
Equilibrium Asset Pricing with

both Liquid and Illiquid Markets∗
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Abstract

I study a general equilibrium model in which investors face endowment risk and
trade two correlated assets; one asset is traded on a liquid market whereas the other
is traded on an illiquid over-the-counter (OTC) market. Endowment shocks not only
make prices drop, they also make the OTC asset more difficult to sell, creating an
endogenous liquidity risk. This liquidity risk increases the risk premium of both the
OTC asset and liquid asset. Furthermore, the OTC market frictions increase the
trading volume and the cross-sectional dispersion of ownership in the liquid market.
Finally, if the economy starts with only the OTC market, then I explain how opening
a correlated liquid market can increase or decrease the OTC price depending on the
illiquidity level. The model’s predictions can help explain several empirical findings.
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Today, many assets are traded increasingly, or even exclusively, in over-the-counter
(OTC) markets. For example, essentially all fixed income securities and a vast majority
of all existing derivatives are traded OTC. Even for liquid stocks, large block trading
among financial institutions is typically done off-exchange. Trading in OTC markets
requires searching for a suitable counter-party and bargaining over the exact terms of
the transaction. In an important contribution, Duffie, Gârleanu, and Pedersen (2005)
model the functioning of an OTC market and show how search frictions affect prices
and make the equilibrium allocation of the asset inefficient. A logical question follows
as to whether investors hedge the inefficiently allocated asset by trading more liquid
instruments with correlated cash-flows. In this paper, I address this question and show
how illiquidity due to search frictions spills over to liquid markets, affecting holdings,
trading volumes, and risk premia.

Prime examples of securities offering exposure to the same fundamentals but with
different levels of liquidity are bonds and credit default swaps (CDSs). Both bonds and
CDSs are traded OTC, but CDSs are typically more liquid.1 Further examples include
mortgages and collateralized debt obligations (CDOs), CDSs and index CDSs, options
and index options, forwards and futures contracts, and real estate assets and property
total return swaps. In all of these pairs, the first asset is less liquid and traded OTC.

The possibility of trading liquid securities may have a non-trivial effect on the trans-
actions bargained on the OTC market. At the individual level, it improves each investor’s
outside option by increasing the set of investment opportunities. However, it also im-
proves the outside options of an investor’s trading counter-parties, leading to equilibrium
feed-back effects on the bargaining outcome. At the same time, the search friction on the
OTC market creates demand for the liquid asset that is not driven by its fundamentals,
leading to illiquidity spillovers. The effect of these spillovers on the equilibrium prices
of both the liquid and illiquid assets is a priori unclear and can only be quantified in a
general equilibrium model. In this paper, I propose and analyze such a model.

I consider an economy in which risk-averse investors share endowment risks by trad-
ing two imperfectly correlated assets. The first is traded in a frictionless way on an
exchange, whereas the second is traded on an illiquid OTC market.2 I adopt the frame-

1A number of features make CDSs more liquid than bonds. First, a CDS contract on a bond
issuer offer a homogeneous alternative to a possibly very fragmented bond market. Second, CDSs are
derivatives and, as a result, new contracts can be created when needed and there is no need to locate an
existing contract. Longstaff, Mithal, and Neis (2005) further discuss the relative liquidity of CDS and
bond markets. They argue that the frictions on the CDS market are negligible when compared to those
on the bond market. Another important difference is that trading a CDSs is far less capital intensive
than trading bonds. This difference in the margin requirements increases CDS trading volumes at the
expenses of bond trading, which makes CDS trading even cheaper when compared to bond trading. The
difference in margin requirements is the object of, for instance, Basak and Croitoru (2000) and Gârleanu
and Pedersen (2011), and is not explicitly modeled in this paper.

2In my model, there is a dichotomy between the (perfectly) liquid and illiquid markets. This is for
ease of exposition and my conclusions are also relevant for pairs of markets that are “unequally illiquid”.
Again considering the CDS-bond pair, it is true that CDS markets are not perfectly liquid. For example,
Bongaerts, de Jong, and Driessen (2011) and Junge and Trolle (2013) find that illiquidity is priced on
CDS markets. Still, CDS markets are usually liquid when compared to the underlying bond market, and
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work developed by Duffie et al. (2005) to model the OTC market. In this framework,
investors are matched randomly over time and the Nash bargaining solution character-
izes the bilateral trades. Illiquidity, measured by the expected search time between two
meetings, affects investors both because contacting trading partners is time consuming
and because prices are not competitive.

Investors on the OTC market use the liquid asset as an imperfect substitute for the
illiquid asset. Specifically, investors hedge their temporary sub-optimal exposure with
the liquid instrument.3 Due to this effect, the trading volume on the liquid market is
always higher in the presence of the OTC market. Interestingly, the strictly positive
increase in the trading volume sometimes persists even in the limit of vanishing search
frictions. I also show that the dispersion of holdings in the liquid asset increases in the
illiquidity of the OTC market. This prediction is consistent with the recent empirical
findings of Oehmke and Zawadowski (2013) regarding bond and CDS markets. Oehmke
and Zawadowski (2013) document an average net exposure on the CDS market that
increases in the illiquidity of the bond market.

I now discuss how the frictions on the OTC market affect the expected returns of
the liquid asset. I explicitly characterize the equilibrium response of the liquid asset
to the frictions on the OTC market, and show that the spillover effect is driven by
illiquidity risk and not by the illiquidity level alone. The mechanism is as follows: An
aggregate shock to investors’ hedging demand changes the imbalance between buyers and
sellers on the OTC market. This imbalance determines the rate at which the illiquid
asset is reallocated. The endogenous relationship between the preference shocks and
the search friction makes the allocative efficiency of the OTC market time-varying. In
equilibrium, agents require a premium for taking exposure to this non-fundamental risk
and the correlation between the efficiency of the OTC market and the returns on the
liquid asset is priced. When the risk profiles of the two assets are sufficiently similar, the
allocative efficiency is positively correlated to the returns of the liquid asset. This means
that the liquid asset performs poorly exactly when liquidating one’s illiquid portfolio
becomes more difficult, and this command a positive risk premium on the liquid asset.
This model prediction is consistent with the conclusions of several empirical studies. For
example, both Tang and Yan (2006) and Lesplingart, Majois, and Petitjean (2012) show
that CDS spreads increase with the illiquidity of the underlying bonds. Das and Hanouna
(2009) show how these same CDS spreads increase with the illiquidity of the debt issuer’s
stock.4 The pricing of illiquidity risk also has interesting connections with the literature

investors typically hedge a bond portfolio with CDS contracts and not the other way around.
3This type of behavior is not restricted to OTC markets. For example, stock index futures may

be traded instead of re-balancing a diversified stock portfolio. Even if each stock is traded on an
exchange and relatively liquid, trading one liquid futures is faster, less costly, and more convenient
than re-balancing a diversified stock portfolio. Also, exchange-traded funds (ETFs) give investors the
opportunity to conveniently adjust their exposures to stocks, bonds, commodities, or currencies. See
Greenwich (May 2012) for a survey documenting the use of ETFs as an alternative to trading the
underlying market.

4When comparing these empirical studies to the model’s predictions, the returns on the liquid asset
should be understood as the returns on a CDS contracts for a protection seller. Indeed, holding a bond
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on long-run risk, pioneered by Bansal and Yaron (2004). Namely, as it may take a long
time for the market to recover after a liquidity shock, illiquidity leads to endogenous long
run risk in the economy. This long run risk is priced, and its price depends on the long
run value of future liquidity for an investor, expressed by the corresponding certainty
equivalent.

Conversely, the liquid market has two effects on the OTC market. On the one hand,
it mitigates the search frictions and reduces the illiquidity discount, pushing the price
on the OTC market up. On the other hand, the liquid market diverts some of the
illiquid asset’s value as a risk-sharing instrument, pushing the OTC price down. The
strength of these two effects depends on the risk profiles of the assets and the severity
of the search friction. Evaluating the overall effect of the liquid market thus raises the
following question: What is a meaningful combination of risk profiles and illiquidity
level?

Looking at bonds and CDSs, or at mortgages and CDOs, or at any of the pairs listed
above, we always observe the same pattern: The illiquid OTC market existed first and
then the liquid market was created by financial intermediaries. The financial innovation
is typically initiated either by an exchange or, if the new security trades OTC as well,
by the dealers that will intermediate trades on the newly created market. In both cases,
the intermediaries are interested in creating an active market.

Motivated by these examples, I put more structure into my model by endogenizing
the risk-profile of the liquid asset. I assume that intermediaries select the liquid asset
that maximizes the trading volume. Next, I compare the prices on the OTC market
with and without the liquid asset. The risk profile of the optimal liquid asset is a
weighted average of two risk profiles. The first profile is that of the illiquid asset, the
second is the profile that would be optimal in terms of risk-sharing. I show that the
weight on the profile of the illiquid asset is monotone increasing in the liquidity of the
OTC market because, with a more active OTC market, there is more trading volume to
capture. Perhaps paradoxically, this also means that the search frictions are easier to
mitigate when they are smaller in the first place. Overall, the endogenous liquid asset
increases the price on the OTC market when the search friction is sufficiently strong, but
decreases it otherwise. Thus, the mitigation of the illiquidity discount dominates when
the frictions on the OTC markets are strong enough, but the diversion of risk-sharing
value away from the OTC market dominates otherwise.

This ambiguous equilibrium behavior is consistent with empirical findings regarding
CDS trading and bond spreads. For example, Ashcraft and Santos (2009) find that
the onset of CDS trading does not decrease the bond yield of the average firm, despite
the new hedging opportunities. In my model, this corresponds to the illiquid market
(the bond market) being at the threshold where the mitigation and diversion effects
compensate each other. Differently, Saretto and Tookes (2013) find that CDS trading
may have made debt financing less costly, but did so by relaxing only the “non-price”
terms of debt.5 In my model, this corresponds to the parameter range for which the

or selling protection on a CDS market offer essentially the same exposure to credit risk.
5The non-price terms of a bond are its maturity, notional, and its many contract details (amortiza-
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mitigation effect dominates, meaning the range over which the trading frictions on the
illiquid (bond) market are rather severe.

Finally, Das, Kalimipalli, and Nayak (2013) study empirically the interactions be-
tween CDS and bond markets and focus on informational efficiency. They provide
“[. . . ]evidence of a likely demographic shift by large institutional traders from trading
bonds to trading CDS in order to implement their credit views, resulting in declining ef-
ficiency and quality in bond markets.” The same mechanism drives the findings in Das,
Kalimipalli, and Nayak (2013) and the equilibrium behavior of my model. Specifically,
Das et al. (2013) show how a CDS market diverts some trading away from the bond
market, how this reduces the value of the bond, and how this reduction dominates any
other benefits brought by the new market. This mechanism coincides with the equilib-
rium behavior of my model when the search frictions on the OTC market are not too
severe.

Literature Review My paper builds on the literature considering the general equi-
librium impact of trading frictions. These frictions can be the transaction costs on
centralized markets, as in Lo, Mamaysky, and Wang (2004), Acharya and Pedersen
(2005), Gârleanu and Pedersen (2013), and Buss and Dumas (2013), or the search and
bargaining frictions on OTC markets.6

The analysis of the search and bargaining frictions on OTC markets started, to a
large extent, with Duffie et al. (2005). Duffie et al. (2005) a model of OTC trading
that shares features with job market models such as Diamond (1982).7 The model that
is most closely related to mine is Duffie, Gârleanu, and Pedersen (2007). They also
study bilateral trading in OTC markets with risk-averse agents. In comparison with
Duffie et al. (2007), my main contribution is to model a second, liquid market and to
study the interactions between the liquid and OTC markets. On the methodological
side, I provide an existence and uniqueness argument that is also valid in Duffie et al.
(2007). In addition, I allow for more general aggregate shocks in the dynamic analysis of
the model. Further references in asset pricing with search and bilateral trading include
Weill (2008), Vayanos and Weill (2008), and Afonso and Lagos (2015). A closely related
strand of research considers centralized markets to which investors have intermittent and
sometimes costly access. References in this strand include Lagos and Rocheteau (2007),
Weill (2007), Lagos and Rocheteau (2009), and Gârleanu (2009). In all these references,
investors trade on a unique market.

My paper also relates to the literature considering the interactions of different market
structures. See, for example, Pagano (1989), Rust and Hall (2003), Miao (2006), and
Vayanos and Wang (2007). In these models, agents must execute a single trade and
balance the benefits of a better price against a costly search. In contrast, in my model,

tion, default triggers, embedded options, etc).
6Further trading restriction include portfolio constraints, margin requirements, and limited mar-

ket participation. References in this literature include Merton (1987), Basak and Cuoco (1998), and
Hugonnier (2012).

7See Mortensen (1987) or Rogerson, Shimer, and Wright (2005) for surveys of search models in labor
economics.
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investors trade repeatedly on both markets. Vayanos (1998) and Huang (2003) also
analyze models in which agents trade assets with different liquidity levels. In both cases,
however, the illiquidity is modeled by exogenous transaction costs. Exogenous and
constant transaction costs cannot capture the endogenous and time varying interaction
between demand shocks and illiquidity. Parlour and Winton (2013) discuss the role
of monitoring when a bank chooses between selling loans and buying CDS protection.
Biais (1993), Yin (2005), and De Frutos and Manzano (2002) statically compare prices
on centralized and fragmented markets.

My paper is also related to the literature on hedging demand as a determinant of
illiquidity discounts. In the context of bond markets, this mechanism is discussed, for
instance, by Duffie (1996), Duffie and Singleton (1997), Krishnamurthy (2002), and
Graveline and McBrady (2011).

My discussion of illiquidity spillovers is related to the literature that investigates
contagion effects across markets. References focusing on volatility contagion include
Hamao, Masulis, and Ng (1990), Lin, Engle, and Ito (1994), Kyle and Xiong (2001),
Kodres and Pritsker (2002), and Hasler (2013). References such as Chordia, Sarkar, and
Subrahmanyam (2005) and Mancini, Ranaldo, and Wrampelmeyer (2013) document
the cross-market effects of both returns and liquidity. My model explicitly describes a
channel for illiquidity spillover effects.

Finally, the endogenous choice of the liquid asset in my model is similar to the
security design setting in Duffie and Jackson (1989).

The outline of the paper is as follows. Section 1 introduces the model. Section 2
analyzes the investor’s problem. Section 3 describes the population dynamics. Section
4 solves for an equilibrium. Section 5 considers the impact of aggregate demand shocks.
Section 6 discusses the impact of the liquid market on the OTC market. Section 7
concludes.

1 Model

I study an economy in which investors share endowment risk by trading two different
assets on, respectively, a liquid exchange and an OTC market. This model is an extension
of Duffie, Gârleanu, and Pedersen (2007).

Assets and investors Two independent aggregate risk factors are described by the
Brownian motions

(Ba,t, Bb,t)t≥0 .

Two risky assets, c and d, are exposed to these risk factors. The cumulative dividend
payouts of these assets satisfy

dDc,t = mc dt+ ac dBa,t + bc dBb,t,

dDd,t = md dt+ ad dBa,t + bd dBb,t.
(1)
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These assets are available in net supplies Sc and Sd, respectively. As described below, the
asset c is traded on a centralized market, whereas the asset d is traded on a decentralized,
OTC market. For convenience, I define the vectors

ec
∆
=

(
ac
bc

)
, ed

∆
=

(
ad
bd

)
and call them the exposures of the assets c and d, respectively.There is also a risk-free
asset, available in perfectly elastic supply, and paying out dividends at the constant rate
r > 0.8

The economy is populated by a continuum of investors. I write µ for a normalized
measure over this continuum. Each investor receives an endowment driven both by the
aggregate risk factors and by idiosyncratic shocks. More specifically, the cumulative
endowment of investor i satisfies

dηt = mη dt+ ai,t dBa,t + bi,t dBb,t, (2)

and is thus driven by the two aggregate risk factors. The vector of exposures

ei,t
∆
=

(
ai,t
bi,t

)
(3)

evolves stochastically. Specifically, the stochastic vector ei,t is a time-homogeneous
Markov chain jumping back and forth between two (two-dimensional) values.9 These
two values are

e1
∆
=

(
a1

b1

)
and e2

∆
=

(
a2

b2

) (
∈ R2

)
and I denote by (

−λ12 λ12

λ21 −λ21

)
(4)

the generator of the Markov chain. The Markov chains are independent across agents.

There are various ways to interpret the idiosyncratic shocks to the vectors of expo-
sures. A shock could represent a large loss incurred by an individual investing in assets
that I do not model explicitly, significant inflows or outflows experienced by a fund, a
significant movement in the inventory of a dealer, or the underwriting by a bank of a
new bond issue. In all of these cases, an idiosyncratic shock calls for an adjustment
of the risk exposure.10 As summarized by Cochrane (2005), no matter what the exact
interpretation of these shocks is, their role is to keep investors trading with each other.

8The interest rate is exogenous in all the models of asset pricing with search that I am aware of.
9In particular, both components of the vector of exposures jump together.

10See Duffie et al. (2005) and Duffie et al. (2007) for discussions of these idiosyncratic preference
shocks.

6



Trading mechanisms Investors trade the liquid asset c on a centralized market. In-
vestors access this market without delay and trade without transaction costs. The only
minor restriction is that the number of shares held by an investor must belong to the
range

[−K,K]

at any time, with K > 0 being a fixed, large number.11 Investors also trade the risk-free
asset at any time and without costs.

The other risky asset, d, is traded OTC. Trading d thus requires searching for a
counter-party and negotiating the details of the transaction. The search process is
governed by a “random matching”. That is, a given investor gets in touch with another
investor at the jump times of an idiosyncratic Poisson process with intensity Λ. This
other investor is randomly drawn from across the population of investors. The draws
are independent across meetings.

As the meeting intensity Λ controls the search friction on the OTC market, I call it
the liquidity of the OTC market. Given the dynamics of a Poisson process, the inverse

ξ
∆
=

1

Λ

of the liquidity is the expected search time until the next meeting. I call this expected
time the illiquidity of the OTC market.

Taking things together, investors from two separate subsets B and C of the popula-
tion meet at the rate

2Λµ(B)µ(C), (5)

with µ being a measure on the set of investors. There is a factor 2 because the agents
in B can both find an agent in C and be found by one.12,13

Once two agents have met, they bargain over a possible trade in the illiquid asset
d. Specifically, they decide whether or not to exchange Θ > 0 units of the asset and,
if so, at which price. The outcome of the bargaining is given by the generalized Nash
bargaining solution. Θ is an exogenous constant and the possible holdings in the illiquid
asset d are restricted to two values, zero and Θ.14

11This constraint is required by the verification argument et prevents doubling strategies. The con-
straint never binds in equilibrium when K is chosen large enough, as seen in Proposition 6 below.
Gârleanu (2009) adopts the same type of restrictions.

12This statement is intuitive but non-trivial. More specifically, it assumes a certain Law of Large
Numbers. See Duffie and Sun (2012) for the rigorous treatment of this issue in discrete time and
Footnote 34 for a similar discussion.

13When appropriate, statements in this paper should be understood as holding almost surely.
14The assumption of a fixed transaction size is restrictive but both convenient and common. With

fixed transaction size, the bargaining regarding the size of a transaction is reduced to accepting the trade
or not. Alternatively, Lagos and Rocheteau (2007), Lagos and Rocheteau (2009), and Gârleanu (2009)
let investors choose their holdings freely, but model an intermittent access to a centralized market instead
of bilateral meetings. Afonso and Lagos (2015) and Cujean and Praz (2013) model bilateral markets
with endogenous portfolio holdings.
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Working with a continuum of agents makes the model tractable and isolates the effect
of search frictions from, say, concerns of reputation or punishment. Moreover, actual
OTC markets often involve large numbers of investors and dealers, making a detailed
modeling of the entire market infeasible. For example, more than 600 dealers appear
in the sample of corporate bond trades analyzed by Schultz (2001). Similarly, Li and
Schürhoff (2012) study a network of several hundred municipal bond dealers.15

My second comment regards the matching technology (5). Other specifications exist
in the literature.16 However, the matching technology (5) has two advantages. First,
as argued in Weill (2008), it results from an explicitly specified search process and the
existence of this random matching is, partly, justified by the discrete time results in
Duffie and Sun (2012). Second, it exhibits increasing returns to scale. In the context
of real assets, Gavazza (2011) argues that increasing returns to scale is an intuitively
appealing and empirically important feature of search markets.

