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Abstract  
We investigate the dynamics of prices, information and expectations in a competitive, noisy, dynamic asset 
pricing equilibrium model. We look at the bias of prices as estimators of fundamental value in relation to traders' 
average expectations and note that prices are more (less) biased than average expectations if and only if traders 
over- (under-) rely on public information with respect to optimal statistical weights. We find that prices are biased 
in relation to average expectations whenever traders speculate on short-run price move- ments. In a market with 
long term traders, over-reliance on public information obtains if noise trade increments are correlated enough 
and/or there is low enough residual uncertainty in the payoff. This defines a “Keynesian” region; the 
complementary region is “Hayekian” in that prices are less biased than average expectations in the estimation of 
fundamental value. The standard case of no residual uncertainty and noise trading following a random walk is on 
the frontier of the two regions. With short-term traders there typically are two equilibria, with the stable (unstable) 
one displaying over- (under-) reliance on public information. 
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1 Introduction

Do investors excessively focus their attention on market aggregate behavior and public

information, disregarding their private judgement? Are asset prices aligned with

the consensus opinion (average expectations) on the fundamentals in the market?

Undeniably, the issues above have generated much debate among economists. In his

General Theory, Keynes pioneered the vision of stock markets as beauty contests

where investors try to guess not the fundamental value of an asset but the average

opinion of other investors, and end up chasing the crowd.1 This view tends to portray

a stock market dominated by herding, behavioral biases, fads, booms and crashes

(see, for example, Shiller (2000)), and goes against the tradition of considering market

prices as aggregators of the dispersed information in the economy advocated by Hayek

(1945). According to the latter view prices reflect, perhaps noisily, the collective

information that each trader has about the fundamental value of the asset (see, for

example, Grossman (1989)), and provide a reliable signal about assets’ liquidation

values. In this paper, we address the tension between the Keynesian and the Hayekian

visions in a dynamic finite horizon market where investors, except for noise traders,

have no behavioral bias and hold a common prior on the liquidation value of the risky

asset.

In a dynamic market with risk averse short-term traders, differential information,

and an independent stock of noisy supply across periods Allen, Morris, and Shin

(2006) argue that prices are always farther away from fundamentals than traders’

average expectations and display over-reliance on public information. In this case

asset prices depend on investors’ higher order beliefs (i.e. the average expectation

at period n of the average expectation at n + 1 of . . . of the average expectation of

the liquidation value in the final period) and systematically depart from fundamentals

compared to investors’ average expectations. The reason is that in a dynamic market,

when traders try to predict their peers’ actions, the price heavily weights public

information, more than what the optimal statistical weight prescribes to assess the

1Keynes’ vision of the stock market as a beauty contest or the situation in which judges are more
concerned about the opinion of other judges than of the intrinsic merits of the participants in the
contest: “. . . professional investment may be likened to those newspaper competitions in which the
competitors have to pick out the six prettiest faces from a hundred photographs, the prize being
awarded to the Competitor whose choice most nearly corresponds to the average preferences of the
competitor as a whole; so that each competitor has to pick, not those faces which he himself finds
prettiest, but those which he thinks likeliest to catch the fancy of the other competitors, all of whom
are looking at the problem from the same point of view.” (Keynes, General Theory, 1936).
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fundamentals, ultimately supporting Keynes’ vision of the stock market. The question

is thus how general is this finding or whether Keynes always prevail over Hayek. Is it

always true that prices are more biased than average expectations in the estimation

of fundamentals? Is there always over-reliance on public information?2

The central result of this paper is that both the bias of prices in relation to av-

erage expectations in the estimation of fundamentals as well as the potential over-

or under-reliance on public information are driven by traders’ short-term speculative

behavior. In a static market agents speculate on the difference between the price and

the liquidation value, prices are aligned with investors’ average expectations about

this value, and traders put the optimal statistical weight on public information. In

a dynamic market, in principle traders with a long or a short horizon also specu-

late on short-run price differences. This may misalign prices and investors’ average

expectations, potentially leading to over- or under-reliance on public information.

Allowing for a general noise trading process and assuming that residual uncertainty

can affect the liquidation value, the following results obtain. When traders have a long

horizon short-run speculation is driven by the correlation of noise trade increments

and by the potential presence of residual uncertainty in the liquidation value. In

the benchmark case with no residual uncertainty affecting the liquidation value, and

noise trading following a random walk (i.e. with independent noise trade increments),

prices assign the optimal statistical weight to public information and equal the average

expectations of investors about the fundamental value plus a risk-weighted noise term.

In this case traders act as in a static market in every period and the bias of prices and

average expectations in the estimation of the fundamental value is the same. When

residual pay-off uncertainty and noise trade predictability are added, traders also

speculate on short-run price differences, and either over- or under-reliance on public

information may occur. Low residual uncertainty and high correlation in noise trading

increments tend to generate over-reliance; conversely, high residual uncertainty and

low correlation in noise trade increments tend to generate under-reliance on public

information. This partitions the parameter space into a Keynesian region, where

prices are farther away from fundamentals than average expectations, and a Hayekian

region where the opposite occurs. The partition depends on risk tolerance and more

risk aversion enlarges the Keynesian region.3

2Over-reliance on public information may have deleterious welfare consequences (see, e.g., Vives
(1997), Morris and Shin (2002), and Angeletos and Pavan (2007)). In this paper we stay within the
bounds of a positive analysis.

3It is worth noting that it should be no surprise that in a noisy rational expectations equilibrium
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With short-term traders there typically are two equilibria ranked by traders’ re-

sponsiveness to private information. In the equilibrium with low (high) signal re-

sponsiveness there is over- (under-) reliance on public information. Again, the first

equilibrium may be associated to Keynes and the second one to Hayek. Furthermore,

in the former (latter) equilibrium the price adjusts slower (faster) to changes in the

fundamentals than the consensus expectations of investors. The “Hayekian” equi-

librium is, however, unstable. Finally, if noise trading follows a random walk and

there is sufficiently large residual uncertainty in the liquidation value, over-reliance

on public information always occurs in equilibrium.

The intuition for our results is as follows. In a dynamic market the relationship

between price and fundamentals depends both on the quality of traders’ informa-

tion and on their reaction to order imbalances. Suppose a trader observes a positive

signal and faces a positive order-flow. Upon the receipt of good news he increases

his long position in the asset. On the other hand, his reaction to the order imbal-

ance is either to accommodate it, counting on a future noise trade reversal (and thus

acting as a “market-maker”), or to follow the market and further increase his long

position anticipating an additional price rise (in this way acting as a “short-term”

speculator). The more likely it is that the order imbalance reverts over time due to

liquidity traders’ behavior, the more actively the trader will want to accommodate it.

Conversely, the more likely it is that the imbalance is due to informed speculators’

activity, the more the trader will want to follow the market.4 In the former (latter)

case, the trader’s speculative position is partially offset (reinforced) by his market

making (short-run speculative) position. Thus, the impact of private information

on the price is partially sterilized (enhanced) by traders’ market-making (short-run

speculative) activity. This, in turn, loosens (tightens) the price from (to) the funda-

mentals in relation to average expectations, yielding over- (under-) reliance on public

information.

When long-term traders are in the market, correlation across noise trade incre-

ments helps predicting future noise trade shocks, and tilts traders towards accom-

modating order imbalances. This effect is extreme when the stock of noise traders’

prices may be less biased than investors’ average expectations about the fundamentals. This result
depends on the relative weights that in equilibrium traders put on private and public information
and, obviously, could not arise in a fully revealing equilibrium where such a bias cannot arise.

4In this case, indeed, the order imbalance is likely to proxy for upcoming good news that are
not yet completely incorporated in the price. There is a vast empirical literature that documents
the transient impact of liquidity trades on asset prices as opposed to the permanent effect due to
information-driven trades. See e.g. Wang (1994), and Llorente et al. (2002).
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demand is independent across periods.5 The impact of residual uncertainty over the

liquidation value, on the other hand, enhances the hedging properties of future po-

sitions, boosting traders’ signal responsiveness and leading them to speculate more

aggressively on short-run price differences. Thus, depending on the intensity of the

correlation across noise trade increments, over- or under-reliance on public informa-

tion occurs. Conversely, absent correlation across noise trade increments and residual

uncertainty, traders act as in a static market, and the price assigns the optimal sta-

tistical weight to public information. When traders have a short horizon, the lack of

future trading opportunities eliminates intertemporal hedging possibilities. This may

give rise to self-fulfilling equilibria. In particular, if traders anticipate an order imbal-

ance driven by noise traders (informed traders), they scale down (up) their trading

aggressiveness and accommodate it (follow the market), justifying their prediction

and enforcing an equilibrium with over- (under-) reliance on public information.

This paper contributes to the recent literature that analyzes the effect of higher

order expectations in asset pricing models where traders have differential information,

but agree on a common prior over the liquidation value. Bacchetta and van Wincoop

(2006) study the role of higher order beliefs in asset prices in an infinite horizon model

showing that higher order expectations add an additional term to the traditional asset

pricing equation, the higher order “wedge,” which captures the discrepancy between

the price of the asset and the average expectations of the fundamentals. According to

our results, higher order beliefs do not necessarily enter the pricing equation. In other

words, for the higher order wedge to play a role in the asset price we need residual

uncertainty to affect the liquidation value or noise trade increments predictability

when traders have long horizons; alternatively, traders must display myopic behavior.

Nimark (2007), in the context of Singleton (1987)’s model, shows that under some

conditions both the variance and the impact that expectations have on the price

decrease as the order of expectations increases.

Other authors have analyzed the role of higher order expectations in models where

traders hold different initial beliefs about the liquidation value. Biais and Bossaerts

(1998) show that departures from the common prior assumption rationalize peculiar

trading patterns whereby traders with low private valuations may decide to buy an

asset from traders with higher private valuations in the hope to resell it later on

5Indeed, assuming that the stock of noise trade is i.i.d. implies that the gross position noise traders
hold in a given period n completely reverts in period n+ 1. This lowers the risk of accommodating
order imbalances in any period, as speculators can always count on the possibility of unwinding their
inventory of the risky asset to liquidity traders in the coming round of trade.
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during the trading day at an even higher price. Cao and Ou-Yang (2005) study

conditions for the existence of bubbles and panics in a model where traders’ opinions

about the liquidation value differ.6 Banerjee et al. (2006) show that in a model with

heterogeneous priors differences in higher order beliefs may induce price drift.

Our paper is also related to the literature emphasizing the existence of “limits

to arbitrage.” De Long et. al (1990) show how the risk posed by the existence of

an unpredictable component in the aggregate demand for an asset can crowd-out

rational investors, thereby limiting their arbitrage capabilities. 7 In our setup, it is

precisely the risk of facing a reversal in noise traders’ positions that tilts informed

traders towards accommodating more eagerly order imbalances. In turn, this effect

is responsible for the over-reliance that asset prices place on public information.

Finally, the paper is related to the literature stressing the consequences of traders’

reaction to the aggregate flow of orders. For example, Gennotte and Leland (1990)

argue that investors may exacerbate the price impact of trades, yielding potentially

destabilizing outcomes, by extracting information from the order flow. In our model,

the way in which rational investors interpret aggregate demand realizations is crucial

to determine the weight assigned by the price to public information.

The paper is organized as follows: in the next section we present the static bench-

mark, showing that in this framework the asset price places the optimal statistical

weight on public information and is just a noisy version of investors’ average expecta-

tions. In section 3 we analyze the dynamic model with long-term traders. In section

4, we then turn our attention to the model with short-term traders. The final section

discusses the results and provides concluding remarks.

2 The Static Benchmark

Consider a one-period stock market where a single risky asset with liquidation value

v ∼ N(v̄, τ−1
v ), and a riskless asset with unitary return are traded by a continuum of

risk-averse speculators in the interval [0, 1] together with noise traders. Speculators

have CARA preferences (denote with γ the risk-tolerance coefficient) and maximize

6Kandel and Pearson (1995) provide empirical evidence supporting the non-common prior as-
sumption.

