Bank Competition, Information Choice and Inefficient Lending Booms

Silvio Pettriconi

Bocconi University and IGIER
silvio.petriconi@unibocconi.it

Jun 24, 2014
Introduction

Motivation

▶ in the last two decades we have seen substantial deregulation of banking industry in most countries (Abiad et al., 2008)
Introduction

Motivation
- in the last two decades we have seen substantial deregulation of banking industry in most countries (Abiad et al., 2008)
- in the U.S.,
 - 1994 Riegle-Neal Act: no more interstate banking and branching restrictions
 - 1999 Gramm-Leach-Bliley Act: lifting of Glass-Steagall separation between investment banking and commercial banking
Motivation

- in the last two decades we have seen substantial deregulation of banking industry in most countries (Abiad et al., 2008)
- in the U.S.,
 - 1994 Riegle-Neal Act: no more interstate banking and branching restrictions
 - 1999 Gramm-Leach-Bliley Act: lifting of Glass-Steagall separation between investment banking and commercial banking
- these reforms have increased banking competition and are thought to have increased availability of credit

Can more banking competition foster inefficient lending booms?
Introduction

Motivation

▶ in the last two decades we have seen substantial deregulation of banking industry in most countries (Abiad et al., 2008)
▶ in the U.S.,
 ▶ 1994 Riegle-Neal Act: no more interstate banking and branching restrictions
 ▶ 1999 Gramm-Leach-Bliley Act: lifting of Glass-Steagall separation between investment banking and commercial banking
▶ these reforms have increased banking competition and are thought to have increased availability of credit
▶ but is it possible that competition has prompted *too much* lending?
 ▶ U.S. Senior Loan Officer Survey hints at a competition channel behind the 2003-2006 boom in residential mortgage lending

Can more banking competition foster inefficient lending booms?
Today I show you a model in which increasing bank competition exerts harmful pressure on lending standards.

I have two key results:
Key Results

Today I show you a model in which increasing bank competition exerts harmful pressure on lending standards.

I have two key results:

1. competition inefficiently lowers lending standards and increases the number of bad loans
Key Results

Today I show you a model in which increasing bank competition exerts harmful pressure on lending standards.

I have two key results:

1. competition inefficiently lowers lending standards and increases the number of bad loans
2. more competition reduces lenders’ incentives to screen their borrowers thoroughly
Key Results

Today I show you a model in which increasing bank competition exerts harmful pressure on lending standards.

I have two key results:

1. competition inefficiently lowers lending standards and increases the number of bad loans
2. more competition reduces lenders’ incentives to screen their borrowers thoroughly

Both effects are procyclical.

Together, they match the stylized facts about lending booms quite well.
Intuition

Informational Spillovers
Assume for example the following legislation:

- banks have to make credit offers in writing
- no fees for loan applications
Intuition

Informational Spillovers
Assume for example the following legislation:

- banks have to make credit offers in writing
- no fees for loan applications

Then informed banks’ actions become observable to uninformed competitors —→ *informational free-riding*!
Intuition

Informational Spillovers
Assume for example the following legislation:
- banks have to make credit offers in writing
- no fees for loan applications

Then informed banks’ actions become observable to uninformed competitors → *informational free-riding!*

The informed bank’s optimal response to threat of entry by informational free-riders:
- “poison the well” by making bad loans to prevent customer poaching
Intuition

Informational Spillovers
Assume for example the following legislation:
- banks have to make credit offers in writing
- no fees for loan applications

Then informed banks’ actions become observable to uninformed competitors → informational free-riding!

The informed bank’s optimal response to threat of entry by informational free-riders:
- “poison the well” by making bad loans to prevent customer poaching
- approval of bad loans implies poor use of information from screening
 → choose less precise screening ex-ante

With more competition, these distortions become more pronounced.
Related Literature

Literature on Competition and Credit Screening

Adverse Selection to Deter Entry
- Dell’Ariccia et al. (1999)

Competition in Banking and Information Choice
- Hauswald and Marquez (2003), Hauswald and Marquez (2006)

Theories of Lending Booms

Empirical Literature on Lending Procyclicality and Booms
- Berger and Udell (2005), Lown and Morgan (2006)
Outline

Outline:

The Model

Planner’s Solution

Two Key Results about Equilibrium under Competition

Lending Cycles

Conclusions
The Model
Model (1)

Heterogeneous Entrepreneurs:
- two islands $j \in \{1, 2\}$
- each island has a continuum of mass 1 of wealthless entrepreneurs, indexed by $i \in [0, 1]$
- option to run risky project: invest one unit at time t, obtain in $t + 1$ a payoff

\[
X_i = \begin{cases}
 R & \text{with probability } p_i \\
 r & \text{with probability } 1 - p_i
\end{cases}
\]

(1)

- $p_i \sim U(\bar{p} - \frac{\epsilon}{2}, \bar{p} + \frac{\epsilon}{2})$, private knowledge
- no signaling or self-selection mechanisms available
Model (II)

Bank:
- one risk neutral bank on each island with unlimited access to funds at cost ρ
- lending abroad incurs extra cost $\gamma > 0$ per loan
- bank uses costless credit-worthiness test
- precision of the test is given by the bank's screening precision $\lambda \in [0, 1)$
- screening precision λ is costly: convex cost function $c(\lambda)$ with $c(0) = 0$, $c'(\lambda) > 0$, $\lim_{\lambda \to 1} c(\lambda) = \infty$.
- screening works only for entrepreneurs on the same island
Model (II)

