectures consistent with the rationality her neighbors’ neighbors, and so on. This

yields a notion of rationalizability of conjectures, and a corresponding definition of selfconfirming

equilibrium with rationalizable conjectures, which is the object of our analysis in this section.

We obtain results for the cases analyzed in the previous sections of the paper, that is positive local

externalities, unconstrained local externalities, and positive local externalities joint with positive

global externalities.31

Knowledge and Deep Conjectures As defined in the previous sections, Z ⊆ [w, w̄]I×I is the set

of possible weighted networks and it represents the uncertainty space. We maintain the assumption

that Z is common knowledge, and that there is common knowledge of the parameterized payoff

functions. For the purposes of this analysis, we consider three possible cases. i) Z = {Z}, so that

the network is common knowledge; ii) Z = [0, w̄]I×I , so that the network Z is unknown, but it

is common knowledge that links must be non-negative and bounded, so that only positive local

externalities are possibile; iii) Z = [w, w̄]I×I , that means that Z is unknown, but it is common

knowledge that each link of the network Z is in the interval [w, w̄]. Besides common knowledge of

Z, we allow each agent to have deep conjectures, that is, conjectures about the network Z and

the actions of other agents in the network. For each agent i ∈ I, deep conjectures are defined as

probability measures µi ∈ ∆(A−i × Z) (see definition A in I.1). Notice that, if Z is a singleton,

the only uncertainty agents have is about others’ actions.

Rationalizability Given common knowledge of the parameterized game
〈
I,Z, (Ai, ui)i∈I

〉
, we

can characterize the behavioral implications of rationality and common belief in rationality (RCBR),

31Theoretically, we can distinguish among different elements that can be the object of knowledge: i) the pure

topological structure of the network (who is linked with whom); ii) the kind of interaction (complementarity or

substitution) that operates on each link; iii) the intensity of this interaction. Here we focus on two extreme cases,

common knowledge of the network Z, and just common knowledge of the uncertainty space Z, which may satisfy

some properties, such as positive local externalities. Thus, we ignore other intermediate cases that could be analyzed

within our framework. In particular, we ignore the possibility that agents have private information about the network,

which simplifies the analysis.

41



i.e., the set of action profiles consistent with these (so called) epistemic assumptions. A formal

expression of these epistemic assumptions and a characterization of their behavioral implications in

a class of games that contains those considered here is given, for example, in Battigalli and Tebaldi

(2019) and in Battigalli (2019). In our setting, an action profile is consistent with RCBR if and

only if, given Z, for every i ∈ I, it survives the following procedure of iterated elimination of non

best replies:

• A0
i = Ai,

• An+1
i =

{
a∗i ∈ Ai : ∃µi ∈ ∆(An

−i ×Z), a∗i ∈ arg maxai∈Ai Eµi [ui(ai, ·)]
}

,

• A∞i =
⋂
n∈N

Ani .

Definition E. An action ai of player i is rationalizable if ai ∈ A∞i . A conjecture µi of player i

is rationalizable if µi ∈ ∆(A∞−i ×Z).

As we did for the case of shallow conjectures, for each agent i ∈ I, we can restrict our attention

to deterministic deep conjectures (â−i, Ẑi) ∈ A−i × Z. We are allowed to use deterministic deep

conjectures because since A−i and Z and are compact and connected and thus, given the continuity

of ui and strict quasi-concavity of each section ui,a−i,Z, for every probabilistic deep conjecture

there exists a deterministic deep conjecture that delivers the same best reply (see Appendix I and

Battigalli 2019). This implies that if An
−i is compact and connected, than An+1

i is the compact

interval of best replies to deterministic conjectures (see Lemma A). By induction, this holds for

every step. To see this in detail, let C ⊆2A denote the collection of compact Cartesian subsets of

A. It is convenient to define the following selfmap

ρ : C → C,
C 7→ ×i∈Iri (`i (C−i ×Z)).

This is a selfmap because each best reply map ri◦`i is a continuous function, hence×i∈Iri (`i (C−i ×Z))

is a product of compact sets whenever C is. In words, ρ (C) is the set of profiles of best replies to

deterministic (deep) conjectures such that each i is certain that the co-players choose in C−i. Let

ρn = ρ ◦ ρn−1 denote the nth iteration of ρ. With this, the following result follows from Lemma A

and a straightforward induction argument:

Theorem A. In a parametrized nice game with aggregators

An = ρn (A) = ×i∈I [minAni ,maxAni ]

for all n ∈ N∪{∞}.
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Selfconfirming equilibrium with rationalizable conjectures Assuming observability of pay-

offs, we extend the definition of selfconfirming equilibrium to incorporate also the requirements of

rationalizability.