7Kondor (2004) shows that limits to arbitrage also occur in a 2-period model where informed
traders have market power.
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the expected utility of their wealth: Wi1 = (v − p1)xi1.
8 Prior to the opening of

the market every informed trader i receives a signal si1 = v + εi1, εi1 ∼ N(0, τ−1
ε1

),

and submits a demand schedule (generalized limit order) to the market X1(si1, p1)

indicating the desired position in the risky asset for each realization of the equilibrium

price.9 Assume that v and εi1 are independent for all i, and that error terms are also

independent across traders. Noise traders submit a random demand u1 (independent

of all other random variables in the model), where u1 ∼ N(0, τ−1
u ). Finally, we make

the convention that, given v, the average signal
∫ 1

0
si1di equals v almost surely (i.e.

errors cancel out in the aggregate:
∫ 1

0
εi1di = 0).10

In this paper we will use the above CARA-normal framework to investigate con-

ditions under which the equilibrium price is farther away from the fundamentals than

investors’ average expectations. Similarly as in Allen et al. (2006) this occurs when-

ever

|E [p1 − v|v]| >
∣∣∣∣E [∫ 1

0

E[v|si1, p1]di− v|v
]∣∣∣∣ . (1)

The above condition holds if the bias of prices in the estimation of v is larger than the

bias of investors’ average expectations or, equivalently, if and only if traders assign

extra weight to public information in relation to the optimal statistical weight in the

estimation of v. Indeed, at a linear symmetric equilibrium for a given private signal

responsiveness a1 > 0 the equilibrium price can be expressed as

p1 = αP1

(
v +

1

a1

u1

)
+ (1− αP1)E[v|z1],

where αP1 = a1/(γ(τ 1 + τ ε1)), τ 1 ≡ Var[v|p1]
−1 = τ v + a2

1τu, and z1 = a1v + u1 is

informationally equivalent to the price. It thus follows that

p1 − v = (1− αP1)(E[v|z1]− v) + αP1
1

a1

u1.

Owing to normality, on the other hand, one can immediately verify that

E[v|si1, p1] = αE1si1 + (1− αE1)E[v|p1],

where αE1 = τ ε1/(τ 1 + τ ε1) denotes the optimal statistical weight to private informa-

tion. Noting that E[v|p1] = E[v|z1], we have

Ē1[v] = αE1v + (1− αE1)E[v|z1],

8We assume, without loss of generality with CARA preferences, that the non-random endowment
of traders is zero.

9The unique equilibrium in linear strategies of this model is symmetric.
10See Section 3.1 in the Technical Appendix of Vives (2007) for a justification of the convention.
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where Ē1[v] =
∫ 1

0
E[v|si1, p1]di, using our convention

∫ 1

0
si1di = v . Since

E
[
Ē1[v]− v|v

]
= (1− αE1)(E[E[v|z1]|v]− v),

and

E[p1 − v|v] = (1− αP1)(E[E[v|z1]|v]− v),

condition (1) holds if and only if the equilibrium price displays over-reliance on public

information (in relation to the optimal statistical weight):

αP1 < αE1 ⇔ a1 < γτ ε1 , (2)

where the latter equivalence follows immediately from the definitions of αP1 and αE1.

In the static model it is well known that a unique equilibrium in linear strate-

gies exists in the class of equilibria with price functional of the form P1 (v, u1) (see

e.g. Admati (1985), Vives (2007)). The equilibrium strategy of a trader i and the

price are given by

X1(si1, p1) = γVar[v|si1, p1]
−1(E[v|si1, p1]− p1),

p1 = λ1z1 + (1− λ1a1)v̄,

with z1 = a1v+u1, a1 = γτ ε1 , λ1 = (γ(τ 1+τ ε1))
−1(1+γτua1), and τ 1 ≡ Var[v|p1]

−1 =

τ v + a2
1τu. The responsiveness of the strategy of a trader to its signal is given by a1,

which determines the precision of the price τ 1 as an estimator of the fundamental

value v. The depth of the market is measured a usual by λ−1
1 . Since in equilibrium

a1 = γτ ε1 , we can thus conclude that in a static setup, condition (2) can never be

satisfied, and the equilibrium price always assigns the optimal statistical weight to

public information.11

Remark 1. There is an alternative, more direct way to verify whether condition (1)

is satisfied. Indeed, as traders’ aggregate demand is proportional to
∫ 1

0
(E[v|si1, p1]−

p1)di, imposing market clearing in the above model yields∫ 1

0

xi1di+ u1 =

∫ 1

0

γ(τ 1 + τ ε1)(E[v|si1, p1]− p1)di+ u1 = 0,

11If E[u1] is non null, e.g. if E[u1] = ū1 > 0, we have to replace the price p1 by the price net of
the expected noise component p̂1 = p1 − ū1Var[v|si1, z1]/γ. Using this definition it is immediate to
verify that also when ū1 > 0, in a static market the equilibrium price assigns the optimal statistical
weight to public information.
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and solving for the equilibrium price we obtain

p1 = Ē1[v] +
u1

γ(τ 1 + τ ε1)
. (3)

In other words, in equilibrium the price is given by the sum of traders’ average

expectations and noise (times a constant). As u1 and v are by assumption orthogonal,

we can therefore conclude that in a static setup the price assigns the optimal statistical

weight to public information. To obtain over-reliance on public information, in other

words, we need to find conditions under which traders’ aggregate demand is no longer

proportional to Ē1[v] − p1 and this, in a static context with CARA preferences can

never happen.

In the following sections we will argue that price over-reliance on public informa-

tion can be traced to traders’ speculative activity on short-run price movements that

makes strategies depart from the solution of the static setup.

3 A Dynamic Market with Long-Term Traders

Consider now a dynamic extension of the previous model where risk averse traders

and noise traders exchange both the risky and the riskless asset during N ≥ 2

periods.12 In period N + 1 the risky asset is liquidated. As before, speculators

have CARA preferences and maximize the expected utility of their final wealth:

WiN =
∑N

n=1 πin =
∑N−1

n=1 (pn+1 − pn)xin + (v − pN)xiN . In any period n an in-

formed trader i receives a signal sin = v + εin, where εin ∼ N(0, τ−1
εn ), v and εin are

independent for all i, n and error terms are also independent both across time periods

and traders.

In the general case noise trading follows an AR(1) process θn = βθn−1 + un with

β ∈ [0, 1] and {un}Nn=1 an i.i.d. normally distributed random process (independent of

all other random variables in the model) with un ∼ N(0, τ−1
u ). If β = 1, {θn} follows

a random walk and we are in the usual case of independent noise trade increments

un = θn − θn−1 (e.g. Kyle (1985), Vives (1995)). If β = 0, then noise trading is

i.i.d. across periods (this is the case considered by Allen et al. (2006)), a plausible

assumption only if the time between trading dates is very large. Finally, assume as

before that, given v,
∫ 1

0
sindi = v (a.s.) in any period n.

12A number of authors have studied competitive, noisy rational expectations equilibria in dynamic
markets, see e.g. Brown and Jennings (1989), Grundy and McNichols (1989), He and Wang (1995),
Vives (1995), Cespa (2002), and Chapters 8 and 9 in Vives (2007).
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3.1 A Random Walk Process for Noise Trading

Let us first consider the classical case when noise trade increments un are independent

across periods (β = 1). In any period 1 < n ≤ N each informed trader has the

vector of private signals sni = {si1, si2, . . . , sin} available. It follows from normal

theory that the statistic s̃in = (
∑n

t=1 τ εt)
−1(
∑n

t=1 τ εtsit) is sufficient for the sequence

sni in the estimation of v. An informed trader i in period n submits a limit order

Xin(s̃in, p
n−1, ·), indicating the position desired at every price pn, contingent on his

available information. We will restrict attention to linear equilibria where in every

period n a speculator trades according to Xn(s̃in, p
n) = ans̃in − ϕn(pn), where ϕn(·)

is a linear function of the price sequence pn = {p1, . . . , pn}. 13 Let us denote with

zn the intercept of the n-th period net aggregate demand
∫ 1

0
∆xindi + un, where

∆xin = xin−xin−1. The random variable zn ≡ ∆anv+un represents the informational

addition brought about by the n-th period trading round, and can thus be interpreted

as the informational content of the n-th period order-flow.

Lemma 1. In any linear equilibrium the sequences zn and pn are observationally

equivalent.

According to the above lemma in any period n traders form their estimation of

the liquidation value using their private information, summarized by the statistic s̃in,

and the sequence of public informational additions zn. Thus, owing to normality,

we have E[v|s̃in, zn] = (τn +
∑n

t=1 τ εt)
−1(τnE[v|zn] +

∑n
t=1 τ εt s̃in), where E[v|zn] =

τ−1
n (τ vv̄ + τu

∑n
t=1 ∆atzt), and τn ≡ Var[v|zn]−1 = τ v + τu

∑n
t=1 ∆a2

t .

Proposition 1. In the market with long-term, informed speculators there exists a

unique equilibrium in linear strategies. The equilibrium is symmetric. Prices are

given by po = v̄, pN+1 = v, and for n = 1, 2, . . . , N , pn = λnzn + (1−λn∆an)pn−1 and

strategies are given by:

Xn(s̃in, p
n) = γ

(
τn +

n∑
t=1

τ εt

)
(E [v|s̃in, zn]− pn) (4)

= an(s̃in − pn) + γτn(E[v|zn]− pn),

where an = γ(
∑n

t=1 τ εt), ∆an ≡ an − an−1 = γτ εn , zn = ∆anv + un, zn = {zt}nt=1,

τn = (Var[v|zn])−1, and λn = (1 + γτu∆an)/(γ(τn +
∑n

t=1 τ εt)).

13The unique equilibrium in linear strategies will be shown to be symmetric.
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Proof. See appendix A. QED

The equilibrium has a static nature: in every period n speculators trade “as if” the

asset would be liquidated in the following period n + 1, exploiting all their available

information. 14 The intuition is as follows: owing to normality and CARA preferences

a trader’s strategy is made of two components:

xin = γ
E[pn+1 − pn|s̃in, zn]

h22

− h21E[xin+1|s̃in, zn]

h22γ(τn+1 +
∑n+1

t=1 τ εt)
, 1 ≤ n < N, (5)

where h21 < 0 and h22 > 0 are constants defined in the appendix. The first component

in (5) accounts for the forecasted price change, while the second component captures

the anticipated future position. Were traders not to expect a change in prices, then

their optimal period n position would be like the one of a static market, and the

risk of holding such a position would only be due to the unpredictability of the

liquidation value (taking into account risk-aversion): (1/γ)Var[v|s̃in, zn].15 If, on the

other hand a change in prices is expected, traders optimally exploit short-run price

differences. This, in turn, adds two factors to the risk of their period n position, as

traders also suffer from the partial unpredictability of the price change, and from the

impossibility of determining exactly their future position. However, the opportunity

to trade again in the future also grants a hedge against potentially adverse price

movements (h21 < 0). This, in equilibrium, yields a risk-reduction that exactly

offsets the risk increase outlined above. As a consequence, even in this case traders’

strategies have a static nature, and xin = E[xin+1|s̃in, zn].

As one would expect, under the conditions of Proposition 1, it is possible to show

that the price assigns the optimal statistical weight to public information in every

period n = 1, 2, . . . , N . Indeed, owing to normality, we can express informed traders’

average expectation as a linear combination of the liquidation value v and the public

expectation E[v|zn]:

Ēn[v] =

∫ 1

0

E[v|s̃in, zn]di

= αEnv + (1− αEn)E[v|zn], (6)

14Proposition 1 generalizes the equilibrium in Cespa (2002) to the case of N ≥ 2 periods.
15Intuitively, if given today’s information the asset price is not expected to change, no new private

information is expected to arrive to the market and the model collapses to one in which traders hold
for two periods the risky asset. Their position, then, naturally coincides with the one they would
hold in a static market.
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where αEn ≡
∑n

t=1 τ εt/(τn +
∑n

t=1 τ εt), for n = 1, 2, . . . , N . A similar decomposition

can also be applied to the equilibrium price for a given responsiveness to private

information an:

pn = αPn

(
v +

1

an
θn

)
+ (1− αPn)E [v|zn] , (7)

where αPn = an/(γ(τn +
∑n

t=1 τ εt)). Comparing (6) and (7), as done in Section 2 one

can see that in any period n the equilibrium price displays over-reliance on public

information whenever

αPn < αEn. (8)

However, in equilibrium we have that αPn =
∑n

t=1 τ εt/(τn +
∑n

t=1 τ εt) = αEn. Thus,

we can conclude:

Corollary 1. In any period 1 ≤ n ≤ N , E[pn − v|v] = E[Ēn[v]− v|v].