Bank:

- one risk neutral bank on each island with unlimited access to funds at cost ρ
- can lend both domestically and on other islands

- screening works only for entrepreneurs on the same island
Model (II)

Bank:
- one risk neutral bank on each island with unlimited access to funds at cost ρ
- can lend both domestically and on other islands
- lending abroad incurs extra cost $\gamma > 0$ per loan
Model (II)

Bank:
- one risk neutral bank on each island with unlimited access to funds at cost ρ
- can lend both domestically and on other islands
- lending abroad incurs extra cost $\gamma > 0$ per loan
- bank uses costless credit-worthiness test to assess borrower quality
Model (II)

Bank:
- one risk neutral bank on each island with unlimited access to funds at cost ρ
- can lend both domestically and on other islands
- lending abroad incurs extra cost $\gamma > 0$ per loan
- bank uses costless *credit-worthiness test* to assess borrower quality
- precision of the test is given by the bank’s *screening precision* $\lambda \in [0, 1)$:
 - test yields the true type p_i with probability λ, otherwise random noise that is drawn from prior distribution
 - the bank does not know whether signal is informative or just noise, uses Bayesian updating of beliefs
Model (II)

Bank:

- one risk neutral bank on each island with unlimited access to funds at cost ρ
- can lend both domestically and on other islands
- lending abroad incurs extra cost $\gamma > 0$ per loan
- bank uses costless *credit-worthiness test* to assess borrower quality
- precision of the test is given by the bank’s *screening precision* $\lambda \in [0, 1)$
- screening precision λ is costly: convex cost function $c(\lambda)$ with $c(0) = 0$, $c'(\lambda) > 0$, $\lim_{\lambda \to 1} c(\lambda) = \infty$.

Model (II)

Bank:
- one risk neutral bank on each island with unlimited access to funds at cost ρ
- can lend both domestically and on other islands
- lending abroad incurs extra cost $\gamma > 0$ per loan
- bank uses costless *credit-worthiness test* to assess borrower quality
- precision of the test is given by the bank’s *screening precision* $\lambda \in [0, 1)$
- screening precision λ is costly: convex cost function $c(\lambda)$ with $c(0) = 0$, $c'(\lambda) > 0$, $\lim_{\lambda \to 1} c(\lambda) = \infty$.
- screening works only for entrepreneurs on the same island
Model: Timing

Timing:

1. Each bank
 - chooses its screening precision λ^j (observable to everyone),
 - pays screening cost $c(\lambda^j)$ and
 - observes private signal $\sigma_{i,\lambda}$ for every project $i \in [0, 1]$

2. both banks choose their domestic *loan portfolio* comprising of
 - a set \mathcal{P}_j of projects to be offered a loan, and
 - state-contingent repayment terms (D_i, d_i) for every project $i \in \mathcal{P}_j$.

3. each bank observes the domestic loan offers made on the other island and chooses whether and under which terms $(O_{i}^{j'}, \sigma_{i}^{j'})$ to offer outside credit to loan-approved entrepreneurs
 - ⇒ informational spillover

4. entrepreneurs choose loan offer with lowest expected repayment rate; if indifferent, they stay with the domestic bank.
Benchmark: The Planner’s Solution
Planner’s Solution

Planner’s Problem:
1. choose screening precision λ, pay $c(\lambda)$
2. observe signals, update beliefs, and
3. determine projects to be financed such that surplus is maximized.

Solution: by backward induction.

1. given posterior beliefs after observing the signal, find welfare-maximizing portfolio of projects to finance
2. choose screening precision λ^* as to maximize total welfare
Dispersion of Posterior Beliefs

Posterior beliefs:
Bayesian updating of beliefs conditional on observing a signal realization s_i yields

$$E[p_i|\sigma_i = s_i] = \lambda s_i + (1 - \lambda)\bar{p}$$

More screening precision generates more dispersion in posterior expectations (see Ganuza and Penalva, 2010):

$$E[p_i]$$

\[\bar{p} + \frac{\varepsilon}{2} \]
\[\bar{p} \]
\[\bar{p} - \frac{\varepsilon}{2} \]

prior \hspace{5cm} posterior
Dispersion of Posterior Beliefs

Posterior beliefs:
Bayesian updating of beliefs conditional on observing a signal realization s_i yields

$$E[p_i|\sigma_i = s_i] = \lambda s_i + (1 - \lambda)\bar{p}$$

More screening precision generates more dispersion in posterior expectations (see Ganuza and Penalva, 2010):

$E[p_i]$
Planner’s Optimal Portfolio Choice

Finding the marginal project:

\[\pi(q) = qR + (1-q)r - \rho = 0 \]

\[\iff q = \frac{\rho - r}{R - r} \]

Reminder:

- \(R \) payoff upon project success
- \(r \) payoff upon project failure (liquidation)
- \(\rho \) Bank refinancing rate

\(q \) is **high** in recession, **low** in boom.

