Vertical Contracting with Endogenous Market Structure

Marco Pagnozzi
Università di Napoli Federico II and CSEF

Salvatore Piccolo
University of Bergamo and CSEF

Markus Reisinger
Frankfurt School of Finance & Management

November 2019
Manufacturers in different industries use different structures of retail networks.
Motivation

- Manufacturers in different industries use different structures of retail networks
 - monopolistic retailers for car manufacturers
Motivation

- Manufacturers in different industries use different structures of retail networks
 - monopolistic retailers for car manufacturers
 - many competing retailers for electronics producers
Motivation

- Manufacturers in different industries use different structures of retail networks
 - monopolistic retailers for car manufacturers
 - many competing retailers for electronics producers

- The retail market structure affects downstream competition, firms’ profit and welfare
Motivation

- Manufacturers in different industries use different structures of retail networks
 - monopolistic retailers for car manufacturers
 - many competing retailers for electronics producers
- The retail market structure affects downstream competition, firms’ profit and welfare
- Antitrust authorities concerned by
Motivation

- Manufacturers in different industries use different structures of retail networks
 - monopolistic retailers for car manufacturers
 - many competing retailers for electronics producers
- The retail market structure affects downstream competition, firms’ profit and welfare
- Antitrust authorities concerned by
 - vertical foreclosure
Motivation

- Manufacturers in different industries use different structures of retail networks
 - monopolistic retailers for car manufacturers
 - many competing retailers for electronics producers
- The retail market structure affects downstream competition, firms’ profit and welfare
- Antitrust authorities concerned by
 - vertical foreclosure
 - vertical mergers
Motivation

- Manufacturers in different industries use different structures of retail networks
 - monopolistic retailers for car manufacturers
 - many competing retailers for electronics producers
- The retail market structure affects downstream competition, firms’ profit and welfare
- Antitrust authorities concerned by
 - vertical foreclosure
 - vertical mergers

⇒ Analyze endogenous retail market structures with asymmetric information between manufacturer and retailers
Research Questions

- Monopolistic manufacturer chooses the **number of retailers**
Research Questions

- Monopolistic manufacturer chooses the **number of retailers**
 - symmetric retailers have **private information** on their cost
Research Questions

- Monopolistic manufacturer chooses the **number of retailers**
 - symmetric retailers have **private information** on their cost
 - secret bilateral contracts
Research Questions

- Monopolistic manufacturer chooses the **number of retailers**
 - symmetric retailers have **private information** on their cost
 - secret bilateral contracts

1. Does the manufacturer choose a monopolistic retailer?
Research Questions

- Monopolistic manufacturer chooses the **number of retailers**
 - **symmetric retailers** have **private information** on their cost
 - **secret bilateral contracts**

1. Does the manufacturer choose a monopolistic retailer?
2. If not, what is the optimal number of retailers?
Research Questions

- Monopolistic manufacturer chooses the **number of retailers**
 - **symmetric retailers** have **private information** on their cost
 - **secret bilateral contracts**

1. Does the manufacturer choose a monopolistic retailer?
2. If not, what is the optimal number of retailers?
3. Which factors determine the number of retailers?
Research Questions

- Monopolistic manufacturer chooses the **number of retailers**
 - symmetric retailers have **private information** on their cost
 - secret bilateral contracts

1. Does the manufacturer choose a monopolistic retailer?
2. If not, what is the optimal number of retailers?
3. Which factors determine the number of retailers?
4. What are the effects on welfare?
Results

- Two effects shape the retail market structure:
Results

Two effects shape the retail market structure:

1. **Vertical opportunism**: negative externalities between retailers
 \[\Rightarrow\] monopolistic retailer (Hart and Tirole 1990)
Results

- Two effects shape the retail market structure:
 1. **Vertical opportunism**: negative externalities between retailers
 ⇒ monopolistic retailer (Hart and Tirole 1990)
 2. **Competing contracts** with asymmetric information
 ⇒ multiple retailers reduce information rents (Martimort 1996)
Two effects shape the retail market structure:

1. **Vertical opportunism**: negative externalities between retailers
 \Rightarrow monopolistic retailer (Hart and Tirole 1990)

2. **Competing contracts** with asymmetric information
 \Rightarrow multiple retailers reduce information rents (Martimort 1996)

\Rightarrow Manufacturer distributes via multiple retailers when
Two effects shape the retail market structure:

1. **Vertical opportunism**: negative externalities between retailers
 \[\Rightarrow\] monopolistic retailer (Hart and Tirole 1990)

2. **Competing contracts** with asymmetric information
 \[\Rightarrow\] multiple retailers reduce information rents (Martimort 1996)

\[\Rightarrow\] Manufacturer distributes via multiple retailers when

- Market is ‘small’ and price is ‘rigid’
Results

- Two effects shape the retail market structure:
 1. **Vertical opportunism**: negative externalities between retailers
 ⇒ monopolistic retailer (Hart and Tirole 1990)
 2. **Competing contracts** with asymmetric information
 ⇒ multiple retailers reduce information rents (Martimort 1996)

 ⇒ Manufacturer distributes via multiple retailers when
 - Market is ‘small’ and price is ‘rigid’
 - Manufacturer’s marginal cost is increasing
Two effects shape the retail market structure:

1. **Vertical opportunism**: negative externalities between retailers
 \[\Rightarrow\] monopolistic retailer (Hart and Tirole 1990)

2. **Competing contracts** with asymmetric information
 \[\Rightarrow\] multiple retailers reduce information rents (Martimort 1996)

\[\Rightarrow\] Manufacturer distributes via multiple retailers when

- Market is ‘small’ and price is ‘rigid’
- Manufacturer’s marginal cost is increasing

- Lower number of retailers or vertical merger may increase welfare
Related Literature

- Opportunism problem with multiple retailers:
 - Effect of off-equilibrium beliefs: McAfee and Schwartz 1994, Rey and Vergé 2004
 - Segal and Whinston 2003: menus of two-part tariffs reduce opportunism problem

- Dequiedt and Martimort 2015: informational opportunism with asymmetric information and public contracting

- Contracting with externalities: Segal 1999
Multiple Retailers

- Asymmetric retailers (e.g., Hansen and Motta 2012)
Multiple Retailers

- Asymmetric retailers (e.g., Hansen and Motta 2012)
- Exclusive territories (Rey and Stiglitz 1995)
Multiple Retailers

- Asymmetric retailers (e.g., Hansen and Motta 2012)
- Exclusive territories (Rey and Stiglitz 1995)
- Buyer power and inefficient (linear) contracts (Spiegel 2013, Bolton and Whinston 1993)
Multiple Retailers

- Asymmetric retailers (e.g., Hansen and Motta 2012)
- Exclusive territories (Rey and Stiglitz 1995)
- Buyer power and inefficient (linear) contracts (Spiegel 2013, Bolton and Whinston 1993)

... we focus on asymmetric information
Outline

- Model
- Two Types
- Optimal Market Structure
- Example
- Welfare
Manufacturer M sells to retailers $R_i, i = 1, ..., N$
Model

- Manufacturer M sells to retailers R_i, $i = 1, \ldots, N$
- Cournot competition: R_i sells x_i
Model

- Manufacturer M sells to retailers $R_i, i = 1, \ldots, N$
- Cournot competition: R_i sells x_i
- Downstream demand $P(X)$, where $X \triangleq \sum_{i=1}^{N} x_i$
Model

