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1 Introduction

The aim of this paper is to investigate efficiency and envy-freeness (here
same as equitability) for allocations of goods in a market economy with
asymmetrically informed agents.

Efficiency and equity are, of course, classical issues of economic analysis.
With the papers by Foley [10], Varian [31] and the unpublished contribu-
tion by Schmeidler-Yaari [30] a systematic study of fairness of allocations
resulting as market equilibria was developed.

Fair allocations are not uniquely defined in the literature. We shall fol-
low here the definition according to which an allocation is fair if it is both
efficient and no agent would prefer to exchange his own bundle for anyone
else’s. In other words, an allocation is said to be fair is it is Pareto optimal
and envy free.

It is known that in a pure exchange economy a fair allocation always
exists. This follows from the fact that any competitive allocation resulting
from an equal sharing of the total initial endowment is fair. The situation is
radically different when production is allowed as well as in economies where
agents are asymmetrically informed. In such cases, envy freeness may be
incompatible with efficiency and therefore the set of fair allocations may be
empty (see [6], [12], [25] and [31] among others).

Dealing with differential information economies we face a complex sce-
nario depending on: what agents know when they write contracts, what
they know ex post (namely, when consumption takes place). Our goal is to
provide, in a model which includes, as particular cases, different situations
covered by the literature, a notion of equitable allocation which solves the
conflict arising between efficiency and the absence of envy.

To achieve our objective the proposed model is rather general both as
for information as for the space of agents.

Concerning information, we assign, to each trader t, two subalgebras
Ft and Gt of (Ω,F), the measurable space used for depicting uncertainty
about states of nature, in order to represent: by Ft, private information
at time of contracting and, by the larger algebra Gt, information revealed
to t at the date of contract delivery. The interpretation is standard. Let ω
be the prevailing state of nature. Agent t only knows that, among those
belonging to the partition generating his information algebra, the (unique)
event containing ω is realized. Given that, since indistinguishable states
determine the same consumption, the relevant Gt-measurability constraint
on allocations follows. Analogously, it is only with reference to information
Ft that the agent t evaluates, in signing contracts, his future consumption.

Simply by specifying the fields Ft and Gt, we end up into one of the well
known cases of economies with uncertainty: economies with just uncertainty,
represented by a probability space (Ω,F , π), where Ω is the set of states of
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nature (see [3]); ex ante asymmetric information economies (see [9], [19],
[28], [33] among others); interim economies in which the occurred state of
nature is commonly known ex post (see for example [5], [6] and [32]); interim
asymmetric information economies (see [1], [2], [13] and [33] among others).

Concerning the space of agents, we shall adopt a general measure space.
Indeed we allow the presence of large traders, which causes the lack of perfect
competition. Precisely we consider two kinds of agents: large traders which
are represented by atoms of the measure space, and an ocean of small traders
represented by the atomless part. A general mixed model represents the
natural framework to deal with coalitional fairness (see [8], [11], [15], and
[31] ), and it enables us to study simultaneously the case of finite economies,
non-atomic economies as well as economies that may have atoms.

Now, given our model of market economy, we observe that if an indi-
vidual compares himself to another one which enters in the market with an
advantage (higher initial endowment or more precise informational signal),
he is fated to be envious. Thus, each agent should compare his bundle only
with the bundle of agents entering in the market without any kind of advan-
tage respect to him, that is with his same endowment and same signal. We
also guess that this goes in the direction of Varian’s intuition. In the notion
of envy introduced by Foley and Varian for a complete information exchange
economy, agents with equal income under a competitive equilibrium alloca-
tion are envy free, so that the set of fair allocations is non-empty. That is,
allowing comparisons to be made only between agents with the same initial
opportunities a fair redistribution is possible.

The path for achieving the proof of the existence of fair allocations is as
in Varian [31]: in generalized interim models, in which agents may be even
ex post asymmetrically informed (i.e. Ft and Gt are both arbitary), we define
a notion of competitive market equilibrium; once non emptiness of the set of
competitive market equilibria is proved, from it we deduce the existence of
(individual) fair allocations as well as coalitionally type fair allocations.

Competitive market equilibria coincide with well established solution
concepts whenever the algebras Ft and Gt are specified. In particular, in
economies with just uncertainty (i.e., Ft = {∅,Ω} and Gt = 2Ω for all t ∈ T ),
we obtain the classical notion defined by Arrow and Debreu ( [3]); whenever
ex post agents are asymmetrically informed (i.e. Ft = {∅,Ω} for all t ∈ T
and Gt is arbitrary), we end up into the notion of Walrasian expectations
equilibrium introduced by Radner in [28]; in the interim model, when ex
post the state of nature is commonly known (i.e. Gt = 2Ω for all t ∈ T and
arbitrary Ft), our notion reduces to be a constrained market equilibrium
defined by Wilson (see [32])).

