Clicks and Editorial Decisions: Does Popularity Shape Coverage?

Ananya Sen and Pinar Yildirim

Toulouse School of Economics; Wharton School, U. Pennsylvania

October 6, 2014

What drives the decision of editors to cover one story vs. another?

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

- What drives the decision of editors to cover one story vs. another?
- Supply side (Ansolabehere et al. (2006), Fridkin et al. (2002), Larcinese et al. (2011)) vs Demand side (Gentzkow and Shapiro (2010)).

- What drives the decision of editors to cover one story vs. another?
- Supply side (Ansolabehere et al. (2006), Fridkin et al. (2002), Larcinese et al. (2011)) vs Demand side (Gentzkow and Shapiro (2010)).
- "Digital Drive": Aggregate circulation rates to real time URL level info.

- What drives the decision of editors to cover one story vs. another?
- Supply side (Ansolabehere et al. (2006), Fridkin et al. (2002), Larcinese et al. (2011)) vs Demand side (Gentzkow and Shapiro (2010)).
- "Digital Drive": Aggregate circulation rates to real time URL level info.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 Debate on how to utilize real time clicks: Eg. The Verge, Vox.com.

To what extent, if at all, does coverage of stories (duration, frequency of articles) respond to the clicks received?

- To what extent, if at all, does coverage of stories (duration, frequency of articles) respond to the clicks received?
- Lack of disaggregated data:
 - We use a unique dataset at the level of a URL from a big Indian national daily.

- To what extent, if at all, does coverage of stories (duration, frequency of articles) respond to the clicks received?
- Lack of disaggregated data:
 - We use a unique dataset at the level of a URL from a big Indian national daily.

うして ふゆう ふほう ふほう うらつ

- Need to define a 'story':
 - Use text analysis to link articles

- To what extent, if at all, does coverage of stories (duration, frequency of articles) respond to the clicks received?
- Lack of disaggregated data:
 - We use a unique dataset at the level of a URL from a big Indian national daily.
- Need to define a 'story':
 - Use text analysis to link articles
- Endogeneity of clicks due to unobserved heterogeneity and reverse causality:

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- To what extent, if at all, does coverage of stories (duration, frequency of articles) respond to the clicks received?
- Lack of disaggregated data:
 - We use a unique dataset at the level of a URL from a big Indian national daily.
- Need to define a 'story':
 - Use text analysis to link articles
- Endogeneity of clicks due to unobserved heterogeneity and reverse causality:

うして ふゆう ふほう ふほう うらつ

- Rainy days
- Electricity shortages

Can clicks based coverage hurt readers? the newspaper?

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

- Can clicks based coverage hurt readers? the newspaper?
- Page views are noisy and don't always signal the newsworthiness of a topic.
- Coverage could often be driven by events like rain and power outages.

- Can clicks based coverage hurt readers? the newspaper?
- Page views are noisy and don't always signal the newsworthiness of a topic.
- Coverage could often be driven by events like rain and power outages.
- Could be detrimental to information provision and newspaper's profits.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Simulate counterfactuals to quantify potential crowding out.

Overview of the Results

 Stories first published on rainy days receive a larger number of clicks.

- Power outages are negatively correlated with clicks.
- One standard deviation increase in the views of a story increases its duration by 1.25-3 days with 1.5-3 additional articles.

Overview of the Results

- Stories first published on rainy days receive a larger number of clicks.
- Power outages are negatively correlated with clicks.
- One standard deviation increase in the views of a story increases its duration by 1.25-3 days with 1.5-3 additional articles.
- Two counterfactual situations to quantify the potential crowding out or in of new stories.
 - \blacktriangleright No rain: Upto 928 (pprox 1%) new articles crowded out.
 - ► Only low power outages: Upto 660 (≈ 0.7%) new articles written.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

A Stylized Model I The Newspaper

- A single newspaper decides how much coverage c_i to give story i.
- The newspaper cares about its readership $R(c_i)$.
- It has a disutility $\lambda_i \in R_+$ associated with story *i*.
- ▶ The payoff to the newspaper by giving coverage c_i to story i:

$$\pi(c_i) = R(c_i) - \lambda_i c_i$$

(ロ) (型) (E) (E) (E) (O)

A Stylized Model II The Readers

- There is a fixed set of potential readers of unit mass.
- An individual reader q has the following utility from reading story i:

$$U^{q}(i) = f(c_{i}, \alpha_{i}) - \delta_{iq}$$

- α_i is the appeal of/preference for story *i*.
- The function f(.) is increasing in c_i , α_i , $\frac{\partial^2 f(.)}{\partial c_i \partial \alpha_i} > 0$ and $\delta_{iq} \sim U[0, 1]$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

A Structural Model

• The newspaper's FOC
$$(f(.)=\sigma(\alpha_i c_i)^{\frac{1}{\sigma}})$$
:
 $c_i = \alpha_i^{\frac{1}{\sigma-1}} \lambda_i^{\frac{\sigma}{1-\sigma}}$

(ロ)、(型)、(E)、(E)、 E) のQで

A Structural Model

► The newspaper's FOC
$$(f(.)=\sigma(\alpha_i c_i)^{\frac{1}{\sigma}})$$
:
 $c_i = \alpha_i^{\frac{1}{\sigma-1}} \lambda_i^{\frac{\sigma}{1-\sigma}}$

► Taking the natural logarithm, we get a log-log specification: $log(c_i) = \frac{1}{\sigma - 1} log(\alpha_i) + \frac{\sigma}{1 - \sigma} log(\lambda_i)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A Structural Model

► The newspaper's FOC
$$(f(.)=\sigma(\alpha_i c_i)^{\frac{1}{\sigma}})$$
:
 $c_i = \alpha_i^{\frac{1}{\sigma-1}} \lambda_i^{\frac{\sigma}{1-\sigma}}$

- ► Taking the natural logarithm, we get a log-log specification: $log(c_i) = \frac{1}{\sigma - 1} log(\alpha_i) + \frac{\sigma}{1 - \sigma} log(\lambda_i)$
- Functional form assumptions and a bit of algebra gives:

$$log(c_i) = \gamma_0 + \gamma_1 log(views_i) + \mathbf{X}'_i \gamma_2 + \epsilon_i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Data Description

► Data for the online edition of an Indian national daily for 2012.