In words: when the market is populated by long-term traders and noise traders’

supply shocks follow a random walk, informed traders’ demand has a static nature,

traders assign the optimal statistical weight to public information, and the bias of

prices in the estimation of v is the same as the bias of average expectations. Note that

the static nature of demand implies that traders assign the optimal statistical weight

to public information in the estimation of v. This is so since in this case traders are

only concerned with the final liquidation value of the asset.

Remark 2. As in section 2, a more direct proof of corollary 1 is available. Indeed,

market clearing at any period n is given by∫ 1

0

xindi+ θn = 0.

When β = 1 we have that θn =
∑n

t=1 ut and according to proposition 1, in this case in

any period n long-term traders’ aggregate demand is proportional to
∫ 1

0
E[v|s̃in, zn]di−

pn. Hence, at equilibrium we obtain:∫ 1

0

γ

(
τn +

n∑
t=1

τ εt

)
(E[v|s̃in, zn]− pn)di+ θn = 0. (9)

Using this condition, we can now express the price as the sum of traders’ average

expectations and a risk-weighted noise adjustment:

pn = Ēn[v] +
θn

γ(τn +
∑n

t=1 τ εt)
. (10)

As θn and v are by assumption orthogonal, for all t = 1, 2, . . . , n, E[pn|v] = E[Ēn[v]|v],

and the result follows.
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Remark 3. According to (7), and due to traders’ risk aversion, in any period the

equilibrium price differs from the conditional expectation of the liquidation value

given public information:

pn − E [v|zn] =
αPn
an

E[θn|zn].

The intuition is as follows: suppose, without loss of generality, that in period n

E[θn|zn] > 0, then if pn = E[v|zn], traders would be exposed to the risk of holding an

underpriced short position.16 In order to accept holding such a position, (i.e. to offset

such a risk) risk averse traders thus demand a compensation that is proportional to

the expected total noisy noise trade in period n. Such a compensation is larger, the

lower is their risk-tolerance and the larger is their uncertainty over the liquidation

value: αPn/an = 1/(γ(τn +
∑n

t=1 τ εt)).
17

Remark 4. Vives (1995) studies a market with the same informational structure of

the one analyzed above with β = 1, but where the asset is priced by a competitive

sector of risk-neutral market makers. In this case price setting agents require no

premium to hold a risky position (beyond what is due to the severity of the adverse

selection problem they face), thus αPn = 0 and prices are always “farther away” from

fundamentals than the average expectation among informed traders. The discrepancy

between prices and average expectation is larger, the larger is the ratio between private

and public precision. This is immediate since in this case the unique equilibrium in

linear strategies shares the same informational properties of the one in proposition 1,

while the period n price is given by pn = E[v|zn]. Hence

E[pn − v|v] = τ−1
n τ v(v̄ − v) and E

[
Ēn[v]− v|v

]
=

τ v(v̄ − v)

τn +
∑n

t=1 τ εt
,

and the discrepancy increases in the ratio (τn+
∑n

t=1 τ εt)/τn ≡ Var[v|s̃in, zn]−1/Var[v|zn]−1.

Redefining the benchmark to which prices are compared in terms of the risk-weighted

average expectation among all the traders in the market, we can show that the equiva-

lence result of corollary 1 is restored. Indeed, suppose that together with the informed

traders in the market there also exists a continuum of risk averse (CARA) uninformed

traders. In every period n, the uninformed traders’ estimation of the liquidation value

16In other words, they would be exposed to the risk of selling the asset for too low a price with
respect to its actual liquidation value.

17The existence of a premium that affects the equilibrium price in models where risk averse traders
price the asset is well-known in the literature (see e.g. Battacharya and Spiegel (1991)).
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is given by E[v|zn], and the risk-weighted average expectation among all traders in

the market reads as follows:

Ēn[v] =

∫ 1

0
γ(τn +

∑n
t=1 τ εt)E[v|s̃in, zn]di+

∫ 1

0
γUτnE[v|zn]dj

γ(τn +
∑n

t=1 τ εt) + γUτn
,

where γU denotes the uninformed traders’ risk-tolerance coefficient. Letting γU →∞
we then obtain that when dealers are risk neutral Ēn[v] converges to the equilibrium

price pn = E[v|zn], and in the limit E[pn − v|v] = E[Ēn[v]− v|v].

3.2 Residual Uncertainty and Correlated noise trade Incre-
ments: Keynes vs. Hayek

In this section we suppose (i) that the fundamentals are affected by the presence of

residual uncertainty, and (ii) that noise trade shocks are serially correlated. Both

the presence of residual uncertainty over the liquidation value and noise traders’ pre-

dictability lead traders to speculate on short-run price movements. This drives a

wedge between the equilibrium price and average expectations about the fundamen-

tals which, depending on parameters values, yields either over- or under-reliance on

public information.

Assume thus that the liquidation value traders receive at the terminal date is given

by v+ δ, where δ ∼ N(0, τ−1
δ ) is a noise term independent from all the other random

variables in the economy and about which no trader possesses private information,

and that β ∈ [0, 1]. The latter assumption implies that noise trade increments are

negatively correlated, i.e. that a positive (negative) realization of θ1 is likely to be

followed by a negative (positive) realization of ∆θ2.
18 Other things equal, this implies

that traders find it less risky to accommodate order imbalances in the first period.

Defining the net informational additions z1 = a1v + u1, and z2 = ∆a2v + u2

(∆a2 = a2 − βa1), in a two-period model we can prove the following result:

Proposition 2. In the 2-period market with long-term, informed speculators, resid-

ual uncertainty over the liquidation value, and correlated noise trade increments,

equilibria in linear strategies exist. In any linear equilibrium, (1) prices are given by

p3 = v, p0 = v̄, p2 = λ2z2 + (1−λ2∆a2)p̂1, and p1 = λ1z1 + (1−λ1a1)v̄; (2) strategies

18To be sure: as θ2 = u2 + βθ1, Cov[∆θ2, θ1] = (β − 1)τ−1
u ≤ 0, since β ∈ [0, 1].
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are given by:

X2

(
s̃i2, p

2
)

= a2 (s̃i2 − p2) + b2
(
E[v|z2]− p2

)
, (11)

X1(si1, p1) =
a1(τ 1 + τ ε1)

τ ε1
(E[v|si1, z1]− p1) +

(γ + h21)(βρ− 1)τ 1

γ
(
τ 2 +

∑2
t=1 τ ε2

) E[θ1|z1],

where b2 = γτ 2/(1 + κ), λ2 = (γ(τ 2 +
∑2

t=1 τ εt))
−1(1 + γτu∆a2 + κ), p̂1 = (γτ 1 +

βa1(1 + κ))−1(γτ 1E[v|z1] + β(1 + κ)z1), κ ≡ (τ 2 +
∑2

t=1 τ εt)/τ δ, ∆a2 = a2 − βa1,

ρ ≡ a1(1 + κ)/(γτ ε1),

a1 =
γτ ε1(τ 2 +

∑2
t=1 τ εt)(1 + κ)(1 + γτu∆a2)

(τ ε2 + (τ 2 + τ ε1)(1 + κ))(1 + κ+ γτu∆a2)
, a2 =

γ(τ ε1 + τ ε2)

1 + κ
, (12)

and

λ1 = αP1
1

a1

+ (1− αP1)
a1τu
τ 1

, αP1 =
τ ε1

τ 1 + τ ε1
+

(γ + h21)(βρ− 1)τ 1τ ε1
γ(τ 1 + τ ε1)(τ 2 +

∑2
t=1 τ εt)

,

h21 (with γ + h21 > 0), h22 > 0 are constants defined in the appendix. Furthermore,

in equilibrium ρ > 1.

Proof. See appendix A. QED

Due to residual uncertainty, a closed form solution for traders’ signal responsive-

ness is no longer available: the expressions for a1 and a2 in (12) constitute a system

of non-linear equations whose (potentially multiple) solution(s) must be numerically

determined. According to (11) in the second period traders’ strategies keep the static

property. As a consequence, the price assigns the optimal statistical weight to public

information and the bias of the price in the estimation of v coincides with that of

investors’ average expectations.19 However, owing to the residual uncertainty affect-

ing the liquidation value, traders scale down their aggressiveness: a2 < γ(τ ε1 + τ ε2).

In the first period, on the other hand, strategies loose the static property and each

investor’s position is no longer proportional to (E[v|si1, z1]− p1).

Indeed, according to the second of (11), the first period strategy of a trader can be

decomposed in two parts. The first part captures the “static” component, while the

second part captures a trader’s speculative activity on short-run price movements,

a term whose sign depends on the magnitude of βρ. As argued above, for a given

expected noise trade shock low values of β encourage informed traders to take the

19Using the expressions provided in the appendix this result is immediate.
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other side of the market counting on the noise trade increment future reversion. The

parameter ρ measures the deviation that residual uncertainty induces in traders’ first

period signal response with respect to the static aggressiveness (note that ρ depends

on β).20 In any equilibrium of the market it turns out that ρ > 1, implying that when

residual uncertainty affects the liquidation value, in the first period traders speculate

more aggressively on their signal. The intuition is as follows: using the expressions

provided in the appendix, we can rewrite a trader’s first period signal responsiveness

in the following way:

a1 = (13)

γτ ε1
1 + κ

(
Var2[v + δ]

Var2[v]

λ̂2

λ2

γ2(τ 2 +
∑2

t=1 τ εt)

(τ 2 + τ ε1)(γ
2 + Var2[v + δ]Var1[xi2](1− ρ2

1,{xi2,p2}))

)
,

where Varn[Y ] = Var[Y |s̃in, zn], λ̂2 = (γ(τ 2 +
∑2

t=1 τ εt))
−1(1 + γτu∆a2) denotes the

reciprocal of second period market depth in the absence of residual uncertainty, and

ρ1,{xi2,p2} =
Cov[xi2, p2|si1, z1]√

Var1[xi2]Var1[p2]
.

The presence of residual uncertainty over the liquidation value produces three effects

on a trader’s signal responsiveness. First, as Var2[v] increases to Var2[v+ δ], the first

period signal becomes a more valuable source of information, and traders put more

weight on it. However, at the same time since the liquidation value is more uncertain,

traders in the second period speculate less aggressively, and p2 becomes more reactive

to the upcoming net informational addition z2 (λ̂2 increases to λ2). As traders in the

first period also speculate on short-run price differences, this drives down a1. Finally,

as traders scale down their second period signal aggressiveness, their second period

strategy becomes less responsive to private information, and thus more correlated

with the second period price. 21 From the point of view of a trader that in the first

20In the second period, when short-run price differences cannot be exploited, a trader weights his
private information according to a2 = (1+κ)−1γ(

∑2
t=1 τ εt). In the first period a trader that intends

to “buy-and-hold” should trade according to (1+κ)−1γτ ε1 . This intuition can be proved formally by
using the expressions for a trader’s first period strategy provided in the appendix. Indeed, assuming
β = 1, plugging a1 = γτ ε1/(1 + κ) in (37) and imposing market clearing, we obtain p̂1 = p1, and
xi1 = E[xi2|si1, p1] as in the case with no residual uncertainty.

21Suppose a trader expects p2 > p1. Then, he increases his first period long position, planning
to sell in the second period, and net the short-run profits. However, if p2 < p1, second period sales
are suboptimal, and a good hedge calls for holding on to the long position. This, however, is less
likely to occur if traders are very reactive to their second period information. In this case, indeed,
the second period strategy may unravel the hedge built in the first period, in turn reducing traders’
willingness to speculate on their first period information.
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period speculates on price differences, this makes xi2 a better hedge against adverse

price movements, and has a positive impact on a1. The sum of the positive effects

more than offset the negative one and ρ > 1.22

As first period signal responsiveness exceeds its static value, accommodating the

expected noise trade shock may expose traders to the risk of clearing information-

related transactions at an incorrect price. To see this consider the following example.

Suppose that conditional on the observation of z1, the market expects θ1 > 0, i.e.

E[θ1|z1] = θ1 + a1(v − E[v|z1]) > 0.

