Are Specific Skills an Obstacle to Labor Market Adjustment?
Theory and an Application to the EU Enlargement

Ana Lamo, Julián Messina and Etienne Wasmer

January 2007
Are Specific Skills an Obstacle to Labor Market Adjustment?

Theory and an Application to the EU Enlargement

Ana Lamo*, Julián Messina** and Etienne Wasmer***

Abstract
Countries react differently to large labor reallocation shocks. Some minimize the costs by adapting rapidly, while others suffer long periods of costly adjustment, typically high and persistent unemployment and temporary output losses. We argue that the existence of large amounts of specific human capital slows down the transitions and makes them costly. We illustrate this point by building a theoretical framework in which young agents' careers are heavily determined by the type of initial education, and analyze the transition to a new steady-state after a sectoral demand shift. In the absence of mobility, it can take as much as a generation for the economy to absorb the shock. An interesting case study is the European Union enlargement, which led to a modernization of many sectors in Eastern countries and to a fast decline of traditional industries and agriculture. Using labor force data from a large economy with rigid labor markets, Poland, and a small open economy with increased flexibility, Estonia, we document our main claim, namely that specialized education reduces workers' mobility and hence their ability to cope with economic changes. We find that holding a vocational degree is associated with much longer unemployment duration spells, relatively large wage penalties when changing jobs and higher likelihood of leaving activity for elder workers. Quantitative exercises suggest that the over-specialization of the labor force in Poland led to much higher and persistent unemployment compared to Estonia during the period of EU enlargement. Traditional labor market institutions (wage rigidity and employment protection) increased, but to a much lesser extent, the unemployment gap.

JEL Classification: J30

Keywords: enlargement, labor reallocation, matching, specific skills, unemployment and vocational education.

Acknowledgements: This work was started in July and August 2004, when Etienne Wasmer was a Research Visitor at the European Central Bank. We acknowledge expert research assistance from Alexandre Janiak. We also thank Marek Gora, Julek Zawistowski and Anna Baranowska for their invaluable help with the Polish data. Giuseppe Bertola, Tito Boeri, Michael Burda, Fabrice Collard, Juan J. Dolado, Patrick Fève, Guido Friebel, Hartmut Lehmann, Franck Malherbet, Louis Phaneuf, Franck Portier, Gilles Saint-Paul and Anna Sanz de Galdeano provided useful comments, as well as the participants of the political economy seminar in Toulouse, 2005 ECB/CEPR labor market workshop, 2005 IZA/SOLE Transatlantic Meetings, 2005 Meetings of the European Economic Association, 2005 Meeting of the SCSE, Distinguished Speaker Series at Industry Canada and the 2004 Symposium of Moneda y Credito. All errors are ours. A technical Appendix and Matlab codes are available on the personal web page of the authors. The work of Julián Messina has benefited from the support from the European Community under a Marie Curie Intra-European Fellowship n. CT-2005-025323.

* European Central Bank.
** European Central Bank and CSEF, Università di Salerno.
*** University of Quebec, Montreal and CEPR.
Contents

1. Introduction

2. A benchmark model
 2.1 Structure
 2.2 Equilibrium
 2.3 Dynamics
 2.4 Numerical solutions

3 Empirical Evidence
 3.1 Description
 3.2 General strategy and workers’ heterogeneity
 3.3 Unemployment duration
 3.4 Flows into inactivity
 3.5 Wages, mobility and specific human capital

4 A tale of two countries?
 4.1 Augmenting the model
 4.2 A calibration for Poland and Estonia
 4.3 Relative contribution of vocational education, training and labor market institutions

5 Concluding comments

References

Appendix
1 Introduction

Large macroeconomic shocks boosting structural changes and sectoral reallocation have long-lasting consequences, in particular for the labor market. They are associated with employment shifts, rising unemployment, and sometimes temporary output losses. Furthermore, the effects of these changes are very different across countries: some economies seem to have a relatively good absorption capacity, while others face decade-long periods of adjustment for reasons which are not always easy to identify.1 This paper shows that obstacles to labor mobility in the aftermath of a macroeconomic shock are key determinants of the speed of adjustment of labor markets; further, a dominant obstacle to mobility is the existence of largely specialized workers: their ability to switch sector is indeed seriously limited by specific skills and initial education. We will illustrate these claims both theoretically and empirically.

The underlying logic of our analysis is simple: suppose that initial education determines the career choice of workers and notably their sector. A sectoral reallocation shock, leading to several industries or occupations becoming obsolete, will also imply the obsolescence of its older workers, those having too specific skills. In the absence of sectoral mobility—say, when 55 year old coal miners are reluctant or unable to apply for waiter jobs in fancy restaurants—the speed at which the labor market will adjust is then the rate of demographic turnover, which is a very slow adjustment mechanism. This is only one part of the story however: in addition, labor market institutions could favor or prevent sectoral mobility. Indeed, active labor market policies and notably retraining would increase the rate at which workers allocate to the new emerging sectors. On the other hand, employment protection may reduce labor market flows and thus the speed of sectoral reallocation.

To give a brief overview of the argument of the paper, consider the particular example of two economies—Estonia and Poland—having faced similar macroeconomic shocks, namely the announcement of enlargement to the European Union in 1998, and having diverged afterwards. As Figure 1 clearly shows, the labor market in each economy has evolved quite differently since 1998, with the unemployment gap widening dramatically from 0.7 in 1998 to almost 10 percentage points in 2002. Past education choices leading to the accumulation of sector and job specific skills explain a large part of such differences, and notably the high persistence of unemployment in Poland. Indeed, the proportion of employed workers with vocational education is much larger in Poland than in Estonia: 2/3 vs. 1/3 approximately.2

If the macro-labor literature has increasingly recognized that obstacles to the allocation of workers to jobs are crucial factors affecting the dynamics and the current level of unemployment (see e.g. Farber 1998), the existence of large amounts of specific skills has rarely been central in macroeconomic

1 There are several examples of how slowly some economies adjust to these shocks. A good example is the contrast between the experience of large western European countries (Spain, France, Italy) which have faced persistently high rates of unemployment since the 1980s, and smaller western European countries (Sweden, the Netherlands, Austria, Portugal) which have done much better. A second example is Germany: the labor market in the East has not caught up with the West since the reunification, despite massive transfers and no obstacle to labor mobility. Indeed, the unemployment differential between the West and the East has increased instead of converged since 1989.

2 On the period 1993-1998, the decline in Polish unemployment seems to be in part associated with early-retirement policies while the increase in Estonian unemployment is related to drastic trade liberalization occurring at that time. See Appendix E for further details.
analysis. The dynamics of adjustment of labor markets has been widely studied and there are several related papers to ours. In the labor literature, Blanchard and Katz (1992) have studied the example of adjustment of US states, notably Massachusetts having faced a large negative employment shock in the 80's, in a context of relatively flexible labor markets. Marimón and Zilibotti (1998) have shown that the dynamics of unemployment in eleven European countries were well accounted for by industry effects, where the Spanish case stands out as the transition from agriculture has been particularly costly. As regards to structural change, long-run trends of sectoral re-allocation and their interaction with labor market performance in the presence of frictions are studied by Messina (2003) and Rogerson (2004). Human capital, as argued above, has rarely been central. A good counterexample is Rogerson (2005) who presents a model of sector-specific skills in the Lucas-Prescott island tradition, and investigates individual trajectories of finitely-lived agents, with permanent non-employment after displacement being a possible outcome. Interactions between institutions and skills are discussed in Wasmer (2002), who studies the role of employment protection and frictions in promoting the accumulation of specific human capital investments. Similarly, Ljunqvist and Sargent (1998) incorporate exogenous human-capital losses while unemployed in a model of search, and account for country-differences in unemployment due to greater or lower generosity of unemployment compensation. In the transition literature, Garibaldi and Brixiova (1998) present a two-sector continuous-time model similar to ours and investigate the role of labor market institutions such as unemployment benefits. Boeri (2000) extensively studies the transition experience of central and eastern European economies. He notably provided evidence of the relatively worst labor market performance of workers with technical and vocational skills in the Czech Republic, Hungary, Bulgaria and Poland. In another strand, it is worth noting that the consequences

3 The main difference is that in their paper there is a transition from the public sector to a private sector, whereas we consider two private sectors. Compared to them, we also model endogenous job destructions and account for the skill composition of the labor force.
of structural change driven by trade liberalization and increasing magnitude of capital flows have often been addressed in the trade literature. However conventional trade theory—i.e. textbook — has tended with a few exceptions\(^4\) to assume away any labor market imperfections, thus having relatively little to tell about unemployment dynamics.

To document the importance of specific skills in macroeconomics, there are few better examples than the ongoing process of European enlargement to eastern European countries. This is indeed a relevant example of labor markets coping with large shocks that lead to a reallocation of workers across jobs and industries, as the international trade pattern of these countries had to adjust rapidly: trade with the former Soviet Union became less frequent, especially after the Russian crisis, and integration to the west dominated that period of time. All this took place with an unusual large scale and with a relatively high speed.\(^5\) While the truly natural experiment in eastern European countries was the transition to the market economy of the early 1990s, the enlargement constitutes an interesting period of analysis to capture the effects of a large reallocation from a declining private sector to a modern private sector on individuals’ labor market performance and their macroeconomic implications in the presence of imperfect labor markets. Therefore, rather than examining the transition to the market economy that occurred in eastern European countries in the early 1990s,\(^6\) we focus on the period around the official announcement of enlargement. The countries considered possess two interesting features for our study. First, while the education system in both economies has been traditionally oriented towards the provision of specific skills, and both of them present a high share of workers with vocational education in the working population, this share is much larger in Poland than in Estonia. Second, they differ to a large extent in their labor market institutions, Estonia being perceived as an open and flexible country, while the Polish labor market is typically considered as much rigid.

Are there general lessons to be drawn from our analysis? We believe that the mechanisms studied here are applicable to several other macroeconomic experiences. Notably, in Section 2, we will first build a fairly general theoretical framework to address the question of the reallocation of specialized labor across sectors following a relative demand shock. This is a two-sector Mortensen-Pissarides economy with wage rigidity and endogenous job destructions, augmented with specific human capital in which young agents initially are allocated into vocational or general education. We solve for out of the steady-state equilibria and characterize the saddle-path dynamics of its four predetermined variables and its four jump variables. We provide a methodology to obtain the numerical resolution of the associated system of ordinary non-linear differential equations, which may be adapted to any continuous-time matching model. This allows us to analyze the transition to a new steady-state when one of the sector

\(^5\) Other experiences such as trade agreements (NAFTA, various rounds of the Word Trade Organisation), have only progressively removed trade barriers and are limited in scope. In contrast, the 2004 enlargement implied, at the time it was officially agreed on in 1998, the accession of several new countries with the complete removal of trade barriers in a short time horizon, covering all sectors of activity. Further, most western European countries have kept strong barriers to control migration flows from the East. Thus, the impact of the enlargement in these countries is mostly a reallocation of labor within the new EU Member States.

\(^6\) This experience has already been extensively studied (see e.g. Blanchard 1997, Roland 2000, or, on the labor market, Boeri and Burda 1996)
expands and the other declines. We find three different time horizons in the transition: i) an initial and instantaneous period of increase in unemployment, as firms in the declining sector immediately lay off a sizeable fraction of the labor force; ii) a relatively rapid period of recovery—about 2 to 5 years—in which firms, facing a large pool of unemployed workers, post more vacancies; iii) a very slow period of convergence, due to mismatch between demand and supply of skills across sectors. In the absence of labor mobility, our model indicates that the period of convergence to a steady-state with no mismatch is of the order of magnitude of a generation or more, i.e. the necessary time for older workers with inadequate skills to have retired.

In a second part, in Section 3, we argue that it is possible to empirically demonstrate the importance of specific skills on the lack of mobility across jobs. For this purpose, we contrast the positive role of general education on workers’ individual labor market dynamics with the negative role of vocational education. Notably, to measure the costs of the reallocations we analyze unemployment spells, we study transitions towards inactivity and finally we quantify wage mobility and in particular wage losses after job separation. Our analysis builds on a large literature that characterizes the consequences of displacement for workers, and extends this literature to consider the differences in adaptability depending on the specificity of individual skills. Our empirical results indicate that age, tenure and above all, vocational initial education are associated with higher wage losses, higher unemployment duration and a higher likelihood to exit the labor market. Interestingly, these findings are similar in both countries.

As illustrated above unemployment rates in Poland and Estonia diverged during the years following the announcement of enlargement. This is why, in a third part, we attempt to ultimately propose a story that can adequately explain the diverging evolution of the two economies: Section 4 provides quantitative exercises and notably disentangles the respective role of specific skills, labor market institutions and training policies in the divergence between Poland and Estonia. Section 5 concludes.

2 A benchmark model

2.1 Structure

Time is continuous. All agents are risk-neutral and discount future at rate r. Workers die with a death rate δ and are replaced by new born workers. There are three sectors of production in the economy, two intermediate sectors and a final good sector. The first intermediate sector is the traditional sector (say, typically traditional industry or agriculture), and it is denoted by subscript o standing for old. The second one is a modern sector (say, services or high-value added industry), denoted by the subscript n standing for new. Each sector produces Y_o and Y_n respectively. The production technology for the final good is $Y = (a_o Y_o^\rho + a_n Y_n^\rho)^{1/\rho}$ with $a_o + a_n = 1$. This structure closely corresponds to Acemoğlu

7 See for instance Hamermesh (1987), Farber (1993), Bender et al. (2002).
In each sector, production is sold in competitive markets, so that, denoting their price by \(p_k \) (for \(k = o, n \)) we have
\[
p_k = a_k Y_k^{\rho - 1} Y^{1 - \rho} \quad \text{for} \quad k = n, o.
\] (1)

Firms in the intermediate sectors require labor. We follow the “small firm” assumption in Pissarides (2000), that is: a firm only requires one worker to produce. We detail the structure and environment of these firms later on. New firms, in the tradition of the matching literature, post a vacancy at a flow cost \(\gamma_k \) and recruit randomly, according to another Poisson process denoted by \(q_k(t) \). If we denote by \(c_k \) the number of jobs in each intermediate sector, normalizing productivity to 1, we have that \(Y_k = c_k \).