Definition F. A profile
(
a∗i , â−i, Ẑi

)
i∈I
∈ ×i∈I (Ai ×A−i ×Z) of actions and deterministic deep

conjectures is a selfconfirming equilibrium at Z with rationalizable conjectures (SCER) if,

for each player i ∈ I,

1. (best reply) a∗i ∈ ri
(
â−i, Ẑi

)
,

2. (confirmed conjectures, given observable payoffs) ui

(
a∗i , â−i, Ẑi

)
= ui

(
a∗i ,a

∗
−i,Z

)
.

3. (rationalizable conjectures) (â−i, Ẑi) ∈ A∞−i ×Z,

We denote by ASCER
Z the sets of SCE actions profiles justified by rationalizable confirmed

conjectures, given the commonly known parameter space Z. Note, this is the set of action profiles

consistent with the following assumptions: (a) player are rational, (b) players’ conjectures are

confirmed, and (c) there is common belief of (a). A stronger notion of “rationalizable selfconfirming

equilibrium” due to Rubinstein and Wolinsky (1994) is based on the following assumptions: (a)

player are rational, (b) players’ conjectures are confirmed, and (c*) there is common belief of (a)

and (b). We limit our analysis to the weaker SCER concept for two reasons: (i) it is simpler; (ii) to

our knowledge, there is no learning foundation of rationalizable SCE à la Rubinstein and Wolinsky,

whereas one can justify our concept by considering learning dynamics like those analyzed in this

paper, assuming that players always hold rationalizable conjectures because there is common belief

in rationality. Note that such belief cannot ever be falsified by what players observe, given that

they best respond to rationalizable conjectures, and therefore always choose rationalizable actions.

We now discuss how SCER actions are shaped depending on the type of strategic interaction

at work in the network.

Local Complementarities The first case analyzed in the previous sections of the paper is

when there are local complementarities or mild substitutions. For simplicity of exposition, we

consider just the case of positive local externalities. This is to say that when the actual network

is unknown, then Z = [0, w̄]I×I , while when the network is common knowledge then Z = {Z}
with Z ∈ [0, w̄]I×I . Letting Xi = `i (A−i ×Z), the hypothesis of Proposition 1 is satisfied, because

xi = 0 and min ri (Xi) = ri (0) = αi > 0. Thus, in the case of positive local externalities, the set

of SCE action profiles is a singleton that coincides with the unique (interior) Nash equilibrium.

Consequently, adding rationalizability on top of the SCE requirements does not change the result.

Indeed, the Nash equilibrium action profile is always rationalizable.

43



Corollary 3. In any network game, for every Z ⊆ [0, w̄I×I ] and for all Z ∈ Z, ASCE
Z = ASCER

Z =

ANE
Z .32

Even if with positive local externalities rationalizability does not change the set of SCE, it is

still interesting to understand how rationalizability works in a linear quadratic network game, and

more generally in nice games with strategic complementarities.

Given the finite index set I, the vector space RI is endowed with the standard partial order: v′ ≤ v′′

if and only if v′i ≤ v′′i for each i ∈ I. With this, our assumptions imply that Z ⊆ RI×I is a complete

lattice, which implies that also A × Z is a complete lattice. We let Z and Z̄ respectively denote

the smallest and largest elements of Z. Let Yi = A−i ×Z. A payoff function ui : Ai × Yi → R has

increasing differences if, for all a′i, a
′′
i ∈ Ai, x′i, x′′i ∈ Xi such that a′i ≤ a′′i and x′i ≤ x′′i

ui
(
a′′i , x

′
i

)
− ui

(
a′i, x

′
i

)
≤ ui

(
a′′i , x

′′
i

)
− ui

(
a′i, x

′′
i

)
.

Definition G. A network game has strategic complementarities if Z ⊆ [0, w̄]I×I is a complete

lattice and, for each i ∈ I, vi has increasing differences.

Remark G. If network game has strategic complementarities, then each game
〈
I, (Ai, ui,Z)i∈I

〉
with Z ∈ Z is supermodular.

It is well known that the set of Nash equilibria of a supermodular game is a complete lattice (e.g.

Milgrom and Roberts, 1990). With this, for any network game with strategic complementarities,

we let aNEZ and āNE
Z̄

respectively denote the smallest Nash equilibrium of game
〈
I,
(
Ai, ui,Z

)
i∈I

〉
and the largest Nash equilibrium of game

〈
I,
(
Ai, ui,Z̄

)
i∈I

〉
. The “box,” or order-interval in RI

determined by aNEZ and āNE
Z̄

is [
aNEZ , āNEZ̄

]
:= ×i∈I

[
aNEi,Z , ā

NE
i,Z̄

]
.