According to the above expression, E[θ1|z1] > 0 could be due either to a truly positive

liquidity shock (θ1 > 0) or to a liquidation value higher than its market expectation

(v > E[v|z1]). In the former case, traders should accommodate the shock, counting on

a reversion of the noise trade increment that lowers the risk of holding an unbalanced

position in the asset in the first period. However, the higher is β, the lower are

the chances that noise trade increments compensate over time and the higher is the

possibility that traders sell the asset for too low a price (as ρ > 1). Hence, as βρ

increases above 1, traders speculate on a further price increase in the second period,

increasing their long position in the asset.23

Summarizing, the presence of residual uncertainty and correlated noise trade in-

crements leads traders to speculate on short-run price differences. This, in turn,

makes traders’ first period strategies depart from the static form of the previous sec-

tion, implying that the equilibrium price in the first period can no longer be expressed

as the sum of traders’ average expectations and a risk-weighted noise component. In

22Higher uncertainty over the liquidation value, thus works as a commitment device for a trader’s
second period strategy. If in the first period the trader could be sure that his second period strategy
perfectly hedged adverse price movements, he would more confidently speculate on price differences.
However, traders cannot control the information they receive in the second period, and this makes
xi2 a less reliable hedge for a short-run, speculative strategy. In this perspective higher uncertainty
over the liquidation value ties a trader’s hands in the second period: the trader speculates less
aggressively on private information and he can also be more confident that xi2 will better serve his
first period hedging needs.

23These two types of behavior are reminiscent of the “contrarian” vs. “momentum” type of
strategies. Traders’ behavior when βρ > 1 is also akin to the “resale option” strategy discussed by
Cao and Ou-Yang (2005).
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equilibrium we have that

p1 = αP1

(
v +

θ1

a1

)
+ (1− αP1)E[v|z1]

= Ē1[v] +

(
αP1 − αE1

a1

)
E[θ1|z1] + αE1

θ1

a1

(14)

= Ē1[v] +
(γ + h21)(βρ− 1)τ 1τ ε1

a1γ(τ 1 + τ ε1)(τ 2 +
∑2

t=1 τ εt)
E[θ1|z1] + αE1

θ1

a1

,

where

αP1 ≡
τ ε1

τ 1 + τ ε1
+

(γ + h21)(βρ− 1)τ 1τ ε1
γ(τ 1 + τ ε1)(τ 2 +

∑2
t=1 τ εt)

= αE1 +
(γ + h21)(βρ− 1)τ 1τ ε1

γ(τ 1 + τ ε1)(τ 2 +
∑2

t=1 τ εt)
. (15)

As a consequence the price may display over- or under-reliance on public information.

Indeed, according to (15) the weight the price assigns to the fundamentals is the sum

of the optimal statistical weight that the average expectation attributes to aggregate

private information (i.e. αE1), and a term that is proportional to traders’ short-

run speculative trading intensity. When traders deem their estimation of the noise

trade shock to be biased by the presence of information driven trades (i.e. when

βρ > 1), they “side” with the market (e.g. if E[θ1|z1] > 0, speculating on a further

price increase). This reinforces the optimal statistical weight αE1 with the short-run

speculative trading intensity, moving the price closer to the fundamentals in relation

to average expectations. When, on the other hand, traders count on a reversion of

the second period noise trade increment (i.e. when βρ < 1), they take the other

side of the market (e.g. if E[θ1|z1] > 0, they absorb the order imbalance), in this

way partially sterilizing the impact of informed trades on the price. This reduces the

optimal statistical weight αE1 and widens the distance between p1 and v in relation

to average expectations.24 When βρ = 1 the trading strategy in the first period has

a static nature and there is no speculation on short-run price movements.

We thus have :

Corollary 2. In any linear equilibrium of the market with long-term, informed spec-

ulators when the liquidation value is affected by residual noise the price displays

over-reliance on public information if and only if βρ < 1.

24To be sure, when βρ < 1 traders on aggregate hedge their informationally driven speculative
activity with their market making activity. This dampens the effect that the former has on the
equilibrium price.
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Corollary 2 has a straightforward graphical interpretation. To see this suppose

that E[E[θ1|z1]|v] > 0 (E[E[θ1|z1]|v] < 0), then if βρ < 1 we have that v >

E[Ē1[v]|v] > E[p1|v] (v < E[Ē1[v]|v] < E[p1|v]). Conversely, if βρ > 1 andE[E[θ1|z1]|v] >

0 (E[E[θ1|z1]|v] < 0), we have that v > E[p1|v] > E[Ē1[v]|v] (v < E[p1|v] <

E[Ē1[v]|v]), the price is more firmly tightened to the fundamentals (see figure 1).

[Figure 1 about here.]

As it happens, when β = 0 (β = 1), over- (under-) reliance on public information

occurs:

Corollary 3. In any linear equilibrium of the market with long-term, informed spec-

ulators when the liquidation value is affected by residual noise, if β = 0 (β = 1) over-

(under-) reliance on public information arises.

Proof When β = 1, the condition for under-reliance on public information is that

ρ > 1, which holds always given proposition 2. When, on the other hand β = 0,

according to (14) there is always over-reliance on public information. QED

On the other hand if no residual uncertainty affects the liquidation value, over-

reliance on public information always occurs.

Corollary 4. In any linear equilibrium of the market with long-term, informed spec-

ulators when the liquidation value is not affected by residual noise (i.e. 1/τ δ = 0)

there always is over-reliance on public information, for any β ∈ [0, 1).

Proof If 1/τ δ = 0, ρ = 1, and according to (14) the condition for over-reliance on

public information is always satisfied for all β ∈ [0, 1). QED

When β = 0 due to the noise trade increment mean reverting property, traders

in the first period take an important short-run speculative position and absorb the

expected liquidity shock at a discount. This implies over-reliance on public informa-

tion. As β approaches 1, traders can decreasingly count on a noise trade increment

reversal, and reduce their short-run speculative position. When β = 1, the noise

process follows a random walk and the result of corollary 1 is restored.

Numerical simulations show that for any 1/τ δ > 0, there always exists a value of β,

β̂ below (above) which only over- (under-) reliance on public information occurs. This

allows to define Ω ≡ {(β, 1/τ δ) ∈ [0, 1]× <+|βρ(β) = 1} as the set of pairs (β, 1/τ δ)
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for which the price assigns the optimal statistical weight to public information and

first period strategies have a static nature. Values of (β, 1/τ δ) that fall below (above)

this locus identify market conditions that yield over- or under-reliance on public

information (see figure 2).

[Figure 2 about here.]

The figure divides the parameter space (β, 1/τ δ) into a Keynesian region (below

the locus) with over-reliance on public information and a Hayekian region (the rest)

where the opposite occurs. Less residual uncertainty and less correlation in noise

trading move us towards the Keynesian region. It is interesting to observe also that

the Keynesian region gets larger as risk tolerance γ decreases.

Remark 5. Given the discussion following proposition 2 we should expect the weight

the price assigns to public information and the depth of the first period market to be

related. Indeed if τ δ grows unboundedly it is easy to show that λ1|β=0 < λ1|β=1. To

see this, suppose 1/τ δ = 0, then ρ = 1, and

αP1 =
τ ε1

τ 1 + τ ε1
− (1− β)

(γ + h21)τ 1τ ε1
γ(τ 1 + τ ε1)(τ 2 +

∑2
t=1 τ εt)

.

Thus, αP1(β)|β=0 < αP1(β)|β=1, and since λ1 = a1τu/τ 1 + αP1τ v/(a1τ 1), the result

follows.

When 1/τ δ = 0, traders’ responsiveness to private information does not depend

on β. As a consequence the first period depth reaction to a change in β is completely

determined by the effect that a change in the correlation across noise trade increments

has on αP1. A wider discrepancy between the price and the fundamentals (a smaller

αP1) proxies for a stronger sterilization of informed trades due to traders’ intense

market making activity. This dampens the price impact of trades, making the first

period market deeper.

When τ δ <∞ numerical simulations confirm that the first period depth is larger

(smaller) when β = 0 (β = 1). Furthermore, as β increases, both αP1 and λ1 grow

larger, implying that a stronger excessive weight on public information occurs in a

deeper market.

Remark 6. According to Bacchetta and van Wincoop (2006) in the presence of

differential information, higher order expectations add an additional term (the “higher

order wedge”) to the traditional asset pricing equation. This term emerges as the

20



difference between the equilibrium price and the asset price that obtains substituting

higher order expectations with first order expectations in the pricing equation. We can

apply this decomposition to (14) using the fact that Ē1[Ē2[v]] = Ē1[v]+((τ 1+τ ε1)(τ 2+∑2
t=1 τ εt))

−1τ ε1τ 1(E[v|z1] − v) = Ē1[v] − (a1(τ 2 +
∑2

t=1 τ εt))
−1τ 1αE1(E[θ1|z1] + θ1).

Denoting with p∗1 the asset price obtained substituting higher order expectations with

first order expectations, the higher order wedge is given by

p1 − p∗1 ≡ ∆1 = Ē1[Ē2[v]− v] = − τ 1αE1

a1(τ 2 +
∑2

t=1 τ εt)
(E[θ1|z1] + θ1) ,

and captures the expectational error about the liquidation value due to the presence

of noise in the public signal (z1). Using this definition, the equilibrium price can be

written as

p1 = Ē1[v]− (γ + h21)(βρ− 1)

γ
∆1 +

(
1 +

(γ + h21)(βρ− 1)τ 1

γ(τ 2 +
∑2

t=1 τ εt)

)
αE1

a1

θ1.

According to section 3.1 when β = 1, as soon as residual uncertainty vanishes, ρ→ 1

and the higher order wedge ceases to affect the pricing equation.

4 The Market with Short-Term Traders

In the previous section we have argued that a stronger focus on short-run price differ-

ences allows over- or under-reliance on public information and relative departures of

prices from average expectations of investors to arise in the CARA-normal model with

long-term traders. In this section we turn our attention to the analysis of a dynamic

model in which traders are exclusively concentrated on short-run profit opportunities

and β ∈ [0, 1]. In this case short-run speculation is imposed and we should expect

the bias of prices and average expectations not to coincide. In the absence of resid-

ual uncertainty over the liquidation value, and as long as β > 0, multiple equilibria

arise. In one equilibrium there is over-reliance on public information and in the other

one under-reliance occurs. The former equilibrium is the stable one. When β = 0

or when β = 1 and considerable residual uncertainty affects the liquidation value,

over-reliance on public information always arises in the first period price.

Suppose thus that in the dynamic market analyzed in the previous section traders

have short-term horizons (i.e. they take a position in period n and unwind it in

period n+ 1) and that the private information each trader i receives in every period
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n is transmitted to the corresponding trader in period n + 1.25 Traders may have

a short horizon for incentive reasons, for example. Thus, in every period n every

trader i maximizes the expected utility of his short-term profits πin = (pn+1− pn)xin,

E[U(πin)|s̃in, pn] = −E[exp{−πin/γ}|s̃in, pn].

4.1 A General Pricing Formula

Before turning attention to the linear equilibria of the market, it is worth analyzing

the general pricing formula. Assume that N = 2. Owing to CARA preferences and

normality, in the second period a trader’s optimal position is given by X2(s̃i2, p
2) =

γ(Var[v|s̃i2, z2])−1(E[v|s̃i2, z2]−p2), while the corresponding market clearing equation

reads as follows:
∫ 1

0
xi2di + θ2 = 0. Let Varn[Y ] = Var[Y |s̃in, zn], and Ēn[Y ] =∫ 1

0
E[Y |s̃in, zn]di, then the second period equilibrium price is given by

p2 = Ē2[v] +
θ2

γ
Var2[v]. (16)

Owing to short-term trading horizons, in the first period a trader’s optimal position

is given by X1(si1, p1) = γ(Var[p2|si1, p1])
−1(E[p2|si1, p1]− p1), and the corresponding

market clearing equation reads as follows:
∫ 1

0
xi1di + θ1 = 0. Solving for the first

period equilibrium price yields

p1 = Ē1[p2] +
θ1

γ
Var1[p2].

Substituting (16) in the latter equation and using the fact that θ2 = βθ1 + u2 with

u2 serially uncorrelated, yields

p1 = Ē1

[
Ē2[v] +

βθ1

γ
Var2[v]

]
+
θ1

γ
Var1[p2]. (17)

According to (16) and (17), in any period the price of the asset depends on two com-

ponents: the market average expectation of the market average expected liquidation

value and the risk associated with holding a position in the asset (due to the presence

of noise traders).26

25This is without loss of generality. The same qualitative results would arise if traders in period
n did not inherit the information held by their previous period peers.