We denote by \(l_k \) the labor force in each sector and by \(u_k = l_k - c_k \) the number of unemployed workers. Match formation occurs through some perfectly segmented matching process: each unemployed worker cannot apply to more than a job being thus assigned to a sector. The per unit of time number of matches \(M_k \) is given by
\[
M_k = h(u_k, V_k) \quad \text{for} \quad k = n, o,
\]
where \(V_k \) is the number of vacancies posted. The function \(h \) is assumed to have aggregate constant returns to scale and decreasing returns to scale in each argument. Furthermore, partial derivatives \(\partial h/\partial u_k \) and \(\partial h/\partial V_k \) tend to infinity in zero and to zero in infinity. Denoting by \(\theta_k = V_k/u_k \) the sectoral tightness of the labor market, we have that \(q_k(\theta_k) = h(u_k, V_k)/V_k \) for \(k = n, o \) and \(\phi_k(\theta_k) = h(u_k, V_k)/u_k = \theta_k q_k(\theta_k) \) for \(k = n, o \), where \(\phi_k \) is the rate at which workers find a job, \(q_k \) the rate at which vacancies are filled in and \(q_k' < 0 \) and \(\phi_k' > 0 \). Population of workers is normalized to 1, with a fraction \(\delta \) newly born, and an equivalent mass that exogenously disappears from the labor force per unit of time. Later on we allow for other sources of exiting the labor force, notably early retirement.

2.1.1 Labor supply and sectoral allocation of workers

Labor supply depends on the allocation of skills. It has three margins: initial education, mobility across sectors through retraining, and early retirement. In this section we develop the core model with education, and we will extend it by allowing for retraining and early retirement in Section 4. To simplify the theoretical analysis, we think of labor supply in each sector as being determined by the type of initial education of individuals. We assume that education is instantaneous and costless, and provides skills with certainty. It is important to note at this stage that, given their nested structure, sectors could equivalently be reinterpreted as occupations. Workers’ imperfect mobility across sectors would then be reinterpreted as imperfect mobility across occupations.

In the data used for the empirical part of this paper we actually observe workers with several types of diplomas or educational categories, ranging from illiterate to post-secondary and tertiary education, as well as individuals with a mix of vocational and general qualifications. The key feature we will emphasize is the difference between vocational and general education. To be consistent with these data, the assumption made here is as follows: general skills, which are provided by general education, are required to work in the modern sector. In order to work in the traditional sector specific skills are
sufficient, and they are provided by vocational education.\(^8\)

Consistently with the traditional view of specific and general skills, the portability of skills is asymmetric: general skills can be used in the traditional sector (i.e., in managerial occupations for instance); while vocational education cannot be used in the modern sector. However, to simplify the derivation of Bellman equations we assume that workers with general skills do not apply to jobs in the traditional sectors, since this will never be in their interest. We propose later on a condition for this to apply.

Denote by \(\nu(t)\) and \(1 - \nu(t)\) the share of a cohort of workers born at time \(t\) attending vocational and general education respectively, whereby \(\nu\) is controlled by a central authority (government) fixing the allocation of schools. This quantity is pre-determined, i.e. at a given point in time a cohort of workers of age \(a\) was trained in proportions \(\nu(t - a)\) and \(1 - \nu(t - a)\). Adjustments of the labor supply of workers through initial education thus only occurs at the margin, with new born workers. In the long-run education is endogenous: the government adjust \(\nu\) so that it is determined according to the free-entry of workers in each sector. The endogenous determination of \(\nu\) is described later on. We denote by \(\nu^*\) the equilibrium, long-run value of \(\nu\). Figure 2 describes the individual trajectories of workers in the life-cycle.

2.1.2 Firms in the intermediate good sector

As already introduced above, firms in the intermediate good sector produce with only one worker. Denoting by \(V_k\) the time-varying asset value of a job vacancy and by \(J_k\) the time-varying asset value of a filled job, we have the following arbitrage equations for \(k = n, o\):

\[
r V_k = -\gamma_k + q_k (J_k - V_k) + \frac{\partial V_k}{\partial t},
\]

\(^8\)However, workers with basic general education are also observed in traditional sectors in the data. To be consistent with the model, we would have to assume that they were trained by the firm at the entry into the job.
stating that firms realize a capital gain \(J_k - V_k \) at the time of recruitment and take account of their flow costs and the possible change in the value of vacancies in time.

Following Pissarides (2000) and Mortensen and Pissarides (1994), we assume that firms enter and exit freely at the vacancy posting stage: this implies that \(V_k(t) \equiv 0 \). If this equality were not satisfied, there would be either unexploited profit opportunities (if \(V_k \) was strictly positive) or expected losses from a vacancy (if \(V_k \) was strictly negative). The important implication is that the supply of vacancies adjusts instantaneously, even along the transition paths after an aggregate shock.

Firms having recruited a worker can start to produce. Their revenue is a function of the price of the good \(p_k \), the wage of their worker \(w_k \), and some operating costs denoted by \(\Omega \). All three variables potentially depend on time \(t \). Further, firms face idiosyncratic shocks affecting their revenue function. We assume that these shocks affect the value of the operating cost and occur with Poisson intensity \(\lambda \). Initially, at the time of job creation, \(\Omega \) is zero. Then, it takes a random value at each shock, the new value being drawn from a distribution with density \(g \) and cumulated density \(G \), on a support \((0, \Omega^+)\). When \(\Omega \) grows too large, the job may be destroyed.\(^9\) In addition, we assume that matches are destroyed when workers leave the labor force (rate \(\Omega \)), and therefore there is a reservation strategy for \(\Omega \).

We have thus, setting \(V_k \) to zero, that:

\[
J_k(\Omega, t) = rJ_k(\Omega, t) = p_k - w_k - \Omega - \int_0^{\Omega^+} \max \left[J_k(\Omega', t), 0 \right] dG(\Omega') - J_k(\Omega, t)
\]

This equation states that the equity value of the firm is the flow profit, plus firm’s anticipation of a capital loss \(V_k - J_k(\Omega) = -J_k \) due to exogenous separation from its worker, and of a capital change \(J_k(\Omega', t) - J_k(\Omega, t) \) when \(\Omega \) changes. However, the firm retains the option of firing the worker if the new value \(\Omega' \) is too large, hence the Max operator. It finally takes into account the non-stationarity of its environment through the last partial derivative term. Differentiating the first equation with respect to \(\Omega \), we obtain that \((r + \delta + \lambda + \overline{e}) \partial J_k(\Omega, t)/\partial \Omega = -1 + \partial^2 J_k/\partial \Omega^2 \). We will restrict the solution for \(J_k \) to those cases in which the dependence of \(J_k \) on \(\Omega \) is time-invariant, i.e.\(^10\)

\[
\frac{\partial^2 J_k}{\partial \Omega^2} = 0,
\]

and therefore \(\partial J_k(\Omega)/\partial \Omega = -1/(r + \delta + \lambda + \overline{e}) \). This shows that the value of a job is decreasing with \(\Omega \) and thus that there is a reservation strategy for firms: when \(\Omega \) goes above some value \(R_k \) (possibly depending on time), the job is destroyed. Given that the slope of \(J_k \) is constant when \(\Omega \) is below \(R_k \),

\(^9\)We assume a shock on operating cost and not on productivity so as to avoid aggregate sectoral prices to be affected by the idiosyncratic productivity of firms. In such a case prices in each sector would depend in a complicated way on the cross-section of surviving firms, and thus on the job destruction rule, without adding additional insights for the problem we analyze here.

\(^10\)As we shall show, these solutions exist. We have not explored the other solutions in which this dependence varies with time.
one can rewrite without loss of generality the value of a job as

\[J_k(\Omega, t) = \frac{R_k(t) - \Omega}{r + \lambda + \delta + s_k}. \] (5)

2.2 Equilibrium

The value of \(R_k(t) \) is such that \(J_k(R_k(t), t)) = 0 \). Using this equality together with equations (3) and (5), we obtain the job destruction condition:

\[R_k(t) = p_k(t) - w_k + \lambda \int_0^{R_k(t)} G(\Omega')d\Omega' + \frac{\partial J_k(R_k, t)}{\partial t}. \] (6)

This equation determines a positive relation between the level of prices and the reservation operating cost, which happens to be independent of labor market tightness. Straightforward differentiation shows that, at constant \(\partial J_k/\partial t \), the higher the revenue of the firm \((p_k - w_k) \), the higher \(R_k \), i.e. the higher the operating cost the firm can cope with without closing down. Note also that out of the steady-state a positive change in the value of the job raises \(R_k \): when the value of a job for the firm appreciates, the firm is more reluctant to close down at the margin. The endogenous component of the destruction rate is \(\lambda[1 - G(R_k(t))] \). The total job destruction rate faced by firms is \(\delta + s_k + \lambda[1 - G(R_k(t))] \) and is denoted by \(JD_k(t) \).

A job creation condition can be derived from (2) and (3):

\[\frac{\gamma_k}{q(\theta_k(t))} = \text{Max} [0, J_k(0, t)] = \text{Max} \left[0, \frac{R_k(t)}{r + \lambda + \delta + s_k} \right], \] (7)

This equation states that the expected value of search cost \(\gamma_k/q(\theta_k) \) has to equal the present-discounted value of profits to the firm, taking into account the turnover rate of workers. The \(\text{Max} \) operator simply makes sure that when profits from new jobs go negative, firms stop creating them and the vacancy rate is equal to zero; this can occur along the dynamic paths but it is not so much of an issue in steady-states. This equation delivers a positive relation between labor market tightness and \(R_k \), which simply states that the longer the expected duration of a job, the larger job creations. At a fix \(R_k \), this also delivers a positive link between \(\theta_k \) and \(p_k \): the higher the demand for a sector, the higher job creation.

We need an equation for wages. Recently, Hall (2005) and Shimer (2005) have argued that the dynamic properties of matching models are more accurate with rigid wages. As in Pissarides (2000), we will also derive the benchmark properties of the model with rigid wages, but allow for a slightly more general specification in postulating a static rule of wages such as

\[w_k = w(1 - \beta) + \beta p_k, \] (8)

where \(\beta \) captures the extent to which wages reflect the marginal product of workers. When \(\beta = 0 \)
wages are fixed, thus totally rigid. When $\beta = 1$ the wage equals the marginal product. If the marginal product changes in time, so does the wage. Note that this wage structure will lead, in some cases, to the destruction of viable jobs, i.e. jobs associated with a positive surplus. Wages are too rigid here to allow for a wage drop, implying some inefficient job destruction.11 We find our assumption of inefficient destructions more appealing along the process of reallocation of employment across sectors due to structural changes, as clearly workers in declining sectors are not ready to work at any wage. The simplest rationalization is that, in sectors covered by minimum wages or collective wage setting, workers’ unions may exert pressure to avoid downward wage bidding.

2.3 Dynamics

2.3.1 The shock

The experiment we run is the following: we start at time t_0 from a long-run steady-state in which unemployment is at some benchmark value, say 10%, and the demand for goods is identical: $a_o = a_n = 1/2$. All sectoral parameters are also assumed to be identical, notably sectoral wages and job destruction rates. This implies that the endogenous supply of education is identical across sectors: half of the newborn workers go to vocational education, the other half goes to general education ($\nu(t_0) = 0.5$).

We then let at time t_0^+ the demand for the goods of the new sector increase relative to the demand for the old sector, featuring either an opening of the country to international trade as a consequence of the enlargement, or the adjustment of production to biased technical progress or shifts in demand. As a benchmark, we assume that a_n is raised to 0.64 and a_o falls to 0.36. As a_o changes relative to a_n, the aggregate price index may change as well. So we decide to divide the price of each good by the conventional price index being $P = (a_o p_o^{(\rho-1)} + a_n p_n^{(\rho-1)})^{(\rho-1)/\rho}$ in all experiments we do, in order to avoid this distortion—the marginal change in the level of prices affects the aggregate demand for jobs independently of the distributional effects we want to underline. This means that the initial value of real prices p_k/P in the symmetric steady-state is 1 in each sector.

2.3.2 Steady-states

In each steady-state, the following holds. First, all derivatives with respect to time are equal to zero, notably in Bellman equations (2) and those relative to workers presented in Appendix A: (A6), (A7), (A8), and (A9). Labor market tightness θ_k is determined through equation (7). Once θ_k is known, we know the rate of access to jobs $\phi_k(\theta_k)$ and thus R_k and JD_k. Denoting by a star the steady-state level of a variable, we have:

$$u_k^*/l_k^* = JD_k^*/\phi_k^* + JD_k^*/\phi_k^*.$$

In the initial steady-state, ν is at its initial value ($\nu^*_1 = 0.5$) if the economy has two perfectly

11Indeed, it is possible to show that there exists a wage, say ω, strictly below w_k, for which $J_k(\Omega, t, \omega)$ remains positive while at the same time workers prefer employment to unemployment, i.e. ω is greater than workers' reservation wage $(r + \delta)U_k$.

10
symmetrical sectors. In this equilibrium, as we can see from equations (7) \(\theta_k \) depends on the price of each good \(p_k \). Note also that from the price equations (1), sectoral prices are linked to \(Y_n \) and \(Y_o \), while those quantities are themselves linked to \(\theta_k \) by the employment equations presented in (A12) and (A13). Overall, we have here eight equations, and eight unknowns \((R_k, \theta_k, p_k \text{ and } Y_k) \).

In the final steady-state, i.e. after a change in relative demand parameters \(a_o \) and \(a_n \) has taken place, \(\nu \) becomes an endogenous variable. Let us denote by \(\nu_f \) its steady-state value after the change. It is thus a ninth unknown and we consequently require an additional condition to solve for its value.

