Strategic Differentiation by Business Models: Free-to-air and Pay-TV's

Emilio Calvano (CSEF - U. of Naples) and Michele Polo (U. Bocconi, IEFE and IGIER)

October 2014 - Naples. 12th Conference on Media Economics

- Fact: In two sided markets we often observe platforms that compete adopting very different price structures (business models)
 - In the broadcasting industry: free-to-air and pay-TV's, in the press: traditional newspapers and the free press.
- **Positive issue**: which are the sources and incentives that lead broadcasters to adopt very different business models?
 - Existing papers show when *all* platforms choose to charge (mostly) one side or the other: relative importance of the cross-sides elasticities. In other words, equilibria which are symmetric across platforms and asymmetric across sides.
 - They explain price skewness rather than differentiated business models: we consider the case of equilibria that are asymmetric across platfoms *and* sides.
- **Normative issue**: do platforms adopting opposite business models belong to the same relevant market?
 - In antitrust traditionally free-to-air and pay-TV's are considered as acting in different relevant=markets (≥) (≥) (≥) ()

This paper

- Duopoly competition between two ex-ante **symmetric** platforms that broadcast content to viewers and offer advertising space to advertisers
- Viewers and advertisers potentially multi-home
- Viewers:
 - preference for variety
 - are **heterogeneous** in the marginal disutility of ads (they get utility from airtime net of ad breaks);
 - they select the **channels** to subscribe, and then choose the optimal **viewing time** between the accessible channels

Advertisers

- **advertising technology** determines the probability that a viewer pays attention to the commercial (is informed)
- they are ready to pay on each channel for the **incremental value** of the advertising messages (*increase* in the probability of purchase): exclusive viewers more valuable

 \sim

This paper shows the condition for the existence of:

- Asymmetric Business Model equilibria: strategic differentiation
 - A platform (**pay-TV**) sets advertising to zero to maximize the viewers' surplus and charges them with a fee
 - A platform (free-to-air) sets the subscription fee to zero to maximize the size of exclusive (high ad incremental value) viewers and charges advertisers.
- Symmetric free-to-air equilibria: strategic imitation.

The model

This paper

- Relationship with the existing literature
 - **Single-homing viewers** (competitive bottleneck): Anderson and Coate (2006), Arsmstrong (2006)
 - **Multi-homing viewers** (competition for advertisers, incremental value principle): Anderson, Kind and Foros (2013), Ambrus, Calvano and Reisinger (2013)
 - **Price skewness**: Rochet and Tirole (2006), Armstrong (2006), Bolt and Tienman (2008), Weil (2010), Schmalensee (2011)
 - Free-to-air or pay-TV: Peitz and Valletti (2008), Kind, Nielssen and Sorgard (2009), Arsmstrong and Weed (2007).
 - Asymmetric price structures: Ambrus and Argenziano (2009)
- No one, to the best of our knowledge, has studied generalized multi-homers and symmetric platforms generating asymmetric business models. Weeds (2013) addresses some of our issues.

The model ●○○ Equilibrium 00000000000

Viewers

Motivation

 Preferences (Levitan and Shubik (1980)). Viewers heterogenous in θ ∈ [0, 1] with utility

$$U(v_1, v_2; \theta) = \theta b_1 v_1 + \theta b_2 v_2 - \frac{2 - \sigma}{2} (v_1^2 + v_2^2) - \sigma v_1 v_2$$

where v_i is the viewing time on channel *i*, $b_i = 1 - a_i$ is the airtime net of ads a_i , $\sigma \in [0, 1]$ is the degree of substitutability between channels.

- Viewers decide which channel to **subscribe** and, upon subscription, how to distribute the **viewing time** between the accessible channels.
- Hence, although potentially multi-homers, viewers can watch no channel, one (single-homers) or both (multi-homers).