26This is generally true in both periods since in the first period traders anticipate liquidating their
position at p2, whereas in the second period traders hold the asset until uncertainty is resolved.
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Extending this line of reasoning to the N -period case we obtain

pn =

Ēn

[
Ēn+1

[
· · · ĒN−1

[
ĒN [v] +

VarN [v]

γ
βN−nθn

]
+

VarN−1[pN ]

γ
βN−(n+1)θn · · ·

]
+

Varn+1[pn+2]

γ
βθn

]
+

Varn[pn+1]

γ
θn, (18)

for 1 ≤ n ≤ N .27 Recall that when β = 1 we have that θn =
∑n

t=1 ut. The

above pricing formula coincides with Allen et al. (2006) when β = 0. Indeed, in

their framework additional noise shocks do not cumulate over the trading periods.

Hence, the price in period N is simply the average expectation of investors about the

fundamental value plus the period N risk-adjusted noise shock:

pN = ĒN [v] +
θN
γ

VarN [v].

In period N − 1 the price is then given by the average expectation of investors about

the price in period N (because investors have a one period horizon) plus the corre-

sponding period, risk-adjusted noise shock:

pN−1 = ĒN−1 [pN ] +
θN−1

γ
VarN−1[pN ].

When β = 0, ĒN−1[θN ] = 0. Hence, we obtain

pN−1 = ĒN−1

[
ĒN [v]

]
+
θN−1

γ
VarN−1[pN ].

This recursive relationship can be iterated backwards to obtain that in any period n

pn = Ēn
[
Ēn+1

[
· · · ĒN−1

[
ĒN [v]

]
· · ·
]]

+
θn
γ

Varn[pn+1].

Thus, pn is the average expectation at n of the average expectation at n + 1 of

the average expectation at n+ 2 of. . . the liquidation value in period N + 1, plus the

corresponding period, risk-adjusted noise shock. This is reminiscent of Keynes’ vision

of the stock market as a beauty contest.

An interesting observation by Allen et al. (2006) is that, when averaging over

the realizations of noise trading, the price at date n – the average expectation of

the average expectation of the. . . – will in general not coincide with the period n

27See appendix B.

23



average expectation of the fundamental value (the price at N + 1). In this sense the

consensus value of the fundamentals Ēn[v] does not coincide with the price pn, with

the exception of the last period n = N . The mean price path pn gives a higher weight

to history – relies more on public information – than the mean consensus path Ēn[v].

This is because of the bias towards public information when a Bayesian agent has

to forecast the average market opinion knowing that it is formed also on the public

information observed by other agents. This also implies that the current price will be

always farther away from fundamentals than the average of investors’ expectations

and that it will be more sluggish to adjust.

However, according to the previous section we know that the weight the price as-

signs to public information depends on traders’ reaction to order imbalances. Indeed,

whenever traders deem the order-flow to be mostly liquidity driven, they take the

other side of the market, in this way partially sterilizing the effect of informed trades

on the price. This reinforces the effect of public information on the price, driving the

latter away from the fundamentals compared to the average opinion of traders in the

market. If, on the other hand, traders estimate the order-flow to be mostly informa-

tion driven, they speculate on price momentum reinforcing the impact of informed

trades on the price. This weakens the weight on public information, tying the price

more firmly to the fundamentals compared to investors’ average expectations. Intu-

itively, the same effects should be at work in a market where traders have short-term

horizons. Indeed, in the coming section we formalize this intuition showing that the

results in Allen et al. (2006) can be overturned when noise trading is not independent

across periods, i.e. examining the case β ∈ (0, 1] with no residual uncertainty. We

also present an example with large residual uncertainty and β = 1 where over-reliance

on public information always occurs.

4.2 Short-Term Trading and the Bias of Prices

Suppose N = 2, and let β ∈ (0, 1], then we can prove the following result:28

Proposition 3. In the 2-period market with short-term traders when β ∈ (0, 1]

there exist two symmetric equilibria in linear strategies where: (1) prices are given by

p3 = v, po = v̄, p2 = λ2z2 + (1−λ2∆a2)p̂1, and p1 = λ1z1 + (1−λ1a1)v̄, (2) strategies

28Proposition 3 extends the multiplicity result in Cespa (2002) to the case of general patterns of
noise trading and private information arrival.
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are given by: X2(s̃i2, p
2) = a2(s̃i2 − p2) + γτ 2(E[v|z2]− p2),

X1(si1, p1) =
a1(τ 1 + τ ε1)

τ ε1
(E[v|si1, z1]− p1) +

(βρ− 1)τ 1

(τ 2 +
∑2

t=1 τ εt)
E[θ1|z1], (19)

where a2 = γ(τ ε1 +τ ε2), a1 is given by the (two) real solutions to the quartic equation

f(a1) ≡ λ2a1(τ 2+τ ε1)−γ∆a2τuτ ε1 = 0, which satisfy 0 < a∗1 < γτ ε1 , a2/β < a∗∗1 <∞,

and

λ1 = αP1
1

a1

+ (1− αP1)
a1τu
τ 1

, αP1 =
τ ε1

τ 1 + τ ε1
+

(βρ− 1)τ 1τ ε1
(τ 1 + τ ε1)(τ 2 +

∑2
t=1 τ εt)

.

In any equilibrium p̂1 = (βa1+γτ 1)
−1(βz1+γτ 1E[v|z1]), λ2 = (γ(τ 2+

∑2
t=1 τ εt))

−1(1+

γ∆a2τu), and ρ = (a1/γτ ε1). Therefore, a∗1 < a2/β < a∗∗1 and λ2(a
∗∗
1 ) < 0 < λ2(a

∗
1).

Proof. See appendix A. QED

Owing to short horizons traders speculate on short-run price movements. However,

differently from section 3.2, they cannot count on a second period hedge to protect

them from adverse price swings. This induces two (self-fulfilling) equilibria. Along

the high trading intensity equilibrium (i.e. when a1 = a∗∗1 > a2/β) agents escalate

their response to the private signal and thus anticipate their estimation of the noise

trade shock to be biased by the presence of informed trades. As a consequence, they

side with the market (βρ > 1), and speculate on price momentum. The magnitude of

the first period signal aggressiveness (a∗∗1 > a2/β), in turn induces a negative second

period depth (λ2(a
∗∗
1 ) < 0) which limits adverse price movements when traders unwind

their position in the second period, justifying their first period speculative behavior.

Along the low trading intensity equilibrium (i.e. when a1 = a∗1 < γτ ε1) traders scale

down their first period response to the signal, and thus anticipate their estimation

of the noise trade shock to be due to liquidity trades. As a consequence, they take

the other side of the market (βρ < 1), and speculate on a noise trade increment

reversion. The magnitude of the first period aggressiveness (a∗1 < a2/β) induces a

positive second period depth (λ2(a
∗
1) > 0), which again justifies informed traders’

first period behavior. Thus, in the absence of a risk neutral market making sector (as

in Vives (1995)) short-term trading delivers equilibrium multiplicity.

In Proposition 3 (similarly as in Proposition 2) we denote with

ρ ≡ a1

γτ ε1
,
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a measure of the deviation that short-term horizons induce in traders’ first period

signal response with respect to the static response. Depending on the equilibrium

that arises βρ > (<)1, and, as in the previous section it is possible to relate the

presence of an over-reliance on public information in the first period to the magnitude

of βρ.29 Indeed, we have:

p1 = αP1

(
v +

θ1

a1

)
+ (1− αP1)E[v|z1]

= Ē1[v] +

(
αP1 − αE1

a1

)
E[θ1|z1] + αE1

θ1

a1

(20)

= Ē1[v] +
(βρ− 1)τ 1τ ε1

a1(τ 1 + τ ε1)(τ 2 +
∑2

t=1 τ εt)
E[θ1|z1] + αE1

θ1

a1

,

where

αP1 ≡ αE1 +
(βρ− 1)τ 1τ ε1

(τ 1 + τ ε1)(τ 2 +
∑2

t=1 τ εt)
.

Using the last equation in (20) we readily realize as before that the existence of a

discrepancy between prices and investors’ average expectations depends on the sign

of (βρ− 1). In the low trading intensity equilibrium we have a∗1 < γτ ε1/β ⇔ ρ < 1/β,

traders thus accommodate the expected noise trade shock and over-reliance on public

information occurs. In the high trading intensity equilibrium we have a∗∗1 > γτ ε1/β ⇔
ρ > 1/β, traders side with the market and under-reliance on public information arises.

Hence, we can conclude that:

Corollary 5. In the market with short-term traders along the low (high) trading

intensity equilibrium the first period equilibrium price displays over- (under-) reliance

on public information.

It is again an immediate consequence of (20) that

Corollary 6. In the market with short-term traders when β = 0 there exists a

unique equilibrium in linear strategies. In this equilibrium over-reliance on public

information occurs.

As β approaches 0, along the high trading intensity equilibrium traders need to

speculate increasingly more aggressively to avoid an adverse price swing in the second

period, up to the point that if β = 0, a∗∗1 should grow unboundedly. However, in this

29In the second period traders act as in a static market and, as argued in the previous section, in
this case the price assigns the optimal statistical weight to public information.
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case the equilibrium becomes fully revealing, p2 = p1 = v, and traders earn no return

from their private information. Hence, they concentrate on the low trading intensity

equilibrium. Our model then coincides with Allen et al. (2006) and the first period

equilibrium price is always more biased than average expectations in the estimation

of the fundamentals (see figure 3).

[Figure 3 about here.]

Remark 7. Differently from what happens in the market with long-term traders,

when traders have short horizons over- (under-) reliance on public information occurs

in a thin (thick) first period market. The intuition is as follows. As argued above

over-reliance on public information arises along the low trading intensity equilib-

rium where, given traders’ low aggressiveness, the degree of adverse selection is high.

Thus, in this equilibrium the market is thin. Conversely, under-reliance on public in-

formation occurs in the high trading intensity equilibrium where traders’ speculative

aggressiveness yields a faster resolution of the underlying uncertainty, reducing the

degree of adverse selection. This, in turn, yields a thick market (see figure 4).

[Figure 4 about here.]

Remark 8. In the market with short-term traders it is again possible to apply Bac-

chetta and Van Wincoop (2006) decomposition to the equilibrium price. As one would

expect, along the high (low) trading intensity equilibrium a positive wedge (integrat-

ing out the effect of the noise term) ties the price more firmly to the fundamentals in

relation to average expectations. Conversely, along the low trading intensity equilib-

rium the opposite occurs.

Remark 9. Summarizing, as soon as additional noise traders’ demand shocks become

correlated, both over- and under-reliance on public information arises. In a model

with β = 1, Cespa (2002) proves that along the high trading intensity equilibrium

since a∗∗1 > a2, the slope of the aggregate excess demand function is always positive,

arguing that as a consequence, the equilibrium in this case is unstable. Using our

results we can build a similar argument for a market in which β ∈ (0, 1). In particular,

given the realization of the first period informational shock z1, we can define the

second period aggregate excess demand function as follows:

XD (p2) ≡ z2 + λ−1
2 (1− λ2∆a2)p̂1 − λ−1

2 p2, (21)
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where XD = 0 when the market is in equilibrium and XD 6= 0 otherwise. Notice

that the slope of (21) depends on the sign of λ2. This can be determined using the

equation that defines the first period signal responsiveness:

f(a1) ≡ λ2a1(τ 2 + τ ε1)− γ∆a2τuτ ε1 = 0.

In the high trading intensity equilibrium, we know that ∆a2 < 0, hence for f(a1) = 0

to be satisfied it must be that λ2 < 0 too. Conversely, along the low trading intensity

equilibrium we have ∆a2 > 0, hence for a solution to f(a1) = 0 to exist, λ2 must

also be positive.30 In the unstable case notice that a price decline (e.g. spurred

by a selling pressure) drives the market away from equilibrium. In the low trading

intensity equilibrium, the aggregate excess demand function slopes downwards, and

the associated equilibrium is stable. Hence, restricting attention to stable equilibria

we can conclude that the equilibrium featuring over-reliance on public information

in Allen et al. (2006) is robust.

Remark 10. A further feature of the equilibrium obtained in proposition 3 is that

prices do not necessarily display inertia. In particular, along the high (low) trading

intensity equilibrium, the first period price rapidly (slowly) adjusts to the fundamen-

tals. Indeed, as traders “overreact” to their signal, after the first period the price

jumps close to v and then fully adjusts in the following two periods. Thus, differently

from Allen et al. (2006) the equilibrium price exhibits inertia if and only if ρ < 1.

