Bidding to Lose?
Auctions with Resale

Marco Pagnozzi
Università di Salerno, CSEF

pagnozzi@unina.it
- Orange had to be sold after UK 3G auction
 FT quit and let Orange win
 FT took over Orange after the auction.
• Orange had to be sold after UK 3G auction
 FT quit and let Orange win
 FT took over Orange after the auction.

• Telia did not bid in 3G auctions
 Sonera won licenses in Spain, Germany, Italy and Norway
 Telia took over Sonera after the auctions.
A losing bidder can purchase from a winner, and obtain the prize after the auction.
• A losing bidder can purchase from a winner, and obtain the prize after the auction.

(i) A weak bidder may bid aggressively to win and sell to a strong bidder.

(ii) A strong bidder may:

 either overbid competitor and win the auction,

 or drop out and buy from competitor.
- A losing bidder can purchase from a winner, and obtain the prize after the auction.

(i) A weak bidder may bid aggressively to win and sell to a strong bidder.

(ii) A strong bidder may:

 either overbid competitor and win the auction,
 or drop out and buy from competitor.

- When bargaining in resale market depends on auction price, strong bidder is not indifferent about auction price
• A losing bidder can purchase from a winner, and obtain the prize after the auction.

(i) A weak bidder may bid aggressively to win and sell to a strong bidder.

(ii) A strong bidder may:

 either overbid competitor and win the auction,
 or drop out and buy from competitor.

• When bargaining in resale market depends on auction price, strong bidder is not indifferent about auction price and may drop out and let weak bidder win.
• A losing bidder can purchase from a winner, and obtain the prize after the auction.

(i) A **weak** bidder may bid aggressively to win and sell to a strong bidder.

(ii) A **strong** bidder may:

 * either overbid competitor and win the auction,
 * or drop out and buy from competitor.

• When bargaining in resale market depends on auction price, strong bidder is **not** indifferent about auction price and may drop out and let weak bidder win.

\[
\begin{align*}
\text{Resale takes place in equilibrium,} \\
\Rightarrow \begin{cases} \\
gives weak bidders reason to participate and increases seller’s revenue.
\end{cases}
\end{align*}
\]
Model

- Ascending auction (for a spectrum license).
 - 2 bidders: \(A \) is strong, \(B \) is weak and wealth constrained
Model

- Ascending auction (for a spectrum license).
 - 2 bidders: \(A \) is strong, \(B \) is weak and wealth constrained

- We assume:
 - \(v_A > v_B; \)
 - \(w_B < v_B; \)
 - \(w_A = \infty; \)
 - \(v_i \) and \(w_i \) are common knowledge.
Model

• Ascending auction (for a spectrum license).
 – 2 bidders: \(\begin{cases} \text{A is strong} \\ \text{B is weak and wealth constrained} \end{cases} \)

• We assume:
 – \(v_A > v_B \);
 – \(w_B < v_B \);
 – \(w_A = \infty \);
 – \(v_i \) and \(w_i \) are common knowledge.

(Typical reason for resale is uncertainty about relative valuation before the auction; Milgrom ’87; Bikhchandani & Huang ’89; Haile ’99 ...
Model

- Ascending auction (for a spectrum license).
 - 2 bidders: \(\begin{cases} A \text{ is strong} \\ B \text{ is weak and wealth constrained} \end{cases} \)

- We assume:
 - \(v_A > v_B \);
 - \(w_B < v_B \);
 - \(w_A = \infty \);
 - \(v_i \) and \(w_i \) are common knowledge.

(Typical reason for resale is uncertainty about relative valuation before the auction; Milgrom ’87; Bikhchandani & Huang ’89; Haile ’99 ...)

- To obtain \(v_i \), owner pays operating cost \(c \sim U [0, 1] \).
Model

• Ascending auction (for a spectrum license).
 – 2 bidders: \(\begin{cases} A \text{ is strong} \\ B \text{ is weak and wealth constrained} \end{cases} \)

• We assume:
 – \(v_A > v_B \);
 – \(w_B < v_B \);
 – \(w_A = \infty \);
 – \(v_i \) and \(w_i \) are \textit{common knowledge}.

 (Typical reason for resale is uncertainty about relative valuation before the auction; Milgrom ’87; Bikhchandani & Huang ’89; Haile ’99 ...)

• To obtain \(v_i \), owner pays \textit{operating} cost \(c \sim U [0, 1] \).

• To pay more than \(w_B \), \(B \) borrows at cost \(\beta \)
 (e.g. bank interest rate).