Remark

The planner’s optimal portfolio choice is to finance all projects for which

\[E[p_i|s_i] > q \]
Planner’s Optimal Portfolio Choice (II)

Credit Mass: Size of the second-best portfolio is

\[
m^{SB}_\lambda = \begin{cases}
0 & \text{if } q - \bar{p} \geq +\frac{\lambda \varepsilon}{2} \\
\bar{p} & < q < +\frac{\lambda \varepsilon}{2} \\
1 & \text{if } q - \bar{p} \leq -\frac{\lambda \varepsilon}{2}
\end{cases}
\]
Credit Mass: Size of the second-best portfolio is

\[m^S_B = \begin{cases}
0 & \text{if } q - \bar{p} \geq +\frac{\lambda \varepsilon}{2} \\
\frac{1}{2} - \frac{q - \bar{p}}{\lambda \varepsilon} & \text{if } -\frac{\lambda \varepsilon}{2} < q - \bar{p} < +\frac{\lambda \varepsilon}{2}
\end{cases} \]
Credit Mass: Size of the second-best portfolio is

\[m^{SB}_\lambda = \begin{cases}
0 & \text{if } q - \bar{p} \geq +\frac{\lambda \epsilon}{2} \\
\frac{1}{2} - \frac{q - \bar{p}}{\lambda \epsilon} & \text{if } -\frac{\lambda \epsilon}{2} < q - \bar{p} < +\frac{\lambda \epsilon}{2} \\
1 & \text{if } q - \bar{p} \leq -\frac{\lambda \epsilon}{2}
\end{cases} \]
Planner’s Optimal Portfolio Choice (II)

Credit Mass: Size of the second-best portfolio is

$$m_{\lambda}^{SB} = \begin{cases}
0 & \text{if } q - \bar{p} \geq +\frac{\lambda \epsilon}{2} \\
\frac{1}{2} - \frac{q - \bar{p}}{\lambda \epsilon} & \text{if } -\frac{\lambda \epsilon}{2} < q - \bar{p} < +\frac{\lambda \epsilon}{2} \\
1 & \text{if } q - \bar{p} \leq -\frac{\lambda \epsilon}{2}
\end{cases}$$

\[E[p_i]\]

\[
\bar{p} + \frac{\epsilon}{2}
\]

\[
\bar{p}
\]

\[
\bar{p} - \frac{\epsilon}{2}
\]

prior

posterior

\[q\]
Credit Mass: Size of the second-best portfolio is

\[
m^*_{SB} = \begin{cases}
0 & \text{if } q - \bar{p} \geq +\frac{\lambda \varepsilon}{2} \\
\frac{1}{2} - \frac{q - \bar{p}}{\lambda \varepsilon} & \text{if } -\frac{\lambda \varepsilon}{2} < q - \bar{p} < +\frac{\lambda \varepsilon}{2} \\
1 & \text{if } q - \bar{p} \leq -\frac{\lambda \varepsilon}{2}
\end{cases}
\]

Which expression holds for given screening precision \(\lambda \) and cut-off \(q \)?
Planner’s Optimal Portfolio Choice (II)

Credit Mass: Size of the second-best portfolio is

\[m_{SB}^\lambda = \begin{cases}
0 & \text{if } q - \bar{p} \geq +\frac{\lambda \varepsilon}{2} \\
\frac{1}{2} - \frac{q - \bar{p}}{\lambda \varepsilon} & \text{if } -\frac{\lambda \varepsilon}{2} < q - \bar{p} < +\frac{\lambda \varepsilon}{2} \\
1 & \text{if } q - \bar{p} \leq -\frac{\lambda \varepsilon}{2}
\end{cases} \]

Which expression holds for given screening precision \(\lambda \) and cut-off \(q \)?
Credit Mass: Size of the second-best portfolio is

\[m_{SB}^{\lambda} = \begin{cases}
0 & \text{if } q - \bar{p} \geq +\frac{\lambda \epsilon}{2} \\
\frac{1}{2} - \frac{q - \bar{p}}{\lambda \epsilon} & \text{if } -\frac{\lambda \epsilon}{2} < q - \bar{p} < +\frac{\lambda \epsilon}{2} \\
1 & \text{if } q - \bar{p} \leq -\frac{\lambda \epsilon}{2}
\end{cases} \]

Which expression holds for given screening precision \(\lambda \) and cut-off \(q \)?
Planner’s Optimal Portfolio Choice (II)

Credit Mass: Size of the second-best portfolio is

\[m_{SB}^\lambda = \begin{cases}
0 & \text{if } q - \bar{p} \geq +\frac{\lambda \varepsilon}{2} \\
\frac{1}{2} - \frac{q - \bar{p}}{\lambda \varepsilon} & \text{if } -\frac{\lambda \varepsilon}{2} < q - \bar{p} < +\frac{\lambda \varepsilon}{2} \\
1 & \text{if } q - \bar{p} \leq -\frac{\lambda \varepsilon}{2}
\end{cases} \]

Which expression holds for given screening precision \(\lambda \) and cut-off \(q \)?
Credit Mass: Size of the second-best portfolio is

\[m^{SB}_{\lambda} = \begin{cases}
0 & \text{if } q - \bar{p} \geq \frac{\lambda\varepsilon}{2} \\
\frac{1}{2} - \frac{q - \bar{p}}{\lambda\varepsilon} & \text{if } -\frac{\lambda\varepsilon}{2} < q - \bar{p} < \frac{\lambda\varepsilon}{2} \\
1 & \text{if } q - \bar{p} \leq -\frac{\lambda\varepsilon}{2}
\end{cases} \]

Which expression holds for given screening precision \(\lambda \) and cut-off \(q \)?
The Planner’s Information Choice (I)

Optimal choice of screening precision:

$$\max_{\lambda} \quad \Pi^{SB}_{\lambda} - c(\lambda)$$

s.t. \quad \lambda \geq 0

Which cost function? Use \(c(\lambda) = c_0 \frac{\lambda}{1-\lambda}\) which gives closed-form solutions.