Proposition A. Consider a network game with strategic complementarities. The set of rational-

izable action profiles is A∞ =
[
aNEZ , āNE

Z̄

]
, that is, the set of rationalizable actions of each player

is the interval between the lowest Nash equilibrium action in the game determined by the lowest pa-

rameter Z and the highest Nash equilibrium action in the game determined by the highest parameter

Z̄.

Proof Consider an auxiliary game Ĝ where an indifferent pseudo-player chooses Z ∈ Z, and the

action sets and payoff functions of each i ∈ I are those specified in the network game NG given

Z. It is easy to verify that the auxiliary game Ĝ is supermodular and every Z ∈ Z is a Nash

equilibrium action for the indifferent pseudo-player, that is, the set of Nash equilibria of Ĝ is⋃
Z∈Z

ANE
Z × {Z} .

32As we noted for Proposition 1, the same result holds also for a non linear and continuous aggregator `i and a

generic continuous and strictly quasi-concave utility function vi.
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It is also easy to check that the set of rationalizable profiles of Ĝ is A∞ × Z, and Theorem A

implies that A∞ is an order-interval. Finally, Theorem 5 in Milgrom and Roberts (1990) implies

that the smallest element of A∞ ×Z is
(
aNEZ ,Z

)
and the largest element of A∞ ×Z is

(
āNE
Z̄

, Z̄
)
;

therefore, A∞ =
[
aNEZ , āNE

Z̄

]
.

Proposition A characterizes the set of rationalizable action profiles for a generic complete lattice

Z. It is straightforward to see that if the network Z is common knowledge, Z̄ = Z, then aNEZ = āNE
Z̄

,

since there exists a unique Nash equilibrium aNEZ , and A∞ =
{
aNEZ

}
, that is, rationalizability yields

the unique NE.

Unconstrained local externalities We consider now the case in which a network allows for

negative weights, so that Z = [w, w̄]I×I with w < 0 and w̄ > 0. The SCE analysis for this case

performed in Section 5 shows that a selfconfirming equilibrium with shallow conjectures may allow

any arbitrary set of agents to be inactive. Here we show that having knowledge of the network, and

using strategic iterated reasoning, may help in selecting some SCEs, even if we do not necessarily

get rid of all the non-Nash ones. The most intuitive reason for this result is that when strategic

substitutabilities are at work, the set of rationalizable action profiles is generically larger than the

set of Nash equilibria. Here, we characterize the set of SCE that survive strategic iterated reasoning.

Consider first two matrices Z− < 0 and Z+ > 0 such that Z = Z− + Z+. Z− is the matrix

reporting just the negative links of Z, and Z+ is the matrix reporting just the positive links of Z.

Define a sequence of pair of action profiles (an, ān)n∈N; an and ān are, respectively, the lower and

the upper bound on action profiles that survive n steps of iterated deletion of non best replies.

(an, ān)n∈N is such that a0 = 0, ā0 = ā · 1, and for every n ∈ N, an = α + Z+an−1 + Z−ān−1 and

ān = α+Z+ān−1 +Z−an−1. Then, at the nth step of iterated deletion of non dominated strategies,

the interval of actions agent i ∈ I can play is An
i = [ani , ā

n
i ]. Indeed, for each i ∈ I, ani is given by

a best reply to i) the highest possibile actions of neighbors towards whom i experiences strategic

substitution that can be rationalized after n steps of reasoning, and ii) the smallest possibile actions

of neighbors towards whom i experience strategic complementarities that can be rationalized after n

steps of reasoning. Similarly, āni is build considering the highest possibile actions for neighbors who

shows complementarity, and the smallest possible action for neighbors who shows substitutability.

Define I∗0 := {i ∈ I : limn→∞a
n
i = 0}. This is the set of agents for whom being inactive is

rationalizable. We can then characterize the set ASCER
Z . We first consider the case of common

knowledge of the network. Recall that, in this case, for each i ∈ I, deep conjectures are just

conjectures about A−i.
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Proposition B. Suppose that there is common knowledge of the network. Then, for all Z ∈ Z

ASCER
Z = ASCE

Z \

 ⋃
J :J∩(I\I∗0 ) 6=∅

ANE
I\J,Z × {0J}

 =
⋃

J :J⊆I∗0

ANE
I\J,Z × {0J} .

Proof. Let ĀZ :=
(⋃

J :J∩(I\I0)6=∅ANE
I\J,Z × {0J}

)
. We first prove that ĀZ ∩ ASCER

Z = ∅. By

inspection of the definition of ĀZ, for each āZ ∈ ĀZ, there exists an i ∈ I such that i) āZ,i = 0

and ii) i ∈ I \ I0, so that āZ,i = 0 is not rationalizable. Then āZ /∈ ASCER
Z . Since this holds for all

āZ ∈ ĀZ, then ĀZ ∩ASCER
Z = ∅.