- Manufacturer M sells to retailers R_i, $i = 1, ..., N$
- Cournot competition: R_i sells x_i
- Downstream demand $P(X)$, where $X \triangleq \sum_{i=1}^{N} x_i$
- M's cost $c(X)$ weakly convex (Segal and Whinston, 2003)
Model

- Manufacturer M sells to retailers R_i, $i = 1, \ldots, N$
- Cournot competition: R_i sells x_i
- Downstream demand $P(X)$, where $X \triangleq \sum_{i=1}^{N} x_i$
- M's cost $c(X)$ weakly convex (Segal and Whinston, 2003)
 - Convexity not necessary for main result
Model

- Manufacturer M sells to retailers R_i, $i = 1, \ldots, N$
- Cournot competition: R_i sells x_i
- Downstream demand $P(X)$, where $X \triangleq \sum_{i=1}^{N} x_i$
- M's cost $c(X)$ weakly convex (Segal and Whinston, 2003)
 - Convexity not necessary for main result
- Retailers privately informed about common marginal cost θ
Model

- Manufacturer M sells to retailers R_i, $i = 1, \ldots, N$

- Cournot competition: R_i sells x_i

- Downstream demand $P(X)$, where $X \triangleq \sum_{i=1}^{N} x_i$

- M's cost $c(X)$ weakly convex (Segal and Whinston, 2003)
 - Convexity not necessary for main result

- Retailers privately informed about common marginal cost θ
 - Symmetric retailers as in Hart and Tirole (1990)
Contracts

- M offers to R_i

\[\{x_i(m_i), T_i(m_i)\} \]
Contracts

- M offers to R_i
 $$\{x_i(m_i), T_i(m_i)\}$$
 - $x_i(m_i) =$ quantity sold by R_i
Contracts

- M offers to R_i
 \[
 \{x_i(m_i), T_i(m_i)\}
 \]
 - $x_i(m_i) =$ quantity sold by R_i
 - $T_i(m_i) =$ tariff paid to M
Contracts

- M offers to R_i

\[\{x_i(m_i), T_i(m_i)\} \]

- $x_i(m_i)$ = quantity sold by R_i
- $T_i(m_i)$ = tariff paid to M
- both contingent on R_i’s report m_i on θ
Contracts

- M offers to R_i
 \[\{ x_i(m_i), T_i(m_i) \} \]

- $x_i(m_i) = \text{quantity sold by } R_i$
- $T_i(m_i) = \text{tariff paid to } M$
- both contingent on R_i’s report m_i on θ
 (equivalent to non-linear tariff $T(x)$)
Contracts

- M offers to R_i

\[\{x_i(m_i), T_i(m_i)\} \]

- $x_i(m_i) =$ quantity sold by R_i
- $T_i(m_i) =$ tariff paid to M
- both contingent on R_i’s report m_i on θ
 (equivalent to non-linear tariff $T(x)$)

- **Secret bilateral contracts** fully determined by m_i, and independent of other retailers’ reports and quantities
Contracts

- M offers to R_i
 $$\{x_i(m_i), T_i(m_i)\}$$
 - $x_i(m_i) =$ quantity sold by R_i
 - $T_i(m_i) =$ tariff paid to M
 - both contingent on R_i’s report m_i on θ
 (equivalent to non-linear tariff $T(x)$)

- **Secret bilateral contracts** fully determined by m_i, and independent of other retailers’ reports and quantities
 - Secret renegotiation
Contracts

- M offers to R_i
 \[\{x_i(m_i), T_i(m_i)\} \]
 - $x_i(m_i) =$ quantity sold by R_i
 - $T_i(m_i) =$ tariff paid to M
 - both contingent on R_i’s report m_i on θ
 (equivalent to non-linear tariff $T(x)$)

- **Secret bilateral contracts** fully determined by m_i, and independent of other retailers’ reports and quantities
 - Secret renegotiation
 - Disclosure of private communication is costly
Contracts

- M offers to R_i
 \[\{x_i(m_i), T_i(m_i)\} \]
 - $x_i(m_i) = \text{quantity sold by } R_i$
 - $T_i(m_i) = \text{tariff paid to } M$
 - both contingent on R_i’s report m_i on θ
 (equivalent to non-linear tariff $T(x)$)

- **Secret bilateral contracts** fully determined by m_i, and independent of other retailers’ reports and quantities
 - Secret renegotiation
 - Disclosure of private communication is costly
 - Antitrust laws prevent multilateral contracts
Contracts

- **M** offers to **R**_i
 \[
 \{x_i(m_i), T_i(m_i)\}
 \]

 - \(x_i(m_i)\) = quantity sold by **R**_i
 - \(T_i(m_i)\) = tariff paid to **M**
 - both contingent on **R**_i’s report \(m_i\) on \(\theta\)
 (equivalent to non-linear tariff \(T(x)\))

- **Secret bilateral contracts** fully determined by \(m_i\), and independent of other retailers’ reports and quantities
 - Secret renegotiation
 - Disclosure of private communication is costly
 - Antitrust laws prevent multilateral contracts

 ⇒ Opportunism problem and no full rent extraction
Timing

1. M publicly chooses the number of retailers N
Timing

1. M publicly chooses the number of retailers N
 - Long-term choice that cannot be secretly changed
Timing

1. \(M \) publicly chooses the number of retailers \(N \)
 - Long-term choice that cannot be secretly changed

2. \(M \) offers contracts

\[
\pi_i = \sum_{N_i=1}^{T} \left(m_i \right) c + \sum_{N_i=1}^{T} x_i \left(m_i \right)
\]

\[
u_i = h \sum_{j=1}^{N} x_j m_j \theta_i x_i \left(m_i \right) T_i \left(m_i \right)
\]

Perfect Bayesian Equilibrium with passive (and wary) beliefs
Timing

1. M publicly chooses the number of retailers N
 - Long-term choice that cannot be secretly changed
2. M offers contracts
3. Retailers compete in downstream market
Timing

1. M publicly chooses the number of retailers N
 - Long-term choice that cannot be secretly changed
2. M offers contracts
3. Retailers compete in downstream market
 - M’s profit is
 \[
 \pi = \sum_{i=1}^{N} T_i (m_i) - c \left(\sum_{i=1}^{N} x_i (m_i) \right)
 \]
 - R_i’s profit is
 \[
 u_i = \left[P \left(\sum_{j=1}^{N} x_j (m_j) \right) - \theta \right] x_i (m_i) - T_i (m_i)
 \]
Timing

1. \(M \) publicly chooses the number of retailers \(N \)
 - Long-term choice that cannot be secretly changed
2. \(M \) offers contracts
3. Retailers compete in downstream market
 - \(M \)'s profit is
 \[
 \pi = \sum_{i=1}^{N} T_i (m_i) - c \left(\sum_{i=1}^{N} x_i (m_i) \right)
 \]
 - \(R_i \)'s profit is
 \[
 u_i = \left[P \left(\sum_{j=1}^{N} x_j (m_j) \right) - \theta \right] x_i (m_i) - T_i (m_i)
 \]
 - Perfect Bayesian Equilibrium with passive (and wary) beliefs
Basic Insights: Two Types

- $\theta \in \{0, \bar{\theta}\}$, with $\text{Pr} [\theta = \bar{\theta}] = \frac{1}{2}$
Basic Insights: Two Types