4.3 The Effect of Residual Uncertainty

If the liquidation value is affected by residual uncertainty and β = 1 we can prove

that over-reliance on public information occurs in the first period whenever such

uncertainty is sufficiently large. To see this, consider that in the second period the

equilibrium strategy of a trader coincides with the one of the model with long-term

traders. In the first period

X1(si1, z1) = γ
E[p2|si1, z1]− p1

Var[p2|si1, z1]
,

where E[p2|si1, z1] = λ2∆a2E[v|si1, z1] + (1 − λ2∆a2)p̂1, Var[p2|si1, z1] = λ2
2(τ 2 +

τ ε1)/(τu(τ 1 + τ ε1)), and λ2, p̂1 are defined in proposition 2. Thus, identifying the first

30Incidentally, the above equation also shows that a1 > 0 in equilibrium since if a1 < 0 both
∆a2 > 0 and λ2 > 0, preventing the existence of a solution to f(a1) = 0.
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period signal responsiveness:

a1 =
γτ ε1τu∆a2

λ2(τ 2 + τ ε1)
.

Imposing market clearing and simplifying yields

p1 = αP1

(
v +

θ1

a1

)
+ (1− αP1)E[v|z1]

= Ē1[v] +

(
αP1 − αE1

a1

)
E[θ1|z1] + αE1

θ1

a1

(22)

= Ē1[v] +
(ρ− 1)τ 1τ ε1

a1(τ 1 + τ ε1)(τ 2 +
∑2

t=1 τ εt)
E[θ1|z1] + αE1

θ1

a1

,

where

αP1 ≡ αE1 +
(ρ− 1)τ 1τ ε1

(τ 1 + τ ε1)(τ 2 +
∑2

t=1 τ εt)
,

and ρ = a1(τ δ + τ 2 +
∑2

t=1 τ εt)/(γτ δτ ε1), denotes a measure of the deviation that the

joint effect of residual uncertainty and short-term horizons induce on traders’ first

period signal aggressiveness with respect to the static aggressiveness. We can thus

conclude the following:

Corollary 7. In any linear equilibrium of the market with short-term, informed

speculators when the liquidation value is affected by residual noise, over-reliance on

public information occurs if and only if ρ < 1.

Intuitively, the above condition is more likely to be satisfied whenever the residual

uncertainty affecting the liquidation value is sufficiently large. Indeed, as in the mar-

ket with long-term traders, higher uncertainty over the liquidation value exacerbates

the reaction of the second period price to the upcoming net informational addition

z2. However, owing to short-term horizons, traders cannot count on the improved

hedging properties of their second period strategies. Hence, in the face of the in-

creased second period price unpredictability, traders in the first period should scale

down their aggressiveness yielding a price which is less anchored to the fundamentals

compared to traders’ average expectations.31 This intuition can be formalized by the

following

31The increased uncertainty over the second period price in a way “crowds-out” informed traders
in the first period. This effect is reminiscent of De Long et al. (1990). Note, however, that in our
context all traders – except liquidity traders – are “rational.”
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Proposition 4. In any linear equilibrium of the market with short-term traders, when

the liquidation value is affected by the presence of residual uncertainty, for sufficiently

large residual uncertainty over-reliance on public information always arises in the first

period.

Proof. See appendix A. QED

Numerical simulations show that for low values of τ δ the equilibrium where the

price displays over-reliance on public information is unique.32

5 Discussion and Concluding Remarks

In this paper we have studied under what conditions asset prices display over- or

under-reliance on public information and are more or less biased than traders’ average

expectations in the estimation of fundamentals in a variety of market contexts. We

argued that for over- or under-reliance on public information to occur traders need

to speculate on short-run price differences. If, instead, agents only care about the

liquidation value of the asset, their strategies have a static nature. Hence, traders

assign the optimal statistical weight to public information and prices equal the average

expectations of investors plus a risk-weighted noise component. This is the case

when long-term traders populate the market, there is no residual uncertainty in the

liquidation value, and noise trading follows a random walk. When traders speculate

on short run price differences, because of noise trade increments persistence and/or

uncertainty in the liquidation value of the asset, then they may over- or under-weight

public information and prices may be more or less biased than average expectations.

According to the degree of correlation of noise trading and the relevance of residual

uncertainty we find in fact a Keynesian region where the former occurs and a Hayekian

region where the latter occurs. When traders have a short horizon multiple equilibria

arise, with one equilibrium displaying over-reliance and the other one under-reliance

on public information. In this case the equilibrium displaying over-reliance is the

stable one.

Our paper thus shows that in contrast to the results put forth by Allen et al.

(2006), there are situations where equilibrium prices may have less bias in estimating

fundamentals than the consensus opinion of traders. Indeed, the flavor of Keynes’

beauty contest allegory obtains when traders focus their short-term activities on the

32Conversely, as τ δ increases, the multiplicity result of the previous section is restored.
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exploitation of noise trade predictability. This happens in the stable equilibrium of

the market with short-term traders and, with long-term traders, when noise trade

increments are very correlated and residual uncertainty on the liquidation value is

low. Otherwise, an alternative result, more in line with Hayek (1945)’s view of the

market arises when informed trades drive the order-flow and speculators short-term

trading activity reinforces the weight the price assigns to fundamental information.

This may happen with short-term traders in an unstable equilibrium, and with long-

term traders when noise trade increments are not very correlated and the residual

uncertainty affecting the liquidation value is high.
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Appendix A

Proof of lemma 1

Consider the first period. In any linear equilibrium market clearing yields
∫ 1

0
a1si1−

ϕ1(p1)di + θ1 = a1v − ϕ1(p1) + θ1 = 0 or, denoting with z1 = a1v + θ1 the informa-

tional content of the first period order-flow, z1 = ϕ1(p1), where ϕ1(·) is a linear

function. Hence, z1 and p1 are observationally equivalent. Suppose now that zn−1 =

{z1, z2, . . . , zn−1} and pn−1 = {p1, p2, . . . , pn−1} are observationally equivalent and

consider the n-th period market clearing condition:
∫ 1

0
Xn(s̃in, p

n−1, pn)di + θn = 0.

Adding and subtracting
∑n−1

t=1 atv, the latter condition can be rewritten as follows:

n∑
t=1

zt − ϕn(pn) = 0,

where ϕn(·) is a linear function, and zt = ∆atv+ut denotes the informational content

of the t-th period order-flow. As by assumption pn−1 and zn−1 are observationally

equivalent, it follows that observing pn is equivalent to observing zn. QED

Proof of proposition 1

Given the past trading history, in the last trading period (N) each informed trader

maximizes the expected utility of his last period profit πiN = (v− pN)xiN . Owing to

CARA and normality of the random variables his optimal strategy is:

XN

(
s̃iN , p

N
)

= aN (s̃iN − pN) + γτN
(
E
[
v|zN

]
− pN

)
, (23)

where aN = γ(
∑N

t=1 τ εt). Imposing market clearing yields∫ 1

0

aN(s̃iN − pN) + γτN
(
E
[
v|zN

]
− pN

)
di+ θN = 0.

Adding and subtracting
∑N−1

n=1 anv to the above, and rearranging:

(1 + γτu∆aN)zN +
N−1∑
n=1

(1 + γτu∆an)zn + γτ vv̄ = (aN + γτN)pN .

Denoting with λN = (1 + γτu∆aN)/(aN + γτN) the N -th period reciprocal of market

depth we can solve for pN obtaining

pN = λNzN + (1− λN∆aN)p̂N−1, (24)
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where p̂N−k = λN−klzN−k+(1−λN−kl∆aN−1)p̂N−(k+1)l, and λ̂N−k = (1+γτu∆aN−k)/(aN−k+

γτN−k), for k = 1, . . . N − 1, . Substituting (23) into the trader’s objective function

yields:

E
[
U (πiN) |s̃iN , zN

]
= − exp

{
− x2

iN

2γ2(τN +
∑N

t=1 τ εt)

}
.

In period N − 1 the trader then maximizes

E
[
U (πiN−1 + πiN) |s̃iN−1, z

N−1
]

= (25)

−E

[
exp

{
−1

γ

(
(pN − pN−1)xiN−1 +

x2
iN

2γ(τN +
∑N

t=1 τ εN )

)}
|s̃iN−1, z

N−1

]
.

Denote with φiN−1 the term in parenthesis in the above equation: φiN−1 = (pN −
pN−1)xiN−1 + x2

iN/(2γ(τN +
∑N

t=1 τ εN )). As one can easily check φiN−1 is a quadratic

form of the random vector Z = (xiN − µ1, pN − µ2)
′, which is normally distributed

(conditionally on s̃iN−1, p
N−1) with zero mean and variance covariance matrix

Σ =
1

(τN−1 +
∑N−1

t=1 τ εt)τu
×(

(∆aN − γτ εN )2τu + (τN−1 +
∑N−1

t=1 τ εt)(1 + γ2τuτ εN ) ·
λN((γτ εN −∆aN)∆aNτu − (τN−1 +

∑N−1
t=1 τ εN )) λ2

N(τN +
∑N−1

t=1 τ εt)

)
,

(i.e. µ1 = E[xiN |s̃iN−1, z
N−1] = γ(τN +

∑N
t=1 τ εN )(1 − λN∆aN)(E[v|s̃iN−1, z

N−1] −
p̂N−1) and µ2 = E[pN |s̃iN−1, z

N−1] = λN∆aNE[v|s̃iN−1, z
N−1] + (1− λN∆aN)p̂N−1):

φiN−1 = c+ b′Z + Z ′AZ,

where c = (µ2−pN−1)xiN−1+µ
2
1/(2γ(τN+

∑N
t=1 τ εN )), b = (µ1/(γ(τN+

∑N
t=1 τ εN )), xiN−1)

′,

and A is a 2× 2 matrix with a11 = 1/(2γ(τN +
∑N

t=1 τ εN )) and the rest zeroes. Ow-

ing to a well-known property of multivariate normal random variables the objective

function (25) can then be rewritten as

E
[
U (πiN−1 + πiN) |s̃iN−1, z

N−1
]

= (26)

− |Σ|−1/2
∣∣Σ−1 + 2/γA

∣∣−1/2 × exp

{
−1/γ

(
c− 1

2γ
b′
(
Σ−1 + (2/γ)A

)−1
b

)}
.

Maximizing the above function with respect to xiN−1 yields

xiN−1 = γ
µ2 − pN−1

h22

− h21µ1

h22γ(τN +
∑N

t=1 τ εN )
, (27)
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where hij denotes the ij-th term of the symmetric matrix H = (Σ−1 + (2/γ)A)−1:

h11 =
γ2VarN−1[xiN ]

D
,

h12 =
γ2CovN−1[xiN , pN ]

D
,

h22 =
γ2VarN−1[pN ] + VarN [v](VarN−1[xiN ]VarN−1[pN ]− CovN−1[xiN , pN ]2)

D
,

and Varn[Y ] = Var[Y |s̃in, zn], CovN−1[X, Y ] = Cov[X, Y |s̃N−1, z
N−1], D = γ2 +

VarN−1[xiN ]VarN [v]. Identifying the N − 1-th period trading aggressiveness:

aN−1 =

∑N−1
t=1 τ εt

h22(τN−1 +
∑N−1

t=1 τ εN )
(γλN∆aN − h21(1− λN∆aN))

= γ

(
N−1∑
t=1

τ εt

)
,

since (γλN∆aN − h21(1 − λN∆aN))/h22 = γ(τN−1 +
∑N−1

t=1 τ εN ). Substituting aN−1

in (27) and rearranging

XN−1(s̃iN−1, z
N−1)

=

(
γλN∆aN − h21(1− λN∆aN)

h22

)(
E
[
v|s̃iN−1, z

N−1
]
− p̂N−1

)
− γ

h22

(pN−1 − p̂N−1)

= γ

(
τN−1 +

N−1∑
t=1

τ εN

)(
E
[
v|s̃iN−1, z

N−1
]
− p̂N−1

)
− γ

h22

(pN−1 − p̂N−1). (28)

Interpreting p̂N−1 as the “static” period N − 1 equilibrium price (i.e. the price that

would arise if the asset was liquidated in period N), a trader i’s strategy is thus

the sum of his static position and the adjustment he makes to exploit short-run

price movements. For example, suppose that E[v|s̃iN−1, z
N−1] − p̂N−1 > 0, but that

pN−1 > p̂N−1, then the trader scales down his period N − 1 static position to avoid

buying the asset for too high a price. Imposing market clearing yields:∫ 1

0

γVar
[
v|s̃iN−1, z

N−1
]−1 (

E
[
v|s̃iN−1, z

N−1
]
− p̂N−1

)
di− γ

h22

(pN−1−p̂N−1)+θN−1 = 0.