A benevolent government would choose \(\nu_f \) so as to equalize the value of starting in each sector, i.e. in this case \(\theta_n = \theta_o \).

2.3.3 Transition between steady-states

To obtain the dynamics of employment and unemployment, one has to take care of an additional complication due to the fact that \(R_k \) may jump from time to time (in our case, only at the time of the shock to \(a_k \)). A discontinuous decrease in \(R_k \) leads to a mass of job destruction, by a quantity \(\Sigma_k = e_k[G(R_k^+) - G(R_k^-)] \) if \(R^+ < R^- \) and 0 otherwise, where \(R^+ \) and \(R^- \) represent the value of \(R_k \) after and before the jump. In fact, in the flows equations \(\Sigma_k \) has to be multiplied by a Dirac function (denoted by \(\Delta(t_0) \)) defined at the time of the discontinuous decrease of \(R_k \). In our case, posing \(\Sigma_n = 0 \), we have that employment and unemployment in each sector evolve according to

\[
\frac{\partial e_k}{\partial t} = \phi_k u_k - JD_k(t)e_k - \Sigma_o \Delta(t_0) \quad \text{for } k = n, o, \tag{10}
\]

\[
\frac{\partial u_o}{\partial t} = \delta \nu + (JD_o(t) - \delta)e_o - (\delta + \phi_o)u_o + \Sigma_o \Delta(t_0), \tag{11}
\]

\[
\frac{\partial u_n}{\partial t} = \delta(1 - \nu) + (JD_n(t) - \delta)e_n - (\delta + \phi_n)u_n. \tag{12}
\]

We need then to investigate the dynamics of \(\theta_k(t) \) and \(R_k(t) \). During this transition, we assume as in Pissarides (2000) that the free-entry condition in each sector is always satisfied. Note however an important difference with the “traditional” dynamics in Pissarides, where \(\theta \) is time invariant after a shock because it immediately jumps to its new steady-state value. In our case, \(\theta_k^* \) depends on profits and thus on prices of the good in each sector. The latter varies slowly over time, because the price is the marginal product, which depends on the production through the stock of employees in each sector. Employment is a state variable, thus time-varying: at each point in time agents create the relevant amount of vacancies consistent with free entry. However, we retain from the traditional analysis that the convergence of agents towards the current zero-profit value of \(\theta_k^* \) is infinitely fast. Note also that during the transition, it might well be that prices in the old sector go down below the wage, so that new

\[12\text{A Dirac is the equivalent of a mass point in time, i.e. it is a distribution defined by its integral over an interval: the integral is equal to 1 if the interval of integration encompasses } t_0.\]
firms would not make profits. In this case, tightness goes to zero (zero job creation) until employment in the old sector sufficiently declines for prices to increase and return to a level above wages. When that stage is eventually reached, a positive number of vacancies will be posted in both sectors.

Finally, investigating the transition dynamics we might want to vary the supply of education over time. However, it is fairly common to observe lags in the policy response in ν because of inertia and resistance to reforms. So, during the transition between the initial steady-state and the final steady-state $\nu(t)$ may not be at the right level. We arbitrarily fix a law of motion for the transition of the variable ν which goes from its initial value ν_i to its final value ν_f as

$$\nu(t) = \nu_i + (\nu_f - \nu_i)(1 - e^{-\alpha t}),$$ \hspace{1cm} (13)$$

where α characterizes the speed of convergence.\footnote{To see this, note that $\partial \nu(t)/\partial t = \alpha [\nu_f - \nu(t)]$.} Overall, we have nine variables depending on time: $e_k(t)$, $u_k(t)$, $\theta_k(t)$, $p_k(t)$ in each sector, and $\nu(t)$.

\subsection*{2.3.4 Linearization}

We first consider $t > t_0$ (so that $\Sigma_o = 0$), and interior solutions with positive tightness, and discuss other solutions in Appendix C. In matching models, the dynamics are usually described by a saddle-path, as the vacancy opening decision is forward looking and costless, so that V and thus θ can jump instantaneously. In Pissarides (2000) for instance, this is shown by linearizing the dynamic system in (u, θ) around the equilibrium steady-state and recovering a positive and a negative eigenvalue of the corresponding matrix. We can proceed in a similar way here, with two differences: there are two sectors, and in each sector labor supply is not constant, so that our system is eight-by-eight. However, given our assumptions the system is block-diagonal, which allows one to focus on a four-by-four subsystem for each sector.

First, using equation (7), we see that the cut-off cost R_k and labor market tightness move together along the equilibrium path: this equation generates a positively sloped relation between the two endogenous variables. This implies that the dynamics of θ and R are exactly the same. One can also easily log-linearize the dynamic equations for employment and unemployment.\footnote{As an intermediate step, one may notice that $\partial l_k(t)/\partial t = \delta (l_k(t) - l_k^*)$ and then introduce $(u_k(t) - u_k^*)$ and $(e_k(t) - e_k^*)$ in the relevant differential equations canceling out the constant terms.} Denoting by

$$\Lambda = (r + \lambda + \delta + \bar{\sigma}_k) > 0,$$

we finally obtain:

$$\begin{pmatrix}
\frac{\partial e_k(t)}{\partial t} \\
\frac{\partial u_k(t)}{\partial t} \\
\frac{\partial \theta_k(t)}{\partial t} \\
\frac{\partial R_k(t)}{\partial t}
\end{pmatrix} =
\begin{pmatrix}
-JD_k^* & \phi_k^*(t) & 0 & 0 \\
JD_k^* - \delta & -(\delta + \phi_k^*) & 0 & 0 \\
0 & 0 & \Lambda & 0 \\
0 & 0 & 0 & \Lambda
\end{pmatrix}
\begin{pmatrix}
e(t) - e_k^* \\
u_k(t) - u_k^* \\
\theta_k(t) - \theta_k^* \\
R_k(t) - R_k^*
\end{pmatrix},$$ \hspace{1cm} (14)$$

From an eight-dimensional system we are back to two four-dimensional sub-systems. The matrix
above has four eigenvalues denoted by λ_1 to λ_4 with $\lambda_3, \lambda_4 = \Lambda > 0$, $\lambda_1, \lambda_2 < 0$. To see the latter point, the determinant of the upper-left 2x2 block in the matrix is $\lambda_1\lambda_2 = \delta(JD_k^* + \phi_k^*) > 0$ while the trace is $(\lambda_1 + \lambda_2) < 0$, indicating that both λ_1 and λ_2 are necessarily negative. Thus, we have in each subsystem two variables exhibiting stable dynamics and two exhibiting explosive dynamics. We show in the Appendix B that the dynamic evolution of the system around the steady-state is thus described by a unique generalized saddle-point with four forward-looking variables, $\theta_k(t)$ and $R_k(t)$ and four state-dependent variables (employment and unemployment in each sector), plus three variables implied by these dynamics ($p_k(t)$ for each sector and $\nu(t)$). The dynamics of transition are thus on a saddle-path, agents coordinating spontaneously so that forward-looking variables converge immediately on this saddle-path to finally converge to the steady-state where $\theta_k(t) = \theta_k^*$ and $R_k(t) = R_k^*$. All predetermined variables are continuous when $t > t_0$. The Appendix C adds up several comments on technical aspects of the dynamics.

2.4 Numerical solutions

2.4.1 Parameter determination

This Section illustrates the dynamics of an economy with rigid wages and specific skills. Relevant extensions, notably endogenous wages, retraining policies and employment protection are postponed to the last Section in order to match the Polish and Estonian cases. We fix the parameters in the initial steady-state so as to have a symmetric equilibrium across sectors. This means that the aggregation function of intermediate goods into the final good has equal shares, namely $a_n = a_o = 1/2$. The demographic parameter δ is a crucial quantity for the speed of adjustment of the pool of skills. We set it to $\delta = 0.005$ per quarter, so the average working life of individuals is 200 quarters, i.e. 50 years. The discount rate is $r = 1\%$ per quarter. Initially, the education parameter ν, i.e. the share of workers in vocational education, is at its equilibrium value $\nu^* = 0.5$. Other parameters are set at values insuring that the unemployment rate is around 10%, thus employment is each sector is 0.45. The job destruction rate is slightly below 3.3% per quarter, and tightness of the labor market is initially around 1.8 in each sector. Taking into account the parameters of the matching function (scale and elasticity) this implies an average unemployment duration of 8.7 months.15

2.4.2 Simulation

We now shock the relative demand for good n by increasing a_n from 0.5 to 0.64 and reducing a_o from 0.5 to 0.36. The relative demand index a_n/a_o takes values between 1 and 1.78. To compute the transition path, we have used a standard numerical tool discretizing time intervals in order to approximate the

15 Other parameters are: scale parameter in matching $A = 0.25$; matching elasticity of unemployment $\eta = 0.5$; complementarity parameter in production $\rho = -1$; exogenous job destructions $\pi = 0.1$; upper support of idiosyncratic shocks $\Omega^+ = 0.8$; frequency of idiosyncratic shocks $\lambda = 0.045$; convergence of education $\alpha = 40$; hiring costs $\gamma_k = 1.05$; $w = 2/3$. Note that the fix part in wages w can be interpreted as unemployment benefits.
solution of ordinary non-linear equations. Figure 3 illustrates the dynamics. The x-axis on all figures is time elapsed since the initial jump of a_n (resp. a_o) from 0.5 to 0.64 (resp. to 0.36). Time units are quarters. At $t = +\infty$, the system converges to a new equilibrium steady-state. Unreported simulations for very large time intervals actually show the perfect fit between this limit and the final point we would expect from the steady-state equations when $a_n/a_o = 1.78$: unemployment converges to the initial level at 10% of the labor force.

As the left graph in Figure 3 shows, unemployment in the expanding sector declines, while it reaches very high levels in the old sector. Indeed, at the time of the shock, a mass 0.075 of workers is displaced in the old sector, which reaches an unemployment rate above 25%. This raises total unemployment to 17.5% of the labor force. The convergence in the unemployment rate is first rather fast, as total unemployment falls to 14% in less than 10 quarters. However, during a second phase the convergence back to the 10% steady-state level is extremely slow: 50 quarters (12.5 years) after the shock, the level of unemployment is 2.5 percentage points above its long-run value. This is because unemployment in the old sector is still about 5 points above its long-run value during the first 60 years after the shock.

This slow adjustment might seem surprising taking into account that in this sub-section we have explored the dynamics of the economy when ν adjust rather fast (we set $\alpha = 40$ meaning an almost

16 All simulations were made with ode23 or ode45 in Matlab(R), version 7.0.4, which compute the solution to a system of non-linear differential equations. The use of alternative Matlab algorithms did not make any difference in the dynamic paths. All our codes are available upon request. These codes consist on three parts: first, computation of the initial steady-state; second the jumps of state variables in G^*; and third, the dynamic evolution of the system. In particular, it does not try to match the final steady-state. However, the code-determined convergence of the system to its final steady-state is remarkably close to the final steady-state computed from the steady-state equations.
immediate jump in the supply of general education to the needed level ν_f computed from the long-run final steady-state). However, even though the long-run level of education is reached almost immediately, it only affects the new entrants in the labor market, leaving aside the stock of older workers. This results in a massive long-lasting level of mismatch in the economy.

The evolution of the job destruction rates by sector explains these dynamics fairly well: at the time of the shock, there is a jump corresponding to the mass of 0.075 units of workers being displaced, and post-jump job destruction rate in the old sector rises and reaches a peak at 4.3%, much above its long-run level (3.27%). At the same time, job destruction in the new sector falls to 2.5% and only gradually rises again. Aggregate output declines strongly, by the log of 0.71/0.55 or 25%, and gradually recovers after 2 years. Figure 7 in Appendix B reports the evolution of additional variables. Employment in the old sector first falls drastically, as there are many obsolete firms instantaneously destroyed. Then, given the excess supply of workers due to these immediate layoffs, employment starts rising reaching it long run level (0.45) fairly fast. The increase of employment in the good sector is slower, due to market frictions and even more importantly a lack of labor supply.

To shed further light on the results, we can distinguish three distinct phases in the unemployment dynamics shown in Figure 3. Using equation (14), one can in fact characterize the speed of convergence of each of these phases:

1. Using the saddle-path property ($\Lambda > 0$), there is a first period characterized by a large and instantaneous raise in unemployment, following the immediate death of a large mass of firms in the declining sector.

2. There is a second period of adjustment, where firms facing a large pool of unemployed workers post more vacancies. The speed of adjustment here is dominated by the eigenvalue with the largest absolute value (λ_1).

3. There is an additional horizon of very slow convergence. The speed of adjustment now is dominated by λ_2, which has the lowest absolute value.

To give a feeling of the relative value of λ_1 and λ_2, one can make the following approximation: if $|\lambda_2| \ll |\lambda_1|$, then $\lambda_1 \simeq -\delta + JD_k^* + \phi_k^*$ = −0.3749 while $\lambda_2 \simeq -\delta JD_k^* + \phi_k^* = -0.0049 \simeq -\delta$. Note that $\lambda_2/\lambda_1 \simeq 0.01$ so that the approximation is valid. In other words, the long-run convergence to the steady-state is governed by the slowest adjustment mechanism, namely by the demographic turnover. This is the necessary time for older workers with inadequate skills to have retired and be replaced by a labor supply with the right mix of skills. Until this happens, mismatch between demand and supply of skills across sectors persists.

Finally, to better understand the respective role of various parameters, we have run experiments varying α, δ and the extent of sectoral mobility. Such experiments are displayed in Figure 8 in Ap-

17 Most of the gap is due to lower gross output, as total employment declines and the demand for the good in the new sector does not increase enough. However, increased search costs also contribute to the decline, as firms post more vacancies in this reallocation episode. That contribution is however relatively small.
Appendix B. Overall, this Section has shown that convergence in a “no-mobility” economy is very slow, because workers are stuck with their initial education choices. Additional insights are that workers with vocational education experience longer unemployment spells. Their marginal product also goes down after the shock (see prices by sector in Figure 7 in Appendix B), but workers who manage to change from the old to the new sector gain in productivity given the price difference across sectors.