- > Data on all articles read during this period which includes:
 - The number of page views
 - The number of unique page views

Data Description

- ► Data for the online edition of an Indian national daily for 2012.
- > Data on all articles read during this period which includes:
 - The number of page views
 - The number of unique page views
- Used a web crawler to combine it with publicly available information on:
 - The text of the article and the time it was first published.
 - The source of the story, whether it had an image, headline, tags.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

A News Story

- A 'news-story' is defined as a cluster of articles based on a common underlying issue or topic.
- We use a word frequency algorithm to identify the similarity between articles.
- We follow Franceschelli (2011) by dividing the 365 days into 24-hour news cycles and assign each article to exactly one story.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

News Story Example: Fukushima

Headline	Time Published	
Japans regains nuclear power after reactor	5 th July, 2012 at	
restarts	1:08 pm	
Fukushima was 'man-made' disaster:	5 th July, 2012 at	
Japanese probe	6:39 pm	
Comission calls Fukushima n-crisis man-	6 th July, 2012 at	
made disaster	1:37 am	
'Man-made'	7 th July, 2012 at	
	12:33 am	
Fukushima lessons	7 th July, 2012 at	
	12:55 am	

The cluster consisted of five articles with an article every 24 hours related to the Fukushima incident.

Identification and Estimation

- Reverse causality: Greater coverage leads to greater reader interest.
 - Solution: Use the characteristics of only the first article of every story.

Identification and Estimation

- Reverse causality: Greater coverage leads to greater reader interest.
 - Solution: Use the characteristics of only the first article of every story.
- ► Measurement Error, Unobserved Heterogeneity in Views:
 - Rainfall: Takes the value 1 if it rained on a particular day in either Delhi or Mumbai.
 - Electricity Shortages: Use a daily measure which is the total power outages in Delhi and Maharashtra.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

IV Estimation: First Stage

	(1)	(2)	(3)
VARIABLES	log(views)	log(views)	log(views)
Rain	0.0586***	0.0536***	0.0976***
	(0.0141)	(0.0137)	(0.0190)
log(outage)	-0.0172***	-0.0470***	-0.0237**
	(0.00646)	(0.00631)	(0.00989)
Section f.e.	Ν	Y	Y
Month f.e	Ν	Ν	Y
F- Statistic	15.94	53.88	14.80
Observations	60,671	60,671	60,671
R-squared	0.167	0.224	0.230

<□> <圖> < E> < E> E のQ@

Placebo Checks

- Falsification tests indicate that the newspaper is unaware of these shocks to reader attention.
- No difference in the words per article, probability of sourcing from an agency or number of articles published.
- There is a difference on weekends implying a different editorial policy.

IV Estimation: Length of the Story

	Ols	2sls	2sls	2st. Tobit
VARIABLES	ln(length)	ln(length)	ln(length)	ln(length)
log(views)	0.300***	3.017***	1.865**	4.15***
	(0.0183)	(0.920)	(0.893)	(1.253)
$\sigma = \frac{1+\gamma_1}{\gamma_1}$		1.33	1.5	1.25
Section f.e.	N	N	Y	N
Month f.e	Ν	Ν	Y	Ν
Over-id (p value)		0.99	0.14	-
Observations	60,671	60,671	60,671	60,671

IV Estimation: Number of Articles

	Ols	2sls	2sls	2st Tobit
VARIABLES	ln(articles)	ln(articles)	In(articles)	ln(articles)
log(views)	0.022***	0.311***	0.211***	0.460***
	(0.0013)	(0.075)	(0.070)	(0.110)
$\sigma = \frac{1+\gamma_1}{\gamma_1}$		4.33	5.76	3.17
Month f.e.	N	Ν	Y	Ν
Section controls	Ν	Ν	Y	Ν
Over-id (p value)		0.58	0.66	-
Observations	60,671	60,671	60,671	60,671

Crowding Out and In of Articles I

- Simulate how many articles an average story would have recieved if:
- 1. There was no rain.
- 2. There were only low power outages.
- Change the number of views an average story receives but have the same characteristics.

Crowding Out and In of Articles II

	$\%\Delta$ in Coverage	Δ in Coverage	%All Articles
Rain	-3.5%	-928	1%
Power Outage	3%	660	0.67%

Robustness Checks

Power outage as a proportion of daily consumption.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Excluding outliers.
- Daily rainfall normalized by monthly mean.
- Unique views.
- Duration models.

Contribution and Next steps

 First to quantify the impact of reader preferences (e.g. clicks) on online editorial coverage decisions.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

 Related to the literature on media bias (Mullainathan and Shleifer (2005), Gentzkow and Shapiro (2006, 2010)).

Contribution and Next steps

- First to quantify the impact of reader preferences (e.g. clicks) on online editorial coverage decisions.
- Related to the literature on media bias (Mullainathan and Shleifer (2005), Gentzkow and Shapiro (2006, 2010)).
- First evidence to identify the possibility that focusing on page views may be detrimental to information provision and firm's profits.
- Implications for firm strategy as well as media policy (FCC diversity, PCI code of ethics).
- Next steps: Impact of clicks on distribution of story types?