Optimal screening precision \(\lambda^*_SB(q)\) as function of economic state \(q\):

\[\begin{align*}
\lambda & \quad \lambda^*_SB(q) \\
0 & \quad \bar{p} \quad 1
\end{align*}\]
The Planner’s Information Choice (I)

Optimal choice of screening precision:

\[
\max_{\lambda} \quad \Pi_{\lambda}^{SB} - c(\lambda)
\]
\[
\text{s.t.} \quad \lambda \geq 0
\]

Which cost function? Use \(c(\lambda) = c_0 \frac{\lambda}{1-\lambda}\) which gives closed-form solutions.

Optimal screening precision \(\lambda_{SB}^*(q)\) as function of economic state \(q\):
Equilibrium under Competition:

Two Results
Again, I solve the problem by backward induction:

1. for given screening precision λ, I find the optimal portfolio as a function of competition.
Again, I solve the problem by backward induction:

1. for given screening precision λ, I find the optimal portfolio as a function of competition.

2. I find the profit-maximizing screening precision λ_E^*
Equilibrium (I): $\gamma \geq \frac{(R-r)\varepsilon}{2}$

Monopolist’s Problem

- for $\gamma \geq \frac{(R-r)\varepsilon}{2}$, each bank is always a monopolist on its island
- due to fixed project size, monopolist can extract entire project surplus (R, r)
- thus, maximization problem coincides with the planner’s problem
- monopolistic allocation is constrained *Pareto optimal* in this model!
- caution: with endogenous project size this would not be true
Equilibrium (II): $\gamma < \frac{(R-r)\varepsilon}{2}$

Competition
- if $\gamma < \frac{(R-r)\varepsilon}{2}$, for *some* values of (q, λ) competition will matter.
- when is the incumbent safe from entry of competitors?

Definition
Let \mathcal{P} be a loan portfolio, and denote the volume of loans in the portfolio as $|\mathcal{P}|$. Then, \mathcal{P} is **noncontestable** if its gross surplus per loan is at most γ: $\Pi[\mathcal{P}] \leq \gamma|\mathcal{P}|$
Equilibrium (II): $\gamma < \frac{(R-r)\varepsilon}{2}$

Competition

- if $\gamma < \frac{(R-r)\varepsilon}{2}$, for *some* values of (q, λ) competition will matter.
- when is the incumbent safe from entry of competitors?

Definition

Let \mathcal{P} be a loan portfolio, and denote the volume of loans in the portfolio as $|\mathcal{P}|$. Then, \mathcal{P} is **noncontestable** if its gross surplus per loan is at most γ: $\Pi[\mathcal{P}] \leq \gamma |\mathcal{P}|$

- if portfolio is *noncontestable* and all repayment terms are equal, there is no threat of entry
- for which (q, λ) combinations is the monopolistic portfolio noncontestable?
Noncontestability: Intuition

Graphical Representation:

- let’s draw the set of all \((q, \lambda)\) for which the *monopolistic* portfolio is noncontestable:

\[
\left\{ (q, \lambda) \in [0, 1] \times [0, 1] : \frac{\Pi^M(q)}{m^M(\lambda)(q)} \leq \gamma \right\}
\]
Noncontestability: Intuition

Graphical Representation:

- let’s draw the set of all \((q, \lambda)\) for which the *monopolistic* portfolio is noncontestable:

\[
\left\{(q, \lambda) \in [0, 1] \times [0, 1] : \frac{\Pi_M(q)}{m_M(q)} \leq \gamma \right\}
\]
Noncontestability: Intuition

Graphical Representation:

- let’s draw the set of all \((q, \lambda)\) for which the *monopolistic* portfolio is noncontestable: \(\{(q, \lambda) \in [0, 1] \times [0, 1] : \frac{\Pi^M(q)}{m^M(q)} \leq \gamma\}\)
Noncontestability: Intuition

Graphical Representation:

- let’s draw the set of all \((q, \lambda)\) for which the *monopolistic* portfolio is noncontestable:
 \[
 \left\{ (q, \lambda) \in [0, 1] \times [0, 1] : \frac{\Pi^M(q)}{m^M(q)} \leq \gamma \right\}
 \]
Noncontestability: Intuition

Graphical Representation:

- let’s draw the set of all \((q, \lambda)\) for which the *monopolistic* portfolio is noncontestable:

\[
\left\{ (q, \lambda) \in [0, 1] \times [0, 1] : \frac{\Pi^M(q)}{m^M(q)} \leq \gamma \right\}
\]
Noncontestability: Intuition

Graphical Representation:

- let’s draw the set of all \((q, \lambda)\) for which the *monopolistic* portfolio is noncontestable:
 \[
 \left\{ (q, \lambda) \in [0, 1] \times [0, 1] : \frac{\Pi^M_M(q)}{m^M_M(q)} \leq \gamma \right\}
 \]
Noncontestability: Intuition

Graphical Representation:

- let’s draw the set of all \((q, \lambda)\) for which the monopolistic portfolio is noncontestable:

\[
\left\{ (q, \lambda) \in [0, 1] \times [0, 1] : \frac{\Pi^M(q)}{m^M(q)} \leq \gamma \right\}
\]
Noncontestability: Intuition