Preferences Each investor i maximizes her expected utility from consumption. Her
utility function U has a constant coefficient of absolute risk aversion γ > 0 (exponential
or CARA utility), meaning that

U : c 7→ −e−γx,

and their subjective rate of discounting is ρ > 0. The consumption and investment
policy of i is thus dictated by the optimization

sup
c̃

E

[∫ ∞
0

e−ρuU (c̃u) du

∣∣∣∣Fi,0] , (6)

with the admissible consumption processes c̃ satisfying certain conditions defined below
and Fi,0 being all the information available and relevant to i at time 0.

The payouts of the risky assets, defined in (1), are independent and identically dis-
tributed across time. Furthermore, the idiosyncratic exposure shocks defined by (4) offer
a unique and stable stationary distribution of types 1 and 2 across the population. As
a result, I expect all the aggregate quantities to be constant in the long run and I focus

15This hypothesis of a continuum of agents is common in the literature but sometimes criticized. The
main criticism is as follows. Actual OTC market are often dominated by a limited number of dealers
who form the core of the OTC market and market participants repeatedly and strategically interact with
each other. Differently, in a model with a continuum of agents and random matching, investors never
trade twice with the same person and this feature may prevent the model from capturing the working of
actual OTC markets. This criticism is valid but the advantages of working with a continuum of investors
are strong, and I decided to work with a continuum. In asset pricing with search, Duffie et al. (2005),
Duffie et al. (2007), Vayanos and Wang (2007), and Weill (2007), for instance, model a continuum of
investors who trade bilaterally. Alternatively, papers such as Gofman (2010), Gale and Kariv (2007),
Malamud and Rostek (2012), and Babus and Kondor (2013) study decentralized trading among a finite
number of investors.

16Weill (2008) and Inderst and Müller (2004), for instance, use more general matching technologies
to study search problems in finance.
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my analysis on this asymptotic, stationary case.17,18 In a stationary equilibrium, the
information set Fi,0 only contains idiosyncratic quantities and the individual problem
(6) becomes

V (w, iθ)
∆
= sup

c̃
E

∫ ∞
0

e−ρuU (c̃u) du

∣∣∣∣∣∣
w0 = w
e0 = ei
θ0 = θ

 , (7)

with w0 being the wealth invested by i at time zero in either the liquid risky asset c or
in the risk-free asset, e0 being i’s vector of exposures at time zero, and θ0 ∈ {0,Θ} being
i’s holdings in the illiquid asset at time zero. The optimization takes place over the set
of consumption processes that satisfy the budget and admissibility constraints discussed
below.

Budget constraint The consumption and trading of an investor must be consistent
with the dynamics of her wealth. Specifically,

dw̃t = rw̃t dt− c̃t dt+ dηt + θ̃t dDdt + π̃t ( dDct − rPc dt)− Pd dθ̃t, (8)

with π̃t being the number of shares of the liquid asset c held at time t, Pc being the
price of the liquid asset c and Pd being the price of the illiquid asset d. As the asset d
is traded bilaterally, defining the dynamics of the holdings θ̃t in d and the price Pd at
which it trades requires some extra care.

Two investors trade the asset d if the transaction is in their best interest. Investor a
sells the illiquid asset to investor b if there exists a price P̃d that satisfies both

V
(
wa + ΘP̃d, ia0

)
≥ V (wa, ia,Θ) , (9)

meaning that it is rational for a to sell, and

V
(
wb −ΘP̃d, ibΘ

)
≥ V (wb, ib0) , (10)

meaning that it is rational for b to buy.19 If a trade is rational for the two counter-
parties, the Nash bargaining solution determines the transaction price Pd. That is, Pd
satisfies

Pd ∈ arg max
P̃d


(
V
(
wa + ΘP̃d, ia, 0

)
− V (wa, ia,Θ)

)ηΘ

·
(
V
(
wb −ΘP̃d, ib,Θ

)
− V (wb, ib, 0)

)η0

 , (11)

with ηΘ ∈ (0, 1) being the bargaining power of the seller and η0 = 1 − ηΘ being the
bargaining power of the buyer.

17I consider the impact of aggregate risk in Section 5.
18The cross-sectional distribution of wealth is not necessarily constant over time. However, the

equilibrium policies are independent of the wealth, thanks to the CARA preferences, and this non-
stationarity has no impact on the equilibrium portfolios and prices.

19The wealth of a prior to the trade is wa, its vector of exposures is eia , etc.
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The bilateral trading introduces a structure of rational expectations in the investor’s
problem. An investor takes as given both her own value function and those of the
counter-parties she will meet. This investor then deduces the prices at which she will
trade the illiquid asset, and deduces her own actual value function. A solution to the
investor’s problem thus consists in rational expectations regarding the value functions.
I must still impose certain regularity conditions on the consumption processes.

Regularity The wealth process w̃ satisfies

lim
T→∞

e−ρT E
[
e−rγw̃T

]
= 0. (12)

The requirement (12) excludes pathological wealth processes and is needed in the ver-
ification argument for the Hamilton-Jacobi-Bellman (HJB) equations.20 Pathological
wealth processes include doubling strategies and the “financing” of consumption by an
ever increasing amount of debt.

Finally, for ease of exposition, I restrict the model parameters as follows.

Assumption 1. The dynamic of the exposure shocks, as described by (4), and the
supply Sd of the illiquid asset d satisfy

λ12

λ12 + λ21
6= Sd 6=

λ21

λ12 + λ21
.

Also, the vectors ed, ec, and e1 − e2 are not collinear.

Assumption (1) prevents the lengthy treatment of non-generic cases.21

2 The Investor’s Problem

I characterize the solution to the investor’s problem (7) by the dynamic programming
approach, meaning that I deduce the optimal consumption and trading policy from a
HJB equation.22

Along an optimal path (π∗, θ∗, c∗, w∗), the process(∫ t

0
e−ρsU(c∗s) ds+ e−ρtV (w∗, itθ

∗
t )

)
t≥0

=

(
E

[∫ ∞
0

e−ρsU(c∗s) ds

∣∣∣∣Ft])
t≥0

20The verification argument is the Appendix C.
21I endogenize the risk-profile ec in Section 10. The assumption regarding the non-collinearity of the

vectors of exposures will hold in this case if ed and e1 − e2 are not collinear
22The idiosyncratic exposure shocks and the idiosyncratic search processes make the markets incom-

plete. Further, the illiquid holdings can only be adjusted at stochastic times and are restricted to two
values. A martingale approach along the lines of Karatzas, Lehoczky, and Shreve (1987) and Cox and
Huang (1989) does not seem easily applicable.

10



must be a martingale. Equating the expected dynamics of this process to zero and assum-
ing that pointwise maximization characterizes the optimal consumption and investment
policy yields the HJB equation

ρV (w, iθ) = sup
c̃,π̃

U(c̃)

+
∂V

∂w
(w, iθ) (rw − c̃+mη + θmd + π̃ (mc − rPc))

+
1

2

∂2V

∂w2
(w, iθ)

(
1 θ π̃

)
Σi

(
1 θ π̃

)∗
+ λīi (V (w, īθ)− V (w, iθ))

+ 2Λ Eµ(b)
[
1surplus

(
V (w − (θ̄ − θ)Pd, iθ̄))− V (w, i, θ)

)]
,

(13)

with the matrix of covariations

Σi
∆
=

1

dt
d〈

 ηt
Dd,t

Dc,t

 ,
(
ηt Dd,t Dc,t

)
〉

=

 a2
i + b2i aiad + bibd aiac + bibc

aiad + bibd a2
d + b2d acad + bcbd

aiac + bibc acad + bcbd a2
c + b2c

 ,

(14)

for i ∈ {1, 2} and θ ∈ {0,Θ}.23,24 On the right-hand side of (13), the fifth line represents
the utility gains resulting from trading on the OTC market. The indicator function

1surplus

appears in the equation because not every meeting results in a trade. More specifically,
two investors only exchange the illiquid asset if they have a surplus to share, meaning
that both (9) and (10) hold. Furthermore, the transaction price Pd may depend on the
counter-party b and is characterized by (11). The other terms on the right-hand side of
(13) refer to the current consumption, the drift and volatility of the wealth, and shocks
to the vector of exposures. To characterize, the solution to (13) I make the following
assumption.25

Assumption 2. The value functions satisfy

V (w, iθ) = −e−α(w+a(iθ)+ā),

for a set of numbers α ∈ R>0, a ∈ R4, and ā ∈ R to be characterized.

Assumption 2 will be justified ex post by an existence result. Conditional on Assump-
tion 2, the optimal policy of the investors is known in closed-form. First, the trading on
the OTC market occurs as described below.

23I write “̄·” for “the other possible value”. For example, if i = 1, then ī = 2.
24For convenience, I index the entries of Σi by i, d, and c.
25This functional form is standard for problems similar to the one at hand. It is used, among others,

by Duffie, Gârleanu, and Pedersen (2007), Vayanos and Weill (2008), and Gârleanu (2009).
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Proposition 1 (OTC trading). On the OTC market, investors trade as follows.

1. Investors with exposure type 1 sell the illiquid asset to those with type 2 exposure
when

a(2Θ)− a(20) > a(1Θ)− a(10). (15)

In particular, the decision to trade does not depend on the wealth of the investors.

2. Investors with exposure type 2 sell the illiquid asset to those with type 1 exposure
when

a(2Θ)− a(20) < a(1Θ)− a(10). (16)

The decision to trade does not depend on the wealth of the investors either.

3. If a i-investor sells the illiquid asset to a ī-investor, the transaction price Pd is the
unique solution to

(1− η0)
(

1− eα(a(i0)+PdΘ−a(iΘ))
)

= η0

(
1− eα(a(̄iΘ)−PdΘ−a(̄i0))

)
. (17)

This solution is available in closed-form.26

Proof. See Proof 2 in Appendix B.

The proposition shows that the bargaining outcomes on the OTC market depend on
the exposures (and holdings) of the counter-parties but not on their wealth. As investors
are only interested in the rest of the population to the extent that it represents potential
counter-parties, I call type of an agent the combination of her exposure, indexed by 1 or
2, and her illiquid holdings, 0 or Θ.

The characterization of the transactions on the OTC market in terms of inequalities
(15) and (16) is intuitive. Recalling Assumption 2 regarding the value functions, the
difference

v(iΘ)− v(i0), i = 1, 2,

is the reservation value of a i-agent for the illiquid asset. Inequality (15) thus states
that the reservation value of the 2-agents is higher than that of the 1-agents. In this
case, the 2-investors buy the illiquid asset from the 1-investors. Inequality (16) is just
the opposite.

I can also characterize the optimal consumption and investment in the liquid asset.

Proposition 2 (Consumption and Liquid Holdings). The optimal consumption is

c(iθ) =
1

γ

(
α (w + a(iθ) + ā)− log

(
α

γ

))
26Equation (17) is quadratic in

x
∆
= exp (αΘPd) (> 0)

and admits a unique positive solution. This unique solution readily defines Pd.
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and the optimal holdings in the liquid asset are

π(iθ) =
1

Σcc

(
1

α
(mc − rPc)− (Σic + Σcd)

)
, (18)

for any type iθ and liquid wealth w.

Proof. See Proof 3 in Appendix B.

Combining the HJB equation (13) with Lemma 1 and Lemma 2 provides a narrower
characterization of the value function.

Proposition 3 (Value Functions). The constants in the value function

V (w, iθ) = − exp (−α (w + a(iθ) + ā)) ,

are characterized as follows. First, α = rγ. Furthermore, choosing

ā =
1

rγ

(
−1 +

ρ

r
+ γmη + log(r)

)
, (19)

and taking the cross-sectional distribution of types µ
(∆)
= {µ(iθ)}iθ as given, the type

specific constants “a(iθ)” are the unique solution to the system

ra(iθ) =κ(iθ) + λīi

(
e−rγ(a(̄iθ)−a(iθ)) − 1

−rγ

)
+ 2Λµ(̄iθ̄)

[
χ (ηθ, εiθ (a))

−rγ

]+

,

i ∈ {1, 2}, θ ∈ {0,Θ},
(20)

with the quantity

κ(iθ)
∆
=θmd + π(iθ) (mc − rPc)−

1

2
rγ
(
1 θ π(iθ)

)
Σi

(
1 θ π(iθ)

)∗
, (21)

measuring the mean-variance benefits of the risk-profile, the function

εiθ : {a}iθ 7→ a(̄iθ)− a(̄iθ̄) + a(iθ̄)− a(iθ) (22)

measuring the surplus that a iθ-investor may be able to share on the OTC market, and
the function

χ : (0, 1)× R→ R

(η, ε) 7→ 2 (1− η)

1− 2η +
√

(2η − 1)2 + 4η(1− η)erγε
− 1

(23)

mapping a bargaining power and a surplus to the utility change induced by a trade
OTC.27,28,29

27I abuse notation and write µ both for a measure on the set of investors and for the distribution of
the type of the investors under µ. µ defines the type distribution but not the other way around.

28I write [x]+
∆
= max {0, x} for the positive part of a number.

29When all investors have the same bargaining powers, ηθ = 1/2, the function χ significantly simplifies.
Namely,

χ

(
1

2
, x

)
=

1√
ex
− 1.
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Proof. See Proof 4 in Appendix B.

Equation (20) decomposes the expected utility of an agent into the sum of three
terms. First, there is a flow of mean-variance benefits resulting from an investor’s risk
profile. Second, there are the shocks to the vector of exposures. Finally, there are the
benefits resulting from trading on the OTC market. The benefits resulting from trading
on the liquid market do not appear explicitly in Equation (20) but are contained in the
flow “κ (iθ)” of mean-variance benefits.

Intuitively, the quantity

S ∆
= (κ(2Θ)− κ(20)) + (κ(10)− κ(1Θ)) (24)

indicates whether transferring the illiquid asset from a 1Θ-investor to a 20-investor in-
creases the overall flow of mean-variance benefits.30 S should then also indicate whether
a sale of the illiquid asset by a 1Θ-investor to a 20-investor is profitable in equilibrium
or not. As stated in Proposition 6 below, this is indeed the case. To characterize an
equilibrium, I must first characterize the distribution of types across the population.

3 Cross-Sectional Distribution of Types

The type of a given agent changes either because of a shock in her endowment correla-
tions, or because she traded on the decentralized market. As described in Proposition 1,
two mutually exclusive trade patterns can exist on the decentralized market, depending
on which agents have the higher valuation. Investors endogenously choose which trading
pattern they follow but, for this section, I assume the following.

Assumption 3. Agents with the exposure type 2 buy the illiquid asset.

Recalling both the dynamics of the endowment correlations assumed in Equation 4
and the linear matching technology assumed in Equation 5, the type distribution µ must
satisfy the stationary Kolmogorov forward equation

0 = µ̇(10) = 2Λµ(1Θ)µ(2l) −λ12µ(1l) +λ21µ(2l)
0 = µ̇(1Θ) = −2Λµ(1Θ)µ(2l) −λ12µ(1h) +λ21µ(2Θ)
0 = µ̇(2l) = −2Λµ(1Θ)µ(2l) −λ21µ(2l) +λ12µ(1l)
0 = µ̇(2Θ) = 2Λµ(1Θ)µ(2l) −λ21µ(2Θ) +λ12µ(1Θ)

. (25)

On the right-hand side of each equation, the first term refers to trading, and the other
ones to endowment shocks.31 Also, µ, being a density, must satisfy both

µ(10) + µ(1Θ) + µ(20) + µ(2Θ) = 1 (26)

30I write S like in risk sharing.
31The terms referring to trading only involves trades between agents with different endowment corre-

lation. However, according to Proposition 1, agents with the same endowment correlations, but different
holdings will also trade. However, as such agents will only swap their types, this has no impact on the
distribution of types.

14



and
(µ(1Θ), µ(10), µ(2Θ), µ(20)) ∈ R4

+. (27)

Finally, the OTC market has to clear, meaning that every unit of the illiquid asset d
must be held by someone. This is expressed by imposing the condition

Θ (µ(1Θ) + µ(2Θ)) = Sd. (28)

As seen from (26), (27), and (28), the population can absorb at most Θ units of the
asset d. This imposes the constraint

0 ≤ Sd
Θ
≤ 1 (29)

on the exogenous parameters of the model.
As shown in Duffie et al. (2005), the system defining the stationary distribution is

well-behaved. I recall their result for convenience.

Proposition 4 (Duffie et al. (2005), Proposition 1). There exists a unique stationary
type distribution that is reached from any initial distribution.

Proof. For convenience, I partially recall the argument of Duffie et al. (2005) in Proof
5, in Appendix B.

If Assumption 3 fails and 1-investors buy the illiquid asset, then all statements in
this section 3 are still valid, up to a systematic swap of the indexes 1 and 2.32

There are thus only two possible stationary distribution. I denote the one arising
under Assumption 3 by µ1h→2l and the other by µ2h→1l. In equilibrium, the trade surplus

εiθ
(∆)
= a(iθ̄)− a(iθ) + a(̄iθ)− a(̄iθ̄)

decides which type distribution obtains, in the sense that

µ (a) = 1{ε1Θ(a)>0}µ
1Θ→2l + 1{ε2Θ(a)>0}µ

2Θ→1l. (30)

The trade surpluses define the trading pattern on the OTC market via the Nash bar-
gaining solution characterized in Proposition 1. In turn, the trading pattern defines the
stationary distribution of types via the flow equations (25).

Finally, it may be useful to consider the behavior of the type distribution when
the OTC market is relatively liquid. The exact asymptotic behavior depends on the
relationship between the supply Sd of the illiquid asset and the proportion of investors

µ2
∆
=

λ12

λ12 + λ21

32Strictly speaking, I should still consider the borderline case for which all investors have the same
reservation value for the asset and are indifferent between buying and selling the illiquid asset. This case
can arise but is non-generic in the exogenous parameters. Further, when the surplus to share on the OTC
market is exactly zero, I should make additional assumptions regarding when a bilateral trade occurs.
For these two reasons, I do not explicitly analyze this case. In proposition 6 I exactly characterize when
this non-generic case arises.

15



having a high valuation for this illiquid asset.33,34 In remaining of the paper I assume

µ2 >
Sd
Θ
. (31)

Under this assumption, the “marginal” buyer of the asset d in a Walrasian setting would
have a high valuation for the asset. By marginal buyer I mean the investor that would
buy the additional units of the illiquid asset, should Sd be marginally increased.35

Proposition 5. Under assumption (31), the equilibrium density satisfies
µ(10)
µ(1Θ)
µ(20)
µ(2Θ)

 = µW +
1

Λ
δµ


−1

1
1
−1

+ o

(
1

λ

)
14, (32)

with the limit value and sensitivities

µW
∆
=


1− Sd

Θ
Sd
Θ − µ2

0
µ2•

 , δµ
∆
=
λ12

2

Sd
Θ

µ2 − Sd
Θ

and with 14 ∈ R4 being the vector whose components are all equal to 1.

Proof. See Proof 7 in Appendix B.

The asymptotic expressions above can be understood intuitively. The common ab-
solute value of the four components of the first order correction reflects the functioning
of the decentralized market. That is, every time one potential buyer and one potential
seller meet, a transaction occurs, and they become a satisfied holder of the asset d and
one satisfied non-holder, respectively.

33Similarly, I define

µ1
∆
=

λ21

λ12 + λ21

as the proportion of investors with a low valuation for the illiquid asset.
34 Recalling (4), the description of µ2 as the proportion of 2-investors across the population intuitive.

Whether it is correct or not, however, is far from trivial. Indeed, this statement identifies the proportion
of time spent by a given agent in a given state and the proportion of agents across the population who
currently are in that state. This requires the application of a certain Law of Large Numbers across the
population. See Sun (2006) for a rigorous treatment of this issue.

35All the derivations could be done assuming the inequality opposite to 31. However, assumption
31 makes sure that the illiquidity discount is positive, meaning that the illiquidity of the OTC market
decreases the value of the asset OTC. Thinking about bond markets and the well-documented positive
liquidity spreads on bonds, this seems to be a desirable model feature. For this reason, presumably,
assumption (31) and variants thereof recurrently appear in the literature. See, for instance, Condition 1
in Duffie et al. (2005), Equation (1) in Weill (2008), or Assumption 2 in Vayanos and Weill (2008).
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4 Stationary Equilibrium

In this section I define and characterize an equilibrium of the model. In other words, I
make the individual decisions consistent with the aggregate quantities in the economy.