We now prove that all the action profiles in ASCE
Z \ĀZ are part of ASCER

Z . Take a profile

a ∈ ASCE
Z \ĀZ. Consider an i ∈ I such that ai = 0. Then i ∈ I0 and, by the definition of I0,

ai ∈ A∞i . Then aI0 ∈ A∞I0 .

Define now J := {i ∈ I : ai > 0}. By Proposition 2, aJ ∈ ANE
J,Z , so that aJ ∈ A∞J,Z. Given linearity

of best reply functions, for each i ∈ J

r(aJ,−i) = r(aJ,−i,0) = r(aJ,−i,aI0). (b)

Given (b), and recalling that aI0 ∈ A∞I0 , a ∈ A∞. �

The characterization of selfconfirming equilibria with rationalizable conjectures under common

knowledge of the network makes it clear how rationalizability can refine the predictions of SCE.

Proposition B states that from the set of SCEs action profiles, we have to drop those in which there

are inactive agents forn whom being inactive is not a best reply to a rationalizable conjecture.

Indeed, subsets of the form J ∩ (I \ I0) 6= ∅ are those containing at least one agent for whom being

inactive is not rationalizable. Then
⋃
J :J∩(I\I0) 6=∅ANE

I\J,Z×{0J} identifies, among all the SCEs, the

ones in which at least one inactive agent plays a not rationalizable action. Once we drop these ac-

tion profiles, we characterize ASCER
Z as the SCE profiles where inactive agents are best responding

to a rationalizable conjecture, which is trivially confirmed.

We now provide two examples. The first one shows two cases in which rationalizability exactly

selects the unique Nash equilibrium. The second one shows that rationalizability restricts the set

of SCEs without converging to the Nash equilibria set.

Example G. Consider the network in Figure 2. This is a particularly simple network since each

agent experiences just strategic complementarities or just strategic substitutions. We now analyze

how the procedure of iterated elimination of non best replies selects a specific SCE out of all the

16 possible SCEs. As in Figure 2, we first consider the case in which the magnitude of local

externalities and substitutabilities is 0.2, so that a unique interior Nash equilibrium exists which is

given by (0.1267, 0.1603, 0.0412, 0.1335). We now study how the vector of lower and upper bounds

(a and ā) is shaped for each agent at each step of the iterative reasoning.
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a0 =(0, 0, 0, 0) ā0 =(1, 1, 1, 1)

a1 =(0.1, 0.1, 0, 0.1) ā1 =(0.3, 0.7, 0.1, 0.5)

a2 =(0.12, 0.14, 0, 0.12) ā2 =(0.2, 0.28, 0.06, 0.18)

a3 =(0.124, 0.148, 0.008, 0.124) ā3 =(0.136, 0.19, 0.048, 0.15)

a4 =(0.1248, 0.151, 0.032, 0.126) ā4 =(0.130, 0.17, 0.045, 0.136)

a5 =(0.1252, 0.156, 0.039, 0.131) ā5 =(0.127, 0.162, 0.044, 0.135)

In this case we get convergence to the unique Nash equilibrium. Notice that, in the first two rounds,

agents think that agent 3 may reasonably stay inactive because of substitutability. It takes 3 rounds

to understand that, given what others can choose, these substitutabilities are not very strong, and

agent 3’s neighbors’ largest actions are not high enough, to make agent 3 inactive.

We now consider the case of a higher level of substitution. Let the magnitude of local externalities

and substitutabilities be w = 0.5 and keep the network topology fixed. In this case the unique

Nash equilibrium is given by (0.2, 0.3, 0, 0.2).

a0 =(0, 0, 0, 0) ā0 =(1, 1, 1, 1)

a1 =(0.1, 0.1, 0, 0.1) ā1 =(0.6, 1.6, 0.1, 1.1)

a2 =(0.15, 0.2, 0, 0.15) ā2 =(0.65, 1., 0, 0.45)

a3 =(0.175, 0.25, 0, 0.175) ā3 =(0.32, 0.65, 0, 0.42)

a4 =(0.187, 0.27, 0, 0.187) ā4 =(0.31, 0.47, 0, 0.26)

a5 =(0.193, 0.28, 0, 0.193) ā5 =(0.23, 0.38, 0, 0.25)

a6 =(0.196, 0.293, 0, 0.196) ā6 =(0.22, 0.34, 0, 0.215)

a7 =(0.198, 0.296, 0, 0.198) ā7 =(0.207, 0.32, 0, 0.214)

Again there is convergence to the unique Nash equilibrium. Notice that in this case strategic

substitution is so strong that the only rationalizable action for agent 3 is to be inactive.