- $\theta \in \{0, \bar{\theta}\}$, with $\Pr[\theta = \bar{\theta}] = \frac{1}{2}$
- M’s cost: $c(X) = \beta \frac{X^2}{2}$
Basic Insights: Two Types

- \(\theta \in \{0, \bar{\theta}\} \), with \(\Pr[\theta = \bar{\theta}] = \frac{1}{2} \)

- \(M \)'s cost: \(c(X) = \beta \frac{X^2}{2} \)

- Linear demand: \(P(X) = 1 - X \)
Basic Insights: Two Types

- \(\theta \in \{0, \bar{\theta}\} \), with \(\Pr[\theta = \bar{\theta}] = \frac{1}{2} \)
- \(M \)'s cost: \(c(X) = \beta \frac{X^2}{2} \)
- Linear demand: \(P(X) = 1 - X \)
- \(M \) chooses between 1 and 2 retailers
Monopolistic Retailer

- $N = 1$: monopolistic screening
Monopolistic retailer

- $N = 1$: monopolistic screening
- Incentive compatibility constraint of low-cost type and participation constraint of high-cost type bind

Information rent of low-cost type is $u = \theta$ (incentive to report θ, sell x and pay lower T)

High-cost type’s quantity is downward distorted
Monopolistic Retailer

- $N = 1$: monopolistic screening

- Incentive compatibility constraint of low-cost type and participation constraint of high-cost type bind

\Rightarrow **Information rent** of low-cost type is

$$u = \bar{\theta} \bar{x}$$

(incentive to report $\bar{\theta}$, sell \bar{x} and pay lower T)
Monopolistic Retailer

- \(N = 1 \): monopolistic screening
- Incentive compatibility constraint of low-cost type and participation constraint of high-cost type bind
 \(\Rightarrow \text{Information rent} \) of low-cost type is
 \[
 u = \bar{\theta} \bar{x}
 \]
 (incentive to report \(\bar{\theta} \), sell \(\bar{x} \) and pay lower \(T \))
 \(\Rightarrow \) High-cost type’s quantity is downward distorted
Opportunism Problem with Complete Information

- $N = 2$: competing retailers

M: market

R_1, R_2: retailers

Consumers
\(N = 2 \): competing retailers

With secret contracting, \(M \) has incentive to increase quantity sold to each retailer to maximize bilateral profit.
$N = 2$: competing retailers

With secret contracting, M has incentive to increase quantity sold to each retailer to maximize bilateral profit

$\Rightarrow M$ cannot obtain monopoly profit
Competing Retailers with Private Information

- **Information rent** of low-cost type is

\[
u_i = \theta \bar{x}_i - \left[P(\bar{x}_i + \bar{x}^*) - P(\bar{x}_i + \bar{x}^*) \right] \bar{x}_i
\]

\[
= \underbrace{\theta \bar{x}_i}_{\text{standard rent}} - \underbrace{(\bar{x}^* - \bar{x}^*) \bar{x}_i}_{\text{competing contracts}}
\]

where \(\bar{x}^*\) and \(\bar{x}^*\) are eqm quantities of low- and high-cost type
Competing Retailers with Private Information

- **Information rent** of low-cost type is

\[
 u_i = \bar{\theta}x_i - [P(\bar{x}_i + \bar{x}^*) - P(\bar{x}_i + \bar{x}_i)] \bar{x}_i
\]

\[
 = \bar{\theta}x_i - (\bar{x}^* - \bar{x}_i) \bar{x}_i
\]

where \(\bar{x}^* \) and \(\bar{x}_i \) are eqm quantities of low- and high-cost type

- **Competing-contracts effect**: when \(R_i \) with cost 0 reports \(\bar{\theta} \), he knows that \(R_j \) has cost 0 (since costs are equal).
Information rent of low-cost type is

\[u_i = \bar{\theta} x_i - \left[P (\bar{x}_i + x^*) - P (\bar{x}_i + x^*) \right] \bar{x}_i \]

\[= \underbrace{\bar{\theta} x_i}_{\text{standard rent}} - \underbrace{(x^* - \bar{x}^*) \bar{x}_i}_{\text{competing contracts}} \]

where \(x^* \) and \(\bar{x}^* \) are eqm quantities of low- and high-cost type.

Competing-contracts effect: when \(R_i \) with cost 0 reports \(\bar{\theta} \), he knows that \(R_j \) has cost 0 (since costs are =)

\[\Rightarrow R_j \text{ sells a larger quantity and reduces market price } P (\bar{x}_i + x^*) \]
Competing Retailers with Private Information

- **Information rent** of low-cost type is

\[u_i = \bar{\theta}x_i - [P(\bar{x}_i + x^*) - P(\bar{x}_i + \bar{x}^*)] \bar{x}_i \]

\[= \underbrace{\bar{\theta}x_i}_{\text{standard rent}} - \underbrace{(x^* - \bar{x}^*)\bar{x}_i}_{\text{competing contracts}} \]

where \(\bar{x}^* \) and \(\bar{x}^* \) are eqm quantities of low- and high-cost type.

- **Competing-contracts effect**: when \(R_i \) with cost 0 reports \(\bar{\theta} \), he knows that \(R_j \) has cost 0 (since costs are equal).

\[\Rightarrow R_j \text{ sells a larger quantity and reduces market price } P(\bar{x}_i + x^*) \]

but \(T \) neglects this, since \(M \) assumes retailers’ cost is \(\bar{\theta} \) and market price is \(P(\bar{x}_i + \bar{x}^*) \).
Competing Retailers with Private Information

- **Information rent** of low-cost type is

\[u_i = \dot{\theta} \bar{x}_i - [P(\bar{x}_i + \bar{x}^*) - P(\bar{x}_i + \bar{x}^*)] \bar{x}_i \]

\[= \dot{\theta} \bar{x}_i - (\bar{x}^* - \bar{x}^*) \bar{x}_i \]

where \(\bar{x}^* \) and \(\bar{x}^* \) are eqm quantities of low- and high-cost type

- **Competing-contracts effect**: when \(R_i \) with cost 0 reports \(\dot{\theta} \), he knows that \(R_j \) has cost 0 (since costs are \(= \))

 \[\Rightarrow R_j \text{ sells a larger quantity and reduces market price } P(\bar{x}_i + \bar{x}^*) \]

 but \(T \) neglects this, since \(M \) assumes retailers’ cost is \(\dot{\theta} \) and market price is \(P(\bar{x}_i + \bar{x}^*) \)

 \[\Rightarrow R_i \text{ has lower incentive to misreport } \theta \text{ (than without } R_j) \]
One vs. Two Retailers

- **Proposition.** If $\bar{\theta} = 0$, then $\pi_{N=1}^* > \pi_{N=2}^*$. \\
\[\forall \bar{\theta} > 0, \exists \beta^* \text{ such that } \pi_{N=2}^* > \pi_{N=1}^* \iff \beta > \beta^*. \]
One vs. Two Retailers

- **Proposition.** If $\bar{\theta} = 0$, then $\pi_{N=1}^* > \pi_{N=2}^*$.

 $\forall \bar{\theta} > 0$, $\exists \beta^*$ such that $\pi_{N=2}^* > \pi_{N=1}^* \iff \beta > \beta^*$.