For the centralized market, I use a classical Walrasian equilibrium concept. Specifi-
cally, as seen in Proposition 2, the only aggregate quantity affecting the liquid holdings
is the price Pc of the liquid asset. I thus impose the consistency between the individual
and aggregate quantities by requiring the price Pc to be so that the centralized market
clears.

Turning to the OTC market, the decisions to trade or not and, if so, at which price,
are dictated by the parametrization

a = {a(iθ)}iθ

of the value functions (see Proposition 1).
Now, on the one hand, the individual trading decisions on the OTC market yield a

certain type distribution, characterized in Section 3. On the other hand, a also depends
on the distribution of types across the population. This is clear at both the intuitive
and technical levels. Intuitively, it is clear because the utility of an investor searching
for a counterparty on an OTC market should depend on the likelihood of finding such a
counterparty. Technically, it is clear because a is a solution to the HJB equation (20),
an equation in which the distribution µ appears.

I will thus impose the equilibrium condition that the type distribution assumed when
writing the HJB equation (20) and the one generated by the solution to (20) are equal.
I formalize this discussion as follows.

Definition 1. A stationary equilibrium of the model consists of a price Pc (∈ R), a col-
lection of liquid holdings {π(iθ)}iθ

(
∈ R4

)
corresponding to each type, a distribution of

types {µ(iθ)}iθ
(
∈ R4

)
, and the constants {a(iθ)}iθ

(
∈ R4

)
defining the value functions.

The equilibrium quantities satisfy three conditions.

1. An investor of type iθ who takes the price Pc as given optimally invests the amount
{π(iθ)}iθ in the liquid asset c.

2. The centralized market clears, meaning that

Eµ(iθ) [π(iθ)] = Sc.

3. The value functions and stationary type distribution are consistent. Specifically,
the vector

a = {a(iθ)}iθ
solves the HJB equation (20) when the type distribution is µ (ε1h (a)).36

I now state the main result of this section.

36The distribution µ (ε1h (a)), a function of the trade surplus, is defined in (30).
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Proposition 6. There exists exactly one equilibrium of the model. In equilibrium, 2-
agents have a high valuation of the illiquid asset d exactly when

det
((

ed ec
))
· det

((
e1 − e2 ec

))
> 0, (33)

with ec, ed, e1, and e2 being the exposures to the aggregate factors of the liquid asset, the
illiquid asset, and the endowments, respectively.

Furthermore, the equilibrium price of the liquid asset is

Pc =
mc

r
− γ (ΣccSc + Σηc + ΣcdSd) , (34)

with
Σηc

∆
= µ1Σ1c + µ2Σ2c

being the average correlation between the endowments and the dividends of the liquid
asset, and the equilibrium holdings of the four types are

π(iθ) = Sc +
1

Σcc
((Σηc − Σic) + Σcd (Sd − θ)) , (35)

for i = {1, 2} and θ = {0,Θ}.

Proof. See Proof 8 in Appendix B.

As Equation (34) shows, the liquidity Λ of the OTC market does not affect the
price of the liquid asset. This result can be understood intuitively. Indeed, the search
friction makes the asset allocation inefficient. Illiquidity thus increases the proportion of
investors who short the liquid asset because they have not yet found a counter-party to
buy their illiquid holdings. These investors reduces the aggregate demand for the liquid
asset. At the same time, the search friction also increases the number of investors who
buy the liquid asset while trying to increase their illiquid holdings. This second demand
compensates the first one and, overall, the search friction does not affect the price of the
liquid asset. It is true, however, that the two types of hedging demand exactly offset
each other because there is no aggregate uncertainty. In Section 5, I consider aggregate
demand shocks and, in this case, the frictions in the OTC market affect the price of the
liquid asset.

Having a market friction that impacts individual policies but not prices is reminiscent
of several references. Gârleanu and Pedersen (2004) documents a similar effect in a
setting with adverse selection, and so does Gârleanu (2009) in a setting with search
friction and a unique market. The conclusions of Rostek and Weretka (2011) are similar
as well, but with illiquidity measured as a price impact.

There is also a short technical argument explaining why the equilibrium price of the
liquid asset is independent of the illiquidity of the OTC market. Proposition 2 shows
that the optimal holdings in the liquid asset are linear both in the covariance Σic of
the endowment with the payouts of c and in the illiquid holdings θ. Now, the cross-
sectional average of the endowment correlations is independent of the illiquidity of the
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decentralized market. Indeed, the correlations define which holdings agents intend to
hold, and this is independent of how much time it will actually take to obtain these
holdings. Similarly, the cross-sectional average of the illiquid holdings is a matter a
market-clearing, and not of illiquidity per se. Taking things together, as the optimal
holdings in the illiquid asset are linear in the model parameters, and as the cross-sectional
averages of these parameters are independent of the liquidity level, so is the aggregate
demand, and so is the price of the liquid asset c.

The condition (33) characterizes which investors have the higher valuation for the
illiquid asset and is rather intuitive. The first term of the product,

det
((

ed ec
))
,

measures how orthogonal the risk profiles of the liquid and illiquid assets are. Phrased
differently, this first term measures how much risk sharing can be achieved on the OTC
market only. The second term in the product,

det
((

e1 − e2 ec
))
,

again compares how orthogonal two vector of exposures are. The first vector, e1 − e2,
is the risk-profile that 2-investors should buy to achieve an optimal risk-sharing. The
second vector is again the risk profile of the liquid asset. As a result, this second term
measures how much risk-sharing is left once agents have chosen their exposure on the
liquid market.

Finally, the product of the two terms is positive exactly if the exposure that is specific
to the OTC market and the risk-sharing that cannot be achieved on the liquid market
“overlap”. Figure 2 offers a visual interpretation of the condition (33).

This discussion shows that the buyers of the illiquid asset are necessarily those in-
vestors to whom the fundamentals of the illiquid asset offer high diversification benefits.
In particular, even if illiquidity distorts the value functions and prices, it does not modify
an agent’s decision to hold an asset or not. Even in an illiquid market, the fundamentals
of the asset guide this decision.

Finally, the condition (33) is equivalent to S > 0, with S defined in (24).
In general, the equilibrium quantities for the decentralized market are cumbersome

to deal with. Specifically, I cannot characterize the parametrization a of the value
functions in closed-form. Explicit expressions for a certain asymptotic case are available
in Appendix A.

On the technical side, the existence and uniqueness result of Proposition 6 appears
to be new. More specifically, in Duffie, Gârleanu, and Pedersen (2005), the equilib-
rium quantities are known in closed-form but only because agents are assumed to be
risk neutral. This setting was then extended by Duffie, Gârleanu, and Pedersen (2007),
Vayanos and Weill (2008), and others to accommodate risk-averse (CARA) agents. In
these cases, the authors showed how, asymptotically, the solutions to these models were
formally equivalent to those encountered in settings with risk-neutral agents. However,
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the asymptotic analyses involved either a vanishing risk-aversion, or a vanishing hetero-
geneity of the agents. My argument does not need these assumptions.37

Thanks to Proposition 6, I can characterize the equilibrium dispersion of holdings in
the liquid asset.

Corollary 1. The mean absolute deviation of the holdings in c,

Eµ(iθ) [|π(iθ)− Sc|] ,

is increasing in the illiquidity 1
Λ of the OTC market.

The proof of Corollary 1 follows directly from (the proof) of Proposition 4 and from
Proposition 6. Proposition 4 characterizes the equilibrium distribution of types and
Proposition 6 characterizes the equilibrium holdings in c.

Corollary 1 is exactly in line with the findings of Oehmke and Zawadowski (2013)
regarding CDS and bond markets. Indeed, Oehmke and Zawadowski (2013) find that
the CDS market is used as a liquid alternative to an illiquid bond market, and that
the dispersion of holdings in CDS contracts is increasing in the illiquidity of the bond
market.

My model also has predictions regarding the trading volumes on the two markets. I
define the trading volume as the number of shares of an asset that is traded per unit of
time. On the illiquid market, trades occur at the rate

2Λµ(1Θ)µ(20)

when the inequality (33) holds, and each trade involves the exchange of Θ units of the
illiquid asset. The trading volume on the illiquid market is thus

2Λµ(1Θ)µ(20)Θ.

Investors trade infrequently even on the liquid market. This is a consequence of the
CARA preferences and of the trade motives being driven by infrequent jumps and not
by diffusions. Namely, there are six possible type changes and each of them occurs with
a given intensity. These six type changes are

type change rate triggered by

10→ 20 λ12µ(10) correlation shock
1Θ→ 2Θ λ12µ(1Θ) correlation shock
1Θ→ 10 2Λµ(1Θ)µ(20) OTC trade
20→ 2Θ 2Λµ(1Θ)µ(20) OTC trade
20→ 10 λ21µ(20) correlation shock

2Θ→ 1Θ λ21µ(2Θ) correlation shock

.

37Gârleanu (2009) sketches an existence argument for an alternative model of illiquid market. How-
ever, in his setting, prices are Walrasian and not bargained, which modifies the structure of the equilib-
rium.
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The trading volume on the liquid market is then

Vol =
1

2

 ∑
type changes

(rate)× (size of trade)



=
1

2



λ12µ(10) |π(10)− π(20)|
+λ12µ(1Θ) |π(1Θ)− π(2Θ)|

+2Λµ(1Θ)µ(20) |π(1Θ)− π(10)|
+2Λµ(1Θ)µ(20) |π(20)− π(2Θ)|

+λ21µ(20) |π(20)− π(10)|
+λ21µ(2Θ) |π(2Θ)− π(1Θ)|


,

with the factor 1/2 recalling that each purchase must be matched by a sale.
Combining (the proofs of) Propositions 4 and Proposition 6 yields the following:

Corollary 2. The trading volumes on both markets are decreasing in the illiquidity level
ξ = 1/Λ.

Proof. See Proof 9 in Appendix B.

Corollary 2 shows how the liquid and the illiquid assets are complements in terms of
trading volumes, with the trading volumes on both markets increasing and decreasing
together. Interestingly, this relationship between the trading volumes holds indepen-
dently of whether the assets are complements or substitutes in terms of risk-exposure.
This relationship between the trading volumes is driven by the use of the liquid asset as
a hedging instrument, as detailed in Proposition 7.

Proposition 2 also deserves to be compared with a result from Longstaff (2009).
Longstaff (2009) proposes a model in which, for a given period, only one of two assets can
be traded. Longstaff (2009) then concludes that illiquidity increases a certain measure
of the trading activity in the liquid asset. This is obviously in contradiction with my
conclusion. The origin of this divergence is in the preferences of the agents.

In my model, investors with CARA preferences intend to keep their holdings fixed
essentially all the time. A re-balancing is triggered only by a preference shock or by
a wish to adjust the liquid holdings as the result of a change in the illiquid holdings.
However, making bilateral transactions more difficult makes the trade motives even less
frequent, and reduces trading volumes.

Quite differently, in Longstaff (2009), investors have a constant relative risk aversion
(CRRA) and want to constantly re-balance their holdings in both assets. Now, if trading
in one of them is impeded, this is compensated by trading the other one more intensively,
which induces the trading volume increase.

I now provide a more detailed characterization of trading on the centralized market.

Proposition 7. Opening the OTC market strictly increases the trading volume Vol on
the liquid market.
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Furthermore, if the inequality

det
((

ed ec
))
· det

((
e1 − e2 ec

))
(ec · (e1 − e2)) (ec · ed) > 0 (36)

holds, the search frictions on the OTC market discontinuously increase the trading vol-
ume on the liquid market. In mathematical terms,

lim
Λ→∞

Vol(Λ) > VolW ,

with VolW being the trading volume in c if the asset d is traded on a competitive (Wal-
rasian) market.38 If (36) does not hold, the asymptotic trading volume with a vanishing
friction and the Walrasian trading volume coincide.

Proof. See Proof 10 in Appendix B.

This last result shows how the search friction on the OTC market can generate some
additional, or “excessive”, trading on the centralized market. Intuitively, this arises from
the investors’ use of the liquid asset as an imperfect substitute for the illiquid asset.

5 Aggregate Demand Shocks

The price impact of illiquidity can be driven both by the illiquidity level and by the
illiquidity risk, that is, by time variation in illiquidity.39

In my model, liquidity is understood as the time it takes to complete a transaction on
the OTC market. More specifically, in the steady state, an investor who is attempting
to sell her illiquid holdings measures illiquidity as

1

Λ

1

P [sell the asset | contacted an investor]
,

meaning as the expected time until the sale is completed. The meeting intensity Λ
represent the technology used by investors to contact each others and is unlikely to
change in unpredictable ways over time. The probability of completing the trade,
P [sell| contacted], however, is determined by the distribution of preferences across the
population of investors and this distribution can reasonably be assumed to evolve stochas-
tically, leading to illiquidity risk.

In this section, I introduce time variation in liquidity by assuming that the proportion
of agents with a high valuation for the illiquid asset is driven both by aggregate and by
idiosyncratic shocks. The aggregate shocks occur at the jump times of the Poisson
process

(Na
t )t≥0

38I consider a Walrasian setting in which investors can trade d whenever they want, at no cost, and
taking the price Pd,W of the asset d as given, but I maintain the constraint that the holdings in d must
belong to {0,Θ}.

39The importance of illiquidity risk was emphasized by Pastor and Stambaugh (2003) and Acharya
and Pedersen (2005), and further analyzed by Bongaerts et al. (2011), Junge and Trolle (2013), and
Mancini et al. (2013).

22



whose intensity is λa. The proportion of 2-agents after such an aggregate shock is drawn
from a distribution M2 and the draws are independent across aggregate shocks.

I still assume ex ante that 2-agents have the high valuation and verify ex post this as-
sumption. Furthermore, I assume that the support of the distribution after an aggregate
shock satisfies

supp (M2) ⊂
(
Sd
Θ
, 1

]
.

This maintains a high valuation for marginal investors at any time or, equivalently,
maintains a positive illiquidity discount.

In mathematical terms, these assumptions translate into the dynamics

dµ2(t) = −λ21µ2(t−) + λ12µ1(t−) + (m2 − µ2(t−)) dNa
t , m2 ∼M2, (37)

for the proportion µ2(t) of 2-investors at time t. Note that, between two aggregate
shocks, this proportion evolves deterministically. Using a formalism similar to the one
in Duffie et al. (2005), I index the state of the system by the last aggregate shock and
the time elapsed since this last shock.40,41 For example, the proportion of 2-investors t
units of time after it jumped to m2 is

µ2(m2, t) = e−(λ12+λ21)tm2 +
(

1− e−(λ12+λ21)t
) λ12

λ12 + λ21
(38)

In particular, if no aggregate shock has occurred for a long time, and independently of
the last shock, the proportion of 2-investors converges toward the same level. I write

µ2(∞)
∆
=

λ12

λ12 + λ21

for this level.42

I must still specify the shocks at the individual level that will generate the aggregate
dynamics (37). I do so by assuming, for a proportion of 2-investors jumping from µ2(t−)
to m2, that each 2-investor has a probability

δ (2;µ2(t−);m2)
∆
= max

{
0;
µ2(t−)−m2

µ2(t−)

}
(39)

40In Duffie et al. (2005) the distribution after the shock is concentrated on one point, meaning that
the state of the system can be indexed by the time since the last shock only.

41The last aggregate shock should be represented by the entire distribution

(µa(1l), µa(1h), µa(2l), µa(2h))

reached after the aggregate exposure shock occurred. In the asymptotic case I consider, however, only
the proportion

µa2
(∆)
= µa(2l) + µa(2h)

of high valuation investors matter. As a result, I abuse notations and index the current state of the
economy by the last draw from ma

42In the stationary setting of Section 4, I simply denoted the quantity µ2(∞) by µ2. In this Section
5 I add “∞” as a time argument to avoid confusion.
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of becoming type 1 and that each 1-investor has a probability

δ(1;µ2(t−);m2)
∆
= max

{
0;
m2 − µ2(t−)

1− µ2(t−)

}
(40)

of becoming type 2. Assuming that a suitable version of the strong law of large numbers
(SLLN) holds cross-sectionally, these idiosyncratic shocks will be consistent with the
aggregate dynamics (37).43

As far as the type distribution is concerned, the state of the economy can be de-
scribed by the last aggregate valuation shock and the time elapsed since that shock.
Furthermore, the type distribution evolves continuously between two aggregate valua-
tion shocks. I thus assume the same type of evolution for both the price of the liquid
asset and the value functions.

I assume that the equilibrium price process of the liquid asset is a function

Pc (m2, t) (41)

of the last aggregate liquidity shock and of the time elapsed since this last shock. I
also assume that this price is differentiable in time. Under this assumption on the price
process, the budget constraint of an investor becomes

dwt = rwt dt− ct dt+ det + θt dDd,t + πt

(
Ṗc,t dt+ dDc,t − rPc,t

)
− Pd,t dθt, (42)

with w being the wealth invested at the risk-free rate or in the liquid asset, c being the
consumption, θ being the holdings in the illiquid asset, π being the holdings in the liquid
asset, and

Ṗc,t
(∆)
=

dPc,t
dt

being the time derivative of the function in (41). I also denote by

V (w, iθ;m2, t)
∆
= E

[∫ ∞
t

e−ρsU(ĉs) ds

∣∣∣∣µ2(t) = µ2 (m2, t)

]
the value function of an investor having a liquid wealth of w, being of type i and holding
θ units of the illiquid asset when a proportion µ2(t) of the investors have a high valuation
for the illiquid asset. I assume that the value function is differentiable in the time since
the last shock, which is consistent with the assumption on the price process Pc.

My analysis of the dynamic setting is similar to the static analysis and is based on
dynamic programming. I first derive the HJB equations for the dynamic problem. Then,
I assume that the value function satisfies

V (w, iθ;ha, t) = − exp {−rγ (w + a (iθ;ha, t) + ā)} , (43)

43This is seen by verifying that

µ2(t−) (1− δ (2;µ2(t−),m2)) + µ1(t−) (δ (1;µ2(t−),m2)) = m2.

Indeed, the left-hand side being the proportion of agents with a high valuation given an aggregate shock
ha, the idiosyncratic shocks defined by (39) and (40), and a suitable SLLN, whereas the right-hand side
is the proportion of agents with a high valuation that was assumed in the first place.
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with the constant

ā
∆
=

1

rγ

(ρ
r
− 1 + log(r) + γme

)
.

This assumption is motivated by the static equilibrium analysis and justified ex post.
Plugging the guess (43) into the HJB equation yields

ra (iθ;m2, t)

= sup
π̃
ȧ (iθ;m2, t) + κ (iθ;m2, t; π̃)

+ λīi
e−rγ(a(̄iθ;m2,t)−a(iθ;m2,t)) − 1

−rγ

+ 2Λµ
(̄
iθ̄;m2, t

) [e−rγ(a(iθ;m2,t)−Pd(m2,t)(θ̄−θ)−a(iθ;m2,t)) − 1

−rγ

]+

+ λa Em(m̃2)

[
δ(i;m2, t; m̃2) e

−rγ(a(̄iθ;m̃2,0)+π̃(Pc(m̃2,0)−Pc(m2,t))−a(iθ;m2,t))−1
−rγ

+ (1− δ(i;m2, t; m̃2)) e
−rγ(a(iθ;m̃2,0)+π̃(Pc(m̃2,0)−Pc(m2,t))−a(iθ;m2,t))−1

−rγ

]
,

(44)
with

κ (iθ;m2, t; π̃)
∆
=θmd + π̃

(
Ṗc(m2, t) +mc − rPc,(m2, t)

)
− 1

2
rγ
(
1 θ π̃

)
Σi

(
1 θ π̃

)∗ (45)

representing the flow of mean-variance benefits resulting from holdings a certain portfo-
lio, conditional on no illiquidity shock occurring.

The prices on the OTC market are still defined by the Nash bargaining solution.
Adapting Proposition 2 from the static setting yields the price Pd (m2, t) bargained on
the OTC market as the unique solution to the equation

η0

(
1− e−rγ(a(20;m2,t)−(a(2Θ;m2,t)−Pd(m2,t)))

)
= ηΘ

(
1− e−rγ(a(1Θ;m2,t)−(a(10;m2,t)+Pd(m2,t)))

)
.

(46)

The optimal policy and the resulting value function of the investors are characterized by
the HJB equation (44). The impact of the illiquidity risk can be intuitively understood
from this equation. The last line on the right-hand side represents the aggregate shocks.
The random variable m̃2 represents the proportion of agents with a high valuation after
the shock, conditional on the occurrence of a liquidity shock.