(29)
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Notice that∫ 1

0

γVar
[
v|s̃iN−1, z

N−1
]−1 (

E
[
v|s̃iN−1, z

N−1
]
− p̂N−1

)
di =

=

∫ 1

0

γ

(
τ vv̄ + τu

N−1∑
n=1

∆anzn +
N−1∑
n=1

τ εnsin

)
−

(
γτ vv̄ +

N−1∑
n=1

(1 + γτu∆an)zn

)
di

= aN−1v −
N−1∑
n=1

zn

= −θN−1.

Hence, since γ/h22 6= 0, (29) is satisfied if and only if p̂N−1 = λ̂N−1zN−1 + (1 −
λ̂N−1∆aN−1)p̂N−2 = pN−1: traders’ aggregate static position is just enough to hold the

total noisy supply that has accumulated up to period N−1. Therefore, λ̂N−1 = λN−1,

and

XN−1(s̃iN−1, z
N−1) = γ

(
τN−1 +

N−1∑
t=1

τ εt

)
(E[v|s̃iN−1, z

n−1]− pN−1)

= aN−1(s̃iN−1 − pN−1) + γτN−1

(
E
[
v|zN−1

]
− pN−1

)
. (30)

Plugging (30) into the term in parenthesis in the exponential of (26) we can now

evaluate the N − 1-th period objective function of a trader i at the optimum:

c− 1

2γ
b′
(
Σ−1 + 2/γA

)−1
b =

x2
iN−1

2γ(τN−1 +
∑N−1

t=1 τ εN )
,

given that, as one can check, in equilibrium

µ2 − pN−1 =
λN∆aN

γ(τN−1 +
∑N−1

t=1 τ εN )
xiN−1,

and µ2
1 = x2

iN−1. The N − 2-th objective function of a trader is then given by

E
[
U (πiN−2 + πiN−1) |s̃iN−2, z

N−2
]

= (31)

−E

[
exp

{
−1

γ

(
(pN−1 − pN−2)xiN−2 +

x2
iN−1

2γ(τN−1 +
∑N−1

t=1 τ εN )

)}
|s̃iN−2, z

N−2

]
.

Comparing (31) with (25) the form of the objective function in the recursion between

the N − 1-th and the N − 2-th period looks exactly as the one in the recursion

between the N -th and the N − 1-th period. Thus, the trader’s optimal strategy in
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period N−2 is given by xiN−2 = aN−2(s̃iN−2−pN−2)+γτN−2(E[v|s̃iN−2, z
N−2]−pN−2),

where aN−2 = γ(
∑N−2

t=1 τ εt), and the corresponding equilibrium price is given by:

pN−2 = λN−2zN−2 + (1− λN−2∆aN−2)p̂N−3,

where λN−2 = (1 + γτu∆aN−2)/(aN−2 + γτN−2). Iterating this procedure until the

first period, we obtain that xin = an(s̃in − pn) + γτn(E[v|zn]− pn), an = γ
∑n

t=1 τ εt ,

and p̂n = pn for all 1 ≤ n ≤ N .

Note that since at equilibrium λn = (an + γτn)−1(1 + γτu∆an), and p̂n = pn,

evaluating µ1 at equilibrium we obtain

µ1 = E[xiN |s̃iN−1, z
N−1]

= γ

(
τN +

N∑
t=1

τ εt

)
(1− λN∆aN)(E[v|s̃iN−1, z

N−1]− pN−1)

= γ

(
τN−1 +

N−1∑
t=1

τ εt

)
(E[v|s̃iN−1, z

N−1]− pN−1)

= xiN−1.

Hence, xiN−1 = E[xiN |siN−1, z
N−1]. Now, define µ′1 = E[xiN−1|s̃iN−2, z

N−2] = γ(τN−1+∑N−1
t=1 τ εt)(1 − λN−1∆aN−1)(E[v|s̃iN−2, z

N−2] − pN−2), and since λN−1 = (aN−1 +

γτN−1)
−1(1 + γτu∆aN−1), evaluating µ′1 at equilibrium yields:

µ′1 = γ

(
τN−2 +

N−2∑
t=1

τ εt

)
(E[v|s̃iN−2, z

N−2]− pN−2)

= xiN−2.

Thus xiN−2 = E[xiN−1|s̃iN−2, z
N−2]. Iterating this procedure it follows that xin =

E[xin+1|s̃in, zn].

Finally, in any period n the response to private information is equal across traders.

Hence, the equilibrium is symmetric. QED

Proof of proposition 2

To find the equilibria of the model we proceed as illustrated in the proof of propo-

sition 1. In the second period, a trader behaves like in a static model and trades

according to

X2

(
s̃i2, z

2
)

= γ
E[v|s̃i2, z2]− p2

Var[v + δ|s̃i2, z2]

= a2(s̃i2 − p2) + b2(E[v|z2]− p2), (32)
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where

a2 =
γ(τ ε1 + τ ε2)

1 + κ
, (33)

b2 = γτ 2/(1+κ), and κ = (τ 2 +
∑2

t=1 τ εt)/τ δ. Imposing market clearing, we find that

the second period equilibrium price is given by

p2 = λ2z2 + (1− λ2∆a2)p̂1,

where λ2 = (τ 2 +
∑2

t=1 τ εt))
−1(1 + γτu∆a2 + κ), ∆a2 = a2 − βa1, and

p̂1 =
γτ 1E[v|z1] + β(1 + κ)z1

γτ 1 + βa1(1 + κ)
.

Notice that αP2 = (γτ δ(τ 2 +
∑2

t=1 τ εt))
−1a2(1 + κ) = αE2. Hence, in the second

period the price assigns the optimal statistical weight to public information. Sub-

stituting (32) in the second period objective function, a trader in the first period

maximizes

E [U (πi1 + πi2) |si1, z1] = (34)

−E
[
exp

{
−1

γ

(
(p2 − p1)xi1 +

x2
i2Var[v + δ|s̃i2, z2]

2γ

)}
|si1, z1

]
.

Let φi1 = (p2− p1)xi1 +x2
i2Var[v+ δ|s̃i2, z2]/(2γ). The term φi1 is a quadratic form of

the random vector Z = (xi2−µ1, p2−µ2)
′, which is normally distributed (conditionally

on si1, p1) with zero mean and variance covariance matrix

Σ =

(
Var[xi2|si1, z1] Cov[xi2, p2|si1, z1]

Cov[xi2, p2|si1, z1] Var[p2|si1, z1]

)
, (35)

where

Var[xi2|si1, z1] =
(∆a2(1 + κ)− γτ ε2)2τu + (τ 1 + τ ε1)((1 + κ)2 + γ2τuτ ε2)

(τ 1 + τ ε1)τu(1 + κ)2
,

Cov[xi2, p2|si1, z1] = λ2

(
(γτ ε2 − (1 + κ)∆a2)∆a2τu − (1 + κ)(τ 1 + τ ε1)

(τ 1 + τ ε1)τu(1 + κ)

)
,

Var[p2|si1, z1] = λ2
2

(
τ 2 + τ ε1

(τ 1 + τ ε1)τu

)
,

(i.e. µ1 = E[xi2|si1, z1] = (a2+b2)(1−λ2∆a2)(E[v|si1, z1]−p̂1) and µ2 = E[p2|si1, z1] =

λ2∆a2E[v|si1, z1] + (1− λ2∆a2)p̂1):

φi1 = c+ b′Z + Z ′AZ,
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where c = (µ2 − p1)xi1 + µ2
1Var[v + δ|s̃i2, z2]/(2γ), b = (µ1Var[v + δ|s̃i2, z2]/γ,Xi1)

′,

and A is a 2× 2 matrix with a11 = Var[v+ δ|s̃i2, z2]/(2γ) and the rest zeroes. We can

now rewrite the objective function (34) as

E [U (πi1 + πi2) |si1, z1] = (36)

− |Σ|−1/2
∣∣Σ−1 + 2/γA

∣∣−1/2 × exp

{
−1/γ

(
c− 1

2γ
b′
(
Σ−1 + 2/γA

)−1
b

)}
.

Maximizing the above function with respect to xi1 yields

xi1 = γ
µ2 − pN−1

h22

− h21µ1Var[v + δ|s̃i2, z2]

γh22

, (37)

where hij denotes the ij-th term of the symmetric matrix H = (Σ−1 + 2/γA)−1:

h11 =
γ2Var1[xi2]

D
,

h12 =
γ2Cov1[xi2, p2]

D
,

h22 =
Var1[p2](γ

2 + Var2[v + δ]Var1[xi2](1− ρ2
1,{xi2,p2}))

D
,

and Varn[Y ] = Var[Y |s̃in, zn], Cov1[X, Y ] = Cov[X, Y |si1, z1],

ρ2
1,{xi2,p2} =

Cov1[xi2, p2]
2

Var1[p2]Var1[xi2]
,

D = γ2 + Var1[xi2]Var2[v+ δ]. Substituting in (37) the expressions for µ1 and µ2 and

rearranging we obtain

X1(si1, p1) =
a1(τ 1 + τ ε1)

τ ε1
(E[v|si1, z1]− p̂1)−

γ

h22

(p1 − p̂1) (38)

=
a1(τ 1 + τ ε1)

τ ε1
(E[v|si1, z1]− p1) +

(γ + h21)(1− λ2∆a2)

h22

(p̂1 − p1),

where a1 denotes the 1st period trading aggressiveness:

a1 =
τ ε1 (γλ2∆a2 − h21(1− λ2∆a2))

h22(τ 1 + τ ε1)

=
γτ ε1(τ 2 +

∑2
t=1 τ εt)(1 + κ)(1 + γτu∆a2)

(1 + κ+ γτu∆a2)(τ ε2 + (τ 2 + τ ε1)(1 + κ))
. (39)

Both (33) and (39) are implicit solutions for a1 and a2. Thus, equilibria must be de-

termined via numerical methods.33 Rearranging the first period equilibrium strategy

33If τ δ →∞, residual noise vanishes, κ→ 0 and an → γ(
∑n
t=1 τ εt) as in proposition 1.
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yields the second of (11). Using this expression and imposing market clearing yields

p1 = λ1z1 + (1− λ1a1)v̄, where

λ1 =
αP1

a1

+
(1− αP1)a1τu

τ 1

,

and the expression for αP1 is given by (15). In order to obtain the expression for

the first period equilibrium price given in (14), we impose market clearing on (38)

obtaining τ−1
ε1
a1(τ 1 + τ ε1)

∫ 1

0
(E1[v] − p̂1)di − (γ/h22)(p1 − p̂1) + θ1 = 0. Simplifying

the latter condition yields

γτ 1(βρ− 1)

(γτ 1 + βa1(1 + κ))
E[θ1|z1]−

γ

h22

(p1 − p̂1) = 0, (40)

which can be easily rearranged to obtain (14). Notice also that according to the above

market clearing equation the first period equilibrium price will differ from the static

solution as long as ρ 6= 1/β.

To show existence note that (12) defines a system of non-linear equations. Let us

denote with f(a1, a2) = 0 the equation defining a2, and with g(a1, a2) = 0 the equation

defining a1. Both f(·) and g(·) are continuous. In particular, it is easy to check that

f(a1, a2) = (τ δ +
∑2

t=1 τ εt)(a
3
2τu − 2a2

2a1τu + a2(τ 1 + a2
1τu)) − γτ δ(

∑2
t=1 τ εt) = 0 is

a nondegenerate cubic in a2, given that (τ δ +
∑2

t=1 τ εt)τu > 0, and always admits

a real solution for any a1. Furthermore, since ∂f/∂a2 = (τ δ +
∑2

t=1 τ εt)(3a
2
2τu −

4a2a1τu + τ 1 + a2
1τu) and the discriminant associated to this quadratic equation in

a1 can be shown to be negative, we have that ∂f/∂a2 6= 0 and the solutions to the

cubic equation are continuous in a1.
34 Hence, denoting by a2(a1) a (real) solution to

the cubic we have that

lim
a1→0

a2(a1) = ā2 > 0, lim
a1→∞

a2(a1) = 0.