• \(B \)’s liability is limited by \(w_B \)
 (cannot end up with negative wealth).
Timing

1. \(i \) wins the auction at price \(p \) (paid in stage 4).

2. *Resale* can take place.

3. Operating cost \(c \) is realized.

4. Owner of the project, \(j \), can:

 (i) pay \(p + c \) to obtain \(v_j \), or

 (ii) go bankrupt and liquidate \(w_j \).
Profit without Wealth Constraint

\[\pi_B(c) \]

\[v_B - p \]

\[v_B - (p + c) \]

\[0 \]

\[v_B - p - 1 \]

\[1 \]
\[\pi_B(c) \]

\[v_B - p \]

\[v_B - (p + c) \]

\[v_B + \beta w_B - (1 + \beta)(p + c) \]

+ Borrowing Cost

Fig. A2
B's Profit with a Wealth Constraint

\[\pi_B(c) \]

\[v_B - p \rightarrow v_B - (p + c) \]

\[v_B + \beta w_B - (1 + \beta)(p + c) \]

+ Borrowing Cost

+ Limited Liability
B's Expected Profit

\[E[\pi_B] \]

\[v_B - \frac{1}{2} \]

\[v_B - p - \frac{1}{2} \]

\[0 \]

\[-w_B \]
Resale

- If B wins the auction, gains from trade are:

$$\mathbb{E}[\pi_A] - \mathbb{E}[\pi_B].$$
Resale

- If B wins the auction, \textit{gains from trade} are:

\[E[\pi_A] - E[\pi_B]. \]

- Bidders equally share gains from trade.
Resale

• If B wins the auction, gains from trade are:

$$\mathbb{E}[\pi_A] - \mathbb{E}[\pi_B].$$

• Bidders equally share gains from trade.

⇒ Resale price is $\frac{1}{2} \left(\mathbb{E}[\pi_A] + \mathbb{E}[\pi_B] \right)$.
Bidding by B

- **Lemma** \[B \text{ bids more aggressively with resale.} \]
Bidding by B

- **Lemma** \(B \) bids more aggressively with resale.

Proof. Without resale, \(B \) bids up to \(p' \) s.t.

\[
\mathbb{E}[\pi_B (p')] = 0.
\]

- With resale, \(B \) bids up to \(p_B \) s.t.

\[
\mathbb{E}[\pi_A (p_B)] + \mathbb{E}[\pi_B (p_B)] = 0.
\]

\(\Rightarrow p_B > p' \). \blacksquare
Bidding by B

• Lemma

B bids more aggressively with resale.

Proof. Without resale, *B* bids up to \(p' \) s.t.

\[
\mathbb{E}[\pi_B (p')] = 0.
\]

– With resale, *B* bids up to \(p_B \) s.t.

\[
\mathbb{E}[\pi_A (p_B)] + \mathbb{E}[\pi_B (p_B)] = 0.
\]

\(\Rightarrow p_B > p' \). ■

\(\Rightarrow \) A weak bidder does not drop out of the auction as soon as price reaches his valuation.
Bidding by A

• With resale, raising p makes A better off iff

$$\frac{\partial}{\partial p} (\mathbb{E} [\pi_A] - \mathbb{E} [\pi_B]) > 0 \iff \left| \frac{\partial \mathbb{E} [\pi_B]}{\partial p} \right| > \left| \frac{\partial \mathbb{E} [\pi_A]}{\partial p} \right|$$
Bidding by A

• With resale, raising p makes A better off iff

$$\frac{\partial}{\partial p} (\mathbb{E}[\pi_A] - \mathbb{E}[\pi_B]) > 0 \iff \left| \frac{\partial \mathbb{E}[\pi_B]}{\partial p} \right| > \left| \frac{\partial \mathbb{E}[\pi_A]}{\partial p} \right|$$

$$\iff p < \frac{v_B - 1}{1 + \beta} + w_B \equiv p^*$$
Bidding by A

• With resale, raising p makes A better off iff

$$\frac{\partial}{\partial p} (\mathbb{E}[\pi_A] - \mathbb{E}[\pi_B]) > 0 \iff \left| \frac{\partial \mathbb{E}[\pi_B]}{\partial p} \right| > \left| \frac{\partial \mathbb{E}[\pi_A]}{\partial p} \right|$$

$$\iff p < \frac{v_B - 1}{1 + \beta} + w_B \equiv p^*$$

$$\Rightarrow$$ To buy from B, A drops out at p^* because increasing price above p^* reduces gains from trade
Bidding by A