In particular, this last line represents the utility shock expected by an investor when
an aggregate shock occurs. The investor evaluates both the possibility that he may be
directly affected by the shock, because her valuation may change, and the possibility of
being affected by a change in the state of the economy. This change to the economy
comes both from a price jump on the liquid market and from a change in the counter-
parties on the OTC market.
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When an investor chooses her holdings, she will take into account the mean-variance
properties of the liquid asset and the covariance of this asset with her endowment. With
aggregate shocks, however, she will also consider how the liquid asset hedges her own
preference shocks and the shocks to her trading opportunity on the OTC market. The
new dimension of the individual portfolio problem is the channel by which the illiquidity
of the search market spills over and affects prices on the liquid market.

The HJB equation (44) characterizes the value function, but this characterization
involves both partial derivatives and integrals of the value function. The general treat-
ment of such an equation seems challenging. Instead, I focus on a certain asymptotic
case.

More specifically, I let the agents become nearly risk-neutral with respect to the jump
risks. In mathematical terms, this is done by letting the risk aversion go to zero,

γ → 0, (47)

and by scaling up the diffusion coefficients,

ai = ai (γ) = ai0√
γ

bi = bi (γ) = bi0√
γ

, (48)

for constant numbers {ai0, bi0}i and an index i ∈ {1, 2, c, d}. By doing so, the subjective
quantity of risk

γΣi (γ) = γ0Σi0 , i = 1, 2

contained in the endowments and payout remains constant, even when investors be-
come risk-neutral with respect to the risks driven by Poisson processes. These Poisson
processes drive the random matching on the OTC market and the preference shocks.

The same approach is used to obtain closed-form expressions in Biais (1993), Duffie
et al. (2007), or Vayanos and Weill (2008). The procedure is particularly transparent
in Gârleanu (2009). This approach is also related to Skiadas (2013) and Hugonnier,
Pelgrin, and Saint-Amour (2013). In these models, there are several sources of risk and
agents have a different level of risk-aversion for each risk. In my case, investors are
risk-averse with respect to certain risks (diffusion risks) and risk-neutral with respect to
other risks (jump risks).

Focusing on this asymptotic setting makes the analysis of aggregate demand shocks
tractable.

Proposition 8. There exists exactly one asymptotic equilibrium. In this equilibrium,
the 2-investors buy the illiquid asset at all times if

det
((

ed ec
))
· det

((
e1 − e2 ec

))
> 0. (49)

Furthermore, the difference of valuations for the illiquid asset

(a(2Θ;m2, t)− a(20;m2, t))− (a(1Θ;m2, t)− a(10;m2, t))

is increasing in the quantity in (49) and decreasing in the contact rate Λ.
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Proof. See Proof 12 in the Appendix.

The proof of Proposition 8 relies both on algebraic manipulations of the equilibrium
equations and, in a second step, on an application of Blackwell’s sufficient condition for
a contraction.

Proposition 8 indicates that the qualitative behavior of the dynamic equilibrium is
similar to the behavior in the static setting. Specifically, the inequality (49) is the same
as the inequality (33) defining the trading pattern in the static setting. Furthermore,
the bargained price

Pd(m2, t) = v(2;m2, t)− η2l (v(2;m2, t)− v(1;m2, t))

is the reservation value of a potential buyer subtracted by a share of the trade surplus.
The share of the surplus is given by the bargaining power of the buyer. The trade surplus
is, as stated in the last proposition, increasing in the risk-sharing made possible by the
illiquid asset and decreasing in the contact rate on the OTC market. The contact rate
reduces the trade surplus because it makes the search for a counter-party faster, improves
the outside option of the investors, and reduces the benefits that one particular trade
can bring. More generally, both Proposition 8 and its proof indicate that the intuition
developed with the static model is robust to the introduction of aggregate liquidity
shocks.

The aggregate demand shocks, however, create new effects in the model. More
specifically, in the dynamic setting, the illiquidity of the OTC market affects prices on
the liquid market. This spillover effect and, more generally, the returns on the liquid
market are the object of the next proposition.

Proposition 9. I assume that the inequality (49) holds, meaning that 2-investors buy
the illiquid asset. Then, equilibrium expected excess returns on the liquid asset are

1

dt

(
E [Pc(m2, t+ dt)| (m2, t)]

Pc(m2, t)
− r
)

=
md

r
+ o (γ)

+ rγ


1

Pc(m2,t)

(
ScΣcc + λa E

[
(Pc,0 − Pc,t)2

∣∣∣ (m2, t)
])

+ 1
Pc(m2,t)

(SdΣcd + Σηc)

+λa EM(m̃2)
[(

Pc(m̃2,0)
Pc(m2,t)

− 1
)

(W (m̃2, 0)−W (m2, t))
∣∣∣ (m2, t)

]
 ,

(50)

with
W (m2, t)

∆
= Eµ(iθ;m2,t) [a(iθ;m2, t)]

being the average certainty equivalent across the population of investors. If the illiquidity
1/Λ is small enough, these expected returns increase in the illiquidity 1/Λ when

ec · (e1 − e2) > 0 (51)

and decrease otherwise.
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Proof. See Proof 13

Proposition 9 offers a clean decomposition of the excess returns on the liquid asset
into three different risk premia. The first two premia are classical. The first compen-
sates investors for taking exposure to uncertain price movement and the dividend risk of
the liquid asset. The second corrects the first by taking into account the diversification
benefits against endowment risk and the dividend risk of the illiquid asset. The third
premium is new and is driven by the illiquidity risk. It compensates investors for holding
an asset that performs poorly exactly when trading on the OTC market becomes more
difficult. To understand the underlying mechanism, let us first consider the average
certainty equivalent W (m2, t). Intuitively, we can use the average certainty equivalent
W (m2, t) to measure the efficiency of the allocation on the OTC market. Indeed, when-
ever the illiquid asset is transferred from a low valuation agent to a high valuation agent,
there is a net gain in utility across the population, and W (m2, t) precisely reflects this
utility gain.44 As a result, W (m2, t) is a measure of the efficiency of the OTC market
or, equivalently, of the reallocation speed on the OTC market.

Whenever there is a negative aggregate shock, meaning that the proportion of high-
valuation investors drops, the imbalance on the OTC market is reduced, the search
friction becomes more acute, and the OTC market becomes slower when it comes to
reallocating the illiquid asset. When the inequality (51) holds, the negative aggregate
shock induces a drop in the price of the liquid asset. As this price drop occurs precisely
when trading OTC becomes more difficult, it commands a positive risk premium. In
addition, this risk-premium increases with the intensity of the search friction.

Interestingly, this illiquidity spillover effect increases in the level of illiquidity 1/Λ
but is driven by illiquidity risk. This can be readily seen from (50), where the impact of
illiquidity on the expected returns stems from the “covariance”

Em(m̃2)

[(
Pc (m̃2, 0)

Pc(m2, t)
− 1

)
(W (m̃2, 0)−W (m2, t))

∣∣∣∣ (m2, t)

]
between the returns of the liquid asset and the efficiency of the economy. Furthermore,
this covariance is scaled by the risk-aversion γ. The role of illiquidity risk can also
be directly seen by comparing Proposition 9 with the static equilibrium described in
Proposition 6. Indeed, in the static version of the model, there is no illiquidity risk and
the frictions of the OTC market have no impact on the price of the liquid asset.

Conceptually, the spillover effect of Proposition 9 is similar to results in Acharya and
Pedersen (2005). Proposition 9, however, is based on an explicit modeling of illiquidity
as a search friction and makes predictions regarding the sign of the illiquidity spillover
effect. The model in Acharya and Pedersen (2005) relies on exogenous and stochastic
transaction costs, and is thus more suited for illiquid but centralized markets. Further-
more, the price effect of illiquidity risk is driven by the exogenously specified covariance
matrix of the transaction costs. Proposition 9 may thus be seen as a micro-foundation
for the results in Acharya and Pedersen (2005). My results also show that, unexpectedly,

44The proof of Proposition 9 contains a formal argument behind this statement.
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the measure of the illiquidity risk is determined by investors’ certainty equivalent. It
is interesting to compare Proposition 9 and the literature on long run risks, pioneered
by Bansal and Yaron (2004). In this literature, the assumption of recursive (non time
separable) preferences implies that the risk premia are determined by investors’ certainty
equivalent. This channel implies that, in stark contrast to the case of time separable
preferences, long run risk is priced in today’s returns. In my model, Proposition 9 shows
that, in illiquid markets, long run risk is priced despite the fact that agents have stan-
dard, time separable preferences. This interaction between long run risk and illiquidity
is an interesting and important topic for future research.

Proposition 9 can also be used to evaluate and improve empirical analysis of illiquid-
ity. Indeed, following the example of Longstaff et al. (2005), a number of authors willing
to measure the illiquidity component of bond yields have considered the so-called CDS
basis, defined as the spread between bond excess returns and CDS premia. The ratio-
nale for this procedure is the relatively high liquidity of CDS markets when compared
to bond markets. In particular, CDS spreads should be a clean measure of credit risk.45

As Proposition 9 indicates, however, even the returns on a perfectly liquid market may
be affected by the illiquidity of a related market.

Finally, Propostion 9 is consistent with empirical findings regarding illiquidity spillover.
For example, Tang and Yan (2006) and Lesplingart, Majois, and Petitjean (2012) docu-
ment how the illiquidity of the bond market increases yields on CDS contracts, which is
exactly in line with Proposition 9. Das and Hanouna (2009) documents a similar effect
between stock and CDS markets.

6 Opening the Liquid Market

In this section, I consider the effect of the liquid market on the functioning of the illiquid
one. For tractability reasons, I again focus on the stationary setting of Section 4.

As Proposition 6 and Proposition 8 show, the trading pattern on the OTC market
is determined by the quantity

det
((

ed ec
))
· det

((
e1 − e2 ec

))
.

This quantity measures how much risk-sharing can be achieved on the OTC market
only and, as a result, is closely linked to the competitive price of the asset traded
OTC. At the same time, the Nash bargaining solution assumed for the OTC market
also makes this quantity a measure of the illiquidity discount.46 In particular, if the
liquid asset mitigates the search friction and decreases the illiquidity discount on the
asset traded OTC, the liquid asset will necessarily also decrease the competitive price
of the asset. This mitigation effect occurs because the liquid asset offers an attractive
alternative to the asset traded OTC. However, this alternative market also diverts some

45Illiquidity is also priced on CDS market, as shown by Bongaerts et al. (2011) and Junge and Trolle
(2013). It is, however, true that CDS markets are typically significantly more liquid then their underlying
bond markets.

46See Appendix A for explicit derivations supporting these claims.
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of the fundamental demand for the asset traded OTC, leading to a capture effect. The
mitigation effect tends to increase prices on the OTC market whereas the capture effect
tends to decrease them. In this section I evaluate which of these effects dominates. I do
so by comparing the economy with and without the liquid market.

In the real world, the decision to create a market for a new security is always en-
dogenous and is determined by the financial intermediaries’ estimates of the investors’
trading needs. These intermediaries can be dealers, who will make the market in the
new security, or the exchanges on which the security will be traded.47 The revenues of
these intermediaries are driven by trading volumes, and so is financial innovation. As a
result, I assume that the liquid asset is designed to maximize volumes.48

I derive the trading volumes for the proof of Proposition 2 (see Appendix B). Shares
of the liquid asset are exchanged at the rate

V =
1

Σcc

(
|Σcd|Θ2Λµ(1Θ)µ(20) + |Σ1c − Σ2c|

λ12λ21

λ12 + λ21

)
(52)

when the 2-investors buy the illiquid asset.49 Recalling the definition of the covariation
matrices in (14) and defining the constants(

w1

w2

)
∆
= Θ2Λµ(1Θ)µ(20)

(
ad
bd

)
(
w3

w4

)
∆
=

λ12λ21

λ12 + λ21

(
a1 − a2

b1 − b2

)
,

I rewrite Equation (52) as

ΣccV = |w1ac + w2bc|+ |w3ac + w4bc| .
47Regarding a description of financial innovation being driven by intermediaries rather than by end-

users, one may refer to Das et al. (2013):

CDS introduction is initiated by dealer banks depending on factors such as size of outstand-
ing debt of an issuer, underlying credit risk of the issuer, and demand for credit protection.
[. . . ] Introduction of an equity option is decided by the corresponding options exchange
depending upon factors such as trading volume, market capitalization and turnover of the
underlying stock.

Duffie and Jackson (1989) proposes a model of financial innovations by intermediaries who maximizes
trading volumes. Rahi and Zigrand (2009) and Rahi and Zigrand (2010), for instance, propose alternative
theoretical models of financial innovation driven by intermediaries.

48I do not model the intermediary explicitly. However, an intermediary who earns a constant bid-
ask spread on transactions will attempt to maximize trading volumes. And the trading volume with a
constant bid-ask spread converges toward the volume without transaction costs when the bid-ask spread
decreases. See Praz (2013) for a treatment of transaction costs in a setting similar to the one of this
paper.

49The expression (52) also describes the asymptotic trading volume in a setting with aggregate demand
shocks when the risk-aversion γ goes to zero. See the characterization of the asymptotic optimal liquid
holdings in the proof of Proposition 8.
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When 1-investors buy the illiquid asset, the only change is that the weights w1 and w2

must be rescaled.50

It is important to understand which model parameters influence the equilibrium
trading volume. First, the trading volume V is independent of the expected payout
of the liquid asset, as seen in Equation (52). This expected payout must thus be set
exogenously. Second, the number of shares exchanged can be made arbitrarily large by
scaling down the risk exposures ec of the liquid asset.51 Without loss of generality, I
normalize the overall exposure

Σcc

(
= ‖ec‖22 = a2

c + b2c

)
to 1.

Summing up, I choose the liquid asset that maximizes the trading volume, meaning
that I choose the risk-profile ec of the liquid asset to be a point of maximum in the
optimization

max
(ac,bc)

{|w1ac + w2bc|+ |w3ac + w4bc|} (53)

under the conditions

‖(ac, bc)‖2 = 1,

det

((
ad ac
bd bc

))
· det

((
a1 − a2 αc
b1 − b2 βc

))
> 0. (54)

Three features of the maximization (53) should be emphasized. First, the constraint
(54) ensures the consistency of the beliefs regarding the trading pattern on the OTC
market. Specifically, as the objective function (53) assumes that 2-investors buy the
asset traded OTC, the inequality (54) ensures that this assumption is justified ex post.

Second, the inequality (54) is strict. The borderline with equality corresponds to the
case in which all investors have the same reservation value for the illiquid asset. In this
case, the benefits resulting from any trade on the OTC market are zero, investors are
indifferent on the OTC market, and I would need more assumptions to define the type
dynamics and the trading volumes.52

Third, both the objective function and the domain of optimization in (53) are sym-
metric around the origin. As a result, whenever a point x one the unit circle is a point
of maximum, so is its opposite −x.

I can characterize the solution to the optimal asset design problem (53).

50The rescaling factor is
µ(2Θ)µ(10)

µ(1Θ)µ(20)

and is the ratio of the type flows generated by trading when 1-investors buy the illiquid asset and when
2-investors do.

51Dividing ec by K > 0 multiplies the trading Volume by K.
52The additional assumptions would require to randomize the decision to trade.
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Proposition 10. There exists a solution to the volume maximization (53) exactly when((
w1

w2

)(
w1 − w3

w2 − w4

))
×
((

w3

w4

)(
w1 − w3

w2 − w4

))
< 0. (55)

In this case, the optimal liquid asset is(
ac
ad

)
= ±1

ν

(
w1 − w3

w2 − w4

)
, (56)

with the constant

ν
∆
=

√
(w1 − w3)2 + (w2 − w4)2

ensuring the normalization Σcc = 1.

Proof. See Proof 11 in the Appendix.

Proposition 10 implies that the optimal liquid asset is the weighted average of two
risk profiles. The first is the profile of the illiquid asset and the second is optimal in terms
of risk-sharing. This already indicates how the new liquid asset balances the attempt to
capture some of the trading activity that takes place OTC and the alternative aim of
being valuable to as many investors as possible. Furthermore, the weight on the profile of
the illiquid asset is monotone increasing in the contact rate on the OTC market because,
with a higher contact rate, there is more volume to capture. Perhaps paradoxically, this
means that the search friction is easier to mitigate when it is smaller in the first place.

Importantly, the optimal security design defined by the maximization (56) does not
necessarily have a solution. In particular, if inequality (55) does not hold and the liquid
asset has the risk-profile in Equation (56), then 1-investors have the higher valuation
for the illiquid asset. Conversely, if the trading volumes had been optimized under the
assumption that 1-investor buy the illiquid asset, the resulting liquid asset would actually
induced the 2-investors to buy the illiquid asset. As a result, the only way of, possibly,
obtaining an optimum would be to impose the behavior of the investors on the OTC
market when investors are indifferent.

Finally if the trading pattern on the OTC market is the same before and after the
opening of the liquid market, the type flows across the population will not change when
the liquid asset is introduced. As a result, the trading volumes will be constant at any
time. However, if the opening of the liquid market inverts the trading pattern on the
OTC market, the trading volume (52) only represents the asymptotic trading volume in
the steady state.53

Intuitively, choosing a liquid asset that is very similar to the illiquid asset has two
consequences. On the one hand, the liquid asset mitigates the search frictions and
reduces the illiquidity discount on the OTC market. This pushes the price on the OTC

53See Theorem 5 (and its proof) in Duffie et al. (2005) for a similar issue. Namely, Duffie et al.
(2005) show how, for a sufficiently patient intermediary, an optimal policy chosen at time zero and fixed
afterwards is approximately the policy that maximizes revenues in the steady state.
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market up. On the other hand, if the liquid asset is very similar to the illiquid asset, the
illiquid asset has little value left as a risk-sharing instrument. This second effect pushes
the price of the illiquid asset down.

Figure 4 illustrates how each of these effects can dominate. When the search friction
is severe, on the right part of the plot, the mitigation of the illiquidity discount dominates
the drop in the fundamental value and the price on the OTC market increases when the
liquid asset starts trading. Quite differently, when the search frictions are modest, on
the left part of the plot, the illiquidity discount is small and diversion of trading volume
towards the new market dominates the benefits of the new hedging opportunities. To
complete this section, I note that, for potential applications to bond market, it may be
more natural to consider the yield on the illiquid asset. This is done in the second panel
of Figure 4.

7 Conclusion

I study a general equilibrium model in which agents can trade both on an illiquid OTC
market and on a liquid, centralized market. Search frictions on the OTC market increase
the trading volume and open-interest on the liquid market. Furthermore, the endogenous
interactions of the search frictions with the aggregate demand shocks generate a time-
varying efficiency of the asset allocation on the OTC market. This liquidity risk is
priced and affects the risk premium on the liquid asset. These results are consistent
with a number of empirical studies.54

Motivated by several real-world examples in which centralized markets were created
as an alternative to preexisting OTC markets, I introduce endogenous financial inno-
vation into the model. I assume that intermediaries design the cash flows of the liquid
asset that maximize the equilibrium trading volume. Then, I compare the prices on the
OTC market in an economy with and without a liquid asset. I show that the risk profile
of the optimal liquid asset is a weighted average of the illiquid asset’s profile and of the
risk profile that would lead to an efficient risk-sharing. The weight on the profile of the
illiquid asset is shown to be monotone increasing in the contact rate on the OTC market
because, with a more active OTC market, there is more trading volume to capture.

I show that the liquid market has two effects on the illiquid OTC market. On the one
hand, it mitigates the search frictions, reduces the price discount on the illiquid asset,
and increases the prices bargained on the OTC market. On the other hand, the liquid
asset captures some of the illiquid asset’s value as a risk-sharing instrument. I show how
each of these effects can dominate, and link this equilibrium behavior with the empirical
literature studying how the onset of CDS trading affects bond yields.

I believe that understanding the role of liquidity in portfolio selection and its general
equilibrium feedback effects is both important and timely. Several regulatory reforms
such as the Dodd-Frank Act in the US and the MiFID II proposal in the European Union
propose to significantly revise the functioning of modern markets and, in particular, to

54Regarding the interactions between CDS and bond markets see, for example, Oehmke and Zawad-
owski (2013), Tang and Yan (2006), Lesplingart et al. (2012), or Das and Hanouna (2009).
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move some of the OTC trading to centralized exchanges. The only way to evaluate the
consequences of these reforms is to develop a general equilibrium model that accounts
for the trading frictions on OTC markets and their cross-market externalities.