In generalized interim models we propose (we emphasize that here infor-
mation is not only asymmetrically distributed among agents but also may
changes ex-post), our notion of equilibrium is new, therefore we furnish a
proof of its existence. Thus, a further contribution of this paper is the in-
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troduction of a new equilibrium concept which is efficient. In order to show
the existence of a competitive market equilibrium, we construct a suitable
correspondence between the original differential information economy and
an auxiliary Arrow-Debreu exchange economy with uncertainty. Agents of
the auxiliary economy are defined adopting the same idea by Harsanyi [18]
to define Bayesian games. A type-agent is a couple (t, E), where t is an agent
and E is an atom of his information partition. The future state of the ficti-
tious economy is uncertain, but each type-agent has no private information.
Moreover, since contracts are contingent on the future state of the economy,
standard Arrow-Debreu equilibrium notions can be applied.

The paper is organized as follows. Section 2 specifies the general frame-
work of differential information mixed markets. In Section 3 we discuss the
problem of incompatibility between efficiency and absence of envy and pro-
pose a solution, that is a new notion of fair allocation whose existence is
proved in Section 4. In Section 5 we introduce the notion of c-type fairness
and prove that the set of c-fair allocations is non empty. Proofs are collected
in the Appendix.

2 The Model

The model of economy we adopt presents a twofold generality: concerning
the space of agents and concerning informational asymmetries among agents.

The space of agents we consider is a complete, finite measure space
(T,T , µ), where: T is the set of agents and T is the σ-field of all eligible
coalitions, whose economic weight on the market is given by the measure
µ. An arbitrary finite measure space of agents makes us deal simultane-
ously with the case of discrete economies, non-atomic economies as well as
economies that may have atoms. Indeed, discrete economies are covered by
a finite set T with a counting measure µ. Atomless economies are analyzed
by assuming that (T,T , µ) is the Lebesgue measure space with T = [0, 1].
Finally, mixed markets are those for which T is composed by two sets: T0

and T1, where T0 is the atomless sector and T1 the set of atoms. We will re-
fer to T0 as the set of “small” traders and to T1 as the set of “large” traders.1

Uncertainty about nature is, as usual, depicted by means of a probability
space (Ω,F , π), where Ω is the finite set of possible states of nature. Without
loss of generality, we assume that F is the power set of Ω (i.e., F = 2Ω) and
π is a strictly positive common prior which describes the relative probability
of the states.

1This terminology is, in particular, motivated when T is a separable metric space.
Indeed, in this case, T0 is the set of traders t ∈ T for which µ(t) = 0, while T1 is the set
of traders such that µ(t) > 0 (see [20]).
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Information has the standard representation by means of partitions of
Ω. With an abuse of notation we use the same symbol for a partition and for
the algebra of subsets of Ω it generates. The interpretation is as usual: if the
prevailing state is ω, an agent endowed with information G (a partition of Ω)
observes the unique element G(ω) of G to which ω belongs or, in other words,
the agent is informed that the prevailing state is in the event G(ω). Agents
may be not equally informed concerning the true state of nature both when
they write contracts and when consumption takes place, therefore to each
trader t we assign partitions Ft and Gt of Ω and hence the related algebras
generated by them. The algebra Ft represents the private information at
the time of contracting. Beside the information Ft, a new information, due
to the larger field Gt, i.e., Ft ⊆ Gt, is revealed to t at the date of contract
delivery. Notice that for each ω ∈ Ω, Ft(ω) = ∪ω′∈Ft(ω)Gt(ω

′
), where Gt(ω

′
)

denotes the event in the partition Gt containing the state ω
′
(since partition

Gt is finer than Ft).

Since the space Ω is finite, there exists a finite collection {Fi}i∈I of
algebras on Ω such that

{Ft : t ∈ T} = {Fi : i ∈ I}.

We assume that the set Θi defined by Θi = {t ∈ T : Ft = Fi} belongs to
T (i.e., Θi is measurable) and that the family (Θi)i∈I forms a partition of
T satisfying µ(Θi) > 0 for each i ∈ I2. Therefore there is a finite set I of
information types Θi and every agent t ∈ Θi is of information type i in the
sense that Ft = Fi.

We assume that there are � private goods, so that IR�
+ (the positive cone

of the Euclidean space IR�) is the commodity space. Furthermore, each agent
t ∈ T is characterized not only by the two algebras Ft and Gt, but also by:

- a state-dependent utility function representing his preferences:

ut : Ω × IR�
+ → IR

(ω, x) → ut(ω, x).

The utility function ut(ω, ·) of each agent t is strictly increasing, con-
tinuous and concave in each state ω of the economy, moreover for all
ω in Ω the mapping (t, x) �→ ut(ω, x) is T ⊗B-measurable, where B is
the σ-field of Borel subsets of IR�

+.

2This assumption implies that the following correspondence has measurable graph:
Φ : T → 2F defined by Φ(t) = Ft. It means that the graph of Φ, namely {(t, E) : E ∈ Ft}
belongs to the product σ-algebras T ⊗ B(2F ), where B denotes the Borel σ-algebra.
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- An initial endowment of physical resources represented by the function

et : Ω → IR�
+.