In the previous example we show how rationalizability selects exactly one equilibrium (the Nash

one) out of the 16 SCEs. These ones were easy cases since each agent just experiences only strategic

complementarities or only strategic substitutions. We now consider a modified network in which

agent 3 have links of different signs to give an example of a network with more heterogeneity in

strategic relations, in which iterated strategic reasoning does not converge to a unique action profile.

Example G. Consider again the network in Figure 2, in which the sign of the link from agent
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3 to agent 2 is changed from negative to positive. Let the magnitude of local externalities and

substitutabilities be 0.5. In this case the iterative process is as follows

a0 =(0, 0, 0, 0) ā0 =(1, 1, 1, 1)

a1 =(0.1, 0.1, 0, 0.1) ā1 =(0.6, 1.6, 0.6, 1.1)

a2 =(0.15, 0.2, 0, 0.15) ā2 =(0.65, 1.25, 0.85, 0.7)

a3 =(0.17, 0.25, 0, 0.17) ā3 =(0.45, 1.2, 0.65, 0.85)

a4 =(0.18, 0.27, 0, 0.18) ā4 =(0.52, 1.075, 0.61, 0.65)

a5 =(0.193, 0.28, 0, 0.193) ā5 =(0.42, 0.993, 0.54, 0.668)

a6 =(0.196, 0.293, 0, 0.196) ā6 =(0.43, 0.918, 0.5, 0.584)

a7 =(0.198, 0.296, 0, 0.198) ā7 =(0.39, 0.859, 0.46, 0.567)

a8 =(0.199, 0.298, 0, 0.199) ā8 =(0.383, 0.81, 0.43, 0.526)

The iteration continues not far from the last values reported. By intersecting the interval of each

agent’s A∞i with the set of SCE, there are just two SCEs with rationalizable conjectures. In details,

the equilibrium in which every agent is active, that is the Nash equilibrium (0.26, 0.48, 0.18, 0.32),

and the equilibrium in which only 3 is inactive, that is (0.2, 0.3, 0, 0.2), that is not a Nash equilib-

rium.

Finally, we note that when it is common knowledge that complementarities and substitutabil-

ities are mild then there is a unique SCER, which—necessarily—coincides with the unique Nash

equilibrium. This is the case, for example, if − α
(n−1)ā < w and w̄ < ā−α

(n−1)α , and this is com-

mon knowledge, then rationalizability yields to the unique interior Nash equilibrium. One can get

intermediate results by changing the threshold for just one of w and w̄.

Local and global externalities We consider now the case of both local and global externalities.

As discussed in Section 7, we restrict our attention to situations in which local externalities are

positive. In this case, there is a continuum of SCEs, one for each vector of perceived centralities.

We now study whether iterated strategic reasoning helps in selecting some SCEs. The main result

is that, if there is common knowledge of the network, iterated strategic reasoning selects the unique

interior Nash equilibrium among the infinite possible SCEs.

Proposition C. Consider a network game with positive local externalities, global externalities,

common knowledge of the network (Z = {Z}), and a unique Nash equilibrium that is interior.

Then ASCER
Z = ANE

Z

48



Proof. The result follows from Theorem A. Indeed the game we are considering has strategic

complementarities. Then, A∞ =
[
aNEZ , āNE

Z̄

]
. Since Z is common knowledge, and there exists a

unique interior Nash equilibrium, it follows that A∞Z =
{
aNEZ

}
. Then, ASCER

Z =
{
aNEZ

}
. �

We can alternatively prove it by showing how iterative reasoning works in this case. Recall

that if network is common knowledge and there are just strategic complementarities, then agents

can only have positive justifiable actions. Consider a0 = α and ā0 = ā. If the network is common

knowledge, then

a1 =α + Zα, ā1 =α + Zā

a2 =α + Z(α + Zα), ā1 =α + Z(α + Zā)

=α + Zα + Z2α, =α + Zα + Z2ā

a3 =α + Zα + Z2α + Z3α, ā3 =α + Zα + Z2α + Z3ā

. . . . . .

an =α
n∑
t=0

Zt, ān =α
n−1∑
t=0

Zt + Znā

Since the game is assumed to have an unique Nash equilibrium that is also interior, then limn→∞
∑n

t=0 Zn

exists and it is finite, and limn→∞ Zn = 0. Then a∞ = ā∞ = aNEi . Then, since A∞Z = ANE
Z =

{aNE} ⊇ ASCE
Z , it follows that ASCER

Z = A∞Z ∩ASCE
Z = ANE

Z .

Appendix K Interior Nash equilibria

Proposition 2 in Section 5 show that in our framework there exists an equivalence between any

selfconfirming equilibrium and the Nash equilibrium of a reduced game in which only active agents

are considered and there is also OiffA. Moreover, we can set any subset of agents to be inactive.