My model could be enriched in several directions. For example, throughout this
paper, I assumed a dichotomy between an illiquid OTC market and a perfectly liquid
market. In many real-world examples, however, the alternative to a costly search pro-
cess will be to trade on another market immediately, but at a cost. In Praz (2013) I
introduce this additional liquidity friction, and consider a general equilibrium model in
which investors balance transaction costs and execution uncertainty when they select
their portfolio holdings. Financial intermediaries rationally anticipate this behavior and
optimally choose the bid-ask spreads on the exchange, the level of liquidity provision on
the OTC market, and the form of financial innovation. Finally, introducing asymmetric
information, either in terms of common value uncertainty, as in Duffie, Malamud, and
Manso (2009), or in terms of private liquidity needs would also significantly enrich the
structure of the model. A model of OTC market with asymmetric information would
shed light on the current regulatory debates aiming at increasing the transparency of
OTC markets. We take some first steps in this direction in Cujean and Praz (2013).

34



References

Acharya, Viral V., and Lasse Heje Pedersen, 2005, Asset pricing with liquidity risk,
Journal of Financial Economics 77, 375–410. 4, 22, 28

Afonso, Gara, and Ricardo Lagos, 2015, Trade dynamics in the market for federal funds,
Econometrica 83, 263–313. 4, 7

Amihud, Yakov, and Haim Mendelson, 1986, Asset pricing and the bid-ask spread,
Journal of Financial Economics 17, 223 – 249. A1

Ashcraft, Adam B., and João A.C. Santos, 2009, Has the CDS market lowered the cost
of corporate debt?, Journal of Monetary Economics 56, 514 – 523. 3

Babus, Ana, and Peter Kondor, 2013, Trading and information diffusion in over-the-
counter markets, Working Paper Imperial College . 8

Bansal, Ravi, and Amir Yaron, 2004, Risks for the long run: A potential resolution of
asset pricing puzzles, The Journal of Finance 59, 1481–1509. 3, 29

Basak, S, and B Croitoru, 2000, Equilibrium mispricing in a capital market with portfolio
constraints, Review of Financial Studies 13, 715–748. 1

Basak, S, and D Cuoco, 1998, An equilibrium model with restricted stock market par-
ticipation, Review of Financial Studies 11, 309–341. 4

Biais, Bruno, 1993, Price formation and equilibrium liquidity in fragmented and central-
ized markets, The Journal of Finance 48, pp. 157–185. 5, 26

Bongaerts, Dion, Frank de Jong, and Joost Driessen, 2011, Derivative pricing with
liquidity risk: Theory and evidence from the credit default swap market, The Journal
of Finance 66, 203–240. 1, 22, 29
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Appendices

A Asymptotic Behavior of the Equilibrium

I cannot solve for the unique stationary equilibrium of the model in closed form. The
technical difficulty preventing it are the exponential terms related to the jump risks
in the HJB equation (20). Closed-form expressions can, however, be obtained in the
asymptotic case analyzed in Section 5.55

I will also assume a relatively liquid OTC market. I would like to justify this as-
sumption. An investor will only bother to enter an illiquid market if she expects to
amortize the costly process of building up, and liquidating, a position over a reasonably
long holding period. This intuition is formalized in Vayanos and Wang (2007) within
a search model of asset pricing, and goes back to Amihud and Mendelson (1986) for a
setting with exogenous transaction costs.

This suggests that I may assume the illiquidity level ξ = 1/Λ to be small relatively
to 1/λ12 and 1/λ21, which are the average times (continuously) spent with a high or a
low valuation.

Proposition 11. I assume both

det
((

ed ec
))
· det

((
e1 − e2 ec

))
> 0, (57)

which is the condition (33) in Proposition 6, and

µ2 >
Sd
Θ
,

which is condition (31) in Section 4. Then, the price Pd bargained on the OTC market
satisfies

Pd =Pd,W −
{

1

Λ

}η0 (r + 2δµ) + λ21

2ηΘ

(
µ2 − Sd

Θ

)

{
γ

det
((

ed ec
))
· det

((
e1 − e2 ec

))
Σcc

}

+ o

(
1

Λ

)
+O(γ),

(58)
with the Walrasian price

Pd,W =
κ (2Θ)− κ (20)

Θr
.

Also, the sensitivity

δµ
(∆)
= lim

1
Λ
→0

∂ (µ(1h))

∂
(

1
Λ

)
55The asymptotic analysis in Section 5 amounts to letting the investors become nearly risk-neutral

with respect to the jump risks but maintain their risk-aversion toward the diffusion risks. The exact
definition of the asymptotic case is in Equation (47) and (48).
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of the type distribution to the search friction was defined in Proposition 5.56

Proof 1 (Proof of Proposition 11). Under the assumption (57) of the statement, and
recalling Proposition 4, the only profitable type of trade on the OTC market is a sale
by a 1Θ-investor to a 20-investor. As a result, the HJB equations (20) become

ra(10) = κ(10) +λ12

(
e−rγ(a(20)−a(10))−1

−rγ

)
ra(1Θ) = κ(1Θ) +λ12

(
e−rγ(a(2Θ)−a(1Θ))−1

−rγ

)
+2Λµ(20)χ(ηΘ,ε1Θ(a))

−rγ

ra(20) = κ(20) +λ21

(
e−rγ(a(10)−a(20))−1

−rγ

)
+2Λµ(1Θ)χ(η0,ε20(a))

−rγ

ra(2Θ) = κ(2Θ) +λ21

(
e−rγ(a(1Θ)−a(2Θ))−1

−rγ

) (59)

As
χ (η0, x) = −rγη0x+ o(γ),

this last system of equations becomes
ra(10) = κ(10) +λ12 (a(20)− a(10)) +O(γ)
ra(1Θ) = κ(1Θ) +λ12 (a(2Θ)− a(1Θ)) +2Λµ(20)ηΘε1Θ (a) +O(γ)
ra(20) = κ(20) +λ21 (a(10)− a(20)) +2Λµ(1Θ)η0ε20 (a) +O(γ)
ra(2Θ) = κ(2Θ) +λ21 (a(1Θ)− a(2Θ)) +O(γ)

(60)

in the asymptotic case described by Equations (47) and (48). In this same asymptotic
case, Equation (17) significantly simplifies as well and the bargained price Pd is

Pd = ηΘ (a(2Θ)− a(20)) + η0 (a(1Θ)− a(10)) + o(γ)

= (a(2Θ)− a(20))− η0

(
(a(2Θ)− a(20))
− (a(1Θ)− a(10))

)
+O(γ).

(61)

Using the expressions in (60) to reformulate (61) yields

Pd =
1

r
(κ(2Θ)− κ(20))− λ21 + 2Λµ(1Θ)η0 + η0r

r + 2Λ (ηΘµ(20) + η0µ(1Θ))
+O(γ). (62)

Finally, combining the asymptotic behavior of the type distribution for a large Λ, as
described in Proposition 5, with the last expression (62) yields Equation 58 in the state-
ment.

The terms defining the illiquidity discount in (58) are rather intuitive. The fist term
in curly brackets refers to the severity of the search friction. The second term in curly
brackets refers to both the respective bargaining power of the agents bargaining and
to the time it would take them to find another counter-party, should the negotiation
collapse. The third term in curly brackets measures the risk sharing benefits that the
investors are bargaining on.

56Recall that these results only hold under the assumption 31 regarding the marginal buyer.
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B Proofs

B.1 Proofs for Section 2

Proof 2 (Proof of Proposition 1). Let a be an agent with type iaθ and wealth wa. She
met another agent b. Clearly, no trade will be possible unless the holdings of b are θ̄. I
denote the two other characteristics of b by ib and wb.

There is a surplus for a and b to share if

∅ 6=

P̃ :
V
(
wa −

(
θ̄ − θ

)
P̃ , iaθ̄

)
≥ V (wa, iaθ)

V
(
wb −

(
θ − θ̄

)
P̃ , ibθ

)
≥ V

(
wb, ibθ̄

)
 .

Under Assumption (2), this is equivalent to

∅ 6= P ∆
=
{
P̃ : a(iaθ̄)− a(iaθ) ≥ P̃

(
θ̄ − θ

)
≥ a(ibθ̄)− a(ibθ)

}
,

or to
a(iθ̄)− a(iθ) + a(jθ)− a(jθ̄) ≥ 0.

This proves the first two statements.
Now, if there actually is a surplus to share, the outcome of the bargaining is given

by the Nash bargaining solution. Namely, a and b trade the asset at the price Pd so that

Pd = arg max
P̃∈P

(
V (wa − P̃ (θ̄ − θ), iaθ̄)− V (wa, iaθ)

)ηθ
·

·
(
V (wb − P̃ (θ − θ̄), ibθ)− V (wb, ibθ̄)

)1−ηθ
.

Unless P is reduced to a single point, in which case the solution of the optimization
is trivial, the first order condition characterize the point of maximum Pd as the solution
to

ηθ
∂w
(
V (wa − Pd(θ̄ − θ), iaθ̄)

)
V (wa + Pd(θ̄ − θ), ia, θ̄)− V (wa, iaθ)

= (1− ηθ)
∂w
(
V (wb − Pd(θ − θ̄), ibθ)

)
V (wb − Pd(θ − θ̄), ib, θ)− V (wb, ibθ̄)

(63)

which, with Assumption 2, becomes (17).

Proof 3 (Proof of Proposition 2). The first order necessary condition for the maximiza-
tion over the consumption rate is

γe−γc − ∂V

∂w
(w, iθ) = 0.

Recalling the Assumption 2, and solving for c yields a unique candidate c(iθ) which, by
concavity of the objective function, is a point of maximum.

A similar argument yields the optimal liquid holdings π(iθ).
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Proof 4 (Proof of Proposition 3). Starting from the HJB equation (13), picking a type
iθ, using Proposition (1) to transform the expected value into a deterministic quantity,
Proposition 2 to express the optimal consumption, Proposition 1 to express the bagained
price Pd, and normalizing by rγV (w, i, θ), I obtain

0 =r − ρ− r log(r) + r2γā− rγme

+
α

rγ

(
α

γ
− r
)
w

+ ra(iθ)− κ(iθ)

+ λīi

(
e−rγ(a(̄i,θ)−a(i,θ)) − 1

)
−rγ

+ 2Λµ
(̄
iθ̄
) [χ (ηθ, εiθ(a))

−rγ

]+

.

(64)

Now, I can choose the constant

ā =
1

rγ

(
−1 +

ρ

r
+ log(r) + γme

)
,

which sets the first line of the right hand side to zero. Also, as the equation above must
hold for any value of the liquid holdings w,

α

(
r − α

γ

)
= 0.

Under Assumption 2, this requires α = rγ and the second line of the right hand side
equals zero. Taking these two observations into account yields the system (20).

It remains to show that this equation admits exactly one solution. I split my argu-
ment into four steps.

Step 1 I first rearrange the four equations described in (20) into two. Namely,
defining the variables

∆Θ
∆
= a(1Θ)− a(2Θ) (65)

and
∆0

∆
= a(20)− a(10), (66)

and taking the corresponding differences in the HJB equations (20) ensures that

0 =r∆0 − κ(20) + κ(10)− λ21
erγ∆0 − 1

−rγ
+ λ12

e−rγ∆0 − 1

−rγ

− 2Λ

(
µ(1Θ)

[
χ (η0,−∆0 −∆Θ)

−rγ

]+

− µ(2Θ)

[
χ (η0,∆0 + ∆Θ)

−rγ

]+
)

∆
=F0 (∆0,∆Θ)

(67)
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and

0 =r∆Θ − κ(1Θ) + κ(2Θ)− λ12
erγ∆Θ − 1

−rγ
+ λ21

e−rγ∆Θ − 1

−rγ

− 2Λ

(
µ(20)

[
χ (ηΘ,−∆0 −∆Θ)

−rγ

]+

− µ(10)

[
χ (ηΘ,∆0 + ∆Θ)

−rγ

]+
)

∆
=FΘ (∆0,∆Θ) .

(68)

Inspection ensures that, for any ∆Θ, the function F0 (·,∆Θ) is strictly increasing with a
range equal to the entire real line. It also ensures that, for any given ∆0, the function
F0 (∆0, ·) is strictly increasing with the bounded range

r∆0 − κ(20) + κ(10)− λ21
erγ∆0 − 1

−rγ
+ λ12

e−rγ∆0 − 1

−rγ
+

2Λ

rγ
[−µ(1Θ), µ(2Θ)] . (69)

Similar properties hold for FΘ.

Step 2 Given these properties of F0 and FΘ, I can define the functions

Φ0,ΦΘ : R→ R

by requiring that, for any x ∈ R,

0 = F0 (Φ0(x), x) = FΘ (x,ΦΘ(x)) . (70)

The monotonicity properties also ensure that both Φ0 and ΦΘ are decreasing. I show
two more properties of these functions.

First, these functions decrease relatively slowly. Namely, for any choice of x ∈ R and
y ∈ R>0, it follows from (70) that

F0 (Φ0(x)− y, x+ y) < F0 (Φ0(x), x) = 0 = F0 (Φ0(x+ y), x+ y) ,

meaning that
y + Φ0(x+ y)− Φ0(x) > 0.

As a result, the function
x 7→ x+ Φ0(x) (71)

is increasing and, by a similar argument, so is

x 7→ x+ ΦΘ(x).

Second, their range is compact. Let me first consider ΦΘ. Recalling the bounded
range described by (69), I may write, for any pair (∆0,∆Θ) ∈ R2,

FL0 (∆0) ≤ F0 (∆0,∆Θ) ≤ FU0 (∆0) ,
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where I defined

FL0 (x)
∆
= rx− κ(20) + κ(10)− λ21

erγx − 1

−rγ
+ λ12

e−rγx − 1

−rγx
− 2Λ

rγ
µ(1Θ)

and

FU0 (x)
∆
= rx− κ(20) + κ(10)− λ21

erγx − 1

−rγ
+ λ12

e−rγx − 1

−rγx
+

2Λ

rγ
µ(2Θ)

Inspection now ensures that, for bU,0 large enough, FL0 (bU,0) ≥ 0, and that for bL,0 small
enough, FU0 (bL,0) ≤ 0. But then, for any ∆Θ,

F0(bL,0,∆Θ) ≤ FU0 (bL,0) ≤ 0 ≤ FL0 (bU,0) ≤ F0(bU,0,∆0).

Keeping the monotonicity and continuity of F0 in mind, this implies that Φ0 (∆Θ) ∈
[bL,0, bU,0], and thus that

Φ0 (R) ⊂ [bL,0, bU,0] .

A similar argument formulated with FΘ would yield two other constants bL,Θ and
bU,Θ so that

ΦΘ (R) ⊂ [bL,Θ, bU,Θ] .

In particular, if I define

Ω
∆
= [bL,Θ ∧ bL,0, bU,0 ∨ bU,0] ,

then
Φ (Ω)

∆
= (Φ0,ΦΘ) (Ω) ⊂ Ω× Ω.

Step 3 I now show that Φ is a contraction and, as a result, admits a unique fixed
point. First, a direct verification shows the continuity of Φ0 and ΦΘ.

Second, if I choose x ∈ Ω so that

Φ0 (x) + x 6= 0, (72)

then, an application of the Implicit Function Theorem based on the relation (70) ensures
that Φl is differentiable at x, with derivative given by

Φ′0 (x) =−
∂F0
∂∆0

(Φ0 (x) , x)
∂F0
∂∆Θ

(Φ0 (x) , x)

=−
2Λ

(
1{−Φ0(x)−x>0}µ(1Θ)(−1)∂χ∂ε (η20,−Φ0 (x)− x)

−1{Φ0(x)+x>0}µ(2Θ)∂χ∂ε (η10,Φ0 (x) + x)

)

r + λ12erγx + λ21e−rγx + 2Λ

(
1{−Φ0(x)−x>0}µ(1hΘ)(−1)∂χ∂ε (η20,−Φ0 (x)− x)

−1{Φ0(x)+x>0}µ(2Θ)∂χ∂ε (η10,Φ0 (x) + x)

) .
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Now, one checks that the numerator is positive, bounded on Ω, and also appears in the
denominator. Further, the second part of the denominator,

r + λ12e
rγx + λ21e

−rγx,

is also positive, and bounded on Ω. Then, there exists a constant C ∈ (0, 1), independent
of the choice of x, and for which ∣∣Φ′0(x)

∣∣ < C.

on Ω.
Finally, remembering the monotonicity of the function in (71), there is at most one

point in Ω where (72) does not hold and where, as a result, Φ0 is not differentiable.
Summing up, the restriction of Φ0 to Ω maps a compact into itself, is continuous, is

differentiable everywhere but possibly at one point, and has a derivative whose absolute
value that is bounded strictly below one.

This argument can be adapted for ΦΘ, and classical contraction argument then en-
sures that Φ admits a unique fixed point (∆∗0,∆

∗
Θ) in Ω. Finally, as the range of Φ is

already contained in Ω, this is the unique fixed point over R2.

Step 4 Finally, given the fixed point of Φ, the solution β to the HJB equations
(20) can be recovered. For example,

a(1Θ) =
1

r

(
κ(1h) + λ12

e−rγ∆∗h − 1

−rγ
+ 2Λµ(20) [χ (ηΘ,−∆∗0 −∆∗Θ)]−

)
. (73)

In particular, there is exactly one solution to the system of HJB equations (20).

B.2 Proofs for Section 3

Proof 5 (Proof of Proposition 4). The proposition and its proof are in Duffie et al.
(2005). I only give a partial sketch to introduce some notation.

There are three linear relations linking the components of a stationary distribution
µ. They follow from the stationary distribution of endowment correlation types and
from the market clearing condition (28), and are

µ(10) + µ(1Θ) = µ1

µ(20) + µ(2Θ) = µ2

µ(1Θ) + µ(2Θ) = Sd
Θ

. (74)

One can then use these equations to express one of the flow conditions (25) as an equation
in, say, µ(20) only. This yields the quadratic equation

0 = µ(20)2 + b

(
1

Λ

)
µ(20) + c

(
1

Λ

)
∆
= Q

(
µ(2l),

1

Λ

)
, (75)

A7



where

b

(
1

Λ

)
∆
=
Sd
∆θ
− µ2 +

1

Λ

λ12 + λ21

2
,

c

(
1

Λ

)
∆
=− 1

Λ

λ12

2

(
1− Sd

Θ

)
.

(76)

Solving this equation already characterize a unique candidate.

I will use the following results when proving Corollary 2 and Proposition 5. They
follow from the characterization (75).

Lemma 1. The sensitivity of the stationary cross-sectional distribution of types to the
illiquidity level satisfies

∂

∂ 1
Λ

µ(1Θ) =
∂

∂ 1
Λ

µ(20) = − ∂

∂ 1
Λ

µ(10) = − ∂

∂ 1
Λ

µ(2Θ) =
−µ(20)λ12+λ21

2 + λ12
2

(
1− Sd

Θ

)
µ(1Θ) + µ(20) + 1

Λ
λ12+λ21

2

,

(77)
which is positive. Also,

∂

∂ 1
Λ

(λµ(1Θ)µ(20)) = − 1(
1
Λ

)2 µ(20)µ(1Θ) 1
2Λ (λ12 + λ21)

µ(2l) + µ(1h) + 1
λ
λ12+λ21

2

(78)

and is negative. Finally, for iθ = 1Θ, 20,

∂

∂ 1
Λ

(λµ(iθ))

and is negative as well.

Proof 6 (Proof of Lemma 1). For the first statement, the sensitivity of µ(20) on the
illiquidity level follows from an application of the Implicit Function Theorem. The
relation between the various sensitivities then follows from (74).

Now, recalling Equations (25) and (28), I deduce from (77) that

∂

∂ 1
Λ

µ(1Θ) =
∂

∂ 1
Λ

µ(20) =
λµ(1Θ)µ(20)

µ(1Θ) + µ(20) + 1
Λ
λ12+λ21

2

,

which is positive. A direct calculation then yields (78). Finally the last sensitivity
follows from the elementary observation that, if the product of two positive functions is
increasing, and if the first term in the product is decreasing, then the second one must
be increasing.