Since the consumption of an agent that is unable to distinguish between
two states must be assumed to be the same, consumption profiles, including,
naturally, the initial endowment that we have just introduced, are assumed
to be Gt-measurable. In other words a consumption profile is a vector valued
function a(t, ω) =: at(ω) which is Gt-measurable for all t ∈ T 3.

For all t ∈ T , denote by Mt the set

Mt =
{

at : Ω → IR�
+ such that at(·) is Gt − measurable

}
.

Notice that wherever Gt = 2Ω, measurability constraints play no role;
hence Mt coincides with the set of all functions at : Ω → IR�

+.

Definition 2.1. A consumption profile a : T × Ω → IR�
+ is said to be an

allocation if for each ω ∈ Ω, a(·, ω) is µ-integrable and for almost all t ∈ T ,
at ∈ Mt.
The allocation a is said to be feasible if∫

T
at(ω) dµ ≤

∫
T

et(ω) dµ for all ω ∈ Ω.

Specification now of preferences clarifies that the model we are using can
be ascribed to the class of the interim models, though the double algebra
allows the unified treatment also of the so-called ex-ante models. Reason why
we shall speak here of generalized interim model. In “interim models”,
agents write contracts after they have received a signal as to what is the
event containing the realized state of nature (interim). Precisely, if ω is the
state that is going to occur, each agent t receives the signal Ft(ω), so that
even if t still does not know exactly which state is going to occur, he can
at least exclude all those states not in the event Ft(ω). Therefore, agents
evaluate their bundles by taking into account such additional information
or, we say, they use the interim expected utility defined as follows:

Vt(at)(ω) =
∑

ω′∈Ft(ω)

ut(ω′, at(ω′))
π(ω′)

π (Ft(ω))
. (1)

Hence an agent t in a state ω prefers an allocation a to another a′ if
and only if Vt(at)(ω) > Vt(a′t)(ω). Notice that for each agent t and each
allocation a, Vt(at)(·) is Ft-measurable. Moreover, whenever Ft = {∅,Ω}
the utility Vt is the ex ante expected utility ht defined as follows over at(·)

3This means that the function at(·) is constant over each event in the partition Gt.
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ht(at) =
∑
ω∈Ω

ut(ω, at(ω))π(ω), (2)

Summing up, an exchange economy E is modeled in this paper by the
following collection:

E =
{
(Ω,F , π); (T,T , µ); IR�

+; (Ft,Gt, ut, et)t∈T

}
.

As usual, we can interpret the above economy as a two period (τ = 1, 2)
model, where consumption takes place at τ = 2. At the date of contracting
τ = 1 there is uncertainty over the state of nature, and agents make a
contract on net trades which may be contingent on the realized state of
nature at τ = 2. However, each agent observes private information denoted
by Ft, with respect to the prevailing state. That is, if ω is the true state
at τ = 2, agent t knows that the realized state belongs to the event Ft(ω).
At τ = 2 , agents execute the trades according to the contract previously
agreed and consumption takes place. At the date of contract delivery a new
information, denoted by Gt, is revealed to agent t. Since Ft ⊆ Gt, no one
forgets his previous information. The fact that agents are asymmetrically
informed at the date τ = 2 makes measurability constraints on allocations
relevant.

A price is a non-zero function p : Ω → IR�
+. Given a price p, we define

the budget set of agent t in state ω as follows:

Bt(p, ω) =


yt ∈ Mt :

∑
ω′∈Ft(ω)

p(ω′) · yt(ω′) ≤
∑

ω′∈Ft(ω)

p(ω′) · et(ω′)


 . (3)

We now define the competitive equilibrium notion in our general frame-
work.

Definition 2.2. A feasible allocation a is said to be a competitive market
equilibrium allocation if there exists a price p : Ω → IR�

+ such that

(1) at(·) is Gt − measurable for almost all t ∈ T

(2) for all ω ∈ Ω and t ∈ T, at ∈ argmaxyt∈Bt(p,ω)Vt(yt)(ω).

The pair (a, p) is said to be a competitive market equilibrium. We
denote by CME(E) the set of competitive market equilibrium allocations of
the economy E.

Remark 2.3. We observe that simply by specifying information algebras
we cover different models of economies.
Case of ex-ante model: for all t ∈ T , Ft = {∅; Ω}.
In this case agents are uninformed prior to contracting and use the ex-ante
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expected utility (2) over a budget set that does not depend on ω and it is
the well known ex-ante budget set (see [9] for example). It is the ex-ante
model that can be further specified by taking:

1. Gt = 2Ω, as the classical Arrow-Debreu one with uncertainty and sym-
metry among agents. The equilibrium notion of Definition 2.2 reduces
to that of [3];

2. an arbitrary Gt, as the ex ante asymmetric information economy (see
[9], [28], [33] among others). With respect to the previous model the
difference consists on what happens at time τ = 2. In both models
contracts are written ex-ante (i.e., before the state of nature is real-
ized). Then, when consumption takes place if there is just uncertainty,
at time τ = 2 agents will exactly know which state of nature occurs
while if agents are asymmetrically informed, if ω is the state of na-
ture occurred at τ = 2, each individual t just observes Gt(ω). In other
words, he cannot distinguish between states belonging to the same
event of his private partition, but he only knows that states not in the
event Gt(ω) have not occurred. With agents ex post asymmetrically
informed, the equilibrium notion of Definition 2.2 reduces to the no-
tion of Walrasian expectations equilibrium introduced by Radner [28]
(see also [9] for atomless economies and [14], [26] for mixed markets
with asymmetric information).