• With resale, raising p makes A better off iff

$$\frac{\partial}{\partial p} (\mathbb{E}[\pi_A] - \mathbb{E}[\pi_B]) > 0 \iff \left| \frac{\partial \mathbb{E}[\pi_B]}{\partial p} \right| > \left| \frac{\partial \mathbb{E}[\pi_A]}{\partial p} \right|$$

$$\iff p < \frac{v_B - 1}{1 + \beta} + w_B \equiv p^*$$

⇒ To buy from B, A drops out at p^* because increasing price above p^* reduces gains from trade

• Low wealth has 2 effects:

(i) **Borrowing Cost Effect**: raises “cost” of bidding
⇒ lower profit on good projects (low c)
Bidding by A

• With resale, raising p makes A better off iff

$$\frac{\partial}{\partial p} (\mathbb{E} [\pi_A] - \mathbb{E} [\pi_B]) > 0 \iff \left| \frac{\partial \mathbb{E} [\pi_B]}{\partial p} \right| > \left| \frac{\partial \mathbb{E} [\pi_A]}{\partial p} \right|$$

$$\iff p < \frac{v_B - 1}{1 + \beta} + w_B \equiv p^*$$

⇒ To buy from B, A drops out at p^* because increasing price above p^* reduces gains from trade

• Low wealth has 2 effects:

 (i) **Borrowing Cost Effect:** raises “cost” of bidding
 ⇒ lower profit on good projects (low c)

 (ii) **Limited Liability Effect:** limits size of losses
 ⇒ lower losses on bad projects (high c)
Bidding by A

• With resale, raising p makes A better off iff

$$\frac{\partial}{\partial p} \left(\mathbb{E} [\pi_A] - \mathbb{E} [\pi_B] \right) > 0 \iff \left| \frac{\partial \mathbb{E} [\pi_B]}{\partial p} \right| > \left| \frac{\partial \mathbb{E} [\pi_A]}{\partial p} \right|$$

$$\iff p < \frac{v_B - 1}{1 + \beta} + w_B \equiv p^*$$

⇒ To buy from B, A drops out at p^* because increasing price above p^* reduces gains from trade

• Low wealth has 2 effects:

 (i) **Borrowing Cost Effect**: raises “cost” of bidding
 ⇒ lower profit on good projects (low c)

 (ii) **Limited Liability Effect**: limits size of losses
 ⇒ lower losses on bad projects (high c)

• For high p, **Limited Liability Effect** dominates
 ⇒ increase in p improves B’s bargaining position
B's Expected Profit

![Graph showing $E[\pi_B]$ and $v_B - \frac{1}{2}$ against p with a dashed line at $v_B - p - \frac{1}{2}$ and a point p^*.]
Resale Equilibrium

• **Lemma** \[A \text{ prefers to drop out at } p^* \text{ and buy from } B \]

 \[\text{iff } B \text{ bids more than } p^*. \]
Lemma A prefers to drop out at p^* and buy from B iff B bids more than p^*.

Proof. B bids up to p_B s.t.:

$$\mathbb{E}[\pi_A (p_B)] + \mathbb{E}[\pi_B (p_B)] = 0$$
Resale Equilibrium

- **Lemma**
 A prefers to drop out at p^* and buy from B iff B bids more than p^*.

Proof. B bids up to p_B s.t.:

$$\mathbb{E}[\pi_A (p_B)] + \mathbb{E}[\pi_B (p_B)] = 0$$

$$\Rightarrow \begin{cases}
A’s \text{ resale surplus} = \\
\quad = \frac{1}{2} (\mathbb{E}[\pi_A] - \mathbb{E}[\pi_B]) = \mathbb{E}[\pi_A (p_B)] \\
\quad = A’s \text{ auction profit}
\end{cases}$$
Resale Equilibrium

- **Lemma**
 A prefers to drop out at p^* and buy from B iff B bids more than p^*.

Proof. B bids up to p_B s.t.:

$$\mathbb{E}[\pi_A(p_B)] + \mathbb{E}[\pi_B(p_B)] = 0$$

$$\Rightarrow \begin{cases}
A's \text{ resale surplus} = \\
= \frac{1}{2} (\mathbb{E}[\pi_A] - \mathbb{E}[\pi_B]) = \mathbb{E}[\pi_A(p_B)] \\
= A's \text{ auction profit}
\end{cases}$$

⇒ At lower price, resale surplus is higher. □
Resale Equilibrium

• Lemma A prefers to drop out at p^* and buy from B iff B bids more than p^*.