Proof 7 (Proof of Proposition 5). From the proof of Proposition 4,

µ

(
20,

1

Λ

)
=

1

2

−b( 1

Λ

)
+

√(
b

(
1

Λ

))2

− 4c

(
1

Λ

) .
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Now, as

lim
1
Λ
→0

b

(
1

Λ

)
=
Sd
Θ
− µ2,

which I assumed to be negative, and

lim
1
Λ
→0

c

(
1

Λ

)
= 0,

it follows that

lim
1
Λ
→0

µ

(
20,

1

Λ

)
= µ2 −

Sd
Θ
.

Recalling the linear relationships (74), this yields the asymptotic distribution.
Now, using the previous lemma yields

∂ 1
Λ
µ(20) =

−µ(20)λ12+λ21
2 + λ12

2

(
1− Sd

Θ

)
2µ(20) + Sd

Θ − µ2 + 1
Λ
λ12+λ21

2

1
Λ
→0
−→ λ21

2

Sd
Θ

µ2 − Sd
Θ

,

which concludes.

Proof 8 (Proof of Proposition 6). Keeping Proposition 2 in mind, the equilibrium
condition for the centralized market becomes

Sc = Eµ(iθ) [π(iθ)] =
1

σ2
c

(
1

rγ
(mc − rPc)− Eµ(iθ) [Σic]− Σcd Eµ(iθ) [θ]

)
.

Now, realizing that

Eµ(iθ) [Σic] = µ1Σ1c + µ2Σ2c
(∆)
= Σηc

is independent of the trading on the OTC market, and that, thanks to the market
clearing condition (28), so is

Eµ(iθ) [θ] = Sd,

I can already solve for the equilibrium price, which yields (34). Then, combining this last
result and the characterization (18) of the optimal liquid holdings yields the expression
(35) in the statement.

I now turn to the OTC market. The existence and uniqueness follows from two
elementary observations. First, the value function of a, say, 1h-agents is only impacted
by µ via µ(20) and only as long as ε1Θ(a) > 0. Otherwise, 1h-agents have no intention
to trade and, as a result, no interest in knowing how often a counter-party may be met.
In mathematical terms, this reads

µ(a, 20)

[
χ(η0, ε1Θ(a))

−rγ

]+

=µ(a, 20)1{ε1Θ(a)>0}
χ (η0, ε1Θ(a))

−rγ

=µ1Θ→20(20)1{ε1Θ(a)>0}
χ (η0, ε1Θ(a))

−rγ

=µ1Θ→20(20)

[
χ (η0, ε1Θ(a))

−rγ

]+
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In particular, this means that I can choose

µ̂ =


µ2Θ→10(10)
µ1Θ→20(1Θ)
µ1Θ→20(20)
µ2Θ→10(2Θ)


as the “density” in (20). Note that this vector does not depend on a but does not define
a density any more.

The second observation is that the proof of Proposition 3 remains valid when the
components of µ are only positive numbers, and do not necessarily sum up to one. As a
result, there is exactly one solution to the HJB equations defining an equilibrium, which
shows the uniqueness and existence of an equilibrium.

I must still characterize the ordering of the valuations of the illiquid asset d or, equiva-
lently, characterize the trading pattern on the OTC market. To do so I first characterize
the ordering when the OTC market becomes arbitrarily liquid, and then show that this
ordering is maintained at any illiquidity level. The actual argument is articulated around
three claims.

Claim 1 I first show that an equilibrium a of the model can be bounded by con-
stants that are independent of the illiquidity level.

Proof of Claim 1. Let {Λn}n≥0 be a sequence of intensities be given, and let {an}n≥0 be
the corresponding sequence of equilibria. Let me assume, for the sake of contradiction,
that there is an agent type iθ for which the sequence {an(iθ)}n≥0 is unbounded. I first
assume it is unbounded below, meaning that, maybe up to taking a subsequence,

lim
n→∞

an(iθ) = −∞, (79)

Recalling the HJB equations (20) and the first part of this proof,

− λīi
e−rγ(an (̄iθ)−an(iθ)) − 1

−rγ
= −ran(iθ) + κ(iθ) + 2Λnµ̂

(
Λn, īθ̄

) [χ (ηθ, εiθ(a))

rγ

]+

. (80)

But, recalling (79), the left hand side of (80) is bounded below by a sequence that grows
arbitrarily. As a result,

lim
n→∞

an(iθ)− an(̄iθ) = +∞. (81)

and, recalling (79) one more time,

lim
n→∞

an(̄iθ) = −∞. (82)

Now, if (81) follows from (79), from (82) I can conclude that

lim
n→∞

an(̄iθ)− an(iθ) = +∞. (83)
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In particular, both (81) and (83) follow from (79), which is impossible. There is thus no
sequence of equilibria that is unbounded below.

It remains to see whether a sequence of equilibria can be unbounded above. Let me
assume that, maybe choosing a subsequence,

lim
n→∞

an(1Θ) = +∞. (84)

Choosing the type 1Θ is without loss of generality. Before pursuing the argument I note
that, assuming an agent of type iθ does not trade in equilibrium, it follows from (20)
and the first part of the proof that

0 =ran(iθ)− κ(iθ)− λīi
e−rγ(an (̄iθ)−an(iθ)) − 1

−rγ
− 2Λnµ̂(λ, īθ̄)

[
χ (ηθ, εiθ(a))

−rγ

]+

=ran(iθ)− κ(iθ)− λīi
e−rγ(an(iθ)−an (̄iθ)) − 1

−rγ

≥ran(iθ)− κ(iθ)− λīi
1

rγ
.

In other words, I have an a priori upper bound on an(iθ). Namely,

1

r

(
κ(iθ) +

λīi
rγ

)
≥ an(iθ). (85)

Now, two further cases must be distinguished, depending on whether 1Θ-agents are
willing to trade or not. Maybe choosing a further subsequence, I assume that 1Θ-agents
never trade. In this case, combining (85) and (84) yields

1

r

(
κ(1Θ) +

λ12

rγ

)
≥ lim

n→∞
an(1Θ) = +∞,

which is a contradiction. The only possibility left is thus for the agents with type 1Θ
are willing to trade. I can thus assume that, for any n ≥ 0,

an(10)− an(1Θ)− an(20) + an(2Θ) ≥ 0.

Using (85) for the two types of agent that do not trade, meaning 10 and 2Θ, then yields

1

r

(
κ(10) + κ(2Θ) +

λ12

rγ
+
λ21

rγ

)
≥ an(1Θ) + an(20).

From this last inequality and (84) I deduce that

lim
n→∞

an(20) = −∞,

which will, by the first part of this proof, lead to a contradiction.
To sum up, there are no circumstances under which an unbounded sequence of equi-

libria can be found.

This first claim is needed when proving the second one.
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Claim 2 For a sufficiently large meeting intensity Λ, the corresponding equilibrium
a(Λ) satisfies

ε1Θ(a) > 0

exactly when S > 0, with S defined in (24).

Proof of Claim 2. Let me choose a sequence {Λn}n≥0 of meeting intensities so that

lim
n→∞

Λn = +∞.

By Claim 1, there exists two constants L < U so that

∀n : an ∈ [L,U ]4 (86)

I can thus choose a convergent subsequence, and call the limit a∞. Maybe choosing a
further subsequence, I assume that

∀n : ε1Θ(an)
(∆)
= an(2Θ)− an(20) + an(10)− an(1Θ) ≥ 0. (87)

In other words, all along the sequence of intensities, and in the limit, agents with en-
dowment correlations type 2 have the high valuation of the illiquid asset.

Under this assumption the HJB equations defining an become
ran(10) = κ(10) +λ12

e−rγ(an(20)−an(10))−1
−rγ

ran(1Θ) = κ(1Θ) +λ12
e−rγ(an(2Θ)−an(1Θ))−1

−rγ +2Λnµ̂ (Λn, 20) χ(ηΘ,ε1Θ(a))
−rγ

ran(20) = κ(20) +λ21
e−rγ(an(10)−an(20))−1

−rγ +2Λnµ̂ (Λn, 1Θ) χ(η0,ε20(a))
−rγ

ran(2Θ) = κ(2Θ) +λ21
e−rγ(an(1Θ)−an(2Θ))−1

−rγ

. (88)

At this stage, I will consider the asymptotic behavior of the stationary type distri-
bution, which requires to distinguish two cases.

I first assume

µ2 −
Sd
∆θ

> 0, (89)

meaning that the marginal buyer of the illiquid asset has a high valuation. In this case,
it is known from Lemma 5 that

lim
n→∞

µ̂(Λn, 20) = µ2 −
Sd
Θ

> 0.

As a result,
lim
n→∞

Λnµ̂(Λn, 20) =∞. (90)

Now, as stated in (86) shows that the equilibria are bounded. Hence, (88) is only
compatible with (90) if

lim
n→∞

χ (ηΘ, ε1Θ(a)) = 0.

A12



Recalling the definition of “χ” in (23), this is equivalent to

a∞(10)− a∞(1Θ) = a∞(20)− a∞(2Θ). (91)

But then, as Lemma 5 ensures that

lim
n→∞

Λnµ̂(Λn, 1Θ) =
λ12

2

Sd
Θ

µ2 − Sd
Θ

letting n go to +∞ in (88) yields

ra∞(10) = κ(10) +λ12
e−rγ(a∞(20)−a∞(10))−1

−rγ
ra∞(1Θ) = κ(1Θ) +λ12

e−rγ(a∞(2Θ)−a∞(1Θ))−1
−rγ

+ limn→∞ 2Λnµ̂ (Λn, 20) χ(ηΘ,ε1Θ(a))
−rγ

ra∞(20) = κ(20) +λ21
e−rγ(a∞(10)−a∞(20))−1

−rγ
ra∞(2Θ) = κ(2Θ) +λ21

e−rγ(a∞(1Θ)−a∞(2Θ))−1
−rγ

. (92)

Now, subtracting the second and third equations from the sum of the first and fourth
ones in (92), and then repeatedly using (91), yields

κ(10)− κ(1Θ) + κ(2Θ)− κ(20) = lim
n→∞

2Λnµ̂ (Λn, 20)
χ (ηΘ, ε1Θ(a))

−rγ
. (93)

I draw two conclusions from this last equality. First, combining it with (94) yields
ra∞(10) = κ(10) +λ12

e−rγ(a∞(20)−a∞(10))−1
−rγ

ra∞(1Θ) = κ(10) + κ(2Θ)− κ(20) +λ12
e−rγ(a∞(2Θ)−a∞(1Θ))−1

−rγ
ra∞(20) = κ(20) +λ21

e−rγ(a∞(10)−a∞(20))−1
−rγ

ra∞(2Θ) = κ(2Θ) +λ21
e−rγ(a∞(1Θ)−a∞(2Θ))−1

−rγ

. (94)

This system defines a contraction, as Proposition 12 below formally shows, which ensures
the uniqueness of the asymptotic equilibrium β∞.

Second, (93) is only compatible with the assumption (87) as long as

S (∆)
= κ(10)− κ(1Θ)− κ(20) + κ(2Θ) ≥ 0. (95)

The case of
Sd
Θ

> µ2

is handled similarly.
Assuming the reverse inequality in (87) would also give a unique candidate for a∞,

but this time require that (95) also holds with a reverse inequality.
Summing up, if (95) holds, then the sequence of equilibria converges and, for n large

enough, ε1Θ(an) > 0. Otherwise, the sequence converges as well but, for n large enough,
ε2Θ(an) < 0.

I have now characterized which trades are implemented when the meeting intensity
is sufficiently large. The last step is to show that the trading pattern cannot be reverted
by an increasing illiquidity level.

A13



Claim 3 The surplus to be shared in bilateral trades is differentiable and decreasing
in the meeting intensity. In other words, if εiθ (a(Λ)) > 0,

∂

∂Λ
εiθ (a(Λ)) < 0.

In particular, the derivative exists.

Proof of Claim 3. Without loss of generality, I assume

ε1Θ(a)
(∆)
= a(10)− a(1Θ)− a(20) + a(2Θ)

(∆)
= −∆Θ −∆0 > 0, (96)

meaning that the 2-agents have the high valuation. From the proof of Proposition 3, I

know that for any given Λ, the pair ∆
∆
= (∆Θ,∆0) is the unique solution to the system

0 = F (∆; Λ)
(∆)⇔
{

0 = FΘ (∆Θ,∆0; Λ)
0 = F0 (∆0,∆Θ; Λ)

,

where the function F : R3 → R2 is implicitly defined in the last equation. Now, under
the above assumption regarding the high valuation agents, I can write

det (D∆F (∆,Λ))

= det


r + λ12e

rγ∆h + λ21e
−rγ∆h

+2Λµ(20)
∂χ
∂ε

(η1h,−∆l−∆h)

−rγ

2Λµ(20) ∂χ
∂ε

(η1h,−∆l−∆h)

−rγ

2Λµ(1Θ) ∂χ
∂ε

(η2l,−∆l−∆h)

−rγ

r + λ21e
rγ∆l + λ12e

−rγ∆l

+
2Λµ(1Θ) ∂χ

∂ε
(η2l,−∆l−∆h)

−rγ


=
(
r + λ12e

rγ∆h + λ21e
−rγ∆h

) (
r + λ21e

rγ∆l + λ12e
−rγ∆l

)
+
(
r + λ12e

rγ∆h + λ21e
−rγ∆h

) 2Λµ(1Θ)∂χ∂ε (η2l,−∆l −∆h)

−rγ

+
(
r + λ21e

rγ∆l + λ12e
−rγ∆l

) 2Λµ(20)∂χ∂ε (η1h,−∆l −∆h)

−rγ
.

(97)

Recalling from the definition (23) that χ is decreasing in its second argument, this last
quantity is positive, which justifies an application of the Implicit Function Theorem.
This ensures that ∆ is, locally, a differentiable function ∆(λ) of the meeting intensity,
with derivative

∂λ∆(λ) =− (D∆F (∆, λ))−1DλF (∆, λ)

=
−1

det (D∆F )

(
∂F0
∂∆0

−∂FΘ
∂∆0

− ∂F0
∂∆Θ

∂FΘ
∂∆Θ

)(∂FΘ
∂λ
∂F0
∂λ

)
.
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But then,

∂

∂Λ
(∆0 + ∆Θ)

=
−1

det (D∆F )

((
∂F0
∂∆0
− ∂F0

∂∆Θ

)
∂FΘ
∂λ +

(
∂FΘ
∂∆Θ
− ∂FΘ

∂∆0

)
∂FΘ
∂Λ

)
=

−1

det (D∆F (∆,Λ))

( (
r + λ21e

rγ∆0 + λ12e
−rγ∆0

) χ(ηΘ,−∆0−∆Θ)
−rγ 2∂Λ (Λµ(Λ, 2l))

+
(
r + λ12e

rγ∆Θ + λ21e
−rγ∆Θ

) χ(η2l,−∆0−∆Θ)
−rγ 2∂Λ (Λµ(Λ, 1Θ))

)
.

With (96), both χ (ηΘ,−∆0 −∆Θ) and χ (η0,−∆0 −∆Θ) are negative, As a result,

∂Λ (∆Θ(Λ) + ∆0(Λ)) > 0

or, equivalently,
∂Λ (−∆Θ(Λ)−∆0(Λ)) < 0

which proves the claim.

I can finally conclude the proof of Proposition 6. Indeed, assuming that S > 0,
Claim 2 ensures that, if the meeting intensity Λ is larger than a certain threshold Λ̄,
then, ε1Θ (a(Λ)) > 0, meaning that 2-agents have the high valuation. But then, Claim
3 ensures that decreasing Λ increases ε1Θ (a(Λ)). In particular, 2-agents still have the
high valuation for any value of the meeting intensity. The case where S < 0 is similar.

Proof 9 (Proof of Proposition 2). Without loss of generality, I assume that 2-agents
have the high valuation of the illiquid asset.

Regarding the OTC market, as the transaction size is fixed, the trading volume is
proportional to

2Λµ(1Θ)µ(20),

meaning to the meeting intensity between 1Θ and 20 agents. From Lemma 1 this quan-
tity is increasing in the meeting intensity.

Recalling the expressions (35) for the liquid holdings in equilibrium, the volume
exchanged on the centralized market per unit of time is thus

Vol =
1

2



λ12µ(10) |π(10)− π(20)|
+λ12µ(1Θ) |π(1Θ)− π(2Θ)|

+2Λµ(1Θ)µ(20) |π(1Θ)− π(10)|
+2Λµ(1Θ)µ(20) |π(20)− π(2Θ)|

+λ21µ(20) |π(20)− π(10)|
+λ21µ(2Θ) |π(2Θ)− π(1Θ)|


=

1

2Σcc
{(λ12µ1 + λ21µ2) |Σ1c − Σ2c|+ 4Λµ(1Θ)µ(20) |Σcd|Θ}

=
1

Σcc

{
λ12λ21

λ12 + λ21
|Σ1c − Σ2c|+ 2Λµ(1Θ)µ(20) |Σcd|Θ

}
. (98)

Lemma 1 shows that the trading volume in increasing in Λ.
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Proof 10 (Proof of Proposition 7). To obtain a model without OTC market, we can set
Θ = 0. In this case Equation (98) in the last proof immediately shows that the trading
volume in c drops.

Further, letting the meeting intensity Λ grow arbitrarily in Equation (98), and re-
calling Proposition 5, I calculate the asymptotic level of trading in c as

lim
Λ→∞

Vol(Λ) =
1

Σcc

{
λ12λ21

λ12 + λ21
|Σ1c − Σ2c|+ 2λ21Sd |Σcd|

}
.

Now, in a Walrasian setting, the market for d can only clear if the investors with a
high valuation randomize their decision to buy the asset d. If the inequality (36) holds,
inspection shows that the trading volume on the market for c in a Walrasian setting is

VolW =
1

2


µ1λ12

µ2−
Sd
Θ

µ2
|µ(20)− π(10)|

+µ1λ12

Sd
Θ
µ2
|µ(2Θ)− π(10)|

+Sd
Θ λ21 |π(10)− π(2Θ)|

+
(
µ2 − Sd

Θ

)
λ21 |π(10)− π(20)|


=

(
λ12λ21
λ12+λ21

|µ(20)− π(10)|
+Sd

Θ λ21 (|µ(2Θ)− π(10)| − |µ(20)− π(10)|)

)
.

The triangular inequality ensures that

|µ(2Θ)− π(10)| − |µ(20)− π(10)| ≤ |µ(2Θ)− π(20)|

and, as a result, that
VolW ≤ lim

Λ→∞
Vol(Λ).

Inspection finally shows that Inequality (36) defines the cases for which the triangular
inequality is strict.

Proof 11 (Proof of Proposition 10). The optimization for the optimal design of the
liquid asset is

max
(ac,bc)

f (ac, bc)
(∆)
= max

(ac,bc)
{|w1ac + w2bc|+ |w3ac + w4bc|} (99)

under the conditions

‖(ac, bc)‖2 = 1, (100)

det

((
ad ac
bd bc

))
· det

((
a1 − a2 αc
b1 − b2 βc

))
> 0. (101)

I characterize the solution to this problem by maximizing f under the constraint (100)
and making sure that the constraint (101) holds ex post.
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A solution to the maximization of f under (100) exists because f is continuous and
the optimization domain is compact.

The objective function f is piecewise linear and I define

A ∆
=
{

(x, y) ∈ R2 : w1x+ w2y ≥ 0
}

and
B ∆

=
{

(x, y) ∈ R2 : w3x+ w4y ≥ 0
}

to describe this piecewise structure. Clearly, the optimal risk-profile (ac, bc) belongs

either to D1
∆
= (A ∩Bc) ∪ (Ac ∩B) or to D2

∆
= (A ∩B) ∪ (Ac ∩Bc). In the first case,

the method of Lagrange multipliers characterizes the optimal risk profile as{
∇(ac,bc) f |D1

(ac, bc) = L∇(ac,bc) (‖(ac, bc)‖2)

‖(ac, bc)‖2 = 1
,

with L ∈ R being the Lagrange multiplier. Solving this system for (ac, bc) yields the
unique candidate (

ac
ad

)
= ±1

ν

(
w1 − w3

w2 − w4

)
, (102)

with the constant

ν
∆
=

√
(w1 − w3)2 + (w2 − w4)2

ensuring the normalization Σcc = 1.57 I must still make two checks to ensure the validity
of this candidate as a solution to the original problem. First, does the candidate satisfy
the constraint (101)? Plugging (102) into (101) yields

2ΘΛλ12λ21µ(20)µ(1Θ) ((b2 − b1) ad + (a1 − a2) bd)
2

ν2 (λ1,2 + λ2,1)
> 0

and the consistency constraint is necessarily satisfied. Second, does the candidate actu-

ally belongs to D1? A vector
(
ãc, b̃c

)
belongs to D1 exactly when

(w1ac + w2bc) (w3ac + w4bc) < 0.