We now provide some results about existence of these selfconfirming equilibria, that will be useful

in proving Proposition 3 in Section 5. We first present sufficient conditions that are present in the

literature for the existence of interior Nash equilibria, then we provide some original results.

In this appendix we formulate the problem as a linear algebra problem. We consider a square

matrix Z ∈ Rn×n such that zii = 0 for all i ∈ {1, . . . , n}. We call I the identity matrix, λmax(Z)

the maximal eigenvalue of Z, ρ(Z) the spectral radius of Z (i.e. the largest absolute value of its

eigenvalues), 1 is the vector of all 1’s, 0 is the vector of all 0’s, and � is the strict partial ordering

between vectors (meaning that all the elements in the first vector are pairwise strictly greater than

the elements in the second vector).

Proposition D. If for all i, zii = 0, for all j 6= i, zij ≤ 0, and if ρ(Z) < 1, then (I− Z)−1 1� 0.33

33This is Theorem 1 in Ballester et al. (2006). The same result is in Appendix A in Stańczak et al. (2006).
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There are also results when the sign of the externalities are mixed. Recall that matrix Z is

symmetrizable if there exists a diagonal matrix W and a symmetric matrix Z0 such that Z = WZ0.

Note that if Z is symmetrizable then all its eigenvalues are real. If for all i, zii = 0, and Z is

symmetrizable, we define the symmetric matrix Z̃ to be such that z̃ij = zij
√
wiwj .

Proposition E. If for all i, zii = 0, Z is symmetrizable, and if |λmax(Z̃)| < 1, then (I− Z)−1 1�
0.34

We provide here below an alternative condition, which does also guarantee all positive solutions.

Proposition F. Consider a square matrix Z ∈ Rn×n such that:

• zii = 0 for all i ∈ {1, . . . , n};

• |zij | < 1
n for all i, j ∈ {1, . . . , n}.

Then (I− Z)−1 1� 0.

Proof: Call B = (I− Z). First of all, by Gershgorin circle theorem, B has all eigenvalues, possibly

complex, with real part strictly between 0 and 2, so det(B) 6= 0.

Consider the n vectors b1, . . . ,bn given by the n rows of B, and take the hyperplane in Rn passing

by those n points:

H = {h ∈ Rn : ∃α ∈ Rn with α′ · 1 = 1 and h = B′α} .

Now, consider the following vector

v = B−11 .

vi is exactly the sum of the elements in ith row of B−1. However, v is also a vector perpendicular

to H. That is because for any h ∈ H we have

h · v =
(
B′α

)′ ·B−11

= α′1

=
n∑
i=1

αi = 1 ,

which is a constant.

Now, we want to show that H does not pass through the convex region of vectors with all

non-postitive elements: H ∩ (−∞, 0]n = ∅. In fact, it is impossible to find w ∈ Rn, such that

34See Section VI of Bramoullé et al. (2014), generalizing Proposition 2 therein. Note that in their payoff specification

externalities have a minus sign, while in (6) we have a plus sign: this is why we have a condition on the maximal

eigenvalue and not on the minimal eigenvalue.
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w′ · 1 = 1 and B′w� 0. If it was the case, by absurdum, we could take k = arg maxi∈{1,...,n}{wi}
(αk > 0 because

∑n
i=1wi = 1), and write

wbk = wk +
∑
j 6=k

wjbjk > wk −
∑
j 6=k
|wj ||zjk| > wk

1−
∑
j 6=k
|zjk|

 > 0 ,

which would be a contradiction.

Finally, we show that if an hyperplane H satisfies H ∩ (−∞, 0]n = ∅, then its perpendicular

vector from the origin has all positive elements, and this would close the proof .

We do so by induction on n.

1. n = 2: This is easy to show graphically. In the Cartesian plane the hyperplane is a line. Not

passing by (−∞, 0]2, it will cross both axis in their strictly positive part: call these intersection

points A and B. So, the segment that from the origin crosses this line perpendicularly will

cross it in a point C that on the line lies between A and B.

2. Induction hypothesis: Suppose it is true for n = m− 1.

3. Induction step: a vector v ∈ Rm from the origin which is perpendicular to an hyperplane

H not passing through the origin can be obtained in the following way. For each dimension

i ∈ {1, . . . ,m} take V¬i = {v ∈ Rm : vi = 0}. Call H¬i the intersection of H with V¬i,

and take a vector v¬i ∈ V¬i from the origin that is perpendicular to H¬i. By the induction

hypothesis v¬i has all positive elements. We can obtain the vector v from the origin that is

perpendicular to H by rescaling each v¬i, such that v¬i is the projection of v on H¬i. By

construction, v will have all positive elements.