Proof. B bids up to p_B s.t.:

$$E[\pi_A(p_B)] + E[\pi_B(p_B)] = 0$$

$$\Rightarrow \begin{cases} \text{A's resale surplus} = \\ = \frac{1}{2} (E[\pi_A] - E[\pi_B]) = E[\pi_A(p_B)] \\ = \text{A's auction profit} \end{cases}$$

\Rightarrow At lower price, resale surplus is higher. ■

• Prop. 1 Resale is the unique equilibrium iff:

(i) $w_B < w^*$ and $\beta > \beta^*$, or

(ii) $w_B > w^*$ and $\beta < \beta^*$.

($Where$ $w^* = \frac{1}{2} (v_A - 1)$ and $\beta^* = \frac{v_B - v_A + 2w_B - 1}{v_A - 2w_B - \frac{1}{2}}$.)$
Interpretation

- B bids over p^* (price at which A drops out) iff:

$$\mathbb{E}[\pi_B(p^*)] + \frac{1}{2} (\mathbb{E}[\pi_A(p^*)] - \mathbb{E}[\pi_B(p^*)]) > 0$$

outside option \quad \text{gains from trade}
Interpretation

• B bids over p^* (price at which A drops out) iff:

$$\mathbb{E}[\pi_B(p^*)] + \frac{1}{2} (\mathbb{E}[\pi_A(p^*)] - \mathbb{E}[\pi_B(p^*)]) > 0$$

⇒ Resale happens if the following are large:

(i) $\mathbb{E}[\pi_A(p^*)]$ — joint bidders’ surplus,

(ii) $\mathbb{E}[\pi_B(p^*)]$ — B’s outside option
 (which determines B’s share of joint surplus).
Effects of High β

Direct Effect

- High β reduces $\mathbb{E}[\pi_B]$ (outside option).

\Rightarrow High β makes resale *harder*
Effects of High β

Direct Effect

- High β reduces $\mathbb{E}[\pi_B]$ (outside option)

\Rightarrow High β makes resale harder

Indirect Effect

- High β increases limited liability effect
 (bankruptcy is more likely)
Effects of High β

Direct Effect
- High β reduces $E[\pi_B]$ (outside option)

\Rightarrow High β makes resale *harder*

Indirect Effect
- High β increases *limited liability effect* (bankruptcy is more likely)

\Rightarrow A drops out sooner ($p^* \downarrow$) and \[\begin{align*}
E[\pi_A (p^*)] & \uparrow \\
E[\pi_B (p^*)] & \uparrow
\end{align*} \]
Effects of High β

Direct Effect
- High β reduces $\mathbb{E}[\pi_B]$ (outside option)
 \Rightarrow High β makes resale *harder*

Indirect Effect
- High β increases *limited liability effect*
 (bankruptcy is more likely)
 $\Rightarrow A$ drops out sooner ($p^* \downarrow$) and
 $\left\{ \begin{array}{l}
 \mathbb{E}[\pi_A (p^*)] \uparrow \\
 \mathbb{E}[\pi_B (p^*)] \uparrow
 \end{array} \right.$
 \Rightarrow High β makes resale *easier*
Effects of High β

Direct Effect

• High β reduces $\mathbb{E}[\pi_B]$ (outside option)

\Rightarrow High β makes resale harder

Indirect Effect

• High β increases limited liability effect (bankruptcy is more likely)

\Rightarrow A drops out sooner ($p^* \downarrow$) and

$\begin{align*}
\mathbb{E}[\pi_A (p^*)] & \uparrow \\
\mathbb{E}[\pi_B (p^*)] & \uparrow
\end{align*}$

\Rightarrow High β makes resale easier

• For large w_B:
 – Direct effect is stronger (bankruptcy is more costly)
 – Indirect effect is weaker (p^* is higher)
Effects of High β

Direct Effect
- High β reduces $\mathbb{E}[\pi_B]$ (outside option)

\implies High β makes resale **harder**

Indirect Effect
- High β increases *limited liability effect* (bankruptcy is more likely)

\implies A drops out sooner ($p^* \downarrow$) and

\[
\begin{align*}
\mathbb{E}[\pi_A (p^*)] & \uparrow \\
\mathbb{E}[\pi_B (p^*)] & \uparrow
\end{align*}
\]

\implies High β makes resale **easier**

- For **large** w_B:
 - Direct effect is stronger (bankruptcy is more costly)
 - Indirect effect is weaker (p^* is higher)