Case of interim models: any agent t has his own information Ft and after
receiving a signal as to what is the event in Ft containing the realized state
o f nature, signs contracts. The budget set reduces to the known interim
budget set (see for example [5],[6], [8] and [32]) and this is strictu sensu an
interim situation. Still two subcases are possible.

3. When for all t ∈ T , Gt = 2Ω, then we analyze interim exchange
economy in which the true state of nature is commonly know ex post
(see [5], [6] and [32] among others). Here our equilibrium notion reduces
to be a constrained market equilibrium defined by Wilson (see [32]).

4. If for all t ∈ T , we have an arbitrary algebra Gt larger than the initial
Ft. Cases where no further information is ex post revealed to agents
have been considered in [1], [2], [13] and [33], among others, under the
name of interim asymmetric information economies. We emphasize
that in general we do not require that Ft and Gt coincide. In interim
models in which ex post agents may still asymmetrically receive fur-
ther information, to the best of our knowledge4, Definition 2.2 is new,

4The unique equilibrium concept studied in this context is the rational expectations
equilibrium (REE) (see [1], [23] and [29] among others) which is different from Definition
2.2 since according to the REE notion, agents take into account also the information
generated by the equilibrium prices.
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therefore we need also to prove existence of equilibria. What will be
our goal in Section 4.

3 Fair and Fair∗ allocations

In this section we first illustrate the problem of the non existence of a fair
distribution of resources among asymmetrically informed agents, and then,
we provide a solution (the proposed concept of fair∗ allocations) to the
conflict between envy freeness and efficiency in our general context which
includes as a particular case all the situations described before (see Remark
2.3). To this end, we first introduce the notion of Pareto optimality and envy
freeness.

Definition 3.1. A feasible allocation a′ Pareto dominates an allocation
a if everybody weakly prefers (given his private information) a′ over a in
each state and there exist a state ω̄ and a coalition S (i.e., S ∈ T with
µ(S) > 0) whose members strictly prefer a′ over a in ω̄, that is

(1) Vt(a′t)(ω) ≥ Vt(at)(ω) for almost all t ∈ T and for all ω ∈ Ω
(2) Vt(a′t)(ω̄) > Vt(at)(ω̄) for almost all t ∈ S.

A feasible allocation a is said to be efficient (or Pareto optimal) if it is
not Pareto dominated by any other allocation. We denote by PO(E) the set
of efficient allocations.

Remark 3.2. From Definition 3.1 one may obtain well known efficiency
notions simply by specifying the fields Ft and Gt as in Remark 2.3.

Below, we extend Varian’s definition of fairness (see [31]) to our general
model.

Given: an allocation a , an agent t ∈ T and ω ∈ Ω, we define some sets
useful in analyzing equitability of allocations. Here they are:

At(ω, a) = {s ∈ T : Vt(at)(ω) < Vt(as)(ω)}.
A(ω, a) = {t ∈ T : µ(At(ω, a)) > 0} and

A(a) =
⋃
ω∈Ω

A(ω, a).

The meaning is clear:
At(ω, a) is the set of individuals that t envies at a in state ω.
A(ω, a) is the set of envious agents at a in state ω
A(a) is the set of envious traders under the allocation a.

Definition 3.3. An allocation a is said to be envy free or equitable if
µ(A(a)) = 0.
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We denote by EE(E) the set of envy free allocations of the economy E.

Definition 3.4. A feasible allocation a is said to be fair if it is Pareto
optimal and envy free.

We denote by IF (E) the set of fair allocations, i.e.,

IF (E) = PO(E) ∩ EE(E).

Notice that the above definition includes as a particular case Varian’s
notion, simply by allowing T to be finite, and hence E to be a finite economy.
Moreover, if for all t ∈ T , Gt = 2Ω, then we obtain the notion of envy freeness
given in [6].

3.1 The incompatibility between efficiency and envy freeness

In [6], it is proved that whenever agents are asymmetrically informed, envy
freeness may be incompatible with efficiency and therefore the set of fair
allocations may be empty (see also [8] and [27]). De Clippel considers a
differential information economy assuming that the true state of nature is
commonly known at the time of implementing contracts (i.e., Gt = 2Ω for
each agent t ∈ T ), a requirement that makes both measurability and incen-
tive compatibility constraints irrelevant.

Here we report de Clippel’s example in [6] and revise it for our purposes in
the general context of differential information economies where the true state
of nature is not necessarily commonly known at the time of implementing
contracts and hence measurability condition must be required.