Notice that, if Z satisfies the conditions of Proposition F, then it must also hold that |λmax(Z)| <
1, because of Gershgorin circle theorem. However, the condition that |λmax(Z)| < 1 is in general

not sufficient to guarantee that (I− Z)−1 1� 0. �

Appendix L Proofs

Proof of Proposition 1

Proof. Since every agent is active, state observability by active players implies own action

independence of the feedback about the state. Then, the result derives from Corollary 2 in Appendix

I. �

Proof of Proposition 2

Proof. By Remark C, NG satisfies observability by active players. Hence, Lemma C in Appendix

I and the best reply equation (8) yield the result. �
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Proof of Proposition 3

Proof. Condition (i), (ii) and (iii) correspond, respectively, to the conditions in Propositions F,

D and E from Appendix K. �

Proof of Proposition 4

Proof. If for every i ∈ I\Ia∗ we have that α+ x̂i < 0, then perturbing x̂i such that the inequality

is still strict, it will not make i become active.

So, let us focus on the subset Ia∗ of active agents. For each i ∈ Ia∗ , a perturbation in x̂i induces a

change in the corresponding ai. Assumption 4 guarantees that the discrete dynamic system defined

for actions by (10) and (11) is stable. So, the perturbation of beliefs can always be small enough

such that all actions of agents in Ia∗ remain strictly positive;

we are in a neighborhood of a∗ in the actions’ space, such that the discrete dynamical system

defined for actions by (10) and (11) converges back to a∗. �

Proof of Proposition 5

Proof. When we remove elements from Ja and set them to 0, it is as if we delete corresponding

rows and columns in the ZJa matrix. By the Cauchy interlace theorem applied to symmetrizable

matrices (see Kouachi 2016) we know that the eigenvalues of the new matrix are between the

minimal and the maximal eigenvalues of the old matrix. �

Proof of Proposition 6

Proof. A selfconfirming equilibrium is such that, for all i ∈ I, rationality implies

a∗i = max{0, αi + x̂i} .

Each agent then thinks that

m∗ = αia
∗
i −

1

2
(a∗i )

2 + a∗i x̂i + ŷi ,

so that

ŷi = m∗ − αia∗i +
1

2
(a∗i )

2 − a∗i x̂i .

Substituting the expression of the true payoff function

m∗ = αia
∗
i −

1

2
(a∗i )

2 + a∗ixi + yi

into it, we get the dependence between ŷi and x̂i:

ŷi = yi + a∗i (xi − x̂i) .

The first and second items in the proposition are derived, respectively, if a∗i = 0 or a∗i > 0. �
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Proof of Proposition 7

Proof. The Nash equilibrium of the game with payoff function (13) played on a complete network,

is such that each player i ∈ I best responds to w
∑

k 6=i ak. Because of symmetry, each player i ∈ I
plays ai = α

1−(n−1)w .

For each profile a, each player i, by perfect recall of her own action, can correctly infer the value of

aiw
∑

j∈I\{i}

z0,ijaj + β
∑
k 6=i

ak . (c)

At the same time, since each player i thinks to be the central player of the line, she thinks that

what she observes is

(aiw + β)
∑

k∈I\{i}

ak . (d)

So, she would extrapolate v , dividing (c) by (aiw+β), because this would be the correct procedure

if (d) was true. This means that, for her, `i
(
a∗−i,Z

)
is

w

aiw
∑

j∈I\{i} z0,ijaj + β
∑
k 6=i

ak

aiw + β
.

This quantity is equal to the NE of the correct network Z0 when β = 0. It grows with β. Finally,

as β →∞ this quantity converges to w
∑

k 6=i ak for every player i. �

Proof of Proposition 8

Proof. First, we derive some properties. Each equation in the system given by (18) can be

written as a parabola b1a
2
i + b2ai + b3 = 0, in the following way

Hi(a, c,Z) = ci︸︷︷︸
:=b1

a2
i +

1− αci − ci

∑
j∈I

zijaj,t


︸ ︷︷ ︸

:=b2

ai

−

1 + ci

β∑
j 6=i

aj,t


︸ ︷︷ ︸

:=b3

= 0 . (e)

So, for each i ∈ I, the solution a∗i is such that `i(a, c,Z) = 0 lays in the right–arm of an upward

parabola, where d`i
dai

∣∣∣
ai=a∗i

> 0. Each `i(a, c,Z) is linear in ci.

Note also that each ai is bounded in the interval

α < ai < α+

∑
j∈Ni

zijaj

+ β

∑
k 6=i ak

ai
.
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Considering that a∗i is increasing in b3 and decreasing in b2, it is easy to see that each a∗i increases

in each aj , with j 6= i.

Second, we show that there is a homeomorphism. There is a continuous function defined

from each c ∈ [0, 1]n to an element a ∈ A, that is because

• either ci = 0 and then a∗i = α;

• or ci > 0 and then each a∗i is continuously increasing in each xj with j 6= i.

lim
ci→0

a∗i = α .

a∗i is bounded above by

α+

∑
j∈Ni

zijaj

+ β

∑
j 6=i aj

a∗i
.