\implies Resale happens for \[\begin{cases}
\text{low } \beta \text{ if } w_B \text{ is large} \\
\text{high } \beta \text{ if } w_B \text{ is small}
\end{cases} \]
Seller’s Strategy

• With resale, weak bidder participates in the auction.
 \[\Rightarrow \text{Resale raises the auction price.}\]
Seller’s Strategy

• With resale, weak bidder participates in the auction.
 \[\Rightarrow\text{Resale raises the auction price.}\]

• Seller can affect β by, e.g., “lending” money directly.
Seller’s Strategy

- With resale, weak bidder participates in the auction.
 \[\Rightarrow \text{Resale raises the auction price.}\]

- Seller can affect \(\beta\) by, e.g., “lending” money directly.

- If resale takes place, seller wants high \(p^*\), i.e.:
 - high \(w_B\) (making bankruptcy more costly),
 - low \(\beta\) (making bankruptcy less likely),
Seller’s Strategy

- With resale, weak bidder participates in the auction.
 \[\Rightarrow \text{Resale raises the auction price.} \]

- Seller can affect \(\beta \) by, e.g., “lending” money directly.

- If resale takes place, seller wants high \(p^* \), i.e.:
 (low limited liability effect)
 – high \(w_B \) (making bankruptcy more costly),
 – low \(\beta \) (making bankruptcy less likely),

 \textit{but} resale is easier for low \(p^* \).
Seller’s Strategy

• With resale, weak bidder participates in the auction.
 \[\Rightarrow \text{Resale raises the auction price.} \]

• Seller can affect \(\beta \) by, e.g., “lending” money directly.

• If resale takes place, seller wants high \(p^* \), i.e.:
 (low limited liability effect)
 – high \(w_B \) (making bankruptcy more costly)
 – low \(\beta \) (making bankruptcy less likely)

 \[\text{but resale is easier for low } p^*. \]

\[\Rightarrow \text{Prop. 2 When resale takes place,} \]
\[\text{seller reduces } \beta \text{ and increases } w_B \text{ to raise } p^*. \]
Seller’s Strategy

• With resale, weak bidder participates in the auction.
 ⇒ Resale raises the auction price.

• Seller can affect \(\beta \) by, e.g., “lending” money directly.

• If resale takes place, seller wants high \(p^* \), i.e.:
 (low limited liability effect)
 – high \(w_B \) (making bankruptcy more costly),
 – low \(\beta \) (making bankruptcy less likely),

 but resale is easier for low \(p^* \).

⇒ Prop. 2 When resale takes place,
seller reduces \(\beta \) and increases \(w_B \) to raise \(p^* \).

But to induce resale, seller \(\begin{cases} \text{reduces } \beta \text{ if } w_B \text{ is high,} \\ \text{increases } \beta \text{ if } w_B \text{ is low.} \end{cases} \)
Extensions

- No entry cost
- More bidders
- Different bargaining
- Auction price paid before resale
- Returning the prize
Conclusions

• When prize value is uncertain and weak bidder enjoys limited liability strong bidder may prefer to drop out.
Conclusions

• When prize value is uncertain and weak bidder enjoys limited liability strong bidder may prefer to drop out.

⇒ Resale takes place and:

– Weak bidders participate and bid aggressively (even if valuations are common knowledge),
– Seller’s revenue is higher,
– Seller manipulates borrowing cost (to induce resale).
Conclusions

• When prize value is uncertain and weak bidder enjoys limited liability strong bidder may prefer to drop out.

⇒ Resale takes place and:

– Weak bidders participate and bid aggressively (even if valuations are common knowledge),
– Seller’s revenue is higher,
– Seller manipulates borrowing cost (to induce resale).

• In EU 3G auctions resale was difficult, this may have discouraged weak bidders from entering and resulted in lower governments’ revenue.
No Entry Cost

- Assume weak bidder always participates (bidding is costless).

⇒ Without resale, auction price is p' s.t.:

$$
\mathbb{E}[\pi_B (p')] = 0.
$$

⇒ Auction price is higher with resale if $p^* > p'$.

- **Proposition 3**
 If weak bidder always enters, resale raises auction price iff $2w_B (1 + \beta) > 1$.

 - High w_B reduces limited liability effect ⇒ $p^* \uparrow$.