Example 3.5. See [6]. Consider an economy E with two equiprobable states
of nature Ω = {a, b} and three agents T = {1, 2, 3}. Assume that agents’
characteristics at the time of contracting are given as follows

F1 = {{a, b}} u1(a, x1) = u1(b, x1) = x1

F2 = {{a, b}} u2(a, x2) = u2(b, x2) =
√

x2

F3 = {{a}, {b}} u3(a, x3) = u3(b, x3) = x3.

The initial endowment totally amounts to (e(a), e(b)) = (1200, 1800). An
allocation x is envy free if and only if it solves the following system


x1(a) + x1(b) ≥ max {x2(a) + x2(b); x3(a) + x3(b)}√

x2(a) +
√

x2(b) ≥ max
{√

x1(a) +
√

x1(b);
√

x3(a) +
√

x3(b)
}

x3(a) ≥ max {x1(a); x2(a)}
x3(b) ≥ max {x1(b); x2(b)} ,

whose solution is given below:

x∗
1(a) = x∗

2(a) = x∗
3(a)

x∗
1(b) = x∗

2(b) = x∗
3(b).
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Assuming that Gt = 2Ω, for t = 1, 2, 3, as in [6], and imposing the
feasibility constraints, one obtains that

x∗
1(a) = 400; x∗

1(b) = 600
x∗

2(a) = 400; x∗
2(b) = 600

x∗
3(a) = 400; x∗

3(b) = 600;

but, x∗ is Pareto dominated by the following feasible allocation

x1(a) = 301; x1(b) = 701
x2(a) = 498; x2(b) = 498
x3(a) = 401; x3(b) = 601.

On the other hand, in the remaining cases, for each possible choice of
the information fields Gt such that Ft ⊆ Gt for t = 1, 2, 3, by imposing also
the measurability constraints, we obtain

x∗
1(a) = x∗

1(b) = x∗
2(b) = x∗

2(a) = x∗
3(a) = x∗

3(b),

and by feasibility

x∗
1(a) + x∗

2(a) + x∗
3(a) = x∗

1(b) + x∗
2(b) + x∗

3(b) ≤ 1200.

It follows that the best among these feasible allocations is the following

x∗
1(a) = x∗

1(b) = 400
x∗

2(a) = x∗
2(b) = 400

x∗
2(a) = x∗

3(b) = 400

which is Pareto dominated by the allocation: (e1(a), e1(b)) = (400, 400) (e2(a), e2(b)) =
(400, 400) (e3(a), e3(b)) = (400, 1000).

Therefore, independently by the final information of agents, the set of
envy free allocations is empty, i.e., IF (E) = ∅.

3.2 Envy-free∗ allocations

The reason of the incompatibility between efficiency and envy freeness in
differential information economies is clear: in a complete information ex-
change economy when agents have the same initial endowment they face the
same budget set. This implies that any competitive equilibrium allocation
resulting from an equal sharing on the total initial endowment is envy free.
Hence from the existence of a competitive equilibrium, one can deduce the
non emptiness of the set of fair allocations. This is no longer true, for exam-
ple when agents are asymmetrically informed and contracts are made in an
interim stage, because even if the total initial endowment is equally shared
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among agents, different agents may have different private information, and
hence different budget set . Therefore, the related notion of competitive equi-
librium (constrained market equilibrium), may not be envy free (see [27]).
The same problem arises even when ex post agents are still asymmetrically
informed, as illustrated in the above example. For this reason, in [6] envy
freeness is evaluated only in common knowledge events5. Precisely, it has
been proved that there exists an interim Pareto optimal allocation such that
it is impossible to find two agents i and j for which it is common knowledge
that i interim envies j (see Proposition 1 in [6]). Behind this result there is
a clear point: in order to have a non empty set of fair allocations, we have
to weaken the notion of envy freeness by reducing the number of bundle-
comparisons among agents. In other words, each agent t compares his own
bundle xt with the bundle xs of another guy s not in each possible state of
nature, but only in the events commonly known.

We agree that the number of bundle-comparisons must be reduced in
order to test whether the economy may exhibit an empty set of fair alloca-
tions. However, we think, more precisely, that each agent should compare his
bundle only with the bundle of agents entering in the market without any
kind of advantage with respect to him, even from the informational point of
view. In the notion of envy introduced by Foley and Varian for a complete
information exchange economy, agents with equal income under a competi-
tive equilibrium allocation are envy free, so that the set of fair allocations is
non-empty. That is, allowing comparisons to be made only between agents
with the same initial opportunities a fair market redistribution is possible.
To support our intuition, in the following notion of envy-freeness, we adapt
the idea to a setup that explicitly encompasses not only uncertainty, but also
an allocation procedure taking place before the resolution of uncertainty.

Given an allocation a of E, define for all t ∈ T and ω ∈ Ω the following
sets:

Ct(ω, a) = {s ∈ At(ω, a) : Gt(ω
′
) = Gs(ω′) for each ω

′ ∈ Ft(ω) = Fs(ω)}.
C(ω, a) = {t ∈ T : µ(Ct(ω, a)) > 0} and

C(a) =
⋃
ω∈Ω

C(ω, a).