Graphical Representation:

- let’s draw the set of all \((q, \lambda)\) for which the monopolistic portfolio is noncontestable:
\[
\left\{ (q, \lambda) \in [0, 1] \times [0, 1] : \frac{\Pi^M(q)}{m^M(q)} \leq \gamma \right\}
\]
Noncontestability: Intuition

Graphical Representation:

- Let’s draw the set of all \((q, \lambda)\) for which the *monopolistic* portfolio is noncontestable:
 \[
 \left\{ (q, \lambda) \in [0, 1] \times [0, 1] : \frac{\Pi^M(q)}{m^M(q)} \leq \gamma \right\}
 \]
Noncontestability: Intuition

Graphical Representation:

- let’s draw the set of all \((q, \lambda)\) for which the monopolistic portfolio is noncontestable: \(\{(q, \lambda) \in [0, 1] \times [0, 1] : \frac{\Pi_M^M(q)}{m_M^M(q)} \leq \gamma\}\)

- what happens under threat of entry, i.e. if the monopolistic portfolio is contestable?
Threat of Entry

What if the incumbent chooses some contestable portfolio?

- the outside lender can profitably undercut
- it poaches all loan-approved customers
- incumbent earns zero
Threat of Entry

What if the incumbent chooses some contestable portfolio?

- the outside lender can profitably undercut
- it poaches all loan-approved customers
- incumbent earns zero

⇒ incumbent’s equilibrium portfolio will always be noncontestable
Threat of Entry

What if the incumbent chooses some contestable portfolio?

- the outside lender can profitably undercut
- it poaches all loan-approved customers
- incumbent earns zero

⇒ incumbent’s equilibrium portfolio will always be noncontestable

Two ways to make a portfolio noncontestable:
Threat of Entry

What if the incumbent chooses some contestable portfolio?

- the outside lender can profitably undercut
- it poaches all loan-approved customers
- incumbent earns zero

⇒ incumbent’s equilibrium portfolio will always be noncontestable

Two ways to make a portfolio noncontestable:

1. reduce repayment rates
Threat of Entry

What if the incumbent chooses some contestable portfolio?
▶ the outside lender can profitably undercut
▶ it poaches all loan-approved customers
▶ incumbent earns zero

⇒ incumbent’s equilibrium portfolio will always be noncontestable

Two ways to make a portfolio noncontestable:
1. reduce repayment rates
2. change composition
Making a portfolio noncontestable

Assume \mathcal{P} is a contestable portfolio of size m: $\Pi[\mathcal{P}] > \gamma m$. How can we make it noncontestable?

Via prices (repayment rates):
- construct portfolio \mathcal{P}' with same projects but reduced repayments

Via compositional changes:
- do not lower repayments but add more projects to portfolio $\tilde{\mathcal{P}}$
- since they have negative NPV, average profit per project falls
- for some credit mass $\tilde{m} > m$, profit will be exactly $\Pi[\tilde{\mathcal{P}}] = \gamma \tilde{m}$

Note $\tilde{m} \gamma > m \gamma$ \Rightarrow second strategy is more profitable
Making a portfolio noncontestable

Assume \mathcal{P} is a contestable portfolio of size m: $\Pi[\mathcal{P}] > \gamma m$. How can we make it noncontestable?

Via prices (repayment rates):

- construct portfolio \mathcal{P}' with same projects but reduced repayments
- reduce repayments such that $\Pi[\mathcal{P}'] = \gamma m$.

Note $\tilde{m}\gamma > m\gamma \Rightarrow$ second strategy is more profitable.
Making a portfolio noncontestable

Assume \mathcal{P} is a contestable portfolio of size m: $\Pi[\mathcal{P}] > \gamma m$. How can we make it noncontestable?

Via prices (repayment rates):

- construct portfolio \mathcal{P}' with same projects but reduced repayments
- reduce repayments such that $\Pi[\mathcal{P}'] = \gamma m$.

Via compositional changes:
Making a portfolio noncontestable

Assume \mathcal{P} is a contestable portfolio of size m: $\Pi[\mathcal{P}] > \gamma m$. How can we make it noncontestable?

Via prices (repayment rates):
- construct portfolio \mathcal{P}' with same projects but reduced repayments
- reduce repayments such that $\Pi[\mathcal{P}'] = \gamma m$.

Via compositional changes:
- do not lower repayments but add more projects to portfolio $\tilde{\mathcal{P}}$
Making a portfolio noncontestable

Assume \mathcal{P} is a contestable portfolio of size m: $\Pi[\mathcal{P}] > \gamma m$. How can we make it noncontestable?

Via prices (repayment rates):
- construct portfolio \mathcal{P}' with same projects but reduced repayments
- reduce repayments such that $\Pi[\mathcal{P}'] = \gamma m$.

Via compositional changes:
- do not lower repayments but add more projects to portfolio $\tilde{\mathcal{P}}$
- since they have negative NPV, average profit per project falls

Note $\tilde{\mathcal{P}} \gamma > m \gamma \Rightarrow$ second strategy is more profitable.
Making a portfolio noncontestable

Assume \mathcal{P} is a contestable portfolio of size m: $\Pi[\mathcal{P}] > \gamma m$. How can we make it noncontestable?

Via prices (repayment rates):
- construct portfolio \mathcal{P}' with same projects but reduced repayments
- reduce repayments such that $\Pi[\mathcal{P}'] = \gamma m$.