3 Empirical Evidence

In this section we do not “test” the predictions of the model. Our aim is more modest: we intend to show that specific skills in initial education matter on individual dynamics, and thus, that the relative immobility of workers cannot be ignored in macroeconomic models. Here, specific skills will be measured by vocational education.

Using panel data from the labor force surveys in Estonia and Poland over the period 1997-2003, we shall proceed in three steps. We first estimate various unemployment duration models, where we extend standard specifications to capture the impact of the type of education on the ability to re-enter employment from unemployment. Then we estimate transitions for elder workers with different skills from employment and unemployment into inactivity, aiming at capturing another adjustment mechanism that we expect to differ across educational diplomas: the incidence of early retirement. Finally we investigate the wage change of workers experiencing job mobility, either after quits or layoffs. Our originality here is to extend conventional specifications to estimate, consistently with our theoretical framework, the extent to which workers with different diplomas experience different losses throughout the reallocation process. Our prior is that more educated workers and, more importantly, workers with general skills should be more able to cope with labor market transitions. Let us start with a brief general description of the data sets used. More details are available in Appendix D.1.

3.1 Description

The Estonian and Polish labor force surveys (ELFS and PLFS respectively) are relatively homogenous, and very similar to the LFS carried out in the other EU countries. Both surveys contain standard demographic and job characteristics, are run quarterly, and their longitudinal nature allow to follow individuals over time. The period of our analysis is 1997-2003.

We will build different sub-samples for the respective analysis of wage mobility and unemployment/employment transitions. The specificities of each sub-sample are described at the beginning of the related section. Table 1 shows some summary statistics for the sample of employed workers excluding self-employed and part-timers as well as for the sample of unemployed individuals. First, note that the dispersion of wages is higher in Estonia than in Poland. Second, population is older on average in the Estonian data, but tenure is on average three years lower (6.9 vs. 9.9 in Poland). Third, the...
average number of years of education is large in both countries, close or even higher than in many
EU-15 economies. Fourth, in both countries the share of workers with vocational education is high
when compared with the EU-15 countries, but is almost double in Poland than in Estonia (64% against
36% of the employed population when considering basic and secondary vocational together). Fifth, and
very importantly, in both countries workers with secondary vocational education are over-represented
among the employed, as compared to the unemployed. The opposite is true for workers with basic
vocational. The \(am \) and \(bm \) rows correspond to the share of movers, and are described in the wage
mobility sub-section.

3.2 General strategy and workers’ heterogeneity

Hereafter, our strategy is to control for the degree of specific skills with a dummy variable reflecting
whether individuals’ highest degree is basic vocational or secondary vocational. Since the counterpart,
basic general and secondary general degrees, do not necessarily have the same exact number of years
of education—they may differ by one or two years in one direction or the other—, all our specifications
(wages or transitions) will additionally control for the number of years of education.

An important question is whether uncontrolled characteristics (such as talent, IQ, social origin)
determine jointly the type of education and observed outcomes such as wages, separation rates and
hazard rates. It might indeed be believed that the less able individuals are sent to vocational education.
This does not seem to be necessarily the case, according to the summary statistics presented above, as
workers with secondary vocational education tend to perform relatively well in terms of employability
in both countries. However, we will systematically attempt to control for unobserved heterogeneity in
our empirical exercises.
3.3 Unemployment duration

This section is a first attempt of assessing the costs of job separation after a reallocation shock in the presence of labor market imperfections, and in particular, in the presence of specific skills as opposed to general education. We investigate the determinants of unemployment duration after job separation. We construct for the analysis a monthly data set with all relevant labor market spells for each individual in the sample throughout the 1997-2003 period. We include all workers experiencing at least one unemployment spell after job separation. The samples are right censored and this will be accounted for in the estimations.

The first feature that clearly stands out from the data is that unemployed workers find a job faster in Estonia than in Poland, as evidenced by the Kaplan-Maier survival rates presented in Figure 4. For example, two years after job separation over 27\% of workers who experienced an unemployment spell are still unemployed in Poland, while this number is only 14\% in the case of Estonia.

To understand the determinants of these survival rates and implicit hazard rates, and notably to understand the role of vocational education in re-entering employment, we develop a multivariate model with observable and unobservable heterogeneity. The hazard rate here is the probability of re-entering employment after job separation, conditional on having experienced an unemployment spell. Let the duration of the unemployment spell after separation be described by the density and distribution functions: $f(t)$ and $F(t)$. Then, the survivor function is defined as: $S(t) = 1 - F(t)$, and the hazard function as: $h(t) = \frac{f(t)}{S(t)}$. We estimate a proportional hazard model: $h(t) = h_0(t).\exp(\beta'x)$, where $h_0(t)$ is the parametrically specified baseline hazard, x is the vector of explanatory variables and β the vector of coefficients. We use a Gompertz-distributed baseline hazard for Estonia and a Weibull in the case of Poland, and allow for unobservable heterogeneity by using a mixture distribution where heterogeneity
is represented by a gamma function.19

Compared to the sample statistics in Table 1, we exclude new entrants and re-entrants into the labor force. As a result, the duration analysis includes a maximum of 4,867 unemployment spells after job separation for Estonia and of 23,006 spells in the case of Poland. All results are presented in Tables 2 and 3 for Poland and Estonia, respectively. Column 1 provides coefficient estimates for the basic specification, where the covariates include measures of education, age, gender and language (in the case of Estonia); column 2 adds regional dummies (a dummy for the capital in the case of Estonia). Our findings confirm the expectations of adverse effects of vocational education in re-entering employment. In both countries, each additional year of education raises the probability of re-entering employment by about 10 to 11\%, while holding basic vocational or secondary vocational degrees reduce it by 12 to 16\%. In the case of Poland, data allows us to control for the sector of the last job held by the currently unemployed worker, see column 3 in Table 2. All the results are robust to the inclusion of sectoral dummies. Column 4 in Table 2 adds a tenure variable for Poland, defined as tenure in years in the last job of the unemployed worker. Unfortunately, this variable is not available in the panel of unemployed workers in Estonia. Tenure, controlling for age and education, has a significant negative effect on the hazard rate. This is consistent with our story, as workers with longer tenures on the previous job are likely to be endowed with more specific skills.

Columns 5 and 6 in Table 2 and column 3 in Table 3 refers to the sub-sample workers who declare to be unemployed due to dismissal from their previous job. An additional year of education raises the probability of finding a job by about 13 to 14\% in this sub-sample, which is slightly more than for the whole sample of unemployed. Vocational degrees have also a stronger negative effect on the hazard rate of dismissed workers compared with the whole sample, with the exception of basic vocational for Estonia that turned out to be statistically insignificant.

In both countries, the conditional probability of finding a job decreases with age: young workers find a job faster. However, the negative effect in the hazard rate is declining with age, as the quadratic coefficient has the opposite sign; in the case of Estonia there is a turning point at around 50 years.20 Overall, the duration analysis is consistent with the view that, controlling for years of schooling, vocational education and specific skills reduce re-employment probabilities. Furthermore, dismissed workers with vocational education have additional difficulties to re-enter employment after job separation.

3.4 Flows into inactivity

Recently, Haltiwanger and Vodopivic (2002) have studied in detail the dynamics of Estonian labor markets for the period 1989-1994, i.e. prior to ours, and confirmed the impression of relative dynamism of the Estonian labor market. We are not aware of a similar study for Poland neither any comparative study across the two countries. Such an analysis is however relevant here: early retirement and more

19Gompertz and Weibull distributions are found to provide the best fit for Estonia and Poland respectively, according to the Cox-Snell diagnostic plot.

20A possible explanation is self-selection: older workers still in the market may have positive unobservable characteristics that lead them to faster re-employment.
Table 2: Proportional Hazard Estimates of Unemployment Spells, Poland 1997-2003.

<table>
<thead>
<tr>
<th>Model</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>all</td>
<td>all</td>
<td>all</td>
<td>all</td>
<td>dismissed</td>
<td>dismissed</td>
</tr>
<tr>
<td>Years of education</td>
<td>0.1136</td>
<td>0.1168</td>
<td>0.1085</td>
<td>0.1183</td>
<td>0.1389</td>
<td>0.1390</td>
</tr>
<tr>
<td>(11.34)**</td>
<td>(11.65)**</td>
<td>(10.60)**</td>
<td>(11.74)**</td>
<td>(11.85)**</td>
<td>(11.84)**</td>
<td></td>
</tr>
<tr>
<td>Secondary vocational</td>
<td>-0.1278</td>
<td>-0.1319</td>
<td>-0.0835</td>
<td>-0.1182</td>
<td>-0.1707</td>
<td>-0.1534</td>
</tr>
<tr>
<td>(2.26)*</td>
<td>(2.34)*</td>
<td>(1.47)</td>
<td>(2.09)*</td>
<td>(2.60)**</td>
<td>(2.33)*</td>
<td></td>
</tr>
<tr>
<td>Basic vocational</td>
<td>-0.1617</td>
<td>-0.1664</td>
<td>-0.1222</td>
<td>-0.1519</td>
<td>-0.2177</td>
<td>-0.2018</td>
</tr>
<tr>
<td>(3.71)**</td>
<td>(3.82)**</td>
<td>(2.77)**</td>
<td>(3.47)**</td>
<td>(4.37)**</td>
<td>(4.04)**</td>
<td></td>
</tr>
<tr>
<td>Public job last</td>
<td>-0.7290</td>
<td>-0.7170</td>
<td>-0.8769</td>
<td>-0.6383</td>
<td>-0.6543</td>
<td>-0.5777</td>
</tr>
<tr>
<td>(17.25)**</td>
<td>(17.02)**</td>
<td>(17.83)**</td>
<td>(14.71)**</td>
<td>(13.84)**</td>
<td>(11.90)**</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>-0.0877</td>
<td>-0.0855</td>
<td>-0.0900</td>
<td>-0.0895</td>
<td>-0.1110</td>
<td>-0.1068</td>
</tr>
<tr>
<td>Age²/100</td>
<td>0.0066</td>
<td>0.0063</td>
<td>0.0068</td>
<td>0.0076</td>
<td>0.0098</td>
<td>0.0100</td>
</tr>
<tr>
<td>(3.58)**</td>
<td>(3.42)**</td>
<td>(3.69)**</td>
<td>(4.08)**</td>
<td>(4.33)**</td>
<td>(4.40)**</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0.7527</td>
<td>0.7564</td>
<td>0.7098</td>
<td>0.7536</td>
<td>0.7786</td>
<td>0.7711</td>
</tr>
<tr>
<td>(18.43)**</td>
<td>(18.58)**</td>
<td>(16.21)**</td>
<td>(18.49)**</td>
<td>(16.80)**</td>
<td>(16.60)**</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>0.3314</td>
<td>0.3344</td>
<td>0.3380</td>
<td>0.3416</td>
<td>0.4151</td>
<td>0.4188</td>
</tr>
<tr>
<td>(7.61)**</td>
<td>(7.71)**</td>
<td>(7.77)**</td>
<td>(7.84)**</td>
<td>(8.34)**</td>
<td>(8.38)**</td>
<td></td>
</tr>
<tr>
<td>Tenure</td>
<td>-0.0255</td>
<td>-0.0283</td>
<td>-0.0900</td>
<td>-0.0895</td>
<td>-0.1110</td>
<td>-0.1068</td>
</tr>
<tr>
<td>(14.37)**</td>
<td>(13.80)**</td>
<td>(10.30)**</td>
<td>(13.76)**</td>
<td>(11.95)**</td>
<td>(12.27)**</td>
<td></td>
</tr>
</tbody>
</table>

Note: Absolute value of z-statistics in parenthesis.* and ** denote statistically significant at the 5 and 1 per cent level respectively.

<table>
<thead>
<tr>
<th>Model</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>All</td>
<td>Dismissed</td>
</tr>
<tr>
<td>Years of education</td>
<td>0.1104</td>
<td>0.0987</td>
<td>0.1400</td>
</tr>
<tr>
<td></td>
<td>(9.59)**</td>
<td>(8.28)**</td>
<td>(4.65)**</td>
</tr>
<tr>
<td>Secondary vocational</td>
<td>-0.1536</td>
<td>-0.1238</td>
<td>-0.3233</td>
</tr>
<tr>
<td></td>
<td>(2.28)*</td>
<td>(1.77)</td>
<td>(1.65)</td>
</tr>
<tr>
<td>Basic vocational</td>
<td>-0.1593</td>
<td>-0.1185</td>
<td>0.0256</td>
</tr>
<tr>
<td></td>
<td>(2.91)**</td>
<td>(2.09)*</td>
<td>(0.19)</td>
</tr>
<tr>
<td>Age</td>
<td>-0.1278</td>
<td>-0.1084</td>
<td>-0.0537</td>
</tr>
<tr>
<td></td>
<td>(10.45)**</td>
<td>(8.55)**</td>
<td>(1.45)</td>
</tr>
<tr>
<td>Age(^2)/100</td>
<td>0.0013</td>
<td>0.0010</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td>(8.39)**</td>
<td>(6.47)**</td>
<td>(1.40)</td>
</tr>
<tr>
<td>Estonian</td>
<td>0.3103</td>
<td>0.4454</td>
<td>0.1481</td>
</tr>
<tr>
<td></td>
<td>(6.68)**</td>
<td>(8.62)**</td>
<td>(1.19)</td>
</tr>
<tr>
<td>Male</td>
<td>0.0349</td>
<td>0.0397</td>
<td>-0.0981</td>
</tr>
<tr>
<td></td>
<td>(0.78)</td>
<td>(0.86)</td>
<td>(0.79)</td>
</tr>
<tr>
<td>Marital</td>
<td>-0.0487</td>
<td>-0.0557</td>
<td>-0.1039</td>
</tr>
<tr>
<td></td>
<td>(1.95)</td>
<td>(2.18)*</td>
<td>(1.63)</td>
</tr>
<tr>
<td>Tallin</td>
<td>0.5064</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7.93)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-0.9900</td>
<td>-1.3350</td>
<td>-1.5970</td>
</tr>
<tr>
<td></td>
<td>(4.13)**</td>
<td>(5.36)**</td>
<td>(2.01)*</td>
</tr>
<tr>
<td>Time dum.</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Dur. dependence</td>
<td>-0.017</td>
<td>-0.016</td>
<td>-0.109</td>
</tr>
<tr>
<td></td>
<td>(-8.38)</td>
<td>(-7.69)</td>
<td>(-10.39)</td>
</tr>
<tr>
<td>Unobs. heterogeneity</td>
<td>0.088</td>
<td>0.109</td>
<td></td>
</tr>
<tr>
<td>(p-value)</td>
<td>(0.079)</td>
<td>(0.035)</td>
<td>(0.49)</td>
</tr>
<tr>
<td>Observations</td>
<td>4,867</td>
<td>4,578</td>
<td>1,857</td>
</tr>
</tbody>
</table>

