Vertical Separation with Private Contracts

Marco Pagnozzi Salvatore Piccoło

Università di Napoli Federico II and CSEF

March 2011
Introduction

Why do manufacturers delegate retail decisions to independent agents, rather than sell directly to consumers?
Introduction

- Why do manufacturers delegate retail decisions to independent agents, rather than sell directly to consumers?
- By charging a high wholesale price, a manufacturer can induce a retailer to sell at a high price.
Introduction

Why do manufacturers delegate retail decisions to independent agents, rather than sell directly to consumers?

By charging a high wholesale price, a manufacturer can induce a retailer to sell at a high price.

With public contracts (and price competition), a high wholesale price induces rival retailers to increase prices too, thus reducing competition – strategic effect (Bonanno and Vickers, 1988)
Introduction

Why do manufacturers delegate retail decisions to independent agents, rather than sell directly to consumers?

By charging a high wholesale price, a manufacturer can induce a retailer to sell at a high price.

With public contracts (and price competition), a high wholesale price induces rival retailers to increase prices too, thus reducing competition – strategic effect (Bonanno and Vickers, 1988).

With private contracts, a manufacturer’s wholesale price does not affect the strategy of rival retailers,
Introduction

- Why do manufacturers delegate retail decisions to independent agents, rather than sell directly to consumers?
- By charging a high wholesale price, a manufacturer can induce a retailer to sell at a high price.
- With **public contracts** (and price competition), a high wholesale price induces rival retailers to increase prices too, thus reducing competition – strategic effect (Bonanno and Vickers, 1988)
- With **private contracts**, a manufacturer’s wholesale price does not affect the strategy of rival retailers, but a retailer’s strategy depends on its conjecture about the wholesale price paid by rival retailers.
The effect of delegation depends on retailers’ beliefs
The effect of delegation depends on retailers’ beliefs.

If retailers conjecture that identical manufacturers always choose identical contracts (symmetric beliefs), manufacturers delegate and earn higher profit (with both price and quantity competition).
Results

- The effect of delegation depends on retailers’ beliefs
- If retailers conjecture that identical manufacturers always choose identical contracts (*symmetric beliefs*), manufacturers delegate and earn higher profit (with both price and quantity competition)
- When manufacturers delegate, their profit may be higher with private than with public contracts
Results

- The effect of delegation depends on retailers’ beliefs.
- If retailers conjecture that identical manufacturers always choose identical contracts (symmetric beliefs), manufacturers delegate and earn higher profit (with both price and quantity competition).
- When manufacturers delegate, their profit may be higher with private than with public contracts.
- The results do not hinge on beliefs being perfectly symmetric.
Related Literature

- **Vertical separation with public contracts**
 (Fershtman and Judd, 1987; Bonanno and Vickers, 1988; Vickers 1995; Rey and Stiglitz 1995)

- **Neutrality result** with private contracts and passive beliefs
 (Coughlan and Wernerfelt, 1989; Katz 1991; Caillaud and Rey 1995)

- Beliefs with a single manufacturer and **multiple retailers**
 (Horn and Wolinsky 1988; Hart and Tirole 1990; McAfee and Schwartz 1994; Rey and Vergè 2004)

- Vertical separation with **asymmetric information**
 (Katz 1991; Caillaud, Jullien and Picard 1995)
Model

- 2 manufacturers: M_1 and M_2 produce substitute goods
- 2 exclusive retailers: R_1 and R_2
- $D^i(p_i, p_j) = \text{(smooth, symmetric) demand for good } i, i = 1, 2$
- Marginal cost = 0
Each manufacturer simultaneously and publicly chooses the organizational structure: **vertical integration** or **vertical separation**
Timing

1. Each manufacturer simultaneously and publicly chooses the organizational structure:
 vertical integration or **vertical separation**

2. If M_i is separated, it privately offers R_i a **two-part contract**

 $\left(\begin{array}{c} T_i \\ w_i \end{array} \right)$

 franchise fee wholesale price
Timing

1. Each manufacturer simultaneously and publicly chooses the organizational structure:
 vertical integration or **vertical separation**

2. If M_i is separated, it privately offers R_i a **two-part contract**

 $$\left(\begin{array}{c} T_i \\ w_i \end{array} \right)$$

 franchise fee wholesale price

3. Competition: firms simultaneously choose retail prices p_1, p_2
Timing

1. Each manufacturer simultaneously and publicly chooses the organizational structure: \textit{vertical integration} or \textit{vertical separation}.

2. If M_i is separated, it privately offers R_i a \textbf{two-part contract}

\[
\left(\begin{array}{c}
T_i \\
\hline
w_i
\end{array} \right)
\]

franchise fee \hspace{1cm} \text{wholesale price}

3. Competition: firms simultaneously choose retail prices p_1, p_2

4. R_i observes demand and pays $w_i \cdot D_i(p_i, p_j)$
Assumptions

\[\frac{\partial D^i(p_i, p_j)}{\partial p_i} < 0; \quad \frac{\partial^2 D^i(p_i, p_j)}{\partial p_i^2} \leq 0 \]

\[\frac{\partial D^i(p_i, p_j)}{\partial p_j} \geq 0: \text{ substitute goods} \]

Let \(\Pi_i(p_i, p_j) = D^i(p_i, p_j)(p_i - w_i) \) (retailer’s profit)

\[\frac{\partial^2 \Pi_i(p_i, p_j)}{\partial p_i \partial p_j} > 0: \text{ strategic complements} \]

\[\frac{\partial^2 \Pi_i(p_i, p_j)}{\partial p_i^2} + \frac{\partial^2 \Pi_i(p_i, p_j)}{\partial p_i \partial p_j} < 0: \text{ stability} \]
Off-Equilibrium Beliefs