- With complete information, M chooses 1 retailer to eliminate opportunism problem
One vs. Two Retailers

- **Proposition.** If $\bar{\theta} = 0$, then $\pi_{N=1}^* > \pi_{N=2}^*$. \\
 $\forall \bar{\theta} > 0$, $\exists \beta^*$ such that $\pi_{N=2}^* > \pi_{N=1}^* \iff \beta > \beta^*$.

- With complete information, M chooses 1 retailer to eliminate opportunism problem

- Large $c''(X)$ implies:
 - weaker opportunism problem
 - stronger incentive to misreport θ
 because increasing production is costly
One vs. Two Retailers

- **Proposition.** If $\bar{\theta} = 0$, then $\pi^*_N = 1 > \pi^*_N = 2$.

 $\forall \bar{\theta} > 0$, $\exists \beta^*$ such that $\pi^*_N = 2 > \pi^*_N = 1 \iff \beta > \beta^*$.

- With complete information, M chooses 1 retailer to eliminate opportunism problem.

- Large $c''(X)$ implies:
 - weaker opportunism problem
 - stronger incentive to misreport θ

 because increasing production is costly

 \Rightarrow With asymmetric information, M chooses 2 retailers to reduce information rent

Main Model

- \(N \) retailers
Main Model

- N retailers

- $\theta \sim [\underline{\theta}, \overline{\theta}]$ with c.d.f. $F(\theta)$ and p.d.f. $f(\theta)$
Main Model

- N retailers

- $\theta \sim [\underline{\theta}, \bar{\theta}]$ with c.d.f. $F(\theta)$ and p.d.f. $f(\theta)$

- $h(\theta) \triangleq F(\theta)/f(\theta)$ increasing
Main Model

- N retailers

- $\theta \sim [\underline{\theta}, \bar{\theta}]$ with c.d.f. $F(\theta)$ and p.d.f. $f(\theta)$

- $h(\theta) \triangleq F(\theta) / f(\theta)$ increasing

- "Well behaved" demand $P(X)$
Main Model

- N retailers

- $\theta \sim [\theta, \bar{\theta}]$ with c.d.f. $F(\theta)$ and p.d.f. $f(\theta)$

- $h(\theta) \triangleq F(\theta)/f(\theta)$ increasing

- "Well behaved" demand $P(X)$

- M's cost $c(X)$
Benchmark with Complete Information

- N bilateral contracting problems:

 $\max_{x_i(\theta)} \left[P(\cdot) - \theta \right] x_i(\theta) - c(\cdot)$
Benchmark with Complete Information

- \(N \) bilateral contracting problems:

\[
\max_{x_i(\theta)} \left(P(\cdot) - \theta \right) x_i(\theta) - c(\cdot)
\]

- With symmetry, FOC yields

\[
P(\mathcal{N}x^C(\theta)) + P'(\mathcal{N}x^C(\theta))x^C(\theta) = \theta + c'(\mathcal{N}x^C(\theta))
\]
Benchmark with Complete Information

- \(N \) bilateral contracting problems:

\[
\max_{x_i(\theta)} \left[P(\cdot) - \theta \right] x_i(\theta) - c(\cdot)
\]

- With symmetry, FOC yields

\[
P(Nx^C(\theta)) + P'(Nx^C(\theta))x^C(\theta) = \theta + c'(Nx^C(\theta))
\]

\(\Rightarrow \) \(M \) does not internalize effect of increasing \(R_i \)'s quantity on other retailers' profit: Cournot quantities \(x^C(\theta) \)
Benchmark with Complete Information

- N bilateral contracting problems:

$$\max_{x_i(\theta)} \left[P(\cdot) - \theta \right] x_i(\theta) - c(\cdot)$$

- With symmetry, FOC yields

$$P(Nx^C(\theta)) + P'(Nx^C(\theta))x^C(\theta) = \theta + c'(Nx^C(\theta))$$

\Rightarrow M does not internalize effect of increasing R_i’s quantity on other retailers’ profit: Cournot quantities $x^C(\theta)$

- Proposition. With complete information, M uses 1 retailer
Benchmark with Complete Information

- \(N \) bilateral contracting problems:

\[
\max_{x_i(\theta)} \left[P(\cdot) - \theta \right] x_i(\theta) - c(\cdot)
\]

- With symmetry, FOC yields

\[
P(Nx^C(\theta)) + P'(Nx^C(\theta))x^C(\theta) = \theta + c'(Nx^C(\theta))
\]

\(\Rightarrow \) \(M \) does not internalize effect of increasing \(R_i \)'s quantity on other retailers' profit: Cournot quantities \(x^C(\theta) \)

- **Proposition.** *With complete information, \(M \) uses 1 retailer*

- Monopolistic retailer eliminates opportunism problem
Asymmetric Information

- R_i’s information rent is

\[
u_i(\theta) = \int_\theta^{\bar{\theta}} x_i(z) \, dz - (N - 1) \int_\theta^{\bar{\theta}} P'(\cdot) \dot{x}^*(z) x_i(z) \, dz
\]

\[\text{Competing-contracts effect}\]

When R_i over-reports θ, other retailers sell larger quantity, lowering market price. M's tariff neglects this, reducing R_i's utility. As N increases, R_i faces lower price when he over-reports θ. Competing-contracts effect strengthens, stronger competition among retailers reduces their information rents.
Asymmetric Information

- R_i’s **information rent** is

$$u_i(\theta) = \int_{\theta}^{\bar{\theta}} x_i(z) \, dz - (N - 1) \int_{\theta}^{\bar{\theta}} P'(\cdot) \, \dot{x}^*(z) \, x_i(z) \, dz$$

Competing-contracts effect

- When R_i over-reports θ, other retailers sell larger quantity
 \[\Rightarrow\] lower market price
Asymmetric Information

- R_i’s **information rent** is

$$u_i(\theta) = \int_{\bar{\theta}}^{\theta} x_i(z) \, dz - (N - 1) \int_{\theta}^{\bar{\theta}} P'(\cdot) \, x^*(z) \, x_i(z) \, dz$$

- Competing-contracts effect

- When R_i over-reports θ, other retailers sell larger quantity
 ⇒ lower market price

- M’s tariff neglects this, which reduces R_i’s utility
Asymmetric Information

- R_i’s information rent is

$$u_i(\theta) = \int_{\theta}^{\bar{\theta}} x_i(z) \, dz - (N - 1) \int_{\theta}^{\bar{\theta}} P'() \dot{x}^* (z) x_i(z) \, dz$$

- Competing-contracts effect

- When R_i over-reports θ, other retailers sell larger quantity
 \Rightarrow lower market price

- M’s tariff neglects this, which reduces R_i’s utility

- As N increases, R_i faces lower price when he over-reports θ
Asymmetric Information

- R_i’s **information rent** is

\[u_i(\theta) = \int_{\theta}^{\bar{\theta}} x_i(z) \, dz - (N - 1) \int_{\theta}^{\bar{\theta}} P'(\cdot) \dot{x}^*(z) x_i(z) \, dz \]

Competing-contracts effect

- When R_i over-reports θ, other retailers sell larger quantity
 \[\Rightarrow \text{lower market price} \]
- M’s tariff neglects this, which reduces R_i’s utility

- As N increases, R_i faces lower price when he over-reports θ
 \[\Rightarrow \text{Competing-contracts effect strengthens} \]
Asymmetric Information