For the choice (ac, bc) =
(
ãc, b̃c

)
, this inequality becomes the assumption (55) in the

statement, and is thus satisfied.
Finally, we can consider the second case (ac, bc) ∈ D2 and follow the same steps as

in the first case. In this second case, however, the unique candidate does not satisfy the
condition (101) and there is no solution to the original problem (99).

Lemma 2. The equilibrium price Pc of the liquid asset and the corresponding holdings
{π(iθ;m2, t}iθ are uniquely defined in the asymptotic case characterized by Equation (47)

57The ± follows from the symmetry of the optimization, as discussed in the main text.
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and Equation (48). In case of an aggregate shock from the state (m2, t) to m̃2, 0, the
price Pc jumps up when

(Σ2c − Σ1c) (m̃2 − µ2(m2, t)) < 0

and down when the other inequality holds. Finally, the “κ(iθ;m2, t)” defined in (45)
satisfy

S ∆
= κ(10;m2, t)− κ(1Θ;m2, t)− κ(20;m2, t) + κ(2Θ;m2, t)

=
rγΘ

Σcc
det
((

ed ec
))
· det

((
e1 − e2 ec

))
+ o(γ)

for any state (m2, t) of the economy.

Proof. I start from the optimization over the liquid holdings π̃ in the HJB equation
44. The first-order condition for this optimization characterizes the optimal holdings
π(iθ;m2, t) as the unique solution to the equation

0 = Ṗc(m2, t) +mc − rPc(m2, t)− rγ
(
Σic Σcd Σcc

) 1
θ

π(iθ;m2, t)



+ λa EM(m̃2)


(Pc (m̃2, 0)− Pc (m2, t)) ·

·


δ(i;m2, t; m̃2)·
·e−rγ(a(̄iθ;m̃2,0)+π(iθ;m2,t)(Pc(m̃2,0)−Pc(m2,t))−a(iθ;m2,t))

+ (1− δ(i;m2, t; m̃2)) ·
·e−rγ(a(iθ;m̃2,0)+π(iθ;m2,t)(Pc(m̃2,0)−Pc(m2,t))−a(iθ;m2,t))




(103)

In the asymptotic case of a small risk-aversion to the jump risks, as characterized by the
equations (47) and (48), this first-order condition becomes

0 = Ṗc(m2, t) +mc − rPc(m2, t)− rγ
(
Σic Σcd Σcc

) 1
θ

π(iθ;m2, t)


+ λa

(
EM(m̃2) [Pc (m̃2, 0)]− Pc (m2, t)

)
+O(γ).

(104)

Equation (104) can be solved for π(iθ;m2, t) in closed-form. A direct calculation then
shows

S ∆
= κ(10;m2, t)− κ(1Θ;m2, t)− κ(20;m2, t) + κ(2Θ;m2, t)

=
rγΘ

Σcc
det
((

ed ec
))
· det

((
e1 − e2 ec

))
+O(γ)

for any state (m2, t). In particular, even if the “κ” in the dynamic setting are differ-
ent from their counterparts in the stationary setting, they generate the same flow of
surplus.58

58The “κ”s are defined in Equation (21) in the stationary setting and in Equation (45) in the dynamic
setting.
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Alternatively, aggregating (104) across the population and recalling the market-
clearing condition

Eµ(iθ;m2,t) [π(iθ;m2, t)] = Sc

that holds for any state (m2, t), yields the ODE

Ṗc(m2, t)− (r + λa)Pc(m2, t)

= −
(
mc − rγ (Σηc(m2, t) + ΘΣcd + ScΣcc) + λa EM(m̃2) [Pc (m̃2, 0)]

)
+O(γ).

(105)
for the price of the liquid asset. Deriving

Σηc(m2, t) = Σ1c +
(
µ2 + (m2 − µ2) e−(λ12+λ21)t

)
(Σ2c − Σ1c)

from the type distribution (38) and taking as given the value

k0
∆
= λa EM(m̃2) [Pc (m̃2, 0)] ,

I can solve the ODE (105) in closed form under the no-bubble condition

lim
T→∞

e−rTPc(m2, t) = 0.

The solution is

Pc(ha, t) =
k0 + k1

r + λa
+

k2(m2)

r + λa + λ12 + λ21
e−(λ12+λ21)t, (106)

with the constants

k1
∆
= mc − rγ (Σ1c + µ2 (Σ2c − Σ1c) + ΘΣcd + ScΣcc) ,

k2(m2)
∆
= − rγ (m2 − µ2) (Σ2c − Σ1c) .

I must still find the constant k0. This is done by solving the linear equation

k0 = λa EM(m̃2) [Pc (m̃2, 0)]

⇔ k0 = λa

(
k0+k1
r+λa

− rγ EM(m̃2)[m̃2]−µ2

r+λa+λ12+λ21
(Σ2c − Σ1c)

)
for k0.

Finally, I characterize how the price Pc of the liquid asset reacts to an aggregate
shock that moves the economy from the state (µ2, t) to the state (m̃2, 0). Namely a
direct calculation based on Equation (106) shows how Pc jumps up when

(Σ2c − Σ1c) (m̃2 − µ2(m2, t)) < 0

and down when the other inequality holds.

A19



Proof 12 (Proof of Proposition 8). In the asymptotic case described by the equations
(47) and (48), the HJB equations (44) become

ra (iθ;m2, t)

= ȧ (iθ;m2, t) + κ (iθ;m2, t;π(iθ;m2, t))

+ λīi (a (̄iθ;m2, t)− a (iθ;m2, t))

+ 2Λµ
(̄
iθ̄;m2, t

) [
a (iθ;m2, t)− Pd (m2, t)

(
θ̄ − θ

)
− a (iθ;m2, t)

]+

+ λa EM(m̃2)



δ(i;m2, t; m̃2)·

·
(
a (̄iθ; m̃2, 0) + π(iθ;m2, t) (Pc (m̃2, 0)− Pc (m2, t))
−a (iθ;m2, t)

)
+ (1− δ(i;m2, t; m̃2)) ·

·
(
a (iθ; m̃2, 0) + π(iθ;m2, t) (Pc (m̃2, 0)− Pc (m2, t))
−a (iθ;m2, t)

)


+ o(γ)

, (107)

with the optimal holdings “π(iθ;m2, t)” being defined in Lemma 2 for any type iθ and
state (m2, t). Further, the asymptotic behavior of Equation (46) characterizes the bar-
gained price Pd as

Pd (m2, t) = (a(2Θ;m2, t)− a(20;m2, t))− ηΘ

(
(a(2Θ;m2, t)− a(20;m2, t))
− (a(1Θ;m2, t)− a(10;m2, t))

)
.

Just like in the stationary setting, it is convenient to first work with value function
differences. I thus define

∆Θ(m2, t)
∆
= a(1Θ;m2, t)− a(2Θ;m2, t) (108)

and
∆0(m2, t)

∆
= a(20;m2, t)− a(10;m2, t). (109)

Using the HJB equations (120) on the right-hand side of the definition (108) and rear-
ranging yields

(r + λ12 + λ21 + λa) ∆Θ (m2, t)− ∆̇Θ (m2, t)

= κ (1Θ;m2, t;π(iθ;m2, t))− κ (2Θ;m2, t;π(iθ;m2, t))

− 2Λµ
(̄
iθ̄;m2, t

)
(∆Θ(m2, t) + ∆0(m2, t))

+ λa EM(m̃2) [π(iθ;m2, t) (Pc (m̃2, 0)− Pc (m2, t))]

+ λa EM(m̃2) [(1− δ(1;m2, t; m̃2)− δ(2;m2, t; m̃2) ∆Θ(m̃2, t)]

+ o(γ)

. (110)
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The same procedure applied to the definition (108) yields

(r + λ12 + λ21 + λa) ∆0 (m2, t)− ∆̇0 (m2, t)

= κ (20;m2, t;π(iθ;m2, t))− κ (10;m2, t;π(iθ;m2, t))

− 2Λµ
(̄
iθ̄;m2, t

)
(∆Θ(m2, t) + ∆0(m2, t))

+ λa EM(m̃2) [π(iθ;m2, t) (Pc (m̃2, 0)− Pc (m2, t))]

+ λa EM(m̃2) [(1− δ(1;m2, t; m̃2)− δ(2;m2, t; m̃2) ∆Θ(m̃2, t)]

+ o(γ)

. (111)

Finally, taking the difference of (110) and (111) and recalling the characterization of S
in Lemma 2 yields the ODE

(r + λ12 + λ21 + λa + 2Λ (η0µ(1Θ;m2, t) + ηΘµ(20;m2, t))) ε1Θ(m2, t)− ε̇1Θ(m2, t)

= S + λa EM(m̃2) [(1− δ (1;m2, t; m̃2)− δ (2;m2, t; m̃2)) ε1Θ (m̃2, t)] + o(γ)
(112)

for the surplus

ε1Θ(m2, t)
∆
= −∆Θ(m2, t)−∆0(m2, t)

(∆)
= a(10;m2, t)− a(1Θ;m2, t)− a(20;m2, t) + a(2Θ;m2, t).

Defining

R(m2, t)
∆
= r + λ12 + λ21 + λa + 2Λ (η0µ(1Θ;m2, t) + ηΘµ(20;m2, t))

and taking as given the function

F (m2, t)
∆
= λa EM(m̃2) [(1− δ (1;m2, t; m̃2)− δ (2;m2, t; m̃2)) ε1Θ (m̃2, t)] ,

the solution to the ODE (112) under the “no-bubble” condition

lim
T→∞

e−rT ε1Θ(m2, t) = 0

is

ε(m2, t) = S
∫ ∞
t

e−
∫ u
t R(m2,s) ds du+

∫ ∞
t

e−
∫ u
t R(m2,s) dsF (m2, u) du. (113)

Finally, I must still check the existence of F (m2, t). F (m2, t) must satisfy

F (m2, t) = λa EM(m̃2) [(1− δ (1;m2, t; m̃2)− δ (2;m2, t; m̃2)) ε1Θ (m̃2, t)]

⇔ F (m2, t) = λa EM(m̃2) [(1− δ (1;m2, t; m̃2)− δ (2;m2, t; m̃2))] ·
·
(
S
∫∞
t e−

∫ u
t R(m2,s) ds du+

∫∞
t e−

∫ u
t R(m2,s) dsF (m2, u) du

)
.

(114)
One checks that the right-hand side of this last equality, seen as the image of the function
u 7→ F (m2, u) by an operator, satisfies the Blackwell’s sufficient conditions for a con-
traction (monotonicity and “discounting”). In particular, there is exactly one solution
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to the equality (114), and this solution must be positive when S is. Furthermore, this
solution is increasing in S and decreasing in Λ because the right-hand side of (114) is.

Given F , Equation (113) gives the surplus ε1Θ, and inspection shows that the surplus
is also positive when S is, increasing in S, and decreasing in Λ.

Then, Equations (110) and (111) uniquely characterize ∆Θ and ∆0, respectively.
This can be shown by an argument similar to the one characterizing Pc in Lemma 2.
Finally, with ε1Θ, ∆Θ, and ∆0, four more arguments similar to the one in Lemma 2
uniquely characterize the “a(iθ;m2, t)”s.

Proof 13 (Proof of Proposition 9). I assume that I can write

Pc(m2, t) = Pc,0(m2, t) + rγPc,1(m2, t) + o(γ),

π(iθ;m2, t) = πc,0(iθ;m2, t) + rγπc,1(iθ;m2, t) + o(γ),
(115)

for differentiable functions Pc,1 and {π1(iθ;m2, t}iθ. Injecting (115) into the first order
condition (103) for the optimal liquid holdings π(iθ,m2, t) and recalling the characteri-
zation of Pc,0 and {π0(iθ;m2, t}iθ in Proposition 2 yields the equation

0 = Ṗc,1(m2, t)− rPc,1(m2, t)− rΣccπ1(iθ;m2, t)

+ λa EM(m̃)



Pc,1 (m̃2, 0)− Pc,1 (m2, 0)

−r


π0(iθ;m2, t) (Pc,0 (m̃2, 0)− Pc,0 (m2, 0))
+δ(i;m2, t)a0 (̄iθ; m̃2, 0)
+ (1− δ(i;m2, t)) a0 (iθ; m̃2, 0)
−a0 (iθ;m2, 0))

 ·
· (Pc,0 (m̃2, 0)− Pc,0 (m2, 0))


(116)

for Pc,1 and {π1(iθ;m2, t}iθ. Now, as

Sc = Eµ(iθ) [π(iθ;m2, t] = Eµ(iθ) [π0(iθ;m2, t]

it follows that
0 = Eµ(iθ) [π1(iθ;m2, t] .

Aggregating Equation (116) across the population then yields

0 = Ṗc,1(m2, t)− rPc,1(m2, t)

+ λa EM(m̃)

 Pc,1 (m̃2, 0)− Pc,1 (m2, 0)

−r
(
Sc (Pc,0 (m̃2, 0)− Pc,0 (m2, 0))2

+ (W (m̃2, 0)−W (m2, t)) (Pc,0 (m̃2, 0)− Pc,0 (m2, 0))

)  ,
(117)

with the notation

W0 (m2, t)
∆
= Eµ(iθ;m2,t) [a (iθ;m2, t)]

(
(∆)
= µ(m2, t) · a (m2, t))

)
. (118)
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for the average certainty equivalent across the population. Combining Equation (105)
with Equation (117) then yields

1

dt

(
E [Pc(m2, t+ dt)| (m2, t)]

Pc(m2, t)
− r
)

= rγ


1
Pc,t

(
ScΣcc + λa E

[
(Pc,0 − Pc,t)2

∣∣∣ (m2, t)
])

+ 1
Pc,t

(SdΣcd + Σηc)

+λa Em(h̃)
[(

Pc(m̃2,0)
Pc(m2,t)

− 1
)

(W (m̃2, 0)−W (m2, t))
∣∣∣ (m2, t)

]
+ o (γ) ,

(119)
which is Expression 50 in the statement.

I still have to characterize the sensitivity of the expected returns

1

dt

(
E [Pc(m2, t+ dt)| (m2, t)]

Pc(m2, t)
− r
)

on the meeting rate Λ. On the right-hand side of (119), only the difference

W (m̃2, 0)−W (m2, t)

asymptotically depends on Λ. Hence, I will first looks more carefully at W (m2, t). It fol-
lows from the definition (118) of the average certainty equivalent W and the asymptotic
HJB equations (120) that

rW (m2, t)− µ(m2, t) · ȧ(m2, t)

= µ(m2, t) · κ (m2, t;π(m2, t))

+ (λ12µ(1l;m2, t)− λ21µ(2l;m2, t)) ∆0(m2, t)

+ (λ21µ(2Θ;m2, t)− λ12µ(1Θ;m2, t)) ∆Θ(m2, t)

+ 2Λµ (20;m2, t)µ (1Θ;m2, t)

+ λaSc

(
EM(m̃2) [Pc (m̃2, 0)]− Pc (m2, t)

)
+ λa

(
EM(m̃2) [W (m̃2, 0)]−W (m2, 0)

)
+ o(γ)

. (120)

Rearranging then yields the ODE

(r + λa)W (m2, t)− Ẇ (m2, t) = µ(m2, t) · κ(m2, t) + λa EM(m̃2) [W (m̃2, 0)]

for W (m2, t). Under a “no bubble” condition, the unique solution to this ODE is

W (m2, t) =

∫ +∞

t
e−(r+λa)(u−t))µ · κ du

+
r + λa
r

∫ +∞

0
e−(r+λa)u EM(m̃2) [µ (m̃2, u) · κ (m̃2, u)] du,
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and I can characterize the quantity of interest as

W (m̃2, 0)−W (m2, t) =

∫ +∞

0
e−(r+λa)uµ (m̃2, u) · κ (m̃2, u) du

−
∫ +∞

t
e−(r+λa)(u−t))µ (m2, u) · κ (m2, u) du.

(121)

Finally, combining Equation (121) with the result of Lemma 2 regarding the “κ(iθ;m2, t)”s,
and those of Lemma 5 regarding the asymptotic type distribution yields

∂ 1
Λ

(W (m̃2, 0)−W (m2, t)) + o

(
1

Λ

)
+O (γ)

=

∫ +∞

0
e−(r+λa)uδµ (m̃2, u)


−1
1
1
−1

κ (m̃2, u) du

−
∫ +∞

t
e−(r+λa)(u−t))δµ (m2, u)


−1
1
1
−1

κ (m2, u) du

= − S
∫ +∞

0
e−(r+λa)u (δµ (m̃2, u)− δµ (m2, u)) du.

Finally, recalling that

δµ (m2, u) =
λ12

2

Sd
Θ

µ2 (m2, t)− Sd
Θ

is decreasing in µ2 (m2, t) over the support of M2, I conclude that

∂ 1
Λ

(W (m̃2, 0)−W (m2, t)) < 0

exactly when
m̃2 < µ2 (m2, t) .

Combining this last result with Lemma 2 completes the argument.

B.3 Technical results

Lemma 3. Consider a smooth map H : Ω→ Ω for some Ω ⊂ Rd. If for any i = 1, . . . , d,
there exists a η < 1 so that

d∑
j=1

∣∣∣∣∂Hi

∂xj

∣∣∣∣ ≤ η,

then H is a contraction in l∞ and has a unique fixed point.
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Proof of Lemma 3. Fix x1, x2 ∈ Ω and define, for t ∈ [0, 1],

x(t)
∆
= x1 + t(x2 − x1).

Then, for any i ∈ {1, . . . , d},

|Hi(x2)−Hi(x1)| =

∣∣∣∣∣∣
∫ 1

0

∑
j

∂Hi

∂xj
(x(t))(x2

j − x1
j ) dt

∣∣∣∣∣∣
≤
∫ 1

0

∑
j

∣∣∣∣∂Hi

∂xj
(x(t))

∣∣∣∣ ∣∣x2
j − x1

j

∣∣ dt

≤
∑
j

(
∂xjH

)
max
j
|x2j − x1j |

∫ 1

0
dt

≤ η‖x2 − x1‖l∞ .

The last claim follows from the Contraction Mapping Theorem (see (Stokey and Lucas,
1989, Theorem 3.2, p.50)).

Proposition 12. Let us consider the system of equations

0 = rβk +
∑
j 6=k

κkje
βk−βj + ck

∆
= Fk(β), k ∈ {1, . . . , d} (122)

with the unknowns β ≡ (β1, · · · , βd) ∈ Rd. Then, this system admits a unique solution
and this solution is monotone decreasing in the components of K and c.

Proof of Proposition 12. I write β−k for the vector of β without βk.
First note that there exists a unique smooth function

Gk = Gk(β−k,Kk, ck)

for which β = Gk(β−k,Kk, ck) is the unique solution to

rβ +
∑
j 6=k

κkj e
β−βj + ck = 0.

Furthermore, Gk is monotone increasing in the components of β−k, and monotone de-
creasing in κkj and ck for all j 6= k.

Then, I show that the functions Gk define a contraction by applying Lemma 3.
Namely, I first show that G maps a compact set into itself. Let me choose two real
numbers L < U , and assume that for any k ∈ {1, . . . , d},

βk ∈ [L,U ]d−1.
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For a given k, let me further define two functions, FLk and FUk , that bound the function
Fk defined in (122). Namely,

rβ +
∑
j 6=k

κkje
β−U + ck

∆
=FLk (β)

≤Fk(β)

≤FUk (β)
∆
= rβ +

∑
j 6=k

κkje
β−L + ck.

Now, due to the monotonicity of Fk (·, β−k), if

0 ≤ FLk (U) = rU +
∑
j 6=k

κjk + ck (123)

and
0 ≥ FUk (L) = rL+

∑
j 6=k

κjk + ck (124)

then
Gk(β−k) ∈ [L,U ].

But both (123) and (124) will hold for all k ∈ {1, . . . , d} as soon as

U ≥ max
k∈{1,...,d}

−1

r

∑
j 6=k

κjk + ck


and

L ≤ min
k∈{1,...,d}

−1

r

∑
j 6=k

κjk + ck

 .