Via compositional changes:
- do not lower repayments but add more projects to portfolio $\tilde{\mathcal{P}}$
- since they have negative NPV, average profit per project falls
- for some credit mass $\tilde{m} > m$, profit will be exactly $\Pi[\tilde{\mathcal{P}}] = \gamma \tilde{m}$
Making a portfolio noncontestable

Assume \mathcal{P} is a contestable portfolio of size m: $\Pi[\mathcal{P}] > \gamma m$. How can we make it noncontestable?

Via prices (repayment rates):
- construct portfolio \mathcal{P}' with same projects but reduced repayments
- reduce repayments such that $\Pi[\mathcal{P}'] = \gamma m$.

Via compositional changes:
- do not lower repayments but add more projects to portfolio $\tilde{\mathcal{P}}$
- since they have negative NPV, average profit per project falls
- for some credit mass $\tilde{m} > m$, profit will be exactly $\Pi[\tilde{\mathcal{P}}] = \gamma \tilde{m}$

Note $\tilde{m} \gamma > m \gamma$
\Rightarrow second strategy is more profitable
Equilibrium under Competition

When is a noncontestable portfolio an equilibrium of the game?

In the paper I show:

Any portfolio Q^* that maximizes surplus subject to noncontestability,

$$\max_{Q=(S,(D,d))} \Pi[Q]$$

s.t. $$\Pi[Q] \leq \gamma |Q|$$

and has the same repayment terms (D, d) for all entrepreneurs is an equilibrium.
Equilibrium under Competition (II)

The equilibrium has three cases:

1. competition does not matter
 \[\Rightarrow\] monopolistic allocation, repayment terms \((R, r)\).
Equilibrium under Competition (II)

The equilibrium has three cases:

1. competition does not matter
 ⇒ monopolistic allocation, repayment terms \((R, r)\).

2. there is threat of entry, but by adding some negative NPV projects noncontestability can be restored
 ⇒ cross-subsidized excessive lending, repayment terms \((R, r)\).
Equilibrium under Competition (II)

The equilibrium has three cases:

1. competition does not matter
 ⇒ monopolistic allocation, repayment terms \((R, r)\).

2. there is threat of entry, but by adding some negative NPV projects noncontestability can be restored
 ⇒ cross-subsidized excessive lending, repayment terms \((R, r)\).

3. there is threat of entry, and even by financing all projects at terms \((R, r)\) the incumbent does not regain noncontestability
 ⇒ finance everyone, and reduce repayment terms such that \(\Pi = \gamma\).
Equilibrium Credit Mass

\[m^E_\lambda(q, \gamma) = \begin{cases}
1 & \text{if } 0 \leq \lambda \leq \frac{2(\bar{p} - q)}{\varepsilon} \text{ and } \bar{p} - \frac{\gamma}{R - r} < q < \bar{p} \\
0 & \text{if } 0 \leq \lambda \leq \frac{2(q - \bar{p})}{\varepsilon} \\
\frac{1}{2} - \frac{q - \bar{p}}{\lambda \varepsilon} & \text{if } \frac{2|q - \bar{p}|}{\varepsilon} < \lambda \leq \frac{2(q - \bar{p})}{\varepsilon} + \frac{4\gamma}{\varepsilon(R - r)} \\
& \text{if all } \lambda \in [0, 1) \text{ if } q \leq \bar{p} - \frac{\gamma}{R - r}
\end{cases} \]
Equilibrium Credit Mass

\[m^E_\lambda(q, \gamma) = \begin{cases}
1 & \text{if } 0 \leq \lambda \leq \frac{2(\bar{p} - q)}{\varepsilon} \text{ and } \bar{p} - \frac{\gamma}{R-r} < q < \bar{p} \\
0 & \text{if } 0 \leq \lambda \leq \frac{2(q - \bar{p})}{\varepsilon} \\
\frac{1}{2} - \frac{q - \bar{p}}{\lambda \varepsilon} & \text{if } \frac{2|q - \bar{p}|}{\varepsilon} < \lambda \leq \frac{2(q - \bar{p})}{\varepsilon} + \frac{4\gamma}{\varepsilon(R-r)} \\
\end{cases} \]
Equilibrium Credit Mass

\[m^E_\lambda(q, \gamma) = \begin{cases}
1 & \text{if } 0 \leq \lambda \leq \frac{2(\bar{p} - q)}{\varepsilon} \text{ and } \bar{p} - \frac{\gamma}{R-r} < q < \bar{p} \\
0 & \text{if } 0 \leq \lambda \leq \frac{2(q - \bar{p})}{\varepsilon} \\
\frac{1}{2} - \frac{q - \bar{p}}{\lambda \varepsilon} & \text{if } \frac{2|q - \bar{p}|}{\varepsilon} < \lambda \leq \frac{2(q - \bar{p})}{\varepsilon} + \frac{4\gamma}{\varepsilon(R-r)} \\
1 - \frac{2(q - \bar{p} + \frac{\gamma R}{R-r})}{\lambda \varepsilon} & \text{if } \frac{2(q - \bar{p})}{\varepsilon} + \frac{4\gamma}{\varepsilon(R-r)} < \lambda < 1 \text{ and } q > \bar{p} - \frac{\gamma}{R-r}
\end{cases} \]
Equilibrium Credit Mass