Note: Absolute value of z-statistics in parenthesis.* and ** denote statistically significant at the 5 and 1 per cent level respectively.
Table 4: Probit estimates of flows into inactivity. Elder Population

<table>
<thead>
<tr>
<th></th>
<th>Poland</th>
<th>Estonia</th>
<th>Marginal Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Males</td>
<td>(2) Females</td>
<td>(3) Males</td>
</tr>
<tr>
<td>Age</td>
<td>0.0022</td>
<td>0.0049</td>
<td>0.0029</td>
</tr>
<tr>
<td></td>
<td>(10.30)**</td>
<td>(9.80)**</td>
<td>(7.64)**</td>
</tr>
<tr>
<td>Years of education</td>
<td>-0.0017</td>
<td>-0.0028</td>
<td>-0.0031</td>
</tr>
<tr>
<td></td>
<td>(5.11)**</td>
<td>(6.22)**</td>
<td>(5.77)**</td>
</tr>
<tr>
<td>Secondary vocational</td>
<td>0.0075</td>
<td>0.0052</td>
<td>0.0111</td>
</tr>
<tr>
<td></td>
<td>(2.50)*</td>
<td>(1.37)</td>
<td>(1.78)</td>
</tr>
<tr>
<td>Basic vocational</td>
<td>0.0106</td>
<td>0.0102</td>
<td>0.0082</td>
</tr>
<tr>
<td></td>
<td>(4.31)**</td>
<td>(2.60)**</td>
<td>(2.19)*</td>
</tr>
<tr>
<td>County dummies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Quarter dummies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>49192</td>
<td>34254</td>
<td>12129</td>
</tr>
</tbody>
</table>

Note: Absolute value of z-statistics in parenthesis.* and ** denote statistically significant at the 5 and 1 per cent level respectively. Males aged between 50 and 65, except in Estonia after 2002 (50-63). Females aged between 50 and 60, except in Estonia after 2002 (50-59). Marital status dummies (3 in Poland, 2 in Estonia) are also included in the regressions and found non-significant at standard levels.

Broadly movements out of the labor force become an option (sometimes unavoidable) for elder workers whose skills have become obsolete in a period of rapid structural change. Figure 11 in Appendix E strikingly shows how this adjustment mechanism can become a relevant policy choice during transition. In 1991, soon after the fall of the iron curtain, the number of granted early retirement pensions in Poland reached 700,000, increasing from 160,000 in 1990 and rapidly declining again to a steady-state level of about 40,000 by 1993. In this section we investigate the extent to which flows into inactivity are an adjustment mechanism in Estonia and Poland, and whether workers with specific skills are more likely to become inactive once they are hit by a negative labor market shock.

Computing transition rates across labor market states from our database, we confirm the intuition provided by the above aggregate statistics: for females aged 50-60, the transition rate from employment to inactivity is 3.10% in Poland and 1.26% in Estonia, i.e. 2.5 times larger in Poland. For males aged 50-65, the corresponding number is 2.53% in Poland and 0.79% in Estonia, i.e. more than 3 times larger in Poland. However, other transitions between the three labor market states reported in Table 9 in Appendix D.2 are quite similar in magnitude in Estonia and Poland. This indicates that early retirement is an important element in the adjustment of the Polish labor market. The extent to which these workers who leave the labor force are those with specific skills will be examined in our next empirical exercise.

Table 4 shows marginal effects of probit estimates of the annual transition probabilities into inactivity in Poland and Estonia for elder workers (over 50). The initial state can be either employment or unemployment, since our interest is in the movements out of the labor force, and the age of workers has been limited to 60 in the case of females (columns 2 and 4) and 65 in the case of males (columns 1 and 3).
to avoid capturing retirement. As expected, movements into inactivity increase with age and decline with years of education in both countries. In line with our line of reasoning, workers with specific education are more likely to leave the labor market, this effect being more significant among workers with basic vocational education than for workers with secondary vocational education. Although these effects are present in both countries, in Estonia they are mainly driven by males while in Poland they are statistically significant regardless the gender (with the exception of the coefficient of secondary vocational for females). The magnitude of the marginal effects for vocational skills is large. According to the estimates in Column 1, having a secondary vocational degree increases the yearly probability of moving into inactivity in 0.75 basis points. Taking into account that the average probability of transition into inactivity for employed and unemployed elder males in Poland is 3.19%, this implies that having a secondary vocational degree increases the probability of transition into inactivity by 23%. Similarly, having a basic vocational degree raises the probability of transition by 33%. In Estonia the magnitude of the effect for males is similar in the case of basic vocational, and even larger in the case of females (although less precisely estimated, and therefore not statistically different from zero). In conclusion, we find that among elder workers those with vocational education have a larger probability of transition into inactivity in both countries. This effect is more prevalent in Poland, where overall flows into inactivity among elder workers are also much larger than in Estonia.

3.5 Wages, mobility and specific human capital

This last empirical section examines the wage profiles of workers who change jobs (movers) and relate them with skill differences. Our empirical strategy resembles a difference-in-difference approach as we compare the wage of movers with different skills (first difference) but also include in all specifications those workers who remain continuously employed within the sample (stayers), which allows us to control for aggregate trends in wages during the period of analysis and constitutes our second difference. The benchmark specification follows Bender et al. (2002), pooling stayers and movers. The logic is the following: we regress log wages on a set individual characteristics (x_{it}), time effects (ρ_t), and two dummy variables that capture common effects for the group of movers before (bm_{it}) and after (am_{it}) separation. Thus, the equation to be estimated is the following

$$\ln w_{it} = x_{it}\beta_x + \rho_t\beta_\rho + bm_{it}\beta_a + am_{it}\beta_u + (bm_{it} * z_{it})\beta_{bz} + (am_{it} * z_{it})\beta_{az} + u_{it}$$

(15)

where z_{it} is a subset of dummy variables that are included in x_{it} and ρ_t are time effects. The standard specification in Bender et al. does not allow for the interaction terms (i.e. β_{bz} and β_{az} are constrained

21Retirement ages are 60 for females and 65 for males in both countries before 2001. Since 2001 the retirement age is 63 for males and 59 for females in Estonia. Thus, we limit the sample to workers below these ages in the case of Estonia after this year.

22Farber (2005) finds that the individual cost of mobility is not limited to wages, but also affects hours worked, a dimension we will not address here.
to be zero), which are our coefficients of interest. These interactions capture trends before and after mobility for specific groups characterized by z_{it}. We include in z_{it} the individual’s years of education and two dummy variables for the nature of specific skills depending on the level: secondary vocational and basic vocational.

Wages present a quarterly frequency in both countries. Individuals are typically observed 4 times within a window of 2 years, and the panel is unbalanced. Table 1 presents summary statistics of the main variables included in the analysis. It can be noticed that the fraction of movers (represented by bm_{it} and am_{it}) is much higher in Estonia than in Poland, reflecting the higher flexibility of its labor market.

An important selection issue concerns withdrawal from the labor force. As our previous section suggested it might well be the case that sector-specific shocks price out individuals with the less desirable characteristics. In this case, our analysis will understate the welfare losses associated with mobility, simply because those individuals still participating in the labor market after the shock are those among the best of their group. An important limitation in our data is that it does not allow to single out the reason of separation for job to job movers. Since we pool both voluntary and involuntary movers, our estimates would be under-stating the wage losses associated with involuntary separations. We estimate equation 15 allowing for individual clustering of the robust standard errors. Alternative random effect (RE) specifications take explicit account of individual heterogeneity in the error term.

The full regression results are presented in Tables 7 and 8 in Appendix D.2. Since our focus here is on the wage profiles for different skills (thus, $\beta_{bz} - \beta_{az}$), these differences and the corresponding significance tests are summarized in Table 5.23 Our benchmark specification is in column 2 (RE), while column 1 presents the OLS regression. Columns 3 and 4 present additional RE models with a dummy variable for workers who change industry after mobility and additional interactions between industry change and educational variables.

Perhaps unexpectedly, the difference in the interaction terms ($am*Yearsedu - bm*Yearsedu$) presented in Table 5 is insignificant in Estonia. In Poland this difference presents the expected positive sign, suggesting that more educated workers have higher wage gains after mobility. Consistent with our line of thought, wage losses after mobility are important for workers with secondary vocational degrees in Estonia, who specifically lose between 4.6% and 7% with respect to workers with general skills during the job-to-job transitions. These differences are statistically significant (although in columns 1 and 4 only at the 10% level) in all our specifications. In Poland, the specific wage loss associated with secondary vocational education is smaller and different from zero only in columns 2 and 3, but around 3% and highly significant in all specifications for those workers with basic vocational education.

Finally, Tables 8 and 7 in Appendix D.2 also show, consistently with our theory, that changing industry is associated with wage increases (Columns 3), but according to Column 4 those wage gains

23 Anticipation of the separation in pre-separation wages might hide the actual effects of mobility on wages. Our data allows us in some cases to distinguish wages a year before separation and immediately after. We have experimented with such wage profiles before separation and obtained similar results. Notably, in line with Bender et al. (2002), we do not find a systematic pre-separation drop in wages.
Table 5: Wage profiles and human capital

<table>
<thead>
<tr>
<th>Specification</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((am - bm))*Yearsedu</td>
<td>0.006</td>
<td>0.000</td>
<td>0.000</td>
<td>0.002</td>
</tr>
<tr>
<td>P value</td>
<td>0.456</td>
<td>0.929</td>
<td>0.956</td>
<td>0.613</td>
</tr>
<tr>
<td>((am - bm))*Secvoc</td>
<td>-0.071*</td>
<td>-0.048**</td>
<td>-0.046*</td>
<td>-0.042+</td>
</tr>
<tr>
<td>P value</td>
<td>0.092</td>
<td>0.007</td>
<td>0.011</td>
<td>0.086</td>
</tr>
<tr>
<td>((am - bm))*Basicvoc</td>
<td>0.025</td>
<td>0.012</td>
<td>0.012</td>
<td>0.019</td>
</tr>
<tr>
<td>P value</td>
<td>0.497</td>
<td>0.423</td>
<td>0.424</td>
<td>0.380</td>
</tr>
<tr>
<td>Poland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((am - bm))*Yearsedu</td>
<td>0.002†</td>
<td>0.002†</td>
<td>0.002†</td>
<td>0.006**</td>
</tr>
<tr>
<td>P value</td>
<td>0.524</td>
<td>0.051</td>
<td>0.068</td>
<td>0.000</td>
</tr>
<tr>
<td>((am - bm))*Secvoc</td>
<td>-0.016</td>
<td>-0.014*</td>
<td>-0.014*</td>
<td>0.000</td>
</tr>
<tr>
<td>P value</td>
<td>0.395</td>
<td>0.025</td>
<td>0.023</td>
<td>0.993</td>
</tr>
<tr>
<td>((am - bm))*Basicvoc</td>
<td>-0.030†</td>
<td>-0.030**</td>
<td>-0.030**</td>
<td>-0.028**</td>
</tr>
<tr>
<td>P value</td>
<td>0.060</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Note: Full regression results are available in the Appendix C.3. P-values denote the probability of accepting the null of equal coefficients. +, * and ** denote statistically significant at the 10, 5 and 1 per cent level respectively. All regressions include a male dummy, Estonian origin (in Estonia), years of education, secvoc, basicvoc, age, age*age/100, tenure, tenure*tenure/100, quarter and county dummies. RE denotes a random effects specification. Column 3 additionally includes a change industry dummy, and column 4 its interaction with yedu, secvoc and basicvoc. There are 254,755 observations in the Polish sample, and 70,019 in the case of Estonia.

are more limited for workers with specific skills (although the interaction term is only statistically significant for secondary vocational in Poland).

Other unreported regressions show that there are gender and age differences in the wage profiles. Notably, we find stronger wage losses for elder workers with specific skills. Similarly, we have attempted to control for unobserved heterogeneity by including as a control variable the initial wage of individuals, which, given the short time span of our panel, explained about 80% of the variance of individual wages. Not surprisingly, the results are thus less significant for all the remaining covariates. However, even in this case the effects of vocational education are negative and statistically significant, although the magnitude of the effects is somewhat reduced.

4 A tale of two countries?

The empirical part of the previous Section has revealed a number of new facts that our benchmark model do not address. The existence of wage increases for sector-movers can however be easily accounted for with flexible wages, i.e. \(\beta > 0 \) in equation (8) where wages partly reflect marginal revenues. The existence of inflows into inactivity can also be easily incorporated. Finally, retraining is an option that should now be allowed. Here, we first augment the model in several dimensions, and second use it to provide a quantification of the causes of the unemployment divergence of Poland and Estonia in the
4.1 Augmenting the model

Firstly, assume that termination of an employment relationship has some cost F for the firm. This termination cost is seen as a pure tax to dismissals, and is not a transfer to the worker. See Mortensen and Pissarides (1999) for a discussion of this modelling choice. Whatever the wage rule (exogenous or as a share of the price of the intermediate good), the termination cost will thus have no direct consequence on wages. It however affects the job termination decision as firms will prefer to keep a temporarily unproductive relation in waiting for better times, as long as the present discounted value of the job is above $-F$. The job destruction rule (6) thus becomes:

$$p_k(t) - w_k - R_k(t) + \frac{\lambda}{r + \lambda + \delta + \sigma_k} \int_0^{R_k(t)} G(\Omega')d\Omega' + (r + \delta + \lambda + \sigma_k)F = 0,$$

while the job creation rule remains unchanged.