- (Weak) **PBE**: no restriction on beliefs off the equilibrium path
Off-Equilibrium Beliefs

- (Weak) **PBE**: no restriction on beliefs off the equilibrium path
- Let w_1^* and w_2^* be the equilibrium wholesale prices
Off-Equilibrium Beliefs

- (Weak) **PBE**: no restriction on beliefs off the equilibrium path
- Let w_1^* and w_2^* be the equilibrium wholesale prices
- Let $\tilde{w}_j(w_i)$ be R_i's belief about w_j, when M_i offers w_i to R_i
(Weak) **PBE**: no restriction on beliefs off the equilibrium path.

Let w_1^* and w_2^* be the equilibrium wholesale prices.

Let $\tilde{w}_j (w_i)$ be R_i’s belief about w_j, when M_i offers w_i to R_i.

Passive Beliefs: if R_i is offered $w_i \neq w_i^*$, he does not revise its beliefs about w_j — i.e., $\tilde{w}_j (w_i) = w_j^*$.

Off-Equilibrium Beliefs
Off-Equilibrium Beliefs

- **(Weak) PBE**: no restriction on beliefs off the equilibrium path
- Let w_1^* and w_2^* be the equilibrium wholesale prices
- Let $\tilde{w}_j(w_i)$ be R_i’s belief about w_j, when M_i offers w_i to R_i

1. **Passive Beliefs**: if R_i is offered $w_i \neq w_i^*$, he does not revise its beliefs about w_j — i.e., $\tilde{w}_j(w_i) = w_j^*$

2. **Symmetric Beliefs**: R_i believes that M_i and M_j always offer the same contract — i.e., $\tilde{w}_j(w_i) = w_i$
 (Hart and Tirole 1990; McAfee and Schwartz 1994)
(Weak) **PBE**: no restriction on beliefs off the equilibrium path

Let w_1^* and w_2^* be the equilibrium wholesale prices

Let $\tilde{w}_j(w_i)$ be R_i’s belief about w_j, when M_i offers w_i to R_i

1. **Passive Beliefs**: if R_i is offered $w_i \neq w_i^*$, he does not revise its beliefs about w_j — i.e., $\tilde{w}_j(w_i) = w_j^*$

2. **Symmetric Beliefs**: R_i believes that M_i and M_j always offer the same contract — i.e., $\tilde{w}_j(w_i) = w_i$

 (Hart and Tirole 1990; McAfee and Schwartz 1994)

3. **Mixed Beliefs**: if R_i is offered $w_i \neq w_i^*$, he believes that, with probability α, R_j is offered w_i and, with probability $(1 - \alpha)$, R_j is offered w_j^*
Passive beliefs may not be the most natural assumption:

“If a manufacturer wants to change its contract, why should a competing identical manufacturer not want to do the same?”
Passive beliefs may not be the most natural assumption:

“If a manufacturer wants to change its contract, why should a competing identical manufacturer not want to do the same?”

Incomplete Information: retailers’ are uninformed about some (correlated) characteristics of manufacturers that affects their contracts
Passive beliefs may not be the most natural assumption:

“If a manufacturer wants to change its contract, why should a competing identical manufacturer not want to do the same?”

Incomplete Information: retailers’ are uninformed about some (correlated) characteristics of manufacturers that affects their contracts

e.g., Symmetric beliefs arise in a Hotelling model in which manufacturers are privately informed about their correlated costs of production, and costs have full support
Bounded Rationality: symmetric beliefs are simple
Interpretation of Symmetric Beliefs II

- **Bounded Rationality**: symmetric beliefs are simple
- With passive beliefs, a retailer must compute manufacturers’ equilibrium contracts, given retailers’ strategies, to make a conjecture about opponents’ wholesale prices
• **Bounded Rationality**: symmetric beliefs are simple

• With passive beliefs, a retailer must compute manufacturers’ equilibrium contracts, given retailers’ strategies, to make a conjecture about opponents’ wholesale prices

⇒ symmetric beliefs are a “rule of thumb”: a retailer bases his conjecture on the manufacturer’s offer and only computes its own best strategy
Beliefs:
- Passive
- Symmetric beliefs
- Mixed

Uncertainty about manufacturers’ costs

Extensions:
- Private vs. public contracts
- Quantity competition
Passive Beliefs

- **Passive beliefs**: \(R_i \)'s conjecture about \(w_j \) is independent of \(w_i \).
Passive Beliefs

- **Passive beliefs**: R_i’s conjecture about w_j is independent of w_i

Lemma

With passive beliefs, $w_1 = w_2 = 0$ and the retail price is p^e s.t.

$$\frac{\partial D_i(p^e,p^e)}{\partial p_i} p^e + D_i (p^e, p^e) = 0$$

Neutrality result: Manufacturers’ profit does not depend on their organizational structure (Katz, 1991)
Passive beliefs: R_i’s conjecture about w_j is independent of w_i

Lemma

With passive beliefs, $w_1 = w_2 = 0$ and the retail price is p^e s.t.

$$\frac{\partial D_i(p^e, p^e)}{\partial p_i} p^e + D_i(p^e, p^e) = 0$$

marginal revenue

Neutrality result: Manufacturers’ profit does not depend on their organizational structure (Katz, 1991)

Separated manufacturers act as if integrated with retailers
Passive Beliefs

- **Passive beliefs**: R_i’s conjecture about w_j is independent of w_i

Lemma

With passive beliefs, $w_1 = w_2 = 0$ and the retail price is p^e s.t.

\[
\frac{\partial D^i(p^e, p^e)}{\partial p_i} p^e + D^i (p^e, p^e) = 0
\]

Neutrality result: Manufacturers’ profit does not depend on their organizational structure (Katz, 1991)

- Separated manufacturers act as if integrated with retailers
 ⇒ Manufacturers have no incentive to sell through retailers
Symmetric Beliefs

- 3 subgames:
 1. Both manufacturers choose vertical integration
 2. Both manufacturers choose vertical separation
 3. One manufacturer chooses separation, the other manufacturer chooses integration
Symmetric Beliefs

- 3 subgames:
 1. Both manufacturers choose vertical integration
 2. Both manufacturers choose vertical separation
 3. One manufacturer chooses separation,
 the other manufacturer chooses integration

- With integrated manufacturers, the retail price is p_e
 (the same as with passive beliefs)
2 Separated Manufacturers

- Given w_i, R_i maximizes expected profit

$$\max_{p_i} \ (p_i - w_i) \ D^i(p_i, p_j(\tilde{w}_j(w_i)))$$

where $p_j(\tilde{w}_j(w_i))$ is R_i’s expectation about p_j
2 Separated Manufacturers

- Given w_i, R_i maximizes expected profit
 \[
 \max_{p_i} (p_i - w_i) D^i(p_i, p_j(\tilde{w}_j(w_i)))
 \]
 where $p_j(\tilde{w}_j(w_i))$ is R_i’s expectation about p_j
- When R_i is offered w_i, he conjectures that R_j is also offered w_i
2 Separated Manufacturers

- Given w_i, R_i maximizes expected profit
 \[
 \max_{p_i} (p_i - w_i) D^i(p_i, p_j(\tilde{w}_j(w_i)))
 \]
 where $p_j(\tilde{w}_j(w_i))$ is R_i’s expectation about p_j

- When R_i is offered w_i, he conjectures that R_j is also offered w_i

- The price chosen by R_j when he is offered w_i is
 \[
 \hat{p}(w_i) \in \arg\max_{p_j} (p_j - w_i) D^j(p_j, \hat{p}(w_i))
 \]
2 Separated Manufacturers

- Given w_i, R_i maximizes expected profit
 \[
 \max_{p_i} (p_i - w_i) D_i(p_i, p_j(\tilde{w}_j(w_i)))
 \]
 where $p_j(\tilde{w}_j(w_i))$ is R_i’s expectation about p_j

- When R_i is offered w_i, he conjectures that R_j is also offered w_i

- The price chosen by R_j when he is offered w_i is
 \[
 \hat{p}(w_i) \in \arg \max_{p_j} (p_j - w_i) D_j(p_j, \hat{p}(w_i))
 \]
 \[\Rightarrow \] When R_i is offered w_i, he chooses $\hat{p}(w_i)$ and expects R_j to choose $\hat{p}(w_i)$ too
2 Separated Manufacturers

- M_i maximizes profit subject to R_i’s participation constraint
2 Separated Manufacturers

- M_i maximizes profit subject to R_i’s participation constraint

\Rightarrow With symmetric beliefs, separated manufacturers choose

$$
\begin{align*}
w^* & \in \arg \max_{w_i} \left[w_i D_i (\hat{p}(w_i), \hat{p}(w^*)) + T_i \right] \\
& \text{wholesale revenue}
\end{align*}
$$

$$
\begin{align*}
s.t. \quad T_i &= D_i (\hat{p}(w_i), \hat{p}(w_i)) (\hat{p}(w_i) - w_i) \\
& \text{R_i's expected profit}
\end{align*}
$$

(\text{IR})
2 Separated Manufacturers

- M_i maximizes profit subject to R_i’s participation constraint

\Rightarrow With symmetric beliefs, separated manufacturers choose

\[
w^* \in \arg \max_{w_i} \left[w_iD_i(\hat{p}(w_i), \hat{p}(w^*)) + T_i \right]
\]

wholesale revenue

\[
s.t. \quad T_i = D_i(\hat{p}(w_i), \hat{p}(w_i)) (\hat{p}(w_i) - w_i)
\]

R_i’s expected profit

- M_i expects R_j to choose $\hat{p}(w^*)$ in equilibrium
2 Separated Manufacturers

- M_i maximizes profit subject to R_i’s participation constraint

⇒ With symmetric beliefs, separated manufacturers choose

$$w^* \in \arg \max_{w_i} \left[w_i D_i (\hat{p}(w_i), \hat{p}(w^*)) + T_i \right]$$

\[s.t. \quad T_i = D_i (\hat{p}(w_i), \hat{p}(w_i)) (\hat{p}(w_i) - w_i) \quad (IR)\]

- M_i expects R_j to choose $\hat{p}(w^*)$ in equilibrium
- R_i believes that R_j chooses $\hat{p}(w_i)$
Lemma

With separated manufacturers, the wholesale price is \(w^* > 0 \) s.t.

\[
\frac{\partial D_i(\hat{p}(w^*),\hat{p}(w^*))}{\partial p_i} w^* + \frac{\partial D_i(\hat{p}(w^*),\hat{p}(w^*))}{\partial p_j} (\hat{p}(w^*) - w^*) \equiv 0
\]

\[
\text{belief effect} > 0
\]

and the retail price is \(p^* \equiv \hat{p}(w^*) > p^e \)
Lemma

With separated manufacturers, the wholesale price is \(w^* > 0 \) s.t.

\[
\frac{\partial D_i(\hat{p}(w^*),\hat{p}(w^*))}{\partial p_i} w^* + \frac{\partial D_i(\hat{p}(w^*),\hat{p}(w^*))}{\partial p_j} (\hat{p}(w^*) - w^*) \equiv 0
\]

and the retail price is \(p^* \equiv \hat{p}(w^*) > p^e \)

- A high \(w_i \) has 2 effects:
Lemma

With separated manufacturers, the wholesale price is \(w^* > 0 \) s.t.

\[
\partial D_i(\hat{p}(w^*), \hat{p}(w^*)) w^* + \partial D_i(\hat{p}(w^*), \hat{p}(w^*)) (\hat{p}(w^*) - w^*) \equiv 0
\]

belief effect > 0

and the retail price is \(p^* \equiv \hat{p}(w^*) > p^e \)

- A high \(w_i \) has 2 effects:
 - it reduces the wholesale revenue by increasing \(\hat{p}(w_i) \)
2 Separated Manufacturers

Lemma

With separated manufacturers, the wholesale price is $w^* > 0$ s.t.

$$\frac{\partial D^i(\hat{p}(w^*), \hat{p}(w^*))}{\partial p_i} w^* + \frac{\partial D^i(\hat{p}(w^*), \hat{p}(w^*))}{\partial p_j} (\hat{p}(w^*) - w^*) \equiv 0$$

and the retail price is $p^* \equiv \hat{p}(w^*) > p^e$

- A high w_i has 2 effects:
 1. it reduces the wholesale revenue by increasing $\hat{p}(w_i)$
 2. it increases R_i's expected profit (and hence T_i) by inducing R_i to believe that R_j pays a high w_j and charges a high p_j — belief effect
Lemma

With separated manufacturers, the wholesale price is \(w^* > 0 \) s.t.

\[
\frac{\partial D_i(\hat{p}(w^*), \hat{p}(w^*))}{\partial p_i} w^* + \frac{\partial D_i(\hat{p}(w^*), \hat{p}(w^*))}{\partial p_j} (\hat{p}(w^*) - w^*) \equiv 0
\]

\[
\text{belief effect } > 0
\]

and the retail price is \(p^* \equiv \hat{p}(w^*) > p^e \)

- A high \(w_i \) has 2 effects:
 1. it reduces the wholesale revenue by increasing \(\hat{p}(w_i) \)
 2. it increases \(R_i \)'s expected profit (and hence \(T_i \)) by inducing \(R_i \) to believe that \(R_j \) pays a high \(w_j \) and charges a high \(p_j \) — belief effect

\(\Rightarrow \) \(M_i \)s charge \(w^* > 0 \) and reduce competition among retailers
Intuition

- How can manufacturers sustain high wholesale prices?
Intuition

- *How can manufacturers sustain high wholesale prices?*

- With **passive beliefs**, if M_i chooses a high wholesale price, M_j has an incentive to undercut it, since R_j expects this to increase profit
Intuition

- How can manufacturers sustain high wholesale prices?

- With **passive beliefs**, if M_i chooses a high wholesale price M_j has an incentive to undercut it, since R_j expects this to increase profit

- With **symmetric beliefs**, if M_j undercuts M_i’s wholesale price R_j does not expect M_i to maintain a high wholesale price, so R_j expects lower profit and pays a lower franchise fee
Asymmetric Hierarchies

- In subgame 3:

Lemma

If M_i *is separated while* M_j *is integrated, M_i chooses* $w_i = 0$ *and the retail price is* p^e *s.t.*

$$\frac{\partial D^i(p^e, p^e)}{\partial p_i} p^e + D^i(p^e, p^e) = 0$$
Asymmetric Hierarchies

- In subgame 3:

Lemma

If M_i is separated while M_j is integrated, M_i chooses $w_i = 0$ and the retail price is p^e s.t.

\[
\frac{\partial D^i(p^e,p^e)}{\partial p_i} p^e + D^i(p^e, p^e) = 0
\]

- M_i has no incentive to increase w_i
Asymmetric Hierarchies

- In subgame 3:

Lemma

If M_i is separated while M_j is integrated, M_i chooses $w_i = 0$ and the retail price is p^e s.t.

\[
\frac{\partial D^i(p^e,p^e)}{\partial p_i} p^e + D^i(p^e, p^e) = 0
\]

- M_i has no incentive to increase w_i
- The retail price is the same as with integrated manufacturers
Asymmetric Hierarchies

In subgame 3:

Lemma

If M_i is separated while M_j is integrated, M_i chooses $w_i = 0$ and the retail price is p^e s.t.

$$
\frac{\partial D^i(p^e, p^e)}{\partial p_i} p^e + D^i(p^e, p^e) = 0
$$

- M_i has no incentive to increase w_i
- The retail price is the same as with integrated manufacturers
- M_i and M_j obtain the same profit
Equilibrium in Period 1

Since manufacturers extract the whole surplus, M_i’s profit is

<table>
<thead>
<tr>
<th>M_i</th>
<th>Integration</th>
<th>Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$p^e \cdot D^i (p^e, p^e)$</td>
<td>$p^e \cdot D^i (p^e, p^e)$</td>
</tr>
<tr>
<td>Integration</td>
<td>$p^e \cdot D^i (p^e, p^e)$</td>
<td>$p^e \cdot D^i (p^e, p^e)$</td>
</tr>
<tr>
<td>Separation</td>
<td>$p^e \cdot D^i (p^e, p^e)$</td>
<td>$p^e \cdot D^i (p^e, p^e)$</td>
</tr>
</tbody>
</table>
Equilibrium in Period 1

- Since manufacturers extract the whole surplus, M_i’s profit is

<table>
<thead>
<tr>
<th></th>
<th>Integration</th>
<th>Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_i</td>
<td>$p^e \cdot D^i(p^e,p^e)$</td>
<td>$p^e \cdot D^i(p^e,p^e)$</td>
</tr>
<tr>
<td>Integration</td>
<td>$p^e \cdot D^i(p^e,p^e)$</td>
<td>$p^* \cdot D^i(p^,p^)$</td>
</tr>
<tr>
<td>Separation</td>
<td>$p^e \cdot D^i(p^e,p^e)$</td>
<td>$p^* \cdot D^i(p^,p^)$</td>
</tr>
</tbody>
</table>

Theorem

There are two equilibria: $(I; I)$ and $(S; S)$. The equilibrium with separation Pareto dominates (and risk dominates) the equilibrium with integration.
Equilibrium in Period 1

- Since manufacturers extract the whole surplus, M_i’s profit is

<table>
<thead>
<tr>
<th></th>
<th>Integration</th>
<th>Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_i</td>
<td>$p^e \cdot D^i (p^e, p^e)$</td>
<td>$p^e \cdot D^i (p^e, p^e)$</td>
</tr>
<tr>
<td>Integration</td>
<td>$p^e \cdot D^i (p^e, p^e)$</td>
<td>$p^e \cdot D^i (p^e, p^e)$</td>
</tr>
<tr>
<td>Separation</td>
<td>$p^e \cdot D^i (p^e, p^e)$</td>
<td>$p^* \cdot D^i (p^, p^)$</td>
</tr>
</tbody>
</table>

Theorem

There are two equilibria: (I; I) and (S; S). The equilibrium with separation Pareto dominates (and risk dominates) the equilibrium with integration.

- Separation is a **weakly dominant strategy** (since $p^* > p^e$):

 by charging a high w_i, M_i induces R_i to pay a high fee and sell at a high price, thus increasing profit.
Mixed beliefs: if $w_i \neq w_i^*$, R_i believes that with probability α, R_j is offered w_i and with probability $(1 - \alpha)$, R_j is offered w_j^*
Mixed Beliefs

- **Mixed beliefs**: if $w_i \neq w_i^*$, R_i believes that with probability α, R_j is offered w_i and with probability $(1 - \alpha)$, R_j is offered w_j^*
 - $\alpha = 0 \Rightarrow$ passive beliefs
Mixed beliefs: if \(w_i \neq w_i^* \), \(R_i \) believes that with probability \(\alpha \), \(R_j \) is offered \(w_i \) and with probability \((1 - \alpha) \), \(R_j \) is offered \(w_j^* \)

- \(\alpha = 0 \Rightarrow \) passive beliefs
- \(\alpha = 1 \Rightarrow \) symmetric beliefs
Mixed Beliefs

- **Mixed beliefs**: if \(w_i \neq w_i^* \), \(R_i \) believes that with probability \(\alpha \), \(R_j \) is offered \(w_i \) and with probability \((1 - \alpha) \), \(R_j \) is offered \(w_j^* \)
 - \(\alpha = 0 \Rightarrow \text{passive beliefs} \)
 - \(\alpha = 1 \Rightarrow \text{symmetric beliefs} \)

- Let \(p^*_\alpha \) be the equilibrium retail price
Mixed Beliefs

Mixed beliefs: if $w_i \neq w_i^*$, R_i believes that with probability α, R_j is offered w_i and with probability $(1 - \alpha)$, R_j is offered w_j^*

- $\alpha = 0 \Rightarrow$ passive beliefs
- $\alpha = 1 \Rightarrow$ symmetric beliefs

Let p_α^* be the equilibrium retail price

Let $\tilde{p}_j(w_i)$ be the price that R_i expects R_j to choose, when R_j is offered w_i
Mixed Beliefs

- **Mixed beliefs**: if \(w_i \neq w_i^* \), \(R_i \) believes that with probability \(\alpha \), \(R_j \) is offered \(w_i \) and with probability \((1 - \alpha) \), \(R_j \) is offered \(w_j^* \)
 - \(\alpha = 0 \Rightarrow \) passive beliefs
 - \(\alpha = 1 \Rightarrow \) symmetric beliefs

- Let \(p_{\alpha}^* \) be the equilibrium retail price
- Let \(\tilde{p}_j(w_i) \) be the price that \(R_i \) expects \(R_j \) to choose, when \(R_j \) is offered \(w_i \)
- \(R_i \) chooses the retail price

\[
\hat{p}_\alpha(w_i) \in \arg \max_{p_i} (p_i - w_i) \times \left[\alpha D^i(p_i, \tilde{p}_j(w_i)) + (1 - \alpha) D^i(p_i, p_{\alpha}^*) \right]
\]
Solving manufacturers’ problem:

Lemma

*With mixed beliefs, the wholesale price w^*_α is s.t.*

\[
\frac{\partial D^i(\hat{p}_\alpha(w^*_\alpha), \hat{p}_\alpha(w^*_\alpha))}{\partial p_i} w^*_\alpha + \alpha \frac{\partial D^i(\hat{p}_\alpha(w^*_\alpha), \hat{p}_\alpha(w^*_\alpha))}{\partial p_j} (\hat{p}_\alpha(w^*_\alpha) - w^*_\alpha) \equiv 0
\]

\[
\text{belief effect} > 0
\]
Mixed Beliefs

- Solving manufacturers’ problem:

Lemma

With mixed beliefs, the wholesale price w_{α}^ is s.t.*

$$\frac{\partial D_i(\hat{p}_{\alpha}(w_{\alpha}^*), \hat{p}_{\alpha}(w_{\alpha}^*))}{\partial p_i} w_{\alpha}^* + \alpha \frac{\partial D_i(\hat{p}_{\alpha}(w_{\alpha}^*), \hat{p}_{\alpha}(w_{\alpha}^*))}{\partial p_j} (\hat{p}_{\alpha}(w_{\alpha}^*) - w_{\alpha}^*) \equiv 0$$

belief effect > 0

- The belief effect is *weaker* than with symmetric beliefs
Mixed Beliefs

Theorem

With separated manufacturers, when \(\alpha \in (0; 1) \)
the wholesale price \(w_{\alpha}^* \) is s.t. \(0 < w_{\alpha}^* < w^* \) and
the retail price \(p_{\alpha}^* \) is s.t. \(p^e < p_{\alpha}^* < p^* \).
Separation is a weakly dominant strategy \(\forall \alpha \neq 0 \).
Mixed Beliefs

Theorem

With separated manufacturers, when \(\alpha \in (0; 1) \)
the wholesale price \(w^*_\alpha \) is s.t. \(0 < w^*_\alpha < w^* \) and
the retail price \(p^*_\alpha \) is s.t. \(p^e < p^*_\alpha < p^* \).
Separation is a weakly dominant strategy \(\forall \alpha \neq 0 \).

⇒ With an arbitrarily small “uncertainty” about a rival’s offer, the belief effect allows manufacturers to increase profit
Theorem

With separated manufacturers, when $\alpha \in (0; 1)$ the wholesale price w^*_α is s.t. $0 < w^*_\alpha < w^*$ and the retail price p^*_α is s.t. $p^e < p^*_\alpha < p^*$.

Separation is a weakly dominant strategy $\forall \alpha \neq 0$.

⇒ With an arbitrarily small “uncertainty” about a rival’s offer, the belief effect allows manufacturers to increase profit

• When $\alpha = 0$: $w^*_\alpha = 0$ and $p^*_\alpha = p^e$ (passive beliefs)
Mixed Beliefs

Theorem

With separated manufacturers, when $\alpha \in (0; 1)$
the wholesale price w_{α}^* is s.t. $0 < w_{\alpha}^* < w^*$ and
the retail price p_{α}^* is s.t. $p^e < p_{\alpha}^* < p^*$.
Separation is a weakly dominant strategy $\forall \alpha \neq 0$.

⇒ With an arbitrarily small “uncertainty” about a rival’s offer,
the belief effect allows manufacturers to increase profit

- When $\alpha = 0$: $w_{\alpha}^* = 0$ and $p_{\alpha}^* = p^e$ (passive beliefs)
- When $\alpha = 1$: $w_{\alpha}^* = w^*$ and $p_{\alpha}^* = p^*$ (symmetric beliefs)
Uncertainty about Manufacturers’ Costs

- Standard **Hotelling model** of differentiated products:

\[
D^i(p_i, p_j) = \frac{p_j - p_i + t}{2t},
\]

where \(t \) is the transport cost.
Uncertainty about Manufacturers’ Costs

- **Standard Hotelling model** of differentiated products:

 \[D^i(p_i, p_j) = \frac{p_j - p_i + t}{2t} \]

 where \(t \) is the transport cost.

- \(M_i \) has **private information** about his marginal cost \(c_i \) and
 - with probability \(\beta \), \(c_1 = c_2 \);
 - with probability \((1 - \beta) \), \(c_1 \) and \(c_2 \) are i.i.d.

 \((c_i \sim (-\infty, +\infty) \text{ and } \mathbb{E}[c_i] = 0) \)
Uncertainty about Manufacturers’ Costs

- Standard **Hotelling model** of differentiated products:

 \[D^i(p_i, p_j) = \frac{p_j - p_i + t}{2t}, \]

 where \(t \) is the transport cost

- \(M_i \) has **private information** about his marginal cost \(c_i \) and
 with probability \(\beta \), \(c_1 = c_2 \);
 with probability \((1 - \beta) \), \(c_1 \) and \(c_2 \) are \(i.i.d. \).

 \((c_i \sim (-\infty, +\infty) \text{ and } \mathbb{E}[c_i] = 0) \)

- Interpretation:
Uncertainty about Manufacturers’ Costs

- Standard **Hotelling model** of differentiated products:

\[D^i(p_i, p_j) = \frac{p_j - p_i + t}{2t}, \]

where \(t \) is the transport cost

- \(M_i \) has **private information** about his marginal cost \(c_i \) and
 - with probability \(\beta \), \(c_1 = c_2 \);
 - with probability \((1 - \beta) \), \(c_1 \) and \(c_2 \) are **i.i.d.**

\((c_i \sim (-\infty, +\infty) \) and \(\mathbb{E}[c_i] = 0) \)

- Interpretation:
 - \(\beta = 1 \Rightarrow \) manufacturers face a **common cost shock**
Uncertainty about Manufacturers’ Costs

- Standard **Hotelling model** of differentiated products:

\[D^i (p_i, p_j) = \frac{p_j - p_i + t}{2t} , \]

where \(t \) is the transport cost.

- \(M_i \) has **private information** about his marginal cost \(c_i \) and with probability \(\beta \), \(c_1 = c_2 \);
 with probability \((1 - \beta) \), \(c_1 \) and \(c_2 \) are **i.i.d.**

\[(c_i \sim (-\infty, +\infty) \text{ and } \mathbb{E}[c_i] = 0) \]

- Interpretation:
 - \(\beta = 1 \Rightarrow \) manufacturers face a **common cost shock**
 - \(\beta = 0 \Rightarrow \) manufacturers face **idiosyncratic cost shocks**
Lemma

In the separating PBE, \(M_i \) offers \(w^*(c_i) = t \beta + \frac{2 - \beta}{2 - \beta^2} c_i \)
and \(R_i \) chooses \(p^*(c_i) = \frac{1 + \beta}{2} (c_i + 2t) - \frac{\beta (1 - \beta) (2 + \beta)}{2 (2 - \beta^2)} c_i \).
Uncertainty about Manufacturers’ Costs

Lemma

In the separating PBE, M_i offers $w^(c_i) = t \beta + \frac{2-\beta}{2-\beta^2} c_i$ and R_i chooses $p^*(c_i) = \frac{1+\beta}{2} (c_i + 2t) - \frac{\beta(1-\beta)(2+\beta)}{2(2-\beta^2)} c_i$.*

- Given w_i, R_i believes that
 - $w_j = w_i$ with probability β and
 - $w_j = \mathbb{E}[w^*(c_i)] = t \beta$ with probability $(1 - \beta)$:
Uncertainty about Manufacturers’ Costs

Lemma

In the separating PBE, M_i offers $w^* (c_i) = t\beta + \frac{2-\beta}{2-\beta^2} c_i$
and R_i chooses $p^* (c_i) = \frac{1+\beta}{2} (c_i + 2t) - \frac{\beta(1-\beta)(2+\beta)}{2(2-\beta^2)} c_i$

- Given w_i, R_i believes that
 $w_j = w_i$ with probability β and
 $w_j = \mathbb{E}[w^* (c_i)] = t\beta$ with probability $(1 - \beta)$:
 - $\beta = 1 \Rightarrow$ symmetric beliefs
Uncertainty about Manufacturers’ Costs

Lemma

In the separating PBE, M_i offers $w^* (c_i) = t\beta + \frac{2-\beta}{2-\beta^2} c_i$

and R_i chooses $p^* (c_i) = \frac{1+\beta}{2} (c_i + 2t) - \frac{\beta(1-\beta)(2+\beta)}{2(2-\beta^2)} c_i$

- Given w_i, R_i believes that $w_j = w_i$ with probability β and $w_j = \mathbb{E}[w^* (c_i)] = t\beta$ with probability $(1 - \beta)$:
 - $\beta = 1 \Rightarrow$ symmetric beliefs
 - $\beta = 0 \Rightarrow$ passive beliefs (referred to “average” manufacturer)
Uncertainty about Manufacturers’ Costs

Lemma

In the separating PBE, \(M_i \) offers \(w^* (c_i) = t\beta + \frac{2-\beta}{2-\beta^2} c_i \)
and \(R_i \) chooses \(p^* (c_i) = \frac{1+\beta}{2} (c_i + 2t) - \frac{\beta (1-\beta) (2+\beta)}{2 (2-\beta^2)} c_i \)

- Given \(w_i \), \(R_i \) believes that
 \(w_j = w_i \) with probability \(\beta \) and
 \(w_j = \mathbb{E}[w^* (c_i)] = t\beta \) with probability \((1 - \beta) \):
 - \(\beta = 1 \Rightarrow \) symmetric beliefs
 - \(\beta = 0 \Rightarrow \) passive beliefs (referred to “average” manufacturer)

\(\Rightarrow \) Partly symmetric beliefs naturally arise in equilibrium since \(R_i \) uses \(w_i \) to infer information about \(c_j \) and hence \(w_j \)
Choice of Organizational Structure

- Let $\beta = 1$, so that manufacturers have common cost c
Choice of Organizational Structure

- Let \(\beta = 1 \), so that manufacturers have common cost \(c \)

- With separation, \(w^* = t + c \) (> cost) and \(p^* = 2t + c \)
 \(\Rightarrow M_i \)’s profit is \(t \)
Let $\beta = 1$, so that manufacturers have common cost c

With separation, $w^* = t + c$ ($>\text{cost}$) and $p^* = 2t + c$

$\Rightarrow M_i$’s profit is t

With integration, retail price is $t + c$

$\Rightarrow M_i$’s profit is $\frac{t}{2}$
Choice of Organizational Structure

- Let $\beta = 1$, so that manufacturers have common cost c
- With separation, $w^* = t + c$ ($> \text{cost}$) and $p^* = 2t + c$
 $\Rightarrow M_i$'s profit is t
- With integration, retail price is $t + c$
 $\Rightarrow M_i$'s profit is $\frac{t}{2}$

Theorem

If $\beta \approx 1$, vertical separation is a strictly dominant strategy for manufacturers.
Asymmetric Manufacturers

- Our results do not hinge on symmetry among manufacturers.
Asymmetric Manufacturers

- Our results do not hinge on symmetry among manufacturers

- **Asymmetric manufacturers:**
 - M_1 has cost c and M_2 has cost $c + k$
 - (c is private information to manufacturers)
Asymmetric Manufacturers

- Our results do not hinge on symmetry among manufacturers

- **Asymmetric manufacturers:**
 \[M_1 \text{ has cost } c \text{ and } M_2 \text{ has cost } c + k \]
 \((c \text{ is private information to manufacturers}) \)

- In a linear separating equilibrium,
 - when \(R_1 \) is offered \(w_1 \), he expects \(R_2 \) to be offered \(w_1 + \frac{3}{5}k \),
 - when \(R_2 \) is offered \(w_2 \), he expects \(R_1 \) to be offered \(w_2 - \frac{3}{5}k \)
Asymmetric Manufacturers

- Our results do not hinge on symmetry among manufacturers.

- **Asymmetric manufacturers:**
 - M_1 has cost c and M_2 has cost $c + k$
 - (c is private information to manufacturers)

- In a linear separating equilibrium,
 - when R_1 is offered w_1, he expects R_2 to be offered $w_1 + \frac{3}{5}k$,
 - when R_2 is offered w_2, he expects R_1 to be offered $w_2 - \frac{3}{5}k$

 ⇒ **Partly symmetric beliefs** naturally arise since
 - R_i uses w_i to infer information about c and hence w_j
Private vs. Public Contracts

- *Do manufacturers prefer private or public contracts?*
Private vs. Public Contracts

- Do manufacturers prefer private or public contracts?

- Private contracts: belief effect (depends on mark-up)
Private vs. Public Contracts

- *Do manufacturers prefer private or public contracts?*

- **Private contracts**: belief effect (depends on mark-up)

- **Public contracts**: retailers observe rivals’ contracts and react – strategic effect (depends on the slope of reaction functions)
Private vs. Public Contracts

- Do manufacturers prefer private or public contracts?
- Private contracts: belief effect (depends on mark-up)
- Public contracts: retailers observe rivals’ contracts and react
 – strategic effect (depends on the slope of reaction functions)

Lemma

With symmetric beliefs, prices and manufacturers’ profits
are higher with private than with public contracts when
“the slope of retailers’ reaction function is small
compared to retailers’ mark-up”
Private vs. Public Contracts

- Do manufacturers prefer private or public contracts?

- Private contracts: belief effect (depends on mark-up)
- Public contracts: retailers observe rivals’ contracts and react – strategic effect (depends on the slope of reaction functions)

Lemma

With symmetric beliefs, prices and manufacturers’ profits are higher with private than with public contracts when “the slope of retailers’ reaction function is small compared to retailers’ mark-up”

e.g., With linear demand, profits are higher with private contracts
With **quantity competition**, results are even stronger ...

- Retailers acquire quantity and pay the wholesale price *before* observing the market price.
With *quantity competition*, results are even stronger ...

- Retailers acquire quantity and pay the wholesale price *before* observing the market price
- Let $P(Q)$ be the demand function
Quantity Competition

With **quantity competition**, results are even stronger ...

- Retailers acquire quantity and pay the wholesale price *before* observing the market price
- Let $P(Q)$ be the demand function

Lemma

With separated manufacturers, the wholesale price is $w^* = -P'(2q^*)q^* > 0$ *and each retailer produces* q^* *s.t.* $2q^*P'(2q^*) + P(2q^*) = 0$
With **quantity competition**, results are even stronger ...

- Retailers acquire quantity and pay the wholesale price *before* observing the market price
- Let $P(Q)$ be the demand function

Lemma

With separated manufacturers, the wholesale price is $w^* = -P'(2q^*) q^* > 0$

and each retailer produces q^* *s.t.* $2q^* P'(2q^*) + P(2q^*) = 0$

- $2q^*$ *is the monopoly quantity*
Quantity Competition

With *quantity competition*, results are even stronger ...

- Retailers acquire quantity and pay the wholesale price *before* observing the market price
- Let \(P(Q) \) be the demand function

Lemma

With separated manufacturers, the wholesale price is \(w^* = -P'(2q^*) q^* > 0 \) *and each retailer produces* \(q^* \) *s.t.* \(2q^* P'(2q^*) + P(2q^*) = 0 \)

- \(2q^* \) is the monopoly quantity
- \(\Rightarrow \) With symmetric beliefs, the *belief effect* allows separated manufacturers to maximize joint profit (by extracting the whole surplus ex ante)
Separation is a \textbf{weakly dominant strategy} for manufacturers (as with price competition)
Separation is a **weakly dominant strategy** for manufacturers (as with price competition)

With public contracts, the *strategic effect* induces manufacturers to choose vertical separation

but separated manufacturers charge lower wholesale prices and obtain lower profit (Fershtman and Judd, 1987)
Separation is a weakly dominant strategy for manufacturers (as with price competition)

With public contracts, the strategic effect induces manufacturers to choose vertical separation but separated manufacturers charge lower wholesale prices and obtain lower profit (Fershtman and Judd, 1987)

⇒ With quantity competition, prices and manufacturers’ profits are always higher with private than with public contracts
With private contracts and not completely passive beliefs, manufacturers prefer to sell through retailers, both with price and quantity competition.

By charging high wholesale prices, manufacturers earn high fees and reduce competition among retailers (by affecting retailers’ beliefs about rivals’ strategies).

Manufacturers may agree to keep contracts private.

Symmetric beliefs naturally arise when manufacturers are privately informed about their correlated costs.