\[
m^E_\lambda(q, \gamma) = \begin{cases}
1 & \text{if } 0 \leq \lambda \leq \frac{2(\bar{p}-q)}{\epsilon} \text{ and } \bar{p} - \frac{\gamma}{R-r} < q < \bar{p} \\
0 & \text{if } 0 \leq \lambda \leq \frac{2(q-\bar{p})}{\epsilon} \\
\frac{1}{2} - \frac{q-\bar{p}}{\lambda \epsilon} & \text{if } \frac{2|q-\bar{p}|}{\epsilon} < \lambda \leq \frac{2(q-\bar{p})}{\epsilon} + \frac{4\gamma}{\epsilon(R-r)} \\
1 - \frac{2(q-\bar{p}+\frac{\gamma}{R-r})}{\lambda \epsilon} & \text{if } \frac{2(q-\bar{p})}{\epsilon} + \frac{4\gamma}{\epsilon(R-r)} < \lambda < 1 \text{ and } q > \bar{p} - \frac{\gamma}{R-r} \\
1 & \text{for all } \lambda \in [0, 1) \text{ if } q \leq \bar{p} - \frac{\gamma}{R-r}
\end{cases}
\]
The First Key Result

Finding 1:
Under threat of entry, equilibrium credit mass is inefficiently large.

Its excessiveness increases with bank competition.
Further Comparative Statics

Threat of entry makes credit more volatile:

▶ the sensitivity $\frac{\partial m_E}{\partial q}$ of credit to changes in q is twice as high under threat of competition than under monopoly.

▶ the average default rate $D_{\lambda}(q)$ decreases in q: the best loans are made in recessions, the worst in booms

▶ the sensitivity $\frac{\partial D_{\lambda}}{\partial q}$ is independent of λ, but is twice as large under threat of competition than under monopoly.
Endogenous Screening Choice

Gross Profit Function:
\[\Pi^E_\lambda = \gamma \cdot m^E_\lambda \] wherever competition is relevant, unchanged otherwise

Optimal Screening Precision \(\lambda^*_E \):
\[
\max_{\lambda} \quad \Pi^E_\lambda - c(\lambda) \\
\text{s.t.} \quad \lambda \geq 0
\]
The Second Key Result

Finding 2:

Screening precision λ^*_E is chosen inefficiently low when there is threat of entry.

Marginal returns to screening

- are strictly lower under threat of entry, and
- are zero for $q < \bar{p} - \frac{\gamma}{R-r}$
Equilibrium Allocations

\[\lambda_E^* \quad \text{Screening Precision} \]

\[0 \quad \bar{p} \quad 1 \]

\[\bar{p} - \frac{\gamma}{R-r} \]

\[\bar{p} \quad \bar{p} \quad 1 \]

\[m_{\lambda^*}(q) \quad \text{Credit Mass} \]

\[0 \quad \bar{p} \quad 1 \]

\[\bar{p} - \frac{\gamma}{R-r} \]
Equilibrium Allocations

\[\lambda^*_E \quad \text{Screening Precision} \]

\[m_{\lambda^*}(q) \quad \text{Credit Mass} \]

\[\bar{p} - \frac{\gamma}{R-r} \]

\[\bar{p} - \frac{\gamma}{R-r} \]
Equilibrium Allocations

\[\bar{p} - \frac{\gamma}{R-r} \]

\[\lambda^*_E \text{ Screening Precision} \]

\[m_{\lambda^*}(q) \text{ Credit Mass} \]
Equilibrium Allocations

\[\lambda^*_E \] Screening Precision

\[\bar{p} - \frac{\gamma}{R-r} \]

\[m_{\lambda^*(q)} \] Credit Mass

\[\bar{p} - \frac{\gamma}{R-r} \]
Equilibrium Allocations

\[\lambda_E^* \quad \text{Screening Precision} \]

\[\bar{p} - \frac{\gamma}{R-r} \]

\[m_{\lambda^*}(q) \quad \text{Credit Mass} \]

\[\bar{p} - \frac{\gamma}{R-r} \]
Lending Cycles
Let’s play a simple dynamic version of the model:

- play a sequence of one-shot games: periods \(\{ t, t + 1, \ldots \} \)
- aggregate state \(q_{t+1} \) unknown ex-ante
- \(\bar{\lambda}_{t+1}^* \) is chosen \textit{before} knowing the actual realization of \(q_{t+1} \):

\[
\max_{\bar{\lambda}} \quad \int \Pi_{\bar{\lambda}}(q, \gamma) - c(\bar{\lambda}) \, dU(q)
\]

s.t. \(\bar{\lambda} \geq 0 \)
Lending Cycles (cont.)

Dynamic Model (cont.):

- I use the following stylized specification:

 \[q_{t+1} = \begin{cases}
 q_t & \text{with probability } \phi \\
 \sim U(\bar{p} - \frac{\varepsilon}{2}, \bar{p} + \frac{\varepsilon}{2}) & \text{with probability } 1 - \phi
 \end{cases} \]

- special case \(\phi \to 1 \) restores the baseline model
- Let’s think of \(\phi \) as large but not quite 1, i.e. \(\phi = 0.8 \)
- the optimal screening precision choice problem becomes

\[
\max_{\bar{\lambda}_{t+1}} \left[\phi \prod_{\bar{\lambda}_{t+1}}^E (q_t, \gamma) + (1 - \phi) \int_{\bar{p} - \frac{\varepsilon}{2}}^{\bar{p} + \frac{\varepsilon}{2}} \prod_{\bar{\lambda}_{t+1}}^E (q_{t+1}, \gamma) \varepsilon^{-1} dq_{t+1} \right] - c(\bar{\lambda}_{t+1}) \\
\text{s.t. } \bar{\lambda}_{t+1} \geq 0
\]
Dynamic Screening Choice