Secondly, the existence of skills specific to sectors or occupations has a direct implication: workers endowed with such skills are a priori immobile across sectors, unless adequately retrained. What happens to a worker when a job destruction shock strikes? We have so far adopted an extreme assumption: the absence of mobility, which implies that this worker can only look for a job in the same sector. An alternative assumption is that some workers retrain. They can do so at some cost which we denote by C. To simplify, we assume that retraining occurs only after job displacement, i.e. both new born workers with vocational training and employees in the traditional sector do not retrain. Let $T(t)$ be the total number of displaced workers in the old sector who retrain, with $0 \leq T(t) = \tau(JD_o - \delta)e_o$. Thus, $\tau \leq 1$ is the fraction of displaced workers who retrain through active labor market policies. We will assume that labor market policies are rationed, so that both $T(t)$ and τ are policy-determined: this is consistent with the observation that most countries have developed retraining programs targeted at specific groups of workers (long-term unemployed, younger workers, unskilled, displaced workers from a specific sector). Trainees are thus randomly selected from the pool of displaced workers.

In addition, workers may wish to endogenously retire if the value of being out-of-the labor force is greater than the value of being in the labor market. In labor markets with frictions, it is always the case that in equilibrium workers with a job are better off than without a job, which implies that the crucial retirement decision margin concerns displaced workers in the old sector. In reality, pension systems are typically non-linear and discontinuous: prior to the legal age of retirement, workers are normally not eligible to pensions benefits. This would suggests that early retirement is not an endogenous option. When pre-retirement is observed, this is actually driven by government’s decisions: the government contributes to social security taxes for specific groups of the population, which allows them to leave

24 A highly interesting empirical and theoretical question would be to understand why retraining is not more frequently the outcome of an individual decision. A combination of both credit constraints affecting displaced workers (who cannot afford paying training costs C) and myopia of workers currently employed in declining sectors might explain why governments typically take care of retraining.
the labor force. We thus naturally assume in the model that the total number of pre-retired workers is policy determined, and exogenous to worker’s decisions. The components of early retirement (level of benefits, total number of allowances) is fixed such that workers who are offered early retirement will accept it. To keep symmetrical notations, the flow number of pre-retirees is denoted by $P(t) = \pi(JD_o - \delta)e_o$, being $\pi \leq 1$ the fraction of pre-retirees.

Appendix A reports Bellman equations describing workers’ utility in each state (employment W_k, and unemployment U_k, for $k = n, o$). If we denote by Π the value of early retirement under a government-sponsored retirement scheme and by Π the value of early retirement when it is non government-sponsored, the participation constraints in the pre-retirement program and in the retraining program imply that in equilibrium, $U_n - C \geq U_o$, and $\Pi \geq U_o > \Pi$. The last inequality insures that no worker quit the labor force without being sponsored by the government. Note also that, for workers to prefer the new sector to the old sector as assumed ex-ante we simply require that $U_n \geq U_o - C$, which must necessarily be satisfied if $U_n - C \geq U_o$ holds.

The full dynamics of state variables with positive $P(t)$ and $T(t)$ is described in Appendix A in equations (A3) to (A5).

4.2 A calibration for Poland and Estonia

We now attempt to calibrate our augmented model to capture the specificity of each country. Specifically, we want to capture the differences in the institutional setting in both countries; Poland being characterized by relatively high wage rigidity and firing costs and Estonia being relatively flexible.

A first statistic we want to match is the level of steady-state unemployment, around 10% in both economies. A second statistic is the expected duration of unemployment. To do this, given right-censorship in the data, we consider the median duration in unemployment in both countries. The median duration, denoted by MD, is 8 months in Estonia and 14 months in Poland. Given that the job finding rate ϕ is the Poisson intensity, this means that the distribution of completed spells is $e^{-\phi t}$, implying a quarterly job finding rate that should be matched equal to $\phi = \ln 2/(MD/4)$, or $\phi = 0.347$ in Estonia and $\phi = 0.198$ in Poland. These two statistics are matched in setting $F = 0$ in Estonia and a firing cost of $F = 2.5$ or approximately 2 quarters of production in Poland, while hiring costs $\gamma_k = 1.05 + F^2 * 0.385$ preserve the steady-state value of unemployment. In the absence of known data on wage flexibility, we set the wage to $2/3$ in Poland and to $1/3 + 0.5p_k$ in Estonia, which captures higher wage rigidity in Poland and fixes the initial wage to be the same across countries.

The third statistic matched is the initial value of the relative demand for the old sector (parameter a_o), corresponding to the share observed in the data of vocational workers in the steady-state: 0.66 in Poland and 0.34 in Estonia. We will impose the same relative shock on each economy, i.e. the final value of a_o is 33% lower in each country, so as to obtain an initial peak in unemployment which is

25 Given that, along the transition, ϕ_o and ϕ_n appear to be relatively symmetrical around the steady-state level $\phi^* = \phi^*_o$, we can match the steady-state level of ϕ^* with the number implied by the data, even though the data does not represent the steady-state.
roughly equivalent to that observed in the data.

Forth, we attempt to match labor market policies, that is the values of \(\tau \) and \(\pi \). According to a 2003 Report from the Ministry of Economy, Labor and Social Policy in Poland, there were 47.6 thousands workers under training, i.e. approximately 0.18% of the total labor force in 2001. Hence we set \(\tau = 0 \) in Poland. There were at the same time 479.1 thousands pre-retirement allowances and pre-retirement benefits, or 1.84% of the labor force. Choosing \(\pi = 0.05 \) in the calibration between quarters 4 and 44 implies that, 5 years after the policy has been set, the fraction of early-retirees is 1.8% of the labor force, with a maximum of 2% in the sample. In Estonia, there is virtually no early retirement policy, so that \(\pi = 0 \), whereas according to Eamets et al. (1999) about 10% of the total pool of the unemployed receives some training. Training in the model is instantaneous so the comparison with actual figures is impossible. So, we set \(\tau = 0.05 \) to be symmetrical with the early retirement policy in Poland and see whether the dynamics of unemployment in the calibration matches the Estonian labor market. Other parameters are the same as the benchmark calibration.

Table (6) and Figures 5 and 6 provide an account of how a combination of initial conditions, labor market institutions and shocks generate the type of divergence in unemployment observed in the data. As far as stocks of the unemployed are considered, the data are relatively well replicated in the simulations: unemployment peaks at 15% in Estonia, and slightly above 21% in Poland, as compared to 13.5% and 20% respectively in the data. Five years after the shock, unemployment is still above 14% in Poland, and around 11% in Estonia. In terms of duration of unemployment spells, do we also match the statistics? The fit is reasonably good for Estonia (implied median duration is 8.2 months instead of 8 in the data), but less good in Poland where the implied median spell is 15.6 months according to the model, 1.6 months above the data. However, given that the measurement of unemployment spells is quite imprecise, we have not tried to improve over these statistics.

4.3 Relative contribution of vocational education, training and labor market institutions

The next and natural question is to try to assess the contribution of the various factors in the differences between both countries regarding unemployment dynamics. According to unreported counter-factual

Table 6: Fit of the calibration exercise

<table>
<thead>
<tr>
<th></th>
<th>Poland</th>
<th>Data</th>
<th>Estonia</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u^*) (1998)</td>
<td>10.06</td>
<td>10.5</td>
<td>10.06</td>
<td>9.80</td>
</tr>
<tr>
<td>(\phi_0^* = \phi_n^*)</td>
<td>0.178</td>
<td>0.198</td>
<td>0.337</td>
<td>0.347</td>
</tr>
<tr>
<td>Implied median spell</td>
<td>15.6 mths</td>
<td>14 mths</td>
<td>8.2 mths</td>
<td>8 mths</td>
</tr>
<tr>
<td>Pool of early retirement</td>
<td>1.8% to 2%</td>
<td>1.84%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak in unemployment</td>
<td>21.3%</td>
<td>20%</td>
<td>14.9%</td>
<td>13.5%</td>
</tr>
<tr>
<td>Share vocational</td>
<td>0.66</td>
<td>0.65</td>
<td>0.34</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Figure 5: Estonia-type economy after a reallocation shock. Initial stock of vocational education is 35%; training is 5% of the flows of displaced workers; wages are flexible ($w = 1/3$, $\beta = 0.5$); no employment protection; no early-retirement.

Figure 6: Poland-type economy after a reallocation shock. Initial stock of vocational education is 66%; early-retirement flows is 5% of the flows of displaced workers; wages are rigid ($w = 2/3$, $\beta = 0.0$); employment protection $F = 2.5$; no retraining.
simulation exercises, the relative importance of the various factors is as follows: if we impose the
same absolute shock instead of the same relative shock to both economies, approximately half of the
difference in unemployment persistence disappears. Having the same absolute shock means that initial
conditions are identical, so that we can conclude that half of the diverging evolution between the two
economies is due to different stocks of skills in the population, with too much vocational skills in Poland.
The other half is due to different retraining policies and different labor market institutions. Imposing
τ = 0 in Estonia implies that after 5 years unemployment is around 12% instead of 11%, meaning that
retraining could account for one quarter to one third of the difference with Poland. The remainder can
be attributed to higher wage rigididity and more stringent dismissal laws in the Polish economy.

Two disclaimers however apply to our attempts to match the facts with our theoretical framework.
First, the decomposition carried out is not easy to do, as each factor interact with the others and a
proper decomposition should also account for those interaction terms, which we cannot easily do given
the non-linear nature of the system we explore. Second, other potentially relevant mechanisms have
been taken away from our model: job search effort is not endogenous and the fact that unemployment
compensation differs in the two countries is an additional source of divergence in persistence. Another
ingredient of potential interest that has been left out from the analysis is the potentially large costs of
early retirement policies and retraining. For instance, Malthusian policies as those applied in Poland
might be efficient at reducing unemployment in the absence of funding issues, but certainly raise the
tax burden imposed to the economy. These issues are left to future research.

5 Concluding comments

This paper is concerned with the dynamics of labor markets with specific skills. It has proposed a
theory based on an extension of matching models and some methodological refinements to compute
the dynamic paths. As a side-product, we have shown that continuous-time dynamics of a two-sector
matching model can be fairly easily characterized and simulated, and thus may deserve some more
attention in the literature given their tractability. In order to assess the importance of specific skills
in the dynamics of labor market adjustment in the data, we have then explored the relevance of the
channels suggested by the model using individual survey data from Poland and Estonia.

To sum up the theoretical implications: 1) The allocation of initial education to individuals is by
nature very persistent, which makes employment reallocation difficult if initial choices do not fit the
current state of labor demand. 2) Workers with specific skills should suffer longer unemployment spells,
either because they are working in a declining sector or because retraining to enter the new sector is
time consuming. The extensions of the model further suggested that: 3) Wage flexibility increases,
to some extent, the speed of adjustment, but may slow down the expansion of the modern sector as
wages may rise fast especially when the price of the modern good is high. 4) Employment protection
prevents the convergence of the economy. It is efficient to reduce job destruction, but reduces so
much job creation that the consequences of a reallocation shock are more important and much more
persistent than in the absence of job protection. 5) Workers in the old sector who lose a job at the time of the initial shock would experience wage increases if they change sector; but if they remain in the same sector they should face wage losses. Note that changing sector requires retraining. 6) Retraining and early retirement increase the speed of adjustment, but early retirement reduces labor supply and employment in the new sector will not increase as much as with retraining. 7) The incidence of early retirement is higher among those workers whose skills are less adaptable to the new economic conditions. Implications 1, 3 and 4 could be observed indirectly from aggregate data, while implications 2 and 5 to 7 required the use of micro data.

To sum up the empirical section, we have investigated the extent to which specific skills (as opposed to general skills) in the labor market represent an obstacle to the reallocation of labor. Findings from individual data in both countries show, after controlling for a large number of individual characteristics and unobserved heterogeneity, the following: 1) Workers having attended secondary vocational education (in both Poland and Estonia) or basic vocational education (in Poland only) suffered on average higher wage losses during job to job transitions than comparable workers having attended general education. 2) Changing sector is associated with a positive wage increase during transition, but in Poland workers with secondary vocational education benefit less from these wage gains than workers with general education. 3) Workers with any type of vocational education suffer longer unemployment spells after job separation than workers with general education in Poland and Estonia. 4) Workers with any type of vocational education and close to a retirement age are more likely to become inactive than workers with general education in both Poland and Estonia, although the prevalence of flows into inactivity for the elder is much higher in the former economy.

Finally, attempting to assess the unemployment divergence of Estonia and Poland after 1998, we find that the fact that Poland has twice as many workers with vocational education when compared to Estonia is a major explanation of its relatively worst performance, while other factors, notably wage policy and employment protection, have played a smaller role possibly amplifying the impact of skill differences. Future research should explore the impact of active versus passive unemployment policies in the context of labor markets with specific skills.