- R_i’s **information rent** is

$$u_i(\theta) = \int_\theta^{\bar{\theta}} x_i(z) \, dz - (N-1) \int_\theta^{\bar{\theta}} P'(\cdot) \dot{x}^*(z) x_i(z) \, dz$$

 Competing-contracts effect

- When R_i over-reports θ, other retailers sell larger quantity
 \Rightarrow lower market price

- M’s tariff neglects this, which reduces R_i’s utility

- As N increases, R_i faces lower price when he over-reports θ
 \Rightarrow Competing-contracts effect strengthens

- Stronger competition among retailers reduces their information rents
Optimal Bilateral Contract

- M solves

\[
\max_{x_i(\cdot)} \int^{\bar{\theta}}_{\theta} \left[(P(\cdot) - \theta - h(\cdot)) x_i(\cdot) - c(\cdot) \right] dF(\theta) + \\
+ \int^{\bar{\theta}}_{\theta} h(\cdot) (N - 1) P'(\cdot) \dot{x}^* (\cdot) x_i (\cdot) dF(\theta)
\]
Optimal Bilateral Contract

- M solves

$$\max_{x_i(\cdot)} \int_{\theta} \left[(P(\cdot) - \theta - h(\cdot)) x_i(\cdot) - c(\cdot) \right] dF(\theta) +$$

$$+ \int_{\theta} h(\cdot) (N - 1) P'(\cdot) \dot{x}^*(\cdot) x_i(\cdot) dF(\theta)$$

- FOC yields non-linear differential equation

$$\dot{x}^*(\theta) = \frac{\theta + h(\theta) + c'(\cdot) - (P'(\cdot) x^*(\theta) + P(\cdot))}{h(\theta) (N - 1) (P'(\cdot) + P''(\cdot) x^*(\theta))}$$

with boundary condition $x^*(\theta) = x^C(\theta)$
Optimal Bilateral Contract

- M solves

$$
\max_{x_i(\cdot)} \int_\theta^{\bar{\theta}} [(P(\cdot) - \theta - h(\cdot)) x_i(\cdot) - c(\cdot)] dF(\theta) + \\
+ \int_{\theta}^{\bar{\theta}} h(\cdot) (N - 1) P'(\cdot) \dot{x}^*(\cdot) x_i(\cdot) dF(\theta)
$$

- FOC yields non-linear differential equation

$$
\dot{x}^*(\theta) = \frac{\theta + h(\theta) + c'(\cdot) - (P'(\cdot) x^*(\theta) + P(\cdot))}{h(\theta) (N - 1)(P'(\cdot) + P''(\cdot) x^*(\theta))}
$$

with boundary condition $x^*(\theta) = x^C(\theta)$

- Lemma. $x^*(\theta) < x^C(\theta)$ for every $\theta > \underline{\theta}$ and $\dot{x}^*(\theta) < 0$
Optimal Retail Network

- $\pi^*(N) = M$’s profit with N (continuous number of) retailers

Theorem

M never uses a single retailer because

$$\lim_{N \to 1^+} \frac{\partial \pi^*(N)}{\partial N} > 0.$$

Optimal N is finite because $\pi^(1) > \lim_{N \to \infty} \pi^*(N)$.*
Optimal Retail Network

- \(\pi^* (N) \) = \(M \)'s profit with \(N \) (continuous number of) retailers

Theorem

\(M \) never uses a single retailer because

\[
\lim_{N \to 1^+} \frac{\partial \pi^*(N)}{\partial N} > 0.
\]

Optimal \(N \) is finite because \(\pi^ (1) > \lim_{N \to \infty} \pi^* (N) \).*

- As \(N \) increases:
Optimal Retail Network

- \(\pi^*(N) = M \)'s profit with \(N \) (continuous number of) retailers

Theorem

\(M \) never uses a single retailer because

\[
\lim_{N \to 1^+} \frac{\partial \pi^*(N)}{\partial N} > 0.
\]

Optimal \(N \) is finite because \(\pi^*(1) > \lim_{N \to \infty} \pi^*(N) \).

- As \(N \) increases:
 1. Opportunism problem worsen, which reduces \(M \)'s profit
Optimal Retail Network

- $\pi^*(N) = M$’s profit with N (continuous number of) retailers

Theorem

M never uses a single retailer because

$$\lim_{N \to 1^+} \frac{\partial \pi^*(N)}{\partial N} > 0.$$

Optimal N is finite because $\pi^(1) > \lim_{N \to \infty} \pi^*(N)$.*

- As N increases:
 1. Opportunism problem worsen, which reduces M’s profit
 2. Information rents decrease, which increases M’s profit
Optimal Retail Network

- $\pi^* (N) = M$’s profit with N (continuous number of) retailers

Theorem

M never uses a single retailer because

$$\lim_{N \to 1^+} \frac{\partial \pi^* (N)}{\partial N} > 0.$$

Optimal N is finite because $\pi^ (1) > \lim_{N \to \infty} \pi^* (N)$.*

- As N increases:
 1. Opportunism problem worsen, which reduces M’s profit
 2. Information rents decrease, which increases M’s profit

- At $N = 1$, opportunism problem vanishes and negative effect of increasing N is second order
Linear-Quadratic Example

- To address the integer constraint on N, let
Linear-Quadratic Example

- To address the integer constraint on N, let
 - $P(X) = a - bX$
Linear-Quadratic Example

To address the integer constraint on N, let

- $P(X) = a - bX$
- $c(X) = \beta \frac{X^2}{2}$
Linear-Quadratic Example

- To address the integer constraint on N, let
 - $P(X) = a - bX$
 - $c(X) = \beta \frac{X^2}{2}$
 - Beta distribution on $[0, 1]$: $F(\theta) = \theta^{\frac{1}{\lambda}}$, $\lambda \geq 0$
To address the integer constraint on N, let

- $P(X) = a - bX$
- $c(X) = \beta \frac{X^2}{2}$
- Beta distribution on $[0, 1]$: $F(\theta) = \theta^{\frac{1}{\lambda}}$, $\lambda \geq 0$

M’s expected profit is

$$\pi^*(N) = \frac{2Nb + \beta N^2}{2} \int_0^1 x^*(\theta)^2 \ d\theta^{\frac{1}{\lambda}}$$

where

$$x^*(\theta) = \frac{a}{b(N+1) + \beta N} - \frac{\theta(1+\lambda)}{b(N+1) + \beta N + \lambda b(N-1)}$$
Proposition. \(\pi^* (2) > \pi^* (1) \) if: (i) \(a \) is small or (ii) \(\beta / b \) is large
Proposition. \(\pi^* (2) > \pi^* (1) \) if: (i) \(a \) is small or (ii) \(\beta / b \) is large

Proposition. Let \(\lambda = 1 \). Optimal number of retailers is increasing in \(\beta \) and decreasing in \(a \) and \(b \)
- **Proposition.** \(\pi^* (2) > \pi^* (1) \) if: (i) \(a \) is small or (ii) \(\beta / b \) is large

- **Proposition.** Let \(\lambda = 1 \). *Optimal number of retailers is increasing in \(\beta \) and decreasing in \(a \) and \(b \)

- \(M \) uses more retailers when:
Proposition. \(\pi^* (2) > \pi^* (1) \) if: (i) \(a \) is small or (ii) \(\beta / b \) is large

Proposition. Let \(\lambda = 1 \). Optimal number of retailers is increasing in \(\beta \) and decreasing in \(a \) and \(b \)

\[M \] uses more retailers when:

- market is small (even if \(\beta = 0 \))
Proposition. \(\pi^* (2) > \pi^* (1) \) if: (i) \(a \) is small or (ii) \(\beta / b \) is large

Proposition. Let \(\lambda = 1 \). Optimal number of retailers is increasing in \(\beta \) and decreasing in \(a \) and \(b \)

\(M \) uses more retailers when:

- market is small (even if \(\beta = 0 \))
- cost is sufficiently convex, so that increasing quantity is costly
Proposition. \(\pi^* (2) > \pi^* (1) \) if: (i) \(a \) is small or (ii) \(\beta / b \) is large

Proposition. Let \(\lambda = 1 \). Optimal number of retailers is increasing in \(\beta \) and decreasing in \(a \) and \(b \)

\(M \) uses more retailers when:
- market is small (even if \(\beta = 0 \))
- cost is sufficiently convex, so that increasing quantity is costly
- market price is less responsive to change in quantity
Proposition. \(\pi^*(2) > \pi^*(1) \) if: (i) \(a \) is small or (ii) \(\beta/b \) is large

Proposition. Let \(\lambda = 1 \). Optimal number of retailers is increasing in \(\beta \) and decreasing in \(a \) and \(b \)

\(M \) uses more retailers when:
- market is small (even if \(\beta = 0 \))
- cost is sufficiently convex, so that increasing quantity is costly
- market price is less responsive to change in quantity

\[\Rightarrow \] weaker opportunism problem and higher information rents
As λ increases, retailers’ are more likely to have low cost and information rents increase.

Parameters: $a = 5$, $b = 1.0$, $\beta = 3.0$
As λ increases, retailers’ are more likely to have low cost and information rents increase.

Parameters: $a = 5$, $b = 1.0$, $\beta = 3.0$

\Rightarrow Optimal N is increasing in λ: 3 for $\lambda = 1$, 6 for $\lambda = 2$
Consider a regulator who maximizes welfare by
- choosing the **number of retailers** or
- allowing/prohibiting a **vertical merger**
Consider a regulator who maximizes welfare by
– choosing the **number of retailers** or
– allowing/prohibiting a **vertical merger**

Fixed cost for each retailer
(or optimal number of retailers is ∞)
Consider a regulator who maximizes welfare by
– choosing the **number of retailers** or
– allowing/prohibiting a **vertical merger**

Fixed cost for each retailer
(or optimal number of retailers is \(\infty \))

– distribution through new retailer requires fixed investment and monitoring to ensure required quality
Consider a regulator who maximizes welfare by
– choosing the **number of retailers** or
– allowing/prohibiting a **vertical merger**

- Fixed cost for each retailer
 (or optimal number of retailers is ∞)
 - distribution through new retailer requires fixed investment
 and monitoring to ensure required quality

- Linear-quadratic framework, $\lambda = 1$
Proposition. If β/b is large, M chooses more retailers than socially optimal.
Proposition. If β / b is large, M chooses more retailers than socially optimal.

Compared to the regulator, M takes into account:

- retailer's information rent (decreasing in N)
- not consumer surplus (increasing in N)

With flat demand (i.e., b small), increase in N has:

- small effect on consumer surplus
- large effect on information rent

M wants more retailers than regulator.
Socially Optimal Retail Network

- **Proposition.** If β / b is large, M chooses more retailers than socially optimal.

- Compared to the regulator, M takes into account:
 - retailer’s information rent (decreasing in N)
Proposition. If β/b is large, M chooses more retailers than socially optimal.

Compared to the regulator, M takes into account:

- retailer’s information rent (decreasing in N)
- but not consumer surplus (increasing in N)
Socially Optimal Retail Network

- **Proposition.** *If* β/b *is large, M chooses more retailers than socially optimal*

- Compared to the regulator, M takes into account:
 - retailer’s information rent (decreasing in N)
 - but not consumer surplus (increasing in N)

- With flat demand (i.e., b small), increase in N has:
Proposition. If β / b is large, M chooses more retailers than socially optimal

Compared to the regulator, M takes into account:
- retailer’s information rent (decreasing in N)
- but not consumer surplus (increasing in N)

With flat demand (i.e., b small), increase in N has:
- small effect on consumer surplus
Proposition. If β/b is large, M chooses more retailers than socially optimal.

Compared to the regulator, M takes into account:
- retailer’s information rent (decreasing in N)
- but not consumer surplus (increasing in N)

With flat demand (i.e., b small), increase in N has:
- small effect on consumer surplus
- large effect on information rent
Proposition. If β/b is large, M chooses more retailers than socially optimal.

Compared to the regulator, M takes into account:

- retailer’s information rent (decreasing in N)
- but not consumer surplus (increasing in N)

With flat demand (i.e., b small), increase in N has:

- small effect on consumer surplus
- large effect on information rent

\Rightarrow M wants more retailers than regulator.
Suppose M learns θ by merging with an exclusive retailer (empirical evidence that efficiency drives vertical mergers)
Vertical Merger

- Suppose M learns θ by merging with an exclusive retailer (empirical evidence that efficiency drives vertical mergers)

- **Proposition.** If β/b is large, a *vertical merger increases consumer surplus and welfare*
Suppose \mathcal{M} learns θ by merging with an exclusive retailer (empirical evidence that efficiency drives vertical mergers).

Proposition. *If β/b is large, a vertical merger increases consumer surplus and welfare*

A vertical merger eliminates:
Vertical Merger

- Suppose M learns θ by merging with an exclusive retailer (empirical evidence that efficiency drives vertical mergers).

- **Proposition.** *If β / b is large, a vertical merger increases consumer surplus and welfare.*

- A vertical merger eliminates:
 - downstream competition
Vertical Merger

- Suppose M learns θ by merging with an exclusive retailer (empirical evidence that efficiency drives vertical mergers)

- **Proposition.** If β/b is large, a vertical merger increases consumer surplus and welfare

- A vertical merger eliminates:
 - downstream competition
 - quantity distortion due to asymmetric information
Suppose M learns θ by merging with an exclusive retailer (empirical evidence that efficiency drives vertical mergers)

Proposition. If β/b is large, a vertical merger increases consumer surplus and welfare

A vertical merger eliminates:

- downstream competition
- quantity distortion due to asymmetric information

Large $\beta/b \Rightarrow$ large distortion to reduce information rent (because profit of a retailer who overreports cost is large)
Extensions

- Wary beliefs
- Price competition
- Imperfect cost correlation
- Alternative mechanisms:
 - Sequential contracting
 - Auction among retailers
Wary Beliefs

When R_i is offered a contract C_i, he believes that:
Wary Beliefs

- When R_i is offered a contract C_i, he believes that:
 - M expects C_i to be accepted
Wary Beliefs

- When R_i is offered a contract C_i, he believes that:
 - M expects C_i to be accepted
 - M offers R_i the contract $C_{-i}(C_i)$ that maximizes M’s profit
Wary Beliefs

- When \(R_i \) is offered a contract \(C_i \), he believes that:
 - \(M \) expects \(C_i \) to be accepted
 - \(M \) offers \(R_{-i} \) the contract \(C_{-i}(C_i) \) that maximizes \(M \)'s profit
 - \(R_{-i} \) reasons the same way
Wary Beliefs