Ex-ante Optimal Screening Choice $\bar{\lambda}_{E,t+1}^*$
Dynamic Screening Choice

Ex-ante Optimal Screening Choice $\bar{\lambda}_{E,t+1}^{*}$

\[\bar{\lambda}_{t+1}^{*} \]

\[\bar{p} - \frac{\gamma}{R-r} \]

\[q_t \]

\[\bar{p} \]

1

0
Credit Contractions and Flight to Quality

- during boom, $\lambda_{E,t+1}^*$ is chosen low because good conditions are expected to persist and threat of competition depresses information acquisition incentives
- if actual realization q_{t+1} takes some high value (i.e., boom is over), competition would ex-post not have been the problem
- but inefficiently low $\lambda_{E,t+1}^*$ now results in credit contraction
- due to impaired screening precision, only outstanding projects can be identified as credit-worthy \Rightarrow flight to quality
Relation with Empirical Findings

Related Empirical Findings:

Relation with Empirical Findings

Related Empirical Findings:

- Micco and Panizza (2005): competition increases credit procyclicality
Related Empirical Findings:

- Micco and Panizza (2005): competition increases credit procyclicality
- Dell’Ariccia et al. (2008): lending standards fall upon entry of large outside lenders
Relation with Empirical Findings

Related Empirical Findings:

- Micco and Panizza (2005): competition increases credit procyclicality
- Dell’Ariccia et al. (2008): lending standards fall upon entry of large outside lenders
- Ioannidou et al. (2009), Jimenez et al. (2009): risk-taking when interest rates are low
Relation with Empirical Findings

Related Empirical Findings:

- Micco and Panizza (2005): competition increases credit procyclicality
- Dell’Ariccia et al. (2008): lending standards fall upon entry of large outside lenders
- Ioannidou et al. (2009), Jimenez et al. (2009): risk-taking when interest rates are low
- Foos et al. (2009): rapid loan growth but low average interest income, loan loss provisions spike three years ahead
Conclusions

- Informational spillovers can change the effect of competition on lending substantially
- Excessive lending booms occur due to a combination of low screening and cross-subsidized lending
- The model also explains credit contractions and flight-to-quality in recessions
- Suitable for integration in general equilibrium model to perform macroprudential analyses
- Directions of future research:
 - Empirical: screening choice under competition, lending standards
 - Theory: international lending booms and capital flows
Thank you!
Appendix: Closed Form Solutions (I)

Monopolistic case:

\[
\begin{align*}
\frac{c_0}{(\lambda - 1)^2} &= b - \frac{a}{\lambda^2} \\
a &= \frac{(R - r)(\bar{p} - q)^2}{2\varepsilon} \\
b &= \frac{(R - r)\varepsilon}{8} \\
\gamma &= a - b - c_0 \\
\phi &= 108a^2b - 108ab^2 - 108ab\gamma - 2\gamma^3 \\
\beta &= \frac{3\sqrt{a^2}}{3a\left(\phi + \sqrt{\phi^2 - 4\gamma^6}\right)^{1/3}} + \frac{\left(\phi + \sqrt{\phi^2 - 4\gamma^6}\right)^{1/3}}{3\sqrt{2a}} \\
\lambda_1^* &= \frac{1}{2} \sqrt{2 + \beta - \frac{4\gamma}{3a} - \frac{2(a - 2b - \gamma)}{a\sqrt{1 - \beta - \frac{2\gamma}{3a}}}} - \frac{1}{2} \sqrt{1 - \beta - \frac{2\gamma}{3a}} + \frac{1}{2} \\
\lambda_2^* &= \frac{1}{2} \sqrt{2 + \beta - \frac{4\gamma}{3a} + \frac{2(a - 2b - \gamma)}{a\sqrt{1 - \beta - \frac{2\gamma}{3a}}}} + \frac{1}{2} \sqrt{1 - \beta - \frac{2\gamma}{3a}} + \frac{1}{2}
\end{align*}
\]

whereby the correct solution is the root that lies in the \([0, 1]\) interval.
Appendix: Closed Form Solutions (II)

Competitive case:

\[\lambda^*_c(q, \gamma) = \frac{1}{1 + \sqrt{\frac{c_0}{\delta}}} \]

where \(\delta = 2\gamma \varepsilon^{-1}(q - \bar{p} + \frac{\gamma}{R-r}) \)
Appendix: Proof of equilibrium property (sketch)

Maximization subject to noncontestability constraint yields an equilibrium:

1. if portfolio \mathcal{P} is noncontestable, and portfolio \mathcal{Q} is noncontestable and symmetric, and its surplus is weakly higher, i.e. $\Pi[\mathcal{P}] \leq \Pi[\mathcal{Q}]$ then the incumbent can generate same or higher payoff for himself by choosing \mathcal{Q} over \mathcal{P}.

2. for any noncontestable portfolio \mathcal{P} there always exists a symmetric noncontestable portfolio \mathcal{Q} that yields weakly higher surplus

3. so, search within the class of symmetric noncontestable portfolios yields an element for which payoff is maximal among all noncontestable portfolios \Rightarrow equilibrium.