 - High β reduces B’s profit ⇒ $p' \downarrow$.
Example

• 2 bidders: \(A \) has value \(v_A = 10 \)

 \(B \) has value \(v_B = \begin{cases} 5 \text{ pr. } \frac{1}{2} \\ 3 \text{ pr. } \frac{1}{2} \end{cases} \)

• \(B \)’s wealth is \(w_B = 0 \) — limited liability

⇒ After winning at price \(p \), \(B \)’s profit is:

\[
\mathbb{E} [\pi_B] = \frac{1}{2} \max \{ 5 - p; 0 \} + \frac{1}{2} \max \{ 3 - p; 0 \}.
\]

• \(B \) resells to \(A \) after winning the auction,

 and bidders share resale surplus \(\pi_A - \mathbb{E} [\pi_B] \).

• At what price does \(A \) drop out?

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\pi_A = v_A - p)</th>
<th>(\mathbb{E} [\pi_B])</th>
<th>(\pi_A - \mathbb{E} [\pi_B])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>(\frac{1}{2})</td>
<td>(\frac{5}{2})</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

⇒ \(A \) never bids more than 3.
• Does A prefer any price ≤ 3?
• Assume B pays βp to bid above w_B, $0 < \beta < \frac{1}{4}$.

\[
\begin{array}{c|c|c|c}
 p & \pi_A = v_A - p & \mathbb{E} [\pi_B] & \pi_A - \mathbb{E} [\pi_B] \\
0 & 10 & 4 & 6 \\
1 & 9 & 3 - \beta & 6 + \beta \\
2 & 8 & 2 - 2\beta & 6 + 2\beta \\
3 & 7 & \frac{1}{2} (2 - 3\beta) & 6 + \frac{3}{2}\beta \\
4 & 6 & \frac{1}{2} (1 - 4\beta) & 5\frac{1}{2} + 2\beta \\
5 & 5 & 0 & 5 \\
6 & 4 & 0 & 4 \\
\end{array}
\]

$\Rightarrow A$ prefers price 2.

• Questions:
 – Does B bid up to 2?
 – Does A prefer resale to winning the auction?
 – What if $w_B > 0$?
 – Seller’s revenue?
Auction Price Paid before Resale

• $v_A = 10$; $w_B = 5$; $v_B = \begin{cases} 2 & \text{pr. } \frac{1}{2} \\ -2 & \text{pr. } \frac{1}{2} \end{cases}$

⇒ After winning at price p, B’s value is:

$$
\mathbb{E}[v_B] = \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot \begin{cases} \max \{-2; -w_B\} & \text{if } p < w_B \\ 0 & \text{if } p \geq w_B \end{cases}
$$

• B cannot bid more than w_B.

<table>
<thead>
<tr>
<th>p</th>
<th>$w_B - p$</th>
<th>$\mathbb{E}[v_B]$</th>
<th>$S = v_A - \mathbb{E}[v_B]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1, 2</td>
<td>> 2</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>$1 - \frac{1}{2} = \frac{1}{2}$</td>
<td>$9\frac{1}{2}$</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

• B bids up to 6
 (after winning at 5, B’s surplus is $1 + \frac{1}{2}9 > 5$).

• A can win at price 6 and obtain 4 or
 drop out at price 3 and obtain $\frac{1}{2}10$ with resale.

⇒ B wins at price 3.
Resale with Fixed Mark-up

- $v_A = 5; \quad v_B = 0.$

- B’s managers resell at price $p + k$, say $k = 1$ (e.g. to justify strategy with shareholders).

<table>
<thead>
<tr>
<th>p</th>
<th>$\pi_A = v_A - p$</th>
<th>$S_A = v_A - (p + 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

- B bids up to $v_A - 1 = 4$ (max p at which he resells).
- A can win at price 4 and obtain 1 or drop out earlier and buy in resale market.

$\Rightarrow A$ drops out at $p = 0.$
European 3G Ascending Auctions
(in date order)

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of Bidders</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>13</td>
</tr>
<tr>
<td>Netherlands</td>
<td>6</td>
</tr>
<tr>
<td>Germany</td>
<td>7</td>
</tr>
<tr>
<td>Italy</td>
<td>6</td>
</tr>
<tr>
<td>Austria</td>
<td>6</td>
</tr>
<tr>
<td>Switzerland</td>
<td>4</td>
</tr>
<tr>
<td>Belgium</td>
<td>3</td>
</tr>
<tr>
<td>Greece</td>
<td>3</td>
</tr>
</tbody>
</table>

- After UK auction, bidders learned relative valuations.

⇒ If bidders expect to lose, they do not participate.