Definition 3.6. An allocation a is said to be envy free∗ or equitable∗ if
µ(C(a)) = 0.

We denote by E∗
E(E) the set of envy free* allocations of the economy E.

Thus, we restrict the possibility of comparisons, assuming that an agent
may compare his bundle only with others starting not only with the same

5An event E is said to be common knowledge if it can be written as a union of elements
of Fi for each i ∈ I ; i.e., E ∈

∧
i∈I Fi.
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endowment, but also with the same informational opportunities. Precisely,
each agent in each state is allowed to make comparisons only with indi-
viduals: 1. receiving the same signal in the state; 2. receiving the same
information (independently by the state that actually occurs) at the time of
implementing contracts.

Another reason, not less important than the previous one, why we pro-
pose to replace Definition 3.3 with Definition 3.6 is the following: in differen-
tial information economies in which ex post agents are still asymmetrically
informed, the consumption set of each individual t consists of Gt-measurable
profiles. So, how can agent t compare his bundle xt, which is Gt-measurable,
with the Gs-measurable bundle xs of agent s? Notice that in Definition 3.6 we
do not require that t can envy only agents with his same information Ft and
Gt. We only require that at least in the states where envy is evaluated, t and
s receive the same signals. In other words, the condition Gt(ω

′
) = Gs(ω′) for

each ω
′ ∈ Ft(ω) ensures that each agent may envy only commodity bundles

that are compatible with his private information. That is, as it is natural,
no additional information becomes available to an agent due to the utility
comparisons he makes to evaluate an allocation on an ethical basis. Notice
that in the case Ft = Gt as well as Gt = 2Ω, for each t ∈ T , the restriction
on utility comparisons only requires that an agent may envy individuals
receiving the same signal at the time of contracting.

Remark 3.7. Observe that our assumption on information types ensures
that for every agent t ∈ T and for each state ω ∈ Ω, the set of traders s such
that Ft(ω) = Fs(ω) has positive measure. Moreover, for every allocation a
of E, C(a) ⊆ A(a). This inclusion implies that any envy free allocation is
also envy free*.

An allocation a is said to be fair* if it is efficient and envy free*. We
denote by IF ∗(E) the set of fair* allocations, i.e.,

IF ∗(E) = PO(E) ∩ E∗
E(E).

3.3 Some comparisons

From Remark 3.7, it follows that IF (E) ⊆ IF ∗(E). However, in models
with only uncertainty, since for all t ∈ T Ft = {∅,Ω} and Gt = 2Ω, IF (E) =
IF ∗(E), simply because all the agents have the same signals, that is none.
In other situations the above inclusion may be strict, as the next example
shows. It also proves that in the same economy of Example 3.5, the conflict
between efficiency and envy freeness* ceases to exist.

Example 3.8. Consider the same differential information economy illus-
trated in Example 3.5 with Ft = Gt, for t = 1, 2, 3, and notice that the only
guys who can envy each other according to Definition 3.6 are 1 and 2, since
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F1(a) = F1(b) = F2(b) = F2(a). It is easy to show that an allocation x is
envy free* if and only if it solves the following system


x1(a) + x1(b) ≥ x2(a) + x2(b)√

x2(a) +
√

x2(b) ≥
√

x1(a) +
√

x1(b)
x1(a) = x1(b)
x2(a) = x2(b),

that is x1(a) = x1(b) = x2(b) = x2(a). These inequalities are satisfied, in
particular, by the endowment (e1(a), e1(b)) = (400, 400), (e2(a), e2(b)) =
(400, 400), (e3(a), e3(b)) = (400, 1000) which is Pareto optimal . Therefore,
the set of fair* allocations IF ∗(E) is non empty since it contains the above
endowment. Hence,

∅ = IF (E) ⊂ IF ∗(E).

Notice that if F1 = G1 and F2 ⊂ G2 = {{a}, {b}}, then since there are
no agents with the same signals, any allocation is envy free* and hence the
set of fair* allocations coincides with the set of efficient allocations which is
clearly non empty. The same holds true if F2 = G2 and F1 ⊂ G1 = {{a}, {b}}.
Moreover, if Ft ⊂ Gt = {{a}, {b}} for t = 1, 2, then it is easy to show that
the following feasible allocation

(x1(a), x1(b)) = (500, 500)
(x2(a), x2(b)) = (500, 500)
(x3(a), x3(b)) = (200, 800)

is envy free* and Pareto optimal. Thus, the set of fair* allocations is non
empty anyway.

The following proposition shows that, in the particular case of interim
differential information economies in which ex post the true state of nature
is commonly known (i.e., where for all t ∈ T , Gt = 2Ω), our notion of envy
freeness is not comparable with the one introduced by De Clippel. Ideed,
while De Clippel restricts the set of states of nature in which an agent is
allowed to be envious; we reduce the number of agents that each individual
may envy.