Now, by the Implicit Function Theorem,

∂Gk(β−k)

∂βj
=

κkje
Gk(β−k)−βj

r +
∑

j 6=k κkje
Gk(β−k)−βj

,

which can be bounded strictly below 1, uniformly in β−k ∈ [L,U ]d−1, for L and U
chosen as above. But then, Lemma 3 ensures the existence and uniqueness of a fixed
point on [L,U ]d. Finally, as −L and U can be chosen arbitrarily large, the existence and
uniqueness on Rd hold.

Monotonicity follows because

β∗ = lim
n→∞

Gn(β0)

for any fixed β0 and G is monotone.
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C Verification argument

I intend to show that the HJB equations (13) actually describe an optimal behaviour.
Being more specific, on the one hand, a given agent with wealth w and type iθ

maximizes

V (w, iθ)
∆
= max

c̃
E

[∫ ∞
0

e−ρt
(
−e−γc̃s

)
ds

∣∣∣∣w0 = w, i0θ0 = iθ

]
, (125)

under the conditions that follow.

• The budget constraint

dwt = rwt dt− c̄t dt+ dηt + θt dDdt + πt ( dDct − rPc dt)− Pd dθt

holds for a liquid holding process taking values in [−K,K], with K positive and
large.59

• The price Pd is the outcome of a bargaining with another agent;

• For any T > 0,

Ew,iθ
[∫ T

0

(
e−ρue−rγwu

)2
du

]
< +∞ (126)

and
lim
T→∞

e−ρT Ew,iθ
[
e−γWT

]
= 0. (127)

On the other hand, the HJB equation for the problem above is

ρV (w, iθ) = sup
c̃,π̃

U(c̃)

+
∂V

∂w
(w, iθ) (rw − c̃+mη + θmd + π̃ (mc − rPc))

+
1

2

∂2V

∂w2
(w, iθ)

(
1 θ π̃

)
Σi

(
1 θ π̃

)∗
+ λīi (V (w, īθ)− V (w, iθ))

+ 2Λ Eµ(b)
[
1surplus

(
V (w − (θ̄ − θ)Pd, iθ̄))− V (w, i, θ)

)]
,

(128)

and Proposition 3 shows that there exists a unique solution of the form

Ṽ (w, iθ) = − exp (−rγ (w + a(iθ) + ā))

to (128). It remains to show that the candidate Ṽ is the solution to the problem (125).
This is the object of the next proposition.

Proposition 13. If the risk aversion γ is small enough, the function Ṽ is the solution
to the HJB equations (128) and the associated consumption and investment strategies
are optimal.

59See footnote 11 for conditions on K.
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Proof of Proposition 13. My argument comprises four steps.

• Lemma 4 shows that no admissible strategy can achieve an expected utility higher
than Ṽ .

• Lemma 5 shows that the strategy dictated by Ṽ is admissible when the risk aversion
γ is small enough.

• Lemma 6 shows the strategy dictated by the HJB equations yields an expected
utility equal to Ṽ .

I first show that Ṽ represents an upper bound on the attainable expected utilities.

Lemma 4. If all the agents believe that their value function is given by Ṽ , then, for any
admissible consumption strategy c̃ financed by the trading strategy π̃,

Ṽ (w, iθ) ≥ sup
c̃

Ew,iθ
[∫ ∞

0
e−ρuU(cu) du

]
.

Proof. First note that the beliefs regarding the value functions will already fix the out-
come of the Nash bargaining, meaning that both the price Pd of the illiquid asset and
the cross-sectional distribution of types µ are fixed.

Let me choose an admissible consumption strategy c financed by the trading strategy
π, and a time T > 0. Recalling the budget constraint,

E

[∫ T

0
e−ρuU(cu) du+ e−ρT Ṽ (wT , iT θT )

]
= E

[∫ T

0
e−ρuU(cu) du+ Ṽ (w0, i0θ0) +

∫ T

0
d
(
e−ρuṼ (wu, iuθu)

)]
= E

[
Ṽ (w0, i0θ0) +

∫ T
0 e−ρuU(cu) du

+
∫ T

0

(
−ρe−ρuṼ (wu, iuθu)

)
du+

∫ T
0 e−ρu d

(
Ṽ (wu, iuθu)

) ]

= E



Ṽ (w0, i0θ0)

+
∫ T

0 e−ρu



U(cu) du

− ρṼ (wu, iuθu) du

+ ∂Ṽ
∂w (wu, iuθu)


(rwu − cu) du
+ deu
+θu dDdu

+πu ( dDcu − rPc du)


+ 1

2
∂2Ṽ
∂w2 (wu, iuθu)

(
1 θu πu

)
Σi

(
1 θu πu

)∗
du

+
(
Ṽ (wu, īuθu)− Ṽ (wu, iuθ)

)
dN i

u

+ max

{
0,

Ṽ (wu − (θ̄u − θu)Pd, iuθu)

−Ṽ (wu, iuθu)

}
dNm

u
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= E



Ṽ (w0, i0θ0)

+
∫ T

0 e−ρu



U(cu) du

− ρe−ρuṼ (wu, iuθu) du

+ ∂Ṽ
∂w (wu, iuθu)


rwu − cu
+me

+θumd

+πu (mc − rPc)

 du

+ ∂Ṽ
∂w (wu, iuθu)

 αη(iu)
αd(iu) + θuσd
αd(iu) + πuσc

 ·
 dZu

dBd,u
dBc,u


+ 1

2
∂2Ṽ
∂w2 (w, iθ)

(
1 θu πu

)
Σi

(
1 θu πu

)∗
du

+
(
Ṽ (wu, īuθu)− Ṽ (wu, iuθu)

)
dN i

u

+ max

{
0,

Ṽ (wu − (θ̄u − θu)Pd, iuθu)

−Ṽ (wu, iuθu)

}
dNm

u




∆
=(∗),

with N i being the idiosyncratic jump process driving the exposure changes and Nm the
jump process defining the meeting times on the OTC market.

Now, defining

K1
∆
= (rγ)2 sup

iθ
π̃ ∈ [−K,K]

e−2(a(iθ)+ā)
(
1 θ π̃

)
Σi

(
1 θ π̃

)∗ ∈ R,

and recalling the admissibility condition (127) on (c, π), I may write

E


∫ t

0
e−ρu

∂Ṽ

∂w
(wu, iuθu)

 αη(iu)
αd(iu) + θuσd
αd(iu) + πuσc

 ·
 dZu

dBd,u
dBc,u

2


= E

∫ t

0

(
e−ρu

∂Ṽ

∂w
(wu, iuθu)

)2 (
1 θu πu

)
Σi

(
1 θu πu

)∗
du


≤K1 E

[∫ t

0
e−2(ρu+rγwu) du

]
<∞.

In particular, in (∗), the stochastic integrals against the Brownian motions are true
martingales, and their expected values equal zero.

I now turn to the stochastic integrals against the Poisson processes. Keeping in mind
the admissibility condition (126),∫ t

0

∣∣∣Ṽ (wu, īuθu)− Ṽ (wu, iuθu)
∣∣∣ du
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≤ sup
iθ

∣∣∣e−rγ(a(iuθu)+ā) − e−rγ(a(iuθu)+ā)
∣∣∣ ∫ t

0
e−rγwu du

<∞.

But then, using a classical result (see, for example, Brémaud (1981)[Lemma C4, p.235]),

E

[∫ T

0
e−ρu

(
Ṽ (wu, īuθu)− Ṽ (wu, iuθu)

)
dN i

u

]
= E

[∫ T

0
e−ρuλiu īu

(
Ṽ (wu, īuθu)− Ṽ (wu, iuθu)

)
du

]
.

Similarly,

E

[∫ T

0
e−ρu max

{
0,

Ṽ (wu − (θ̄u − θu)Pd, iuθu)

−Ṽ (wu, iuθu)

}
dN θ

u

]
= E

[∫ T

0
e−ρu2λµ(̄iuθ̄u) max

{
0,

Ṽ (wu − (θ̄u − θu)Pd, iuθu)

−Ṽ (wu, iuθu)

}
du

]
.

I may thus write

(∗) = E



Ṽ (w0, i0θ0)

+
∫ T

0 e−ρu



U(cu)

− ρe−ρuṼ (wu, iuθu)

+ ∂Ṽ
∂w (wu, iuθu)


rwu − cu
+mη

+θumd

+πu (mc − rPc)


+ 1

2
∂2Ṽ
∂w2 (w, iθ)

(
1 θu πu

)
Σi

(
1 θu πu

)∗
+ λiu īu

(
Ṽ (wu, īuθu)− Ṽ (wu, iuθu)

)
+ 2Λµ

(̄
iuθ̄u

)
max

{
0,

Ṽ (wu − (θ̄u − θu)Pd, iuθu)

−Ṽ (wu, iuθu)

}


du



≤E



Ṽ (w0, i0θ0)

+
∫ T

0 e−ρu supc̃,π̃



U(c̃)

− ρe−ρuṼ (wu, iuθu)

+ ∂Ṽ
∂w (wu, iuθu)


rwu − c̃
+mη

+θumd

+π̃ (mc − rPc)


+ 1

2
∂2Ṽ
∂w2 (wu, iuθu)

(
1 θu π̃

)
Σi

(
1 θu π̃

)∗
+ λiu īu

(
Ṽ (wu, īuθu)− Ṽ (wu, iuθu)

)
+ 2Λµ

(̄
iuθ̄u

)
max

{
0,

Ṽ (wu − (θ̄u − θu)Pd, iuθu)

−Ṽ (wu, iuθu)

}


du
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=Ṽ (w0, i0θ0).

Taking things together, this means that, for any T > 0,

Ṽ (w0, i0θ0) ≥ E

[∫ T

0
e−ρuU(cu) du

]
+ e−ρT E

[
Ṽ (wT , iT θT )

]
.

Letting T become arbitrarily large in this last expression, recalling the admissibility
condition (127) satisfied by the strategy (c, π), and realizing that the process

(a(itθt))t≥0

can only take one of four finite values, yields

Ṽ (w0, i0θ0) ≥ lim
T→∞

E

[∫ T

0
e−ρuU(cu) du

]
+ e−ρT E

[
Ṽ (wT , iT θT )

]
≥E

[∫ ∞
0

e−ρuU(cu) du

]
+ lim
T→∞

e−ρT E
[
−e−rγwT

]
sup
iθ
e−rγ(a(iθ)+ā)

= E

[∫ ∞
0

e−ρuU(cu) du

]
.

As the consumption and trading strategies were arbitrary, this concludes.

I now propose a condition under which the strategy dictated by the HJB equations
is admissible.

Lemma 5. For γ small enough, the strategy (ĉt, π̂t) dictated by the optimization in the
HJB equation is admissible.60

Proof. The candidate strategy must satisfy two admissibility properties. The first one
is (126), meaning

E

[∫ T

0

(
e−ρue−rγŵu

)2
du

]
<∞.

Now, from Proposition 2, the optimal consumption policy is

ĉ(iθ, w) = r (w + a(iθ) + ā)− 1

γ
log(r),

and the resulting wealth dynamics are

dŵt =

(
−r (a(iθ) + ā) +

1

γ
log(r)

)
dt+ dηt + θt dDd,t + π̂t ( dDd,t − rPd dt)− Pd dθt.

I may thus write

ŵt − w0

60I let the risk aversion coefficient go to zero, γ → 0, and simultaneously scale up the diffusion
coefficients, as described in Equation (48).
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=

∫ t

0

(
−r (a(iθ) + ā) +

1

γ
log(r) +mη + θumd + π̂u (mc − rPc)

)
du− Pd (θT − θ0)

+

∫ t

0

αd(iu) + θuσd
αc(iu) + πuσc

αη(iu)

 ·
 dBd,u

dBc,u
dZu

 .

In particular, recalling that the Brownian motions and Poisson processes are indepen-
dent, and defining, for t ≥ 0,

mt
∆
=

∫ t

0

(
−r (a(iθ) + ā) +

1

γ
log(r) +mη + θumd + π̂u (mc − rPc)

)
du− Pd (θt − θ0) ,

and

s2
t

∆
=

∫ t

0

(
1 θu π̂(iuθu)

)
Σi

 1
θu

π̂(iuθu)

 du,

I know that the distribution of the wealth conditional on the history of the correlation
shocks and OTC trades is

L
(
ŵt

∣∣∣(iuθu)0≤u≤t

)
= N

(
mt, s

2
t

)
.

Further, for t ≥ 0, and defining the two constants

K2
∆
= min

iθ
π ∈ [−K,K]

{−ra(iθ) + θmd + π (mc − rPc)}

and

K3
∆
= sup

iθ

(
1 θ π(iθ)

)
Σi

 1
θ

π(iθ)

 ,

I can write both

mt ≥ t
(
K2 +

1

γ
log(r)− rā+mη

)
− |Pd|∆θ,

and
s2
t ≤ tK3.

As a result,

E

[∫ T

0

(
e−ρue−rγŵu

)2
du

]
=

∫ T

0
e−2ρu E

[
e−2rγŵu

]
du

=

∫ T

0
e−2ρu E

[
E
[
e−2rγŵu

∣∣∣ (ivθu)0≤v≤u

]]
du

=

∫ T

0
e−2ρu E

[
e−2rγmu+2(rγ)2s2u

]
du
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≤
∫ T

0
e
−2ρu−2rγu

(
K2+ 1

γ
log(r)−rā+mη

)
+2rγ|Pd|∆θ+2u(rγ)2K3 du

≤e2rγ|Pd|∆θ

∫ T

0
e
−2u

(
ρ+rγ

(
K2+ 1

γ
log(r)−rā+mη

)
−(rγ)2K3

)
du

<∞.

I must still show that the candidate policy satisfies the transversality condition (127),
meaning that

lim
T→∞

e−ρT E
[
e−rγŵT

]
= 0.

The argument is similar to the one in the first part. Namely, for a given T > 0,

e−ρT E
[
e−rγŵT

]
=e−ρT E

[
E
[
e−rγŵT

∣∣∣ (isθs)0≤s≤t

]]
= E

[
e−ρT−rγmT+ 1

2
(rγ)2s2T

]
.

(129)

Now, recalling the choice

ā
(∆)
=

1

rγ

(
−1 +

ρ

r
+ γme + log(r)

)
in (20), the exponent on the right-hand side of (129) is

− ρT − rγmT +
1

2
(rγ)2s2

T

=

∫ T

0

(
−ρ− rγ

(
1
γ log(r)− r (a(iuθu) + ā) +mη + θumd + π̂u (mc − rPc)

)
+1

2(rγ)2
(
1 θu π̂(iuθu)

)
Σi

(
1 θu π̂(iuθu)∗

) )
du

− rγPd (θT − θ0)

=

∫ T

0
rγ

(
−1

γ
+ ra (iuθu)− κ(iuθu)

)
du− rγPd (θT − θ0) .

(130)
Now, recall that the “κ(iθ)”s are independent of γ in the asymptotic case defined by the
equations (47) and (48). Hence, for a small enough γ, there exists an ε > 0 for which∫ T

0

(
−1

γ
+ ra(iuθu)− κ(iuθu)

)
du ≤

∫ T

0
−ε du = −εT. (131)

Finally, combining (129), (130), and (131),

0 ≤ lim
T→∞

e−ρT E
[
e−rγŵT

]
≤ lim

T→∞
erγ|Pd|∆θe−rγεT = 0,

as stated.

The last step is to show that the beliefs are rational. In other words, I must show
that the strategy dictated by Ṽ and the HJB equations indeed generates an expected
utility from consumption equal to Ṽ .
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Lemma 6. Assuming that γ is small enough, in the sense of Lemma 5, and writing
(ĉ, π̂) for the strategy dictated by the HJB equations, then

Ṽ (w, iθ) = E

[∫ ∞
0

e−ρuU(ĉu)

∣∣∣∣w0 = w, i0θ0 = iθ

]
.

Proof. Thanks to the admissibility of the candidate policy, first, the process(∫ t

0
e−ρuU(cu) du+ e−ρuṼ (wu, iuθu)

)
t≥0

is a martingale and, second,

lim
T→∞

e−ρT E
[
−e−rγwT

]
= 0.

One may then conclude that

Ṽ (w0, i0θ0) = E

[∫ T

0
e−ρuU(ĉu) du

]
,

by an argument similar to the one in the proof of Lemma 4.

This concludes the proof of Proposition 13.
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Table 1: Baseline parameter values.

notation parameter value

Sc supply of the liquid asset 0
Sd supply of the asset traded OTC 0.8

ηΘ, η0 bargaining powers 1
2

λ21 arrival rate of idiosyncratic liquidity shocks 1
5

λ12 recovery rate from a liquidity shocks 5
Λ meeting rate 50

r risk-free rate 0.037
mc expected payouts of the liquid asset 0.05
md expected payouts of the asset traded OTC 0.05

(ac, bc) exposures of the liquid asset (1.0000,−0.0016)
(ad, bd) exposures of the asset traded OTC (0.1022,−0.0002)
(a1, b1) exposures of the endowment for the investors of type 1 (9.4718,−0.0150)
(a2, b2) exposures of the endowment for the investors of type 2 (−0.5017, 0.0008)

γ coefficient of absolute risk aversion 2
Θ holdings in the asset traded OTC 1

Choice of the parameters The supply of the illiquid asset, the holdings size Θ, and
the dynamics of the idiosyncratic shocks are taken from Duffie et al. (2007). The liquid
asset is understood to be a derivative and its net supply is zero. The risk-free rate
and expected payouts of the assets are the same as in Gârleanu (2009) (the calibration
in Gârleanu (2009) is itself based on Campbell and Kyle (1993) and Lo et al. (2004)).
The baseline meeting intensity is within the standard range and corresponds an average
of one meeting per week. The risk-aversion is chosen within the standard range. The
exposures of the assets and endowments are chosen to satisfy the following conditions.

1. The profile of the illiquid asset maximizes the reservation value of the illiquid asset
in a setting without liquid asset, conditionally on the exposures of the endowments.
This maximization captures, in a reduced form, the strong clientèle effects on OTC
markets.

2. The two risky assets should have an expected return of approximately 5%.

3. The 2-investors buy the illiquid asset both before and after the opening of the
liquid market. See the discussion after Proposition 10.

4. The two risky assets should have the same price for the baseline parameter values.
This is for ease of visualization only.

The values of the asset and endowment exposures are then found numerically.
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Figure 1: The first panel represents the subjective valuation of an asset traded OTC,
say a bond, by a given investor and how this valuation changes over time. The second
panel represents this investor’s holdings in the illiquid asset (solid line) and a more liquid
security offering a similar exposure (dashed line). If the illiquid asset is a bond, the liquid
security could be a CDS (as a protection seller). The shaded areas corresponds to the
periods during which the investor is searching for a counter-party on the OTC market.
During these periods, the investor hedges her sub-optimal exposure to the illiquid asset
by trading the liquid asset. These plots are illustrative and not based on the parameters
in Table 1.
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Figure 2: This plot represents the vector of exposures of the liquid asset (ec) and of
the illiquid asset (ed), along with the differences of the exposures between the two types
of investors (e1 − e2). The horizontal axis measures the exposure to the aggregate risk
a and the vertical axis measures the exposure to the aggregate risk b. The surface of
the quadrangle with the narrow dash is |det (ed : ec)| and measures how orthogonal the
exposures of the two assets are. The surface of the quadrangle with the broad dash is
|det (e1 − e2 : ec)| and measures how orthogonal the risk profile of the liquid asset is to
the profile that would be optimal in terms of risk-sharing. The two quadrangles intersect
when det (ed : ec) det (e1 − e2 : ec) > 0, which is the condition appearing in Proposition
6 and defining the trading pattern on the OTC market.
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Figure 3: Each vertex is a type of investors (for a type iθ, i ∈ {1, 2} is the type of
exposure and θ ∈ {0,Θ} are the holdings in the illiquid asset). Each arrow indicates
a flow between types and the number on each arrow is the corresponding transition
intensity for a given investor. These flow are valid under Assumption 3 and corresponds
to the flow equations (25).
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Figure 4: The upper panel is a plot of the price bargained on the OTC market as a
function of the meeting intensity on the OTC market. The continuous line is the price
when the OTC market is the only market in the economy, whereas the dashed line is the
price when investors can trade both on the liquid and on the OTC market. The lower
panel plots the expected returns on the illiquid assets, but is otherwise similar to the
upper one. The parameter values for this plot are in Table 1.
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