References

Appendix

A Model

A.1 Stock-flows equations

Flows in and out each skill level are governed by

\[
\begin{align*}
\theta_l / \theta t &= \delta \nu - \delta \lambda_l - T - P, \\
\theta_u / \theta t &= \delta(1 - \nu) - \delta \lambda_u + T,
\end{align*}
\]

(A1)

(A2)

where \(\lambda_l \) is the labor force, with \(\lambda_l = \lambda_u + \lambda_s \), and where \(T \) and \(P \) are flows into retraining and early retirement as defined in Section 4.1. In the benchmark model, they are set to zero. However, to minimize the length of exposition, we will keep them here so as to avoid to repeat the augmented equations later on. Similarly, the dynamic adjustment of employment and unemployment is now described by the following system:

\[
\begin{align*}
\theta e_k / \theta t &= \phi_k u_k - JD_k(t)e_k - \Sigma_o \Delta(t_0) \text{ for } k = n, o, \\
\theta u / \theta t &= \delta \nu + [JD_o(t) - \delta]e_o - T(t) - P(t) - (\delta + \phi_o)u_o + \Sigma_o \Delta(t_0), \\
\theta u / \theta t &= \delta(1 - \nu) + T(t) + [JD_n(t) - \delta]e_n - (\delta + \phi_n)u_n.
\end{align*}
\]

(A3)

(A4)

(A5)

where \(JD_k(t) = \pi_k + \lambda[1 - G(R_k(t))] + \delta \) is the destruction rate faced by firms.

A.2 Bellman equations

We have for workers:

\[
\begin{align*}
(r + \delta)U_k &= b + \phi_k(W_k - U_k) + \partial U_k / \partial t, \\
(r + \delta)W_o &= w_o + (JD_o - \delta)[1 - \tau - \pi]U_o + \tau(U_n - C) - W_o + \pi \Pi + \partial W_o / \partial t, \\
(r + \delta)W_n &= w_n + (JD_n - \delta)(U_n - W_n) + \partial W_n / \partial t,
\end{align*}
\]

(A6)

(A7)

(A8)

where \(b \) is the flow utility from unemployment. As above, we already introduce notations \(\Pi, \pi, \tau \) defined Section 4.1, which are respectively utility derived from government-sponsored pre-retirement, Poisson transition rate of displaced workers of the old sector into pre-retirement and Poisson transition rate of displaced workers of the old sector into retraining scheme. For the benchmark model, simply set \(\pi = \tau = 0 \). We can also rewrite the Bellman equation of firms (3) in using the value of a vacant position (5) in a more condensed way in integrating by part as:

\[
(r + \delta + \lambda + \pi_k)J_k(\Omega, t) = p_k - w_k - \Omega + \lambda \int_0^{R_k(t)} G(O')dO' + (\pi + \lambda + \delta)\theta J_k / \theta t.
\]

(A9)

A.3 Steady-states

Using (A1) and (A2) in a steady-state, we obtain:

\[
\begin{align*}
\lambda_o &= \nu - (T + P) / \delta, \\
\lambda_n &= 1 - \nu + T / \delta,
\end{align*}
\]

(A10)

(A11)

and in a steady-state, \(\lambda_o + \lambda_n = 1 - P / \delta \), where \(P \) and \(T \) are defined above \((P = T = 0 \) corresponds to the benchmark model). Using \(u_k = \lambda_k - \lambda_s \) into (A3), we obtain the steady-state employment and unemployment rates as in equations (9) and finally using (A10), (A11) into (9), we obtain the level of employment and thus of production of each good:

\[
\begin{align*}
\lambda_n &= (1 - \nu + T / \delta) \phi_n(\theta_n) / JD_n + \phi_n(\theta_n) = Y_n, \\
\lambda_o &= (\nu - (T + P) / \delta) \phi_o(\theta_o) / JD_o + \phi_o(\theta_o) = Y_o.
\end{align*}
\]

(A12)

(A13)

B Dynamics

B.1 Lemmas

This Appendix presents five Lemmas used in the derivation of the dynamics properties of the model.

35
Lemma 1

\[\frac{\partial I_k(t,0)}{\partial t} = \frac{\partial \theta_k/\partial t}{\theta_k(t)} \eta \gamma_k/q(\theta_k(t)). \]

This comes from a derivation with respect to time of equation (7).

Lemma 2

\[\frac{\partial I_k(t,0)}{\partial t} = (r + \lambda + \delta + \pi^e) \left(\frac{\gamma_k}{q(\theta_k(t))} - \frac{\gamma_k}{q(\theta_k^*(t))} \right) \]

where \(\gamma_k/q(\theta_k(t)) = (p_k(t) - w_k + \lambda \int_0^{R_k(t)} G(\Omega') d\Omega')/(r + \lambda + \delta + \pi^e) \) and \(\theta_k^*(t) \) is the steady-state value of labor-market tightness when the price and the reservation values are precisely at \(p_k(t) \) and \(R_k(t) \).

Lemma 3

Combining Lemmas 1 and 2, we obtain a dynamic equation for \(\theta_k(t) \):

\[\frac{\partial \theta_k}{\partial t} = \frac{r + \lambda + \delta + \pi^e}{\eta \pi^e(1-\gamma_k^*)} \left(\frac{\gamma_k}{q(\theta_k(t))} - \frac{\gamma_k}{q(\theta_k^*(t))} \right), \]

(B14)

where we have used that \(\eta = -\theta_k q'(\theta_k)/q(\theta_k) \). Note also that \(0 \leq \eta \leq 1 \) and that \(\eta \) depends on \(\theta_k \) except when the matching function is Cobb-Douglas in which case \(q(.) \) is iso-elastic.

Lemma 4

Log-linearizing (B14), we obtain the forward-looking dynamic equation governing the law of motion of tightness:

\[\frac{\partial \theta_k(t)}{\partial t} = (r + \lambda + \delta + \pi^e) [\theta_k(t) - \theta_k^*]. \]

(B15)

Lemma 5

Log-linearizing (7) and using (B15), we obtain the forward-looking dynamic equation governing the law of motion of \(R_k \):

\[\frac{\partial R_k(t)}{\partial t} = (r + \lambda + \delta + \pi^e) [R_k(t) - R_k^*]. \]

B.2 Existence and uniqueness of a saddle-path

Around the steady-state, we are in the linear situation analyzed in Blanchard and Kahn (1980) in the case of linear difference equations, and generalized in Butler (1984) to continuous time linear differential equations: we have four predetermined variables, four “jump variables” and three exogenous variables \(p_k(t) \) and \(\nu(t) \). The information set is such that all agents form the right expectations and know the law of motion of exogenous variables. The number of “explosive solutions”, i.e. the number of eigenvalues with a positive real part, is exactly equal to the number of “jump variables”, while the number of eigenvalues with negative real part is equal to the number of predetermined variables. There is thus, around the steady-state, a unique convergence path to the steady-state. See notably Sargent and Wallace (1973) for a very early analysis of the “stability” of economic system with two eigenvalues of different sign and the interpretation of the convergence to the unique saddle-path. This generalizes the analysis of continuous-time dynamics of the one sector - exogenous labor supply matching by Pissarides (2000, chapters 1-2) to the case of a two-sector matching economy with time-varying labor supply in each economy.

B.3 Additional charts on the dynamics

In the benchmark numerical resolution of Section 2.4.2, we presented only the dynamic evolution of a few variables. Figure 7 complements this analysis with a few additional variables. Notably, employment evolves asymmetrically across sectors, as discussed in the text. Job creations (featured by the value of labor market tightness) are more symmetrical across sectors, but the initial rise in the new sector is insufficient to avoid a general rise in unemployment. Once again, in the absence of mobility the response of the education system is not sufficient to generate the right mix of skills in the labor force. The insufficient increase in production causes a raise of prices in the new sector during a long time interval, as revealed by the lower-left chart of Figure 7.

In addition to the benchmark simulation, we run here three alternative experiments, displayed in Figure 8, and compared them to the benchmark case. In the first experiment (first line, second column), we set the speed of convergence in the supply of education to \(\alpha = 0 \). Now, there is no convergence at all in the labor markets, as the economy remains permanently in the initial mismatch stage: labor supply does not evolve. However, most positive values of \(\alpha \) lead to the same dynamics as in the benchmark case, i.e. exhibit the same length of
adjustment in unemployment. In the second experiment (second line, first column), we return to the initial speed of convergence in the supply of education (α = 40) but raise demographic turnover from δ = 0.005 to 0.015 (and adjust wages to 0.587 to keep the same steady-state unemployment rate as in the benchmark case). As a matter of fact, convergence is three times faster: it takes only 20 quarters to reach an unemployment rate of 17.5% in the old sector, instead of 60 in the benchmark case. Finally, in the last experiment (second line, second column), we take the benchmark parameters but let exogenously 5% of displaced workers in the old sector move to the pool of unemployed in the good sector, during 10 years (between quarters 4 to 44). The increase in the speed of adjustment is spectacular, and mismatch has almost disappeared after 10 years.

C Additional remarks on the dynamics

Several important remarks on the dynamics are in place:

i) There may be cases in which the old sector is so unprofitable that no firm creates any vacancy. Inspection of equation (7) shows that this may occur if \(R_k(t) \) is negative. What happens however in this case is that all existing firms would disappear, as the support of operating costs is positive. This means that, for a new firm a vacancy would be filled immediately, making infinite profits because \(p_o = \alpha Y_o^{\eta} (Y + \delta)^{\rho} \) applied to \(Y_o = 0 \) is infinite. Thus, zero tightness is never an equilibrium along our transition paths.

ii) There is another corner solution: it may be that \(R_n \) is temporarily at the value of the upper bound of the support of \(\Omega \), in which case the rate of job destruction is its exogenous component: \(JD_n(t) = \delta + \pi \). We encounter such cases in several instances depending on the parameterization.

iii) Most of our analysis of the uniqueness of the transition path is carried out in a neighborhood of the steady-state. As shown by Blanchard and Fisher (1985) for instance, some models with saddle-path such as the Ramsey growth model may well converge to a corner solution with zero capital stock, depending on initial conditions. Here, we have not explored formally the possibility that, far away from the steady-state, the system converges to other corner steady-state with zero vacancies in one of the two sectors. We have however not encountered such a possibility in the simulations. Furthermore, we believe that the argument that a zero vacancy rate also implies that all existing firms disappear is sufficient to rule out such a possibility.

iv) At time \(t_0 \), the discrete negative jump in \(R_o \) implies that there is a sudden, discrete inflow into unemployment and thus a discrete negative jump in employment in the old sector, by the quantity \(\Sigma_0 \). In the

26 Unreported simulations show that even with \(\alpha = 1 \), adjustment is as long as with \(\alpha = 40 \).
modern sector, R_{n} rises, meaning less job destruction and more hires. There is no discontinuity in e_{n} and u_{n} which are both state variables with no jump: the matching process smooths the adjustment. After the shock, all stocks e_{k} and u_{k} are continuous, and thus can be considered as predetermined: the uniqueness result of the saddle-path thus holds for $t > t_{o}$. A discussion of such discrete jumps in otherwise predetermined variables can be found in Mortensen and Pissarides (1994).

D Data analysis

D.1 Data description: details

The ELFS was first conducted in 1995, presenting an annual frequency during the first 5 waves and a quarterly frequency from 2000q2. The yearly surveys include a retrospective section where individuals are asked about all their relevant labor market spells (on a monthly basis) and their salary at three points in time during the previous year. Thus, for instance the 1998 survey provides information of individual wages in January 1997, October 1997, January 1998, and the reference week, which lies in the second quarter of 1998. From 2000q2 the data is collected quarterly and the panel follows a 2-2-2 rotation plan. This implies that every household is interviewed two quarters, non observed for two quarters and interviewed again for two consecutive quarters. This structure allows to construct a quarterly data set with individual’s wage information covering the period 1997-2003, where individuals are typically observed 4 times. The 1998 and 1999 ELFS sampled around 14,000 individuals, while after 2000q2 each quarterly waves contains information for about 4,000 individuals. The PLFS is conducted since the early 1990s and presents a quarterly frequency from the start, following the same 2-2-2 rotation plan. This implies that every household is interviewed two quarters, non observed for two quarters and interviewed again for two consecutive quarters. This structure allows to construct a quarterly data set with individual’s wage information covering the period 1997-2003, where individuals are typically observed 4 times. The 1998 and 1999 ELFS sampled around 14,000 individuals, while after 2000q2 each quarterly waves contains information for about 4,000 individuals.

The PLFS is conducted since the early 1990s and presents a quarterly frequency from the start, following the same 2-2-2 rotation plan described for the second part of Estonian data. There is an important methodological change in the sampling structure in 1999q1, imposing a break in the series since the survey was not conducted in 1999q2 and 1999q3. This leads to an under-representation of 1999 in the final sample. Sample sizes are relatively large in the PLFS, which interviews around 50,000 working age individuals per quarter.