Advertising technology and Advertisers

- Probability φ that a θ-viewer pays attention to a message : increasing returns and decreasing own and cross marginal returns:
 - when the message is placed on **both** channels, the viewer spends time $v_i(\theta)$ and $v_j(\theta)$ on the channels and ads cover a fraction a_i and a_j of airtime:

$$\phi_{ij}(\theta) = 1 - e^{-\psi \left(a_i v_i(\theta) + a_j v_j(\theta)\right)}$$

• when the message is placed **only** on channel *i*:

$$\phi_i(\theta) = 1 - e^{-\psi a_i v_i(\theta)}$$

- $\psi \ge 0$ parametrises advertising effectiveness: a higher ψ corresponds to a higher probability that the viewer is informed
- Advertisers are homogeneous and gain k from each purchase.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Timing

- t = 1 The two platforms i = 1, 2 simultaneously set the subscription fee f_i and the advertising space a_i .
- t = 2 Viewers decide which platform to patronise, paying the subscription fee
- t = 3 Each platform posts an advertising fee t_i to broadcast the ads, and advertisers decide whether to accept or reject the contract.

Contracting stage

• Competition for advertisers implies that each platform can pretend a price not larger than the **incremental profits** it generates by broadcasting the message on its channel.

$$t_i^* = k \int_0^1 \left(\phi_{ij}(\theta) - \phi_j(\theta) \right) d\theta$$

- Hence, if a θ viewer is **exclusive** (she single-homes on channel *i*, i.e. $v_j(\theta) = \phi_j(\theta) = 0$, or the other channel does not offer advertising space $(a_j = \phi_j(\theta) = 0)$, channel *i* can extract the **full value**.
- When both channels offer advertising space, they can extract from **multi-homers** only the **incremental value**
- a more effective advertising technology (a larger ψ) increases the value of exclusive viewers and reduces the value of multi-homers.

Viewers' choices

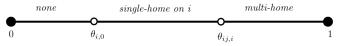
• Viewer θ 's optimal viewing time

$$\widehat{v}_{i}^{m}(\theta) = \frac{\theta \left[(2-\sigma)b_{i} - \sigma b_{j} \right]}{4(1-\sigma)} \text{ for multi-homers}$$
$$\widehat{v}_{i}^{s}(\theta) = \frac{\theta b_{i}}{2-\sigma} > \widehat{v}_{i}^{m}(\theta) \text{ for single-homers}$$

• Viewer θ 's utility:

 $\begin{array}{lll} U_{ij}^{m}(\theta) &=& U(\widehat{v}_{i}^{m}(\theta), \widehat{v}_{j}^{m}(\theta)) \ \, \text{for multi-homers} \\ U_{i}^{s}(\theta) &=& U(\widehat{v}_{i}^{s}(\theta), 0) \ \, \text{for single-homers} \end{array}$

・ロト・日本・日本・日本・日本


The model

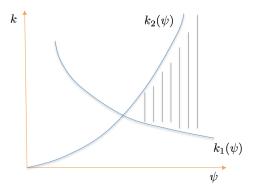
Equilibrium

Viewers' choices

Motivation

- A θ -viewer subscribes the channels to max {0, $U_1^s(\theta) - f_1$, $U_2^s(\theta) - f_2$, $U_{12}^m(\theta) - f_1 - f_2$ }.
- When $a_i > a_j$ and $f_i < f_j$, for $\theta \in [0, 1]$ a relevant sequence of choices is:

- The share of viewers of the two channels are $s_i = 1 heta_{i,0}$ and $s_j = 1 - heta_{ij,i}$
- Given $\rho = ((a_i, f_i), (a_j, f_j))$ firm i's profits are


$$\Pi_i = f_i s_i(\rho) + t_i^*(\rho).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Equilibrium

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Asymmetric business model equilibrium (AE) Proposition 1 (Strategic differentiation): For k and ψ sufficiently large $(k_1(\psi) \le k \le k_2(\psi))$, an Asymmetric Business Model Equilibrium exists that satisfies $f_1^* = 0 < a_1^* < \frac{1}{2}$ (free-to-air) and $f_2^* > 0 = a_2^*$ (pay-tv)

Equilibrium ○○○○●○○○○○○

• Why pay-tv is the best reply to free-to-air:

• Since $f_1^* = 0$, all viewers watch channel 1 and channel 2 is subscribed only by multi-homers.