Proposition 3.9. Let E be a finite (interim) economy with asymmetric in-
formation. Assume that the true state of nature is publicly verifiable. The
weaker notion of envy freeness introduced by De Clippel in [6] is not com-
patible with that of Definition 3.6.

proof: Consider Gt = 2Ω, for t = 1, 2, 3 in the example 3.5. We already ob-
served in Example 3.8 that the endowment (e1(a), e1(b)) = (400, 400), (e2(a), e2(b)) =
(400, 400), (e3(a), e3(b)) = (400, 1000) is fair*, therefore Pareto optimal. We
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claim that it is not envy free in the sense of common knowledge event6. The
only event that is common knowledge is E = {a, b}, thus we want to show
that there is envy in each state of E . Since

V1(e1)(a) = V1(e1)(b) =
1
2
e1(a) +

1
2
e1(b) = 400

< 700 =
1
2
e3(a) +

1
2
e3(b) = V1(e3)(a) = V1(e3)(b),

it is common knowledge that agent 1 envies agent 3 under the initial endow-
ment e.

On the other hand, consider a three agents economy T = {1, 2, 3} with
three states of nature Ω = {a, b, c}. Assume that

F1 = {{a, b}, {c}} u1(·, x1) = x1 (e1(a), e1(b), e1(c)) = (400, 600, 0)
F2 = {{a, b}, {c}} u2(·, x2) =

√
x2 (e2(a), e2(b), e3(c)) = (400, 600, 0)

F3 = {{a}, {b, c}} u3(·, x3) = x3 (e3(a), e3(b), e3(c)) = (400, 600, 0)

and π(a) = π(b) = π(c) = 1
3 , Gt = 2Ω, for t = 1, 2, 3. Consider the allocation

x defined by
x1 = (300, 600, 0)
x2 = (500, 500, 0)
x3 = (400, 700, 0)

and notice that x is efficient. Indeed, otherwise there exists a feasible allo-
cation y such that 



y1(a) + y1(b) ≥ 900
y1(c) ≥ 0√

y2(a) +
√

y2(b) ≥ 2
√

500
y2(c) ≥ 0
y3(a) ≥ 400
y3(b) + y3(c) ≥ 700

with at least one strict inequality and, by feasibility,
∑

t yt(a) ≤ 1200,∑
t yt(a) ≤ 1800,

∑
t yt(c) ≤ 0, which implies that yt(c) = 0 for each t.

Then 3000 ≥
∑

i(yt(a) + yt(b)) ≥ 2000 + y2(a) + y2(b), and consequently{
y2(a) + y2(b) ≤ 1000√

y2(a) +
√

y2(b) ≥ 2
√

500

where at least one inequality is strict. It follows that√
1000 − y2(b) +

√
y2(b) > 2

√
500

6An agent i envies agent j in the commonly known event E if i envies j in each state
of E (see Proposition 1 in [6]).
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and in turn
(y2(b) − 500)2 < 0

which is absurd. Thus, x ∈ PO(E). Let us verify now that x is envy free in
the sense of common knowledge event. The only common knowledge event is
E = {a, b, c}. Since agent 1 does not envy 2 and 3 in state c, and in the same
state agent 2 does not envy agents 1 and 3, the only agent who could envy
in the sense of common knowledge event is 3. From V3(x3)(a) = 1

3400 >
1
3300 = V3(x1)(a) it follows that agent 3 does not envy agent 1 in E . On the
other hand, from

V3(x3)(b) =
1
2
x3(b) +

1
2
x3(c) =

700
2

>
500
2

=
1
2
x2(b) +

1
2
x2(c) = V3(x2)(b)

it follows that agent 3 does not envy agent 2 in the common knowledge event.
Hence the allocation x is fair in the sense of common knowledge event. Let
us show that x is not fair*. The only agents that can envy each other are 1
and 2 in the state a or b. Since

V1(x1)(a) =
1
2
x1(a)+

1
2
x1(b) =

900
2

<
1000

2
=

1
2
x2(a)+

1
2
x2(b) = V1(x2)(a)

the allocation x is not fair*. �

Remark 3.10. In the case of perfect information, that is whenever all
agents are fully informed, both notions of fair allocations coincide with the
Varian’s one. Indeed, if Ft = 2Ω for all t ∈ T , then Ft(ω) = Fs(ω) = {ω}
and Vt(·)(ω) = ut(ω, ·) for all ω ∈ Ω and t, s ∈ T .

4 Existence and fairness∗ of equilibria

In the previous section we have introduced a new notion of envy freeness in
a very general setting and shown that at least in the economy illustrated in
[6], a fair* allocation exists (see Example 3.8). We are now ready to prove
that our new notion provides a solution to the conflict between absence of
envy and Pareto optimality not only in the particular case of differential
information economies described in [6], but in all possible situations. To this
end, we prove that a competitive market equilibrium allocation resulting
from an equal sharing of the total initial endowment is fair*, and from the
existence of a competitive market equilibrium we deduce the non emptiness
of the set of fair* allocations.

As already noted in Remark 2.3, the notion of competitive market equi-
librium includes as particular cases the equilibrium concepts used in the
frameworks summarized in Section 2. Existence of such equilibria is a well

15



established achievement of the theory. In interim models in which ex post
agents are still asymmetrically informed, to the best of our knowledge, it is
still an open question the existence of a competitive market equilibrium .
This is our next goal. To this end, the following irreducibility condition is
needed.