27The 1999 survey contains a 25% of the 1998 sample, and similarly the 2000q2 survey retained a 25% of the households interviewed in 1999. Hence, some individuals in the first part of the survey are observed up to 8 times.
D.2 Additional Tables
Table 7: Wages and mobility. Estonia

<table>
<thead>
<tr>
<th>Model</th>
<th>Dep. var.: Log (hourly wage)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td>0.317</td>
<td>0.307</td>
<td>0.307</td>
<td>0.307</td>
</tr>
<tr>
<td>Estonian</td>
<td></td>
<td>0.215</td>
<td>0.198</td>
<td>0.198</td>
<td>0.198</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td>0.015</td>
<td>0.021</td>
<td>0.021</td>
<td>0.021</td>
</tr>
<tr>
<td>Age²/100</td>
<td></td>
<td>-0.024</td>
<td>-0.030</td>
<td>-0.030</td>
<td>-0.030</td>
</tr>
<tr>
<td>Tenure</td>
<td></td>
<td>0.014</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
</tr>
<tr>
<td>Tenure²/100</td>
<td></td>
<td>-0.020</td>
<td>-0.016</td>
<td>-0.016</td>
<td>-0.016</td>
</tr>
<tr>
<td>Years of education</td>
<td></td>
<td>0.083</td>
<td>0.075</td>
<td>0.075</td>
<td>0.075</td>
</tr>
<tr>
<td>Secondary vocational</td>
<td></td>
<td>-0.184</td>
<td>-0.159</td>
<td>-0.159</td>
<td>-0.159</td>
</tr>
<tr>
<td>Basic vocational</td>
<td></td>
<td>-0.164</td>
<td>-0.132</td>
<td>-0.132</td>
<td>-0.132</td>
</tr>
<tr>
<td>bm</td>
<td></td>
<td>-0.024</td>
<td>0.154</td>
<td>0.152</td>
<td>0.153</td>
</tr>
<tr>
<td>am</td>
<td></td>
<td>-0.007</td>
<td>0.242</td>
<td>0.220</td>
<td>0.192</td>
</tr>
<tr>
<td>bm*Yearsedu</td>
<td></td>
<td>0.001</td>
<td>-0.018</td>
<td>-0.018</td>
<td>-0.018</td>
</tr>
<tr>
<td>am*Yearsedu</td>
<td></td>
<td>0.007</td>
<td>-0.017</td>
<td>-0.017</td>
<td>-0.015</td>
</tr>
<tr>
<td>bm*Secvoc</td>
<td></td>
<td>-0.006</td>
<td>0.083</td>
<td>0.085</td>
<td>0.085</td>
</tr>
<tr>
<td>am*Secvoc</td>
<td></td>
<td>-0.077</td>
<td>0.035</td>
<td>0.039</td>
<td>0.043</td>
</tr>
<tr>
<td>bm*Basicvoc</td>
<td></td>
<td>-0.023</td>
<td>0.000</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td>am*Basicvoc</td>
<td></td>
<td>0.002</td>
<td>0.012</td>
<td>0.011</td>
<td>0.018</td>
</tr>
<tr>
<td>Change industry</td>
<td></td>
<td>0.041</td>
<td>0.096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch_ind*Yearsedu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch_ind*Secvoc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch_ind*Basicvoc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>County Dummies</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Quarter Dummies</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td>70,019</td>
<td>70,019</td>
<td>70,019</td>
<td>70,019</td>
</tr>
<tr>
<td>R-squared</td>
<td></td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Note: Absolute value of z-statistics in parenthesis.* and ** denote statistically significant at the 5 and 1 per cent level respectively. bm is a dummy variable taking value 1 for movers before mobility takes place. am is a dummy variable taking value 1 for movers after the mobility episode.
Table 8: Wages and mobility. Poland

<table>
<thead>
<tr>
<th>Model</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>RE</td>
<td>RE</td>
<td>RE</td>
</tr>
<tr>
<td>Male</td>
<td>0.255</td>
<td>0.248</td>
<td>0.248</td>
<td>0.248</td>
</tr>
<tr>
<td></td>
<td>(119.32)**</td>
<td>(120.42)**</td>
<td>(120.41)**</td>
<td>(120.41)**</td>
</tr>
<tr>
<td>Age</td>
<td>0.019</td>
<td>0.022</td>
<td>0.022</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>(23.08)**</td>
<td>(31.72)**</td>
<td>(31.71)**</td>
<td>(31.69)**</td>
</tr>
<tr>
<td>Age²/100</td>
<td>-0.019</td>
<td>-0.022</td>
<td>-0.022</td>
<td>-0.022</td>
</tr>
<tr>
<td></td>
<td>(17.69)**</td>
<td>(24.77)**</td>
<td>(24.75)**</td>
<td>(24.74)**</td>
</tr>
<tr>
<td>Tenure</td>
<td>0.013</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>(32.36)**</td>
<td>(34.90)**</td>
<td>(34.89)**</td>
<td>(34.96)**</td>
</tr>
<tr>
<td>Tenure²/100</td>
<td>-0.022</td>
<td>-0.017</td>
<td>-0.017</td>
<td>-0.017</td>
</tr>
<tr>
<td></td>
<td>(17.05)**</td>
<td>(18.05)**</td>
<td>(18.05)**</td>
<td>(18.10)**</td>
</tr>
<tr>
<td>Years of education</td>
<td>0.051</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td>(117.99)**</td>
<td>(124.38)**</td>
<td>(124.38)**</td>
<td>(124.38)**</td>
</tr>
<tr>
<td>Secondary vocational</td>
<td>-0.016</td>
<td>-0.012</td>
<td>-0.012</td>
<td>-0.012</td>
</tr>
<tr>
<td></td>
<td>(5.96)**</td>
<td>(5.12)**</td>
<td>(5.11)**</td>
<td>(5.12)**</td>
</tr>
<tr>
<td>Basic vocational</td>
<td>-0.072</td>
<td>-0.071</td>
<td>-0.071</td>
<td>-0.071</td>
</tr>
<tr>
<td></td>
<td>(27.57)**</td>
<td>(28.72)**</td>
<td>(28.72)**</td>
<td>(28.72)**</td>
</tr>
<tr>
<td>bm</td>
<td>-0.106</td>
<td>-0.061</td>
<td>-0.061</td>
<td>-0.066</td>
</tr>
<tr>
<td></td>
<td>(2.87)**</td>
<td>(1.80)</td>
<td>(1.82)</td>
<td>(1.95)</td>
</tr>
<tr>
<td>am</td>
<td>-0.031</td>
<td>0.014</td>
<td>0.006</td>
<td>-0.052</td>
</tr>
<tr>
<td></td>
<td>(0.80)</td>
<td>(0.41)</td>
<td>(0.17)</td>
<td>(1.48)</td>
</tr>
<tr>
<td>bm*Yearapi</td>
<td>0.003</td>
<td>-0.002</td>
<td>-0.002</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(1.13)</td>
<td>(0.87)</td>
<td>(0.87)</td>
<td>(0.73)</td>
</tr>
<tr>
<td>am*Yearapi</td>
<td>0.005</td>
<td>-0.000</td>
<td>-0.000</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(1.70)</td>
<td>(0.09)</td>
<td>(0.14)</td>
<td>(1.58)</td>
</tr>
<tr>
<td>bm*Secvoc</td>
<td>0.009</td>
<td>0.033</td>
<td>0.033</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>(0.46)</td>
<td>(2.18)*</td>
<td>(2.24)*</td>
<td>(2.20)*</td>
</tr>
<tr>
<td>am*Secvoc</td>
<td>-0.007</td>
<td>0.018</td>
<td>0.019</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>(0.35)</td>
<td>(1.23)</td>
<td>(1.28)</td>
<td>(2.06)*</td>
</tr>
<tr>
<td>bm*Basicvoc</td>
<td>0.023</td>
<td>0.038</td>
<td>0.039</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>(1.49)</td>
<td>(2.64)**</td>
<td>(2.71)**</td>
<td>(2.78)**</td>
</tr>
<tr>
<td>am*Basicvoc</td>
<td>-0.007</td>
<td>0.008</td>
<td>0.009</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>(0.44)</td>
<td>(0.59)</td>
<td>(0.65)</td>
<td>(0.83)</td>
</tr>
<tr>
<td>Ch_industry</td>
<td>0.022</td>
<td>0.162</td>
<td>0.162</td>
<td>0.162</td>
</tr>
<tr>
<td></td>
<td>(4.59)**</td>
<td>(6.00)**</td>
<td>(6.00)**</td>
<td>(6.00)**</td>
</tr>
<tr>
<td>Ch_ind*Yearapi</td>
<td>-0.010</td>
<td>-0.010</td>
<td>-0.010</td>
<td>-0.010</td>
</tr>
<tr>
<td></td>
<td>(5.29)**</td>
<td>(5.29)**</td>
<td>(5.29)**</td>
<td>(5.29)**</td>
</tr>
<tr>
<td>Ch_ind*Secvoc</td>
<td>-0.037</td>
<td>-0.037</td>
<td>-0.037</td>
<td>-0.037</td>
</tr>
<tr>
<td></td>
<td>(2.91)**</td>
<td>(2.91)**</td>
<td>(2.91)**</td>
<td>(2.91)**</td>
</tr>
<tr>
<td>Ch_ind*Basicvoc</td>
<td>-0.009</td>
<td>-0.009</td>
<td>-0.009</td>
<td>-0.009</td>
</tr>
<tr>
<td></td>
<td>(0.73)</td>
<td>(0.73)</td>
<td>(0.73)</td>
<td>(0.73)</td>
</tr>
</tbody>
</table>

Note: Absolute value of z-statistics in parenthesis.* and ** denote statistically significant at the 5 and 1 per cent level respectively. bm is a dummy variable taking value 1 for movers before mobility takes place. am is a dummy variable taking value 1 for movers after the mobility episode.
Table 9: Average Transition Rates. Poland and Estonia. 1997-2003

<table>
<thead>
<tr>
<th>Transition Rates</th>
<th>E-E</th>
<th>E-U</th>
<th>E-I</th>
<th>U-E</th>
<th>U-I</th>
<th>I-E</th>
<th>I-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>3.34</td>
<td>1.46</td>
<td>1.38</td>
<td>10.76</td>
<td>6.63</td>
<td>2.97</td>
<td>1.59</td>
</tr>
<tr>
<td>Elder Females</td>
<td>2.36</td>
<td>1.02</td>
<td>1.26</td>
<td>8.86</td>
<td>6.70</td>
<td>2.63</td>
<td>1.60</td>
</tr>
<tr>
<td>Elder Males</td>
<td>2.92</td>
<td>1.50</td>
<td>0.79</td>
<td>8.55</td>
<td>4.85</td>
<td>2.58</td>
<td>1.23</td>
</tr>
<tr>
<td>Poland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>1.48</td>
<td>1.64</td>
<td>1.57</td>
<td>8.64</td>
<td>6.62</td>
<td>1.43</td>
<td>1.85</td>
</tr>
<tr>
<td>Elder Females</td>
<td>0.37</td>
<td>0.45</td>
<td>3.10</td>
<td>3.04</td>
<td>12.74</td>
<td>0.65</td>
<td>0.42</td>
</tr>
<tr>
<td>Elder Males</td>
<td>0.76</td>
<td>0.66</td>
<td>2.53</td>
<td>4.84</td>
<td>9.33</td>
<td>0.81</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Note: Yearly transition rates. Females are between 50 and 60 years of age. Males are between 50 and 65 years of age. Weighted statistics. E: Employment; I: Inactivity; U: Unemployment; E-E refers to job movers.

E Estonia and Poland. Background information

Estonia and Poland joined the EU in March 2004 (together with 8 other countries) after more than a decade of deep reforms to change their institutions towards a market economy. The process of EU eastward enlargement had formally started in late March 1998 with 13 countries applying to the EU.

E.1 Macroeconomic context

Estonia is a small country that gained independence from the Soviet Union in 1991. In 1992 Estonia introduced its own currency, pegged to the German DM and launched drastic economic reforms. Following the 1992 reforms, Estonia experienced negative real GDP growth rates during 3 consecutive years, until 1995, when the economy started to recover. In 1999, one year after the announcement that Estonia would join the union, the rate of GDP growth turned negative again, recovering strongly in 2000 to reach an stable level of 6.5% growth since then. The unemployment rate was 9.2% of the labor force in 1998. It further increased in 1999 and 2000 (11.3 and 12.5% respectively) but subsequently declined to 11.8 and 9.1% in 2001 and 2002. There have been large sectoral shifts in employment during the 1990s in Estonia: the share of employees in agriculture went from over 20% in 1990 to 8% in 2000. At the same time, there has been a remarkable increase of the service employment share, from 43% in 1990 to about 60% in 2002. The share of employment in the industry sector declined at first and increased thereafter. Figure 9 shows indeed that job separations increased continuously after 1999, coinciding with a raise of the hiring rate. This positive co-movement between job hiring and job separation rates is evidence of reallocation shocks affecting Estonia.

Poland is the largest country that joined the EU in 2002. In Poland, the sectoral reallocation rate was large in the early years of 1990, and declined during the decade. Regarding unemployment and GDP growth, the best year for the Polish labor market was 1998. Immediately afterwards, as indicated in Figure 10, job separations increased continuously after 1999, but, contrary to Estonia, job hirings did not rise strongly.

E.2 Labor market institutions

Labor market reforms in Estonia started in 1991, even before independence, and by 1993 most public companies had been privatized. Today, wage determination is flexible in that no effective trade union movement influences wages. Minimum wages are currently around 40% of the average wages. There is no policy to prevent bankruptcy and layoffs, and employment protection is among the lowest European levels. The law of Employment Contract of 1992 explicitly intends to stimulate labor reallocation; it requires only two months prior notification to layoff a worker and severance payments are a maximum of 4 times the individual’s monthly salary. Unemployment benefits are 60% of the minimum wage, i.e. overall less than 25% of the average wage and the replacement ratio dropped from 32% in 1990 to 7% in 1998. The duration of unemployment benefits is limited to 6 months, followed by limited social assistance. Active labor market policies are mostly retraining programs, specially targeting the elder.

Poland’s first steps towards economic reforms focused on eliminating hyperinflation, while structural aspects, notably economic institutions and privatization, were postponed. Poland today has a relatively rigid labor

28 Additional Appendix, not to be published.
Figure 9: Hiring and separation rates. Estonia 1997-2002

Figure 10: Hiring and separation rates. Poland 1997-2002

Figure 11: Early-retirement in Poland. Source: Kwiatkowski et al. (2001).
market, associated with a generous benefit system and regulatory distortions slowing down the process of employment creation. As far as passive labor market policies are concerned, the ratio of covered over total unemployment declined from 79% in 1990 to 23.6% in 1998, while the ratio of benefits to the minimum wage declined from 81% to 60% (34% to 23.7% of the average wage). However, there are more persons under early retirement benefits than in unemployment benefits. There are retraining programs for the unemployed, but the number of persons referred to retraining courses was about 70,000 in 2002, compared to a pool of more than three millions unemployed persons.

Overall, these developments show three important aspects that are consistent with some of the conclusions and modeling assumptions discussed in the preceding sections. First, there is evidence of important reallocation shocks in both countries during the pre-accession period. Second, labor market institutions differ considerably between both countries. Polish institutions favor slow adjustment and concentrate on easing the consequences of labor reallocation, while Estonian institutions favor rapid employment and wage adjustments. Third, in response to similar shocks the Polish labor market presents more persistent responses than the Estonian.