Since the system defined by (19) admits a solution, also this system has a finite solution.

This function is one–to–one and invertible, because for each a ∈ A, we obtain a unique vector

c ∈ [0, 1]n, and since we obtain it from a linear system of equations, also the inverse function from

A to [0, 1]n is continuous.

To analyze the relation between a∗ and c, we can apply the implicit function theorem to

Fi(a, c,Z).

We can compute
dFi
dci

=
β
∑

j 6=i aj,t

(aici + 1)2

Now, since

`i(a, c,Z) = −(aici + 1)Fi(a, c,Z) ,

we have that `i(a, c,Z), with respect to ai, has the same zeros as Fi(a, c,Z), and that, for each ai,

`i(a, c,Z) is negative if and only if Fi(a, c,Z) is positive. As they are both continuous functions,

this means that since d`i
dai

∣∣∣
ai=a∗i

> 0, we have dFi
dai

∣∣∣
ai=a∗i

< 0. So, we obtain that

dai
dvi

∣∣∣∣
ai=a∗i

= − ∂Fi/∂ci
∂Fi/∂ai

∣∣∣∣
ai=a∗i

> 0 . (f)

This shows that a∗i is increasing with vi, and vice versa. �
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Proof of Proposition 9

Proof. We consider the system (18)

Fi(a,v,Z) = α+ ci

β∑
j 6=i

aj,t

 aic
′
i + 1

aici + 1
− ai = 0 ,

with c′i,t =
∑

j∈I zijaj,t
β
∑

j 6=i aj,t
. We can compute its Jacobian, with respect to a, and check that each row

of the Jacobian sum to less than 1, so that the process is always a contraction. The Jacobian J is

such that, for each i, j ∈ I:{
Jij = vi

aici+1 (β + aizij)

Jii = ci

(
β
∑

j 6=i aj

)(
c′i

aici+1 − ci
aic
′
i+1

(aici+1)2

)
− 1

The sum of each row of the Jacobian is

∑
j∈I

Jij =
ci

aici + 1

β
∑
j 6=i

aj

(c′i − ciaic′i + 1

aici + 1

)
+ ai

∑
j 6=i

zi,j

+ β(n− 1)

− 1 (g)

Let us analyze expression (g) with respect to ai, for any ai ≥ 0.

First note that

lim
ai→∞

∑
j∈I

Jij =
∑
j 6=i

zi,j − 1 , (h)

whose absolute value is less than one by assumption.

Moreover,

lim
ai→0

∑
j∈I

Jij = ciβ

∑
j 6=i

aj

(c′i − ci)+ (n− 1)

− 1 . (i)

An interior maximum or minimum of the numerical expression (g), with respect to ai, must satisfy

first order condition

−
(

ci
aici + 1

)2
β

∑
j 6=i

aj

(c′i − ciaic′i + 1

aici + 1

)
+ ai

∑
j 6=i

zi,j

+ β(n− 1)


+

ci
aici + 1

β
∑
j 6=i

aj

( ci
aici + 1

)(
c′i − ci

aic
′
i + 1

aici + 1

)
+

∑
j 6=i

zi,j

 = 0

Last expression can be simplified and results in

viβ(n− 1) =
∑
j 6=i

zi,j ,
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which is independent on ai. So, the only candidates for being minima or maxima for espression (g)

are its value in the extrema, namely (h) and (i).

Also, the sign of the first derivative of (g) with respect to ai is equal to the sign of
∑

j 6=i zi,j −
ciβ(n− 1). So, if ciβ(n− 1) <

∑
j 6=i zi,j we have that (g) is strictly increasing in ai, and then (h)

is strictly greater than (i).

The value of (h) is between −1 and 1, by assumption, because 0 <
∑

j 6=i zi,j < 2.

The quantity in (i) is minimized by vi → 0; and c′i → 0. In this case (i) goes to −1 from the

right, and for any ci > 0 it will be greater than −1. This complete the proof, because we have

shown that any row of the Jacobian J sums to a number between −1 an 1. �
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Stańczak, S., Wiczanowski, M. and Boche, H. (2006). Resource allocation in wireless net-

works: theory and algorithms. Springer Science & Business Media.

Tarbush, B. and Teytelboym, A. (2017). Social groups and social network formation. Games

and Economic Behavior, 103, 286–312.

Westbrock, B. (2010). Natural concentration in industrial research collaboration. The RAND

Journal of Economics, 41 (2), 351–371.

Zenou, Y. (2016). Key players. Oxford Handbook on the Economics of Networks, Yann Bramoullé,
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