We can now verify that a real solution always exists to the equation g(a1, a2(a1)) = 0.

Indeed,

lim
a1→0

g(a1, a2(a1)) = γτ δτ ε1 (1 + ā2γτu)

(
τ v + ā2

2τu +
2∑
t=1

τ εt + τ δ

)
> 0,

lim
a1→∞

g(a1, a2(a1)) = −∞,

and the result follows.

34Indeed, as one can check ∆ ≡ 16a2
1τ

2
u − 12τu(τ1 + a2

1τu) = −(8a2
1τu + 12τv)τu < 0.
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We are now left with the task of proving that in any linear equilibrium ρ > 1.

Notice that in any equilibrium a1 > 0, hence if 1 + γτu∆a2 > (<)0, then also

1 + κ+ γτu∆a2 > (<)0.35 Notice also that if ∆a2 < 0 then 1 + κ+ γτu∆a2 < 0. To

see this last point, compute ∆a2 using (33) and (39):

∆a2 = (41)

γ

D

(
τ ε2(1 + κ+ γτu∆a2)(τ ε2 + τ ε1 + τ 2(1 + κ))− τ ε1κ(1 + κ)γτu∆a2

(
τ 2 +

2∑
t=1

τ εt

))
,

where D = (1 + κ+ γτu∆a2)(τ ε2 + (τ 2 + τ ε1)(1 + κ))(1 + κ). Suppose that ∆a2 < 0

but that (1 + κ+ γτu∆a2) > 0, then given (41) this is impossible.

To prove our claim start by assuming that ∆a2 > 0, then using (39) we can

directly check whether ρ < 1 since as one can see

a1 <
γτ ε1
1 + κ

⇔ τ ε2(1 + γτu∆a2 + κ) + (1 + κ)

(
τ 2 +

2∑
t=1

τ εt

)
γτu∆a2 < 0,

which is clearly impossible. If, on the other hand ∆a2 < 0, given what we have said

above for ρ < 1 we need

τ ε2(1 + γτu∆a2 + κ) + (1 + κ)

(
τ 2 +

2∑
t=1

τ εt

)
γτu∆a2 > 0,

which is again impossible.36 Therefore, in any linear equilibrium ρ > 1.

QED

Proof of proposition 3

In the second period a trader speculates according toX2(s̃i2, p
2) = (γ/Var[v|s̃i2, z2])×

(E[v|s̃i2, z2]− p2). Imposing market clearing yields∫ 1

0

xi2di+ θ2 =

= a2 (v − p2) + γτ 2

(
E
[
v|z2

]
− p2

)
+ θ2 (42)

= (a2 − βa1)v + βa1v + u2 + βθ1 − (a2 + γτ 2)p2 + γτ 2E
[
v|z2

]
= 0,

35For suppose a1 < 0, then ∆a2 > 0 and both 1 + γτu∆a2 > 0 and 1 + γτu∆a2 + κ > 0, implying
a1 > 0, a contradiction.

36Suppose τ ε2 = 0, then a1 must satisfy (a1(1 + κ)− γτ ε1) + γτu∆a2(a1− γτ ε1) = 0. It is easy to
see that a solution to this equation is a1 = a2 = γτ ε1/(1 +κ). Then, αP1 = αE1 and the first period
price assigns the optimal statistical weight to public information. The intuition is straightforward: if
τ ε2 = 0 the second period price is just a noisy version of p1, traders do not expect any price variation
that justifies a rebalancing of their speculative position in the second period, and the absence of
over-reliance on public information when n = 2 also extends to the first period.
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where a2 = γ(τ ε1 + τ ε2), and θ2 = u2 + βθ1. Let ∆a2 = a2 − βa1, then the above

market clearing condition can be rewritten as

z2 + βz1 + γτ 2E[v|z2] = (a2 + γτ 2)p2,

where z2 = ∆a2v + u2. Rearranging it yields

p2 = λ2z2 + (1− λ2∆a2)p̂1,

where λ2 = (a2 + γτ 2)
−1(1 + γτ 2∆a2), and

p̂1 =
γτ vv̄ + (β + γτua1)z1

βa1 + γτ 1

.

In the first period owing to short-term horizonsX1(si1, p1) = (γ/Var[p2|si1, z1])(E[p2|si1, z1]−
p1), where E[p2|si1, z1] = λ2∆a2E[v|si1, z1] + (1 − λ2∆a2)p̂1, and Var[p2|si1, z1] =

λ2
2(τ 2 + τ ε1)/((τ 1 + τ ε1)τu). Identifying the first period signal responsiveness yields

a1 = γ
∆a2τuτ ε1
λ2(τ 2 + τ ε1)

. (43)

Let f(a1) ≡ a1λ2(τ 2 + τ ε1) − γ∆a2τuτ ε1 . The solutions to the quartic f(a1) = 0

clearly identify the equilibria of the model. Notice that f(0) = −a2γτ ε1τu < 0, while

f(γτ ε1) =
τ ε1((2(1− β) + β2)γ2τ 2

ε1
τu + τ ε1(1 + (1− β)γ2τ ε2τu) + τ v)

τ ε2 + (2(1− β) + β2)γ2τ 2
ε1
τu + γ2τ 2

ε2
τu + τ ε1(1 + 2(1− β)γ2τ ε2τu) + τ v

> 0.

Hence, a first solution a∗1 to the equation f(a1) = 0 belongs to the interval (0, γτ ε1).

Next, since

f(a2/β) =
a2(τ 2 + τ ε1)

βγ
(
τ 2 +

∑2
t=1 τ εt

) > 0,

and lima1→∞ f(a1) = −∞, a further solution a∗∗1 to f(a1) = 0 belongs to the interval

(a2/β,∞). To see that these are the only two real solutions (i.e. that the remaining

two roots must be complex), notice that the cubic equation f ′(a1) = 0 has a unique

real root (its discriminant is positive). Hence, the graph of f(a1) changes slope only

once (between a∗1 and a∗∗1 ). Rearranging the first period market clearing equation

yields (20), where αP1 ≡ αE1(1 + (βρ − 1)τ 1/(τ 2 +
∑2

t=1 τ εt)), and ρ = a1/(γτ ε1).

According to the latter of (20), over-reliance on public information occurs whenever

αP1 < αE1 ⇔ a1 < (γτ ε1/β). which in the first equilibrium is always satisfied since

we have a∗1 < γτ ε1 < γτ ε1/β. Next, insufficient reliance on public information arises

if and only if αP1 > αE1 ⇔ a1 > (γτ ε1/β), which in the second equilibrium is
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again always satisfied since a∗∗1 > a2/β > γτ ε1/β. Using the definition of αP1 and

rearranging the pricing equation yields: p1 = λ1z1 + (1− λ1a1)v̄, where

λ1 =
αP1

a1

+
(1− αP1)a1τu

τ 1

.

Finally, note that for f(a1) ≡ a1λ2(τ 2 + τ ε1) − γ∆a2τuτ ε1 = 0 to have a real

solution it must be the case that λ2 and ∆a2 have the same sign. In the high trading

intensity equilibrium a∗∗1 > a2/β, and ∆a2 < 0. Therefore, λ2(a
∗∗
1 ) < 0.

QED

Proof of corollary 6

Imposing β = 0 in (43) one can see that the linear equilibria of the model are given

by the solutions to the following cubic equation f(a1) ≡ a1λ2(τ 2+τ ε1)−γa2τuτ ε1 = 0.

Now, it is immediate to check that f(0) < 0, f(γτ ε1) > 0, and that

f ′(a1) =
(1 + γa2τu)(2a

2
1τuτ ε2 + (τ 2 + τ ε1)(τ 2 +

∑2
t=1 τ εt))

γ
(
τ 2 +

∑2
t=1 τ εt

)2 > 0,

showing that the equilibrium is unique. QED

Proof of proposition 4

To prove the claim we check what happens to ρ = a1(τ δ + τ 2 +
∑2

t=1 τ εt)/(γτ δτ ε1)

as τ δ → 0. Notice that

lim
τδ→0

a1 = lim
τδ→0

γ2τ δτ ε1τu∆a2

(
τ 2 +

∑2
t=1 τ εt

)
(τ 2 + τ ε1)

(
τ δ(1 + γ∆a2τu) +

(
τ 2 +

∑2
t=1 τ εt

))
= 0,

and limτδ→0 a2 = limτδ→0 γτ δ(τ ε1 + τ ε2)/(τ δ + (τ 2 +
∑2

t=1 τ εt)) = 0. Then,

lim
τδ→0

ρ = lim
τδ→0

γτu∆a2

(
τ 2 +

∑2
t=1 τ εt

)
τ 2 + τ ε1

= 0,

since, as argued above, in the limit a1 = a2 = 0. By continuity of ρ as a function

of (a1, a2), there must then exist an interval (0, τ ∗δ), such that for all τ δ ∈ (0, τ ∗δ) we

have ρ < 1. QED
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Appendix B

In this appendix we generalize the pricing formula obtained in section 4.1 to the

N ≥ 2-period case. To fix notation, let Ēn[Y ] =
∫ 1

0
E[Y |s̃in, pn]di, and Varn[Y ] =

Var[Y |s̃in, pn]. In the N -th period the market clearing equation reads as follows:

γ
ĒN [v]− pN

VarN [v]
+ θN = 0.

Therefore, the price of the asset in period N is given by

pN = ĒN [v] +
VarN [v]

γ
θN , (44)

In period N − 1, optimality and market clearing require that

γ
ĒN−1[pN ]− pN−1

VarN−1[pN ]
+ θN−1 = 0,

and using (44) the corresponding market clearing price is given by:

pN−1 = ĒN−1[pN ] +
VarN−1[pN ]

γ
θN−1

= ĒN−1

[
ĒN [v] +

VarN [v]

γ
βθN−1

]
+

VarN−1[pN ]

γ
θN−1.

Iterating this procedure, and using the fact that

θn = β

(
βn−1θ1 +

n−1∑
t=1

βn+1−tut

)
+ un,

recursive substitution yields

pn =

Ēn

[
Ēn+1

[
· · · ĒN−1

[
ĒN [v] +

VarN [v]

γ
βN−nθn

]
+

VarN−1[pN ]

γ
βN−(n+1)θn · · ·

]
+

Varn+1[pn+2]

γ
βθn

]
+

Varn[pn+1]

γ
θn,

for 1 ≤ n ≤ N .
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Figure 1: If βρ < 1 (βρ > 1) E[p1|v] lays in the thickly (thinly) meshed area, and
over- (under-) reliance on public information occurs. Note that since E[Ē1[v]|v] =
αE1v + (1− αE1)E[E[v|z1]|v], E[Ē1[v]|v] ≥ v ⇔ v̄ ≥ v.
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Figure 2: The figure plots the set Ω ≡ {(β, 1/τ δ) ∈ [0, 1] × $+|βρ(β) = 1} for
γ ∈ {1/10, 2, 4} (parameters’ values: τ v = τu = τ εn = 1). Values of (β, 1/τ δ) that
fall below (above) this set identify market conditions leading to over (under) reliance
on public information. As γ increases, traders speculate more and more aggressively
on their first period information. This increases the relevance of informed trades in
the aggregate order-flow, widening the parameter space for which under reliance on
public information occurs.
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fall below (above) this set identify market conditions leading to over (under) reliance
on public information. As γ increases, traders speculate more and more aggressively
on their first period information. This increases the relevance of informed trades in
the aggregate order-flow, widening the parameter space for which under reliance on
public information occurs.
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Figure 3: The continuous (heavily, lightly dotted) curve graphs the equation that
determines the equilibria when β = .6 (β = .4, β = 0). Since a∗1 < γτ ε1/β < a∗∗1 , as
β → 0, γτ ε1/β →∞, the high trading intensity equilibrium disappears and only the
low trading intensity equilibrium survives (parameter values: τ v = τu = τ εn = γ = 1
and β ∈ {0, .4, .6}).
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Figure 4: Differently from the market with long-term traders, with short-term traders
a over- (under-) reliance on public information occurs in a thin (thick) market (pa-
rameter values: τ v = τu = τ εn = γ = 1 and β = .6; a∗1 = 0.732, a∗∗1 = 5.393).
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