The model

- when advertising the cnology is effective (high ψ), multi-homers are of limited value for advertisers and generate low profit opportunities on the advertising side .
- Since a₁^{*} > 0, multi-homers spend more time and obtain a higher surplus when watching channel 2: high potential profits from subscription
- if channel 1 is free-to-air, the best reply for channel 2 is not to insert ads $(a_2 = 0)$, maximise the surplus of viewers, and charge them $(f_2 > 0)$.

• Why free-to-air is the best reply to pay-tv

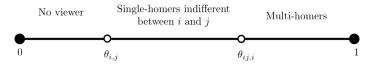
Motivation

- Since $a_2 = 0$, channel 1 is potentially the only way for advertisers to reach viewers: high profit potential on the advertising side **when** k **is high**.
- Since $f_2 > 0$, low θ -viewers do not watch channel 2 and possibly single-home on channel 1
- Single-homers spend more time than multi-homers: higher advertising revenues.
- Setting $f_1 = 0$ gives up subscription revenues, but maximises the size of the audience and the value of its composition for advertisers.
- Channel 1 maximises the share of single-homing viewers by setting $f_1 = 0$ and getting revenue from advertisers only.
- In an asymmetric business model equilibrium therefore channel 1 (free-to-air) offers high value (exclusive) eyeballs to advertisers while channel 2 (pay) offers high quality (ads-free) airtime to viewers.

Motivation	The model	Equilibrium
		000000000000

Symmetric equilibria: $a_i = a_j := a \ge 0$ and $f_i = f_j := f \ge 0$

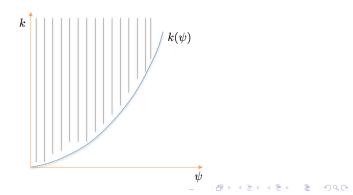
Three possible classes of symmetric equilibria:


- **Both free**: *a* > 0 and *f* = 0
- Both pay: a = 0 and f > 0
- Both mixed: a > 0 and f > 0

The	model
000	

Symmetric equilibria: $a_i = a_j := a \ge 0$ and $f_i = f_j := f \ge 0$

Proposition 2 If $\sigma > 0$, no symmetric pure strategy SPNE exist with strictly positive fees.


 Intuition: with symmetric platforms and positive fee f > 0, a subset of viewers prefers to single-home and is indifferent between the two stations: choose at random. Slightly undercutting the subscription fee, all subscribe the cheaper station

Symmetric equilibria: $a_i = a_j := a \ge 0$ and $f_i = f_j := f \ge 0$

Proposition 3 (Strategic imitation): For k sufficiently large and ψ not excessively high $(k \ge \tilde{k}(\psi))$ there exist a both-free symmetric equilibrium with a $< \frac{1}{2}$ and f = 0.

• Intuition: when ψ is low multi-homers are still valuable to advertisers if k is sufficiently high. Then, it is better to give up subscription revenues and cash in advertising revenues.

The model

Asymmetric vs. symmetric equilibria

- A very effective advertising technology (high ψ) increases the advertising revenues that can be extracted from exclusive viewers and reduce those from multi-homers
- When platform *i* adopts a free-to-air business strategy $(f_i = 0 < a_i)$, imitating it allows to collect only multi-homers:
 - when ψ is high, this strategy is not profitable since multi-homers are not valuable to advertisers: it is convenient to opt for a pay-tv business model >> strategic differentiation
 - when ψ is low, instead, multi-homers are valuable to advertisers: strategic imitation
- Hence, when advertising technology is less effective we observe more advertising in the market (strategic imitation).

Mergers and market definition

• Traditional view: a free-to-air tv does not compete for subscription, and a pay-tv does not compete for advertisers. Hence, they belong to different relevant markets.

Proposition 4: For k and ψ sufficiently large, the monopoly equilibrium is an Asymmetric Business Model Equilibrium, that is it satisfies $f_1^m = 0 < a_1^m$ and $f_2^m > 0 = a_2^m$. Moreover, $a_1^m > a_1^*$ and $f_2^m > f_2^*$, where a_1^* and f_2^* are the equilibrium advertising and subscription fee in the duopoly case.

- Interaction in duopoly even if apparently no competition for revenues on the same side.
- Differentiation by business model in case of a monopolist aims at maximising each side's surplus and extract it (discriminatory differentiation), whereas in a dupoly differentiation aims at relaxing revenue competition on the same side (strategic differentiation).