- When R_i is offered a contract C_i, he believes that:
 - M expects C_i to be accepted
 - M offers R_{-i} the contract $C_{-i}(C_i)$ that maximizes M's profit
 - R_{-i} reasons the same way

- R_i’s (linear) belief is $x_{-i}(\theta, x_i)$
Wary Beliefs

- When R_i is offered a contract C_i, he believes that:
 - M expects C_i to be accepted
 - M offers R_{-i} the contract $C_{-i}(C_i)$ that maximizes M's profit
 - R_{-i} reasons the same way

- R_i’s (linear) belief is $x_{-i}(\theta, x_i)$

- Linear-quadratic framework, $\lambda = b = 1$
Wary Beliefs

- When R_i is offered a contract C_i, he believes that:
 - M expects C_i to be accepted
 - M offers R_{-i} the contract $C_{-i}(C_i)$ that maximizes M’s profit
 - R_{-i} reasons the same way

- R_i’s (linear) belief is $x_{-i}(\theta, x_i)$

- Linear-quadratic framework, $\lambda = b = 1$

- $N = 1, 2$
Proposition. With wary beliefs and complete information:

(i) Beliefs are \(\frac{dx_i(\cdot)}{dx_i} = -\frac{\beta}{2} \)

(ii) Quantities are larger than with passive beliefs

(iii) \(M \) uses one retailer
Proposition. With wary beliefs and complete information:

(i) Beliefs are \(\frac{dx_i(\cdot)}{dx_i} = -\frac{\beta}{2} \)

(ii) Quantities are larger than with passive beliefs

(iii) \(M \) uses one retailer

Passive and wary beliefs are only equivalent with linear costs (McAfee and Schwartz, 1994)
Proposition. *With wary beliefs and complete information:*

(i) Beliefs are \(\frac{dx_i(\cdot)}{dx_i} = -\frac{\beta}{2} \)

(ii) Quantities are larger than with passive beliefs

(iii) M uses one retailer

Passive and wary beliefs are only equivalent with linear costs (McAfee and Schwartz, 1994)

Market is more competitive with wary beliefs
Complete Information

Proposition. With wary beliefs and complete information:

(i) Beliefs are \(\frac{dx_i(\cdot)}{dx_i} = -\frac{\beta}{2} \)

(ii) Quantities are larger than with passive beliefs

(iii) \(M \) uses one retailer

Passive and wary beliefs are only equivalent with linear costs (McAfee and Schwartz, 1994)

Market is more competitive with wary beliefs

- When \(M \) offers larger quantity to \(R_i \),
 - \(R_i \) assumes that \(M \) sells less to \(R_j \) and
 - \(R_i \) is willing to pay higher tariff
Asymmetric Information

- R_i’s information rent is

\[
\begin{align*}
 u_i(\theta) &= \int_\theta^{\bar{\theta}} x_i(z) \, dz \\
 &- \int_\theta^{\bar{\theta}} P'(\cdot) \left[\frac{d x_{-i}(\cdot)}{d z} + \frac{d x_{-i}(\cdot)}{d x_i(z)} \dot{x}_i(z) \right] x_i(z) \, dz, \\
 \hline
 \text{Competing-contracts effect}
\end{align*}
\]
Asymmetric Information

- R_i’s information rent is

$$u_i(\theta) = \int_\theta^\bar{\theta} x_i(z) \, dz - \int_\theta^\bar{\theta} P'(\cdot) \left[\frac{dx_{-i}(\cdot)}{dz} + \frac{dx_{-i}(\cdot)}{dx_i(z)} \dot{x}_i(z) \right] x_i(z) \, dz,$$

Competing-contracts effect

- **Proposition.** (i) Wary beliefs are $0 > \frac{dx_{-i}(\cdot)}{dx_i(\theta)} > -\frac{\beta}{2}$

(ii) Quantities are larger than with passive beliefs

(iii) M uses two retailers if a is small and/or β is large
Asymmetric Information

- R_i’s information rent is

$$u_i(\theta) = \int_{\theta}^{\bar{\theta}} x_i(z) \, dz$$

$$- \int_{\theta}^{\bar{\theta}} P'(\cdot) \left[\frac{dx_{-i}(\cdot)}{dz} + \frac{dx_{-i}(\cdot)}{dx_i(z)} \dot{x}_i(z) \right] x_i(z) \, dz,$$

Competing-contracts effect

- **Proposition.** (i) Wary beliefs are $0 > \frac{dx_{-i}(\cdot)}{dx_i(\theta)} > -\frac{\beta}{2}$

(ii) Quantities are larger than with passive beliefs

(iii) M uses two retailers if a is small and/or β is large

- Beliefs are less responsive because of quantity distortions
Asymmetric Information

- R_i’s information rent is

$$u_i(\theta) = \int_{\theta}^{\bar{\theta}} x_i(z) \, dz$$

$$- \int_{\theta}^{\bar{\theta}} P'(\cdot) \left[\frac{dx_{-i}(\cdot)}{dz} + \frac{dx_{-i}(\cdot)}{dx_i(z)} \dot{x}_i(z) \right] x_i(z) \, dz,$$

Competing-contracts effect

- Proposition. (i) Wary beliefs are $0 > \frac{dx_{-i}(\cdot)}{dx_i(\theta)} > -\frac{\beta}{2}$

(ii) Quantities are larger than with passive beliefs

(iii) M uses two retailers if a is small and/or β is large

- Beliefs are less responsive because of quantity distortions

- Qualitative results similar to passive beliefs
Price Competition

- Contracts are two-part tariffs \(\{ T_i(m_i), w_i(m_i) \} \)
Price Competition

- Contracts are two-part tariffs \(\{ T_i(m_i), w_i(m_i) \} \)
- Differentiated products: \(R_i \)'s demand is \(D(p_i, p_{-i}) \)
Price Competition

- Contracts are two-part tariffs \(\{ T_i(m_i), w_i(m_i) \} \)
- Differentiated products: \(R_i \)'s demand is \(D(p_i, p_{-i}) \)
- \(R_i \)'s information rent is

\[
\begin{align*}
 u_i(\theta) &= \int_{\theta}^{\bar{\theta}} D(p_i(z), (N-1)p^*(z)) \, dz - (N-1) \times \\
 &\times \int_{\theta}^{\bar{\theta}} (p_i(z) - z - w_i(z)) D_{-i}(p_i(z), (N-1)p^*(z)) \, dz
\end{align*}
\]

Competing-contracts effect
Price Competition

- Contracts are two-part tariffs \(\{ T_i(m_i), w_i(m_i) \} \)
- Differentiated products: \(R_i \)'s demand is \(D(p_i, p_{-_i}) \)
- \(R_i \)'s information rent is

\[
 u_i(\theta) = \int_{\theta}^{\bar{\theta}} D(p_i(z), (N - 1)p^*(z)) \, dz - (N - 1) \times \\
\times \int_{\theta}^{\bar{\theta}} (p_i(z) - z - w_i(z)) \, D_{-_i}(p_i(z), (N - 1)p^*(z)) \, \dot{p}^*(z) \, dz
\]

Competing-contracts effect

- When \(R_i \) over-reports \(\theta \), other retailers charge low prices
 \(\Rightarrow \) lower residual demand for \(i \)
Price Competition