We say that the differential information economy E is irreducible if the
following condition is satisfied:

(IC*) For each family of partitions of T , {T1(ω), T2(ω)}ω∈Ω with∑
ω∈Ω

µ(T1(ω)) · µ(T2(ω)) > 0

and for each allocation a : T × Ω → IR�
+, there exists an allocation

b : T × Ω → IR�
+ such that

(1)
∫

T1(ω)
et(ω)dµ +

∫
T2(ω)

at(ω)dµ ≥
∫

T2(ω)
bt(ω)dµ, for each ω ∈ Ω;

(2) Vt(bt)(ω) ≥ Vt(at)(ω), for each ω ∈ Ω and each t ∈ T2(ω), the
inequality being strict in at least one state.

Remark 4.1. Assume that the final information Gt of each trader is com-
plete at the time of implementing the contract. If each trader is endowed
with a strictly positive amount of each good in each state (i.e., et(ω) �
0 for all t ∈ T and all ω ∈ Ω), then the economy E satisfies the ir-
reducible condition (IC*). Indeed, whenever T1(ω) has positive measure,∫

T1(ω)
et(ω)dµ � 0. Then, there exists a strictly positive vector v(ω) ∈ R�

such that
∫

T1(ω)
et(ω)dµ � v(ω)µ(T2(ω)). Hence for each allocation a, the

allocation b defined by

bt(ω) =
{

at(ω) if µ(T1(ω)) = 0
at(ω) + v(ω) if µ(T1(ω)) > 0

satisfies properties (1) and (2) of (IC*). Also, notice that the above irre-
ducibility condition (IC*) reduces to the usual one in exchange economies
without uncertainty.

Now we are ready to state the existence theorem for competitive market
equilibria in our general framework.

Theorem 4.2. Let E be a mixed market with asymmetric information sat-
isfying the irreducible condition (IC*). Assume that

∧
t∈T Ft = {∅,Ω} 7 and

7Notice that since Ω is finite, there is only a finite number I of information types; there-
fore

∧
t∈T Ft =

∧
i∈I Fi. Moreover, the assumption

∧
t∈T Ft = {∅, Ω} has been already

used by Kobayashi in [22], and it is satisfied in each example illustrated in this paper.
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that each agent has a strictly positive amount of each good in each state
(i.e., et(ω) � 0 for each t ∈ T and each ω ∈ Ω). Then, a competitive
market equilibrium exists, i.e., CME(E) �= ∅.

proof: See Appendix.

Thus, as a consequence of Theorem 4.2, a further contribution of this
paper is to introduce a new equilibrium concept which exists and, as proved
next, it is efficient, contrary to the rational expectations equilibrium which
may not exist neither be efficient (see [13] and [23] among others).

In order to prove that the set of fair* allocations is non empty, we need
the following proposition, which states that any competitive market equilib-
rium allocation resulting from an equal sharing of the total initial endowment
is fair*.

Proposition 4.3. Any equal income competitive market equilibrium alloca-
tion is fair*.

Before proving it, we exhibit the efficiency of equilibria

Proposition 4.4. Any competitive market equilibrium is efficient.

proof: Let a be a competitive market equilibrium allocation. We first prove
that a is Pareto optimal. Assume, on the contrary, that there exists another
feasible allocation a′ such that

Vt(a′t)(ω) ≥ Vt(at)(ω) for almost all t ∈ T and for all ω ∈ Ω,

and for a coalition S ⊆ T and a state ω̄ ∈ Ω

Vt(a′t)(ω̄) > Vt(at)(ω̄) for almost all t ∈ S.

Since a is a competitive market equilibrium allocation, then there exists
an equilibrium price p such that a′t /∈ Bt(p, ω̄) for almost all t ∈ S, that is

∑
ω′∈Ft(ω̄)

p(ω′) · a′t(ω′) >
∑

ω′∈Ft(ω̄)

p(ω′) · et(ω′)
µ(T )

for almost all t ∈ S.

Moreover, by continuity and monotonicity of the expected utility, for almost
all t ∈ T and for all ω ∈ Ω

∑
ω′∈Ft(ω)

p(ω′) · a′t(ω′) ≥
∑

ω′∈Ft(ω)

p(ω′) · et(ω′)
µ(T )

.

Hence, for almost all t ∈ T ,
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∑
ω∈Ω

p(ω) · a′t(ω) ≥
∑
ω∈Ω

p(ω) · et(ω)
µ(T )

the inequality being strict for agents in the coalition S. This implies that∑
ω∈Ω

p(ω) ·
∫

T

[
a′t(ω) − et(ω)

µ(T )

]
dµ > 0,

which contradicts the feasibility requirement of a′. Thus, a is efficient. �

Now we go to the proof of Proposition 4.3
proof: Indeed, assume on the contrary that µ(C(a)) > 0. This means
that there exists a state ω such that µ(C(a, ω)) > 0. For all t ∈