- Contracts are two-part tariffs \(\{ T_i(m_i), w_i(m_i) \} \)
- Differentiated products: \(R_i \)'s demand is \(D(p_i, p_{-i}) \)
- \(R_i \)'s information rent is

\[
\begin{align*}
 u_i(\theta) &= \int_{\theta}^{\bar{\theta}} D(p_i(z), (N-1)p^*(z)) \, dz - (N-1) \times \\
 &\times \int_{\theta}^{\bar{\theta}} (p_i(z) - z - w_i(z)) D_{-i}(p_i(z), (N-1)p^*(z)) \, dz
\end{align*}
\]

Competing-contracts effect

- When \(R_i \) over-reports \(\theta \), other retailers charge low prices
 \(\Rightarrow \) lower residual demand for \(i \)
- \(M \)'s tariff neglects this, which reduces \(R_i \)'s utility
Price Competition

- Contracts are two-part tariffs \(\{ T_i(m_i), w_i(m_i) \} \)
- Differentiated products: \(R_i \)'s demand is \(D(p_i, p_{-i}) \)
- \(R_i \)'s information rent is

\[
\begin{align*}
 u_i(\theta) &= \int_\theta^{\bar{\theta}} D(p_i(z), (N - 1) p^*(z)) \, dz - (N - 1) \times \\
 &\quad \times \int_\theta^{\bar{\theta}} (p_i(z) - z - w_i(z)) \, D_{-i}(p_i(z), (N - 1) p^*(z)) \, \dot{p}^*(z) \, dz
\end{align*}
\]

- Competing-contracts effect

 - When \(R_i \) over-reports \(\theta \), other retailers charge low prices
 \(\Rightarrow \) lower residual demand for \(i \)
 - \(M \)'s tariff neglects this, which reduces \(R_i \)'s utility

- More retailers \(\Rightarrow \) more products
Price Competition

- Contracts are two-part tariffs \(\{ T_i(m_i), w_i(m_i) \} \)
- Differentiated products: \(R_i \)'s demand is \(D(p_i, p_{-i}) \)
- \(R_i \)'s information rent is

\[
u_i(\theta) = \int_{\theta}^{\overline{\theta}} D(p_i(z), (N - 1)p^*(z)) \, dz - (N - 1) \times \\
\times \int_{\theta}^{\overline{\theta}} \left(p_i(z) - z - w_i(z) \right) D_{-i} \left(p_i(z), (N - 1)p^*(z) \right) \dot{p}^*(z) \, dz
\]

Competing-contracts effect

- When \(R_i \) over-reports \(\theta \), other retailers charge low prices
 \(\Rightarrow \) lower residual demand for \(i \)
- \(M \)'s tariff neglects this, which reduces \(R_i \)'s utility

- More retailers \(\Rightarrow \) more products
- Eqm with passive beliefs may not exist (Rey and Vergé 2004)
Retailers’ costs are (e.g., Armstrong and Vickers 2010):
Imperfect Correlation

- Retailers’ costs are (e.g., Armstrong and Vickers 2010):
 - identical with prob. ν
Imperfect Correlation

- Retailers’ costs are (e.g., Armstrong and Vickers 2010):
 - identical with prob. ν
 - i.i.d. with prob. $(1 - \nu)$
Imperfect Correlation

- Retailers’ costs are (e.g., Armstrong and Vickers 2010):
 - identical with prob. \(\nu \)
 - i.i.d. with prob. \((1 - \nu) \)

- \(R_i \)'s information rent is

\[
\begin{align*}
 u_i (\theta_i) &= \int_{\theta_i}^{\bar{\theta}} x_i (z) \, dz + \\
 &- \nu (N - 1) \int_{\theta_i}^{\bar{\theta}} P' (x_i (z) + (N - 1) x_N^* (z)) \dot{x}_N^* (z) x_i (z) \, dz
\end{align*}
\]

Competing-contracts effect
Imperfect Correlation

- Retailers’ costs are (e.g., Armstrong and Vickers 2010):
 - identical with prob. \(\nu \)
 - i.i.d. with prob. \((1 - \nu) \)
- \(R_i \)’s information rent is

\[
u_i(\theta_i) = \int_{\theta_i}^{\bar{\theta}} x_i(z) \, dz + \]
\[- \nu (N - 1) \int_{\theta_i}^{\bar{\theta}} P'(x_i(z) + (N - 1) x_N^*(z)) \dot{x}_N^*(z) x_i(z) \, dz\]

Competing-contracts effect

- With asymmetric retailers, higher \(N \) increases output variance and profit (function convex in price)
Alternative Mechanisms

- **Sequential contracting** helps contracting with later retailers
Alternative Mechanisms

- **Sequential contracting** helps contracting with later retailers but introduces retailers’ incentive to affect future contracting.
Alternative Mechanisms

- **Sequential contracting** helps contracting with later retailers but introduces retailers’ incentive to affect future contracting
 → If sequential contracting is beneficial, M uses multiple retailers.
Alternative Mechanisms

- **Sequential contracting** helps contracting with later retailers but introduces retailers’ incentive to affect future contracting
 ⇒ If sequential contracting is beneficial, M uses multiple retailers

- **Auction** of an exclusive retail license
Sequential contracting helps contracting with later retailers but introduces retailers’ incentive to affect future contracting.

⇒ If sequential contracting is beneficial, M uses multiple retailers.

- **Auction** of an exclusive retail license

⇒ M would obtain monopoly profit but retailers have no incentive to participate.
Alternative Mechanisms

- **Sequential contracting** helps contracting with later retailers but introduces retailers’ incentive to affect future contracting.
 - If sequential contracting is beneficial, M uses multiple retailers.

- **Auction** of an exclusive retail license.
 - M would obtain monopoly profit but retailers have no incentive to participate.
 - With sequential entry, only 1 retailer participates and the auction price is 0.
Conclusions

- Manufacturers’ choice of the optimal retail network with

...
Conclusions

- Manufacturers’ choice of the optimal retail network with
 - asymmetric information
Conclusions

- Manufacturers’ choice of the optimal retail network with
 - asymmetric information
 - secret bilateral contracts
Conclusions

- Manufacturers’ choice of the optimal retail network with
 - asymmetric information
 - secret bilateral contracts

- Although opportunism problem provides incentive to foreclose,
Conclusions

- Manufacturers’ choice of the optimal retail network with
 - asymmetric information
 - secret bilateral contracts

- Although opportunism problem provides incentive to foreclose, competition among retailers reduces information rents
Conclusions

- Manufacturers’ choice of the optimal retail network with
 - asymmetric information
 - secret bilateral contracts

- Although opportunism problem provides incentive to foreclose, competition among retailers reduces information rents

 ⇒ Monopolistic manufacturer may prefer multiple retailer
Conclusions

- Manufacturers’ choice of the optimal retail network with
 - asymmetric information
 - secret bilateral contracts
- Although opportunism problem provides incentive to foreclose, competition among retailers reduces information rents
 ⇒ Monopolistic manufacturer may prefer multiple retailer
- Foreclosure is less likely in markets where asymmetric information is more relevant
Conclusions

• Manufacturers’ choice of the optimal retail network with
 • asymmetric information
 • secret bilateral contracts

• Although opportunism problem provides incentive to foreclose, competition among retailers reduces information rents

→ Monopolistic manufacturer may prefer multiple retailer

• Foreclosure is less likely in markets where asymmetric information is more relevant

• Welfare may increase with fewer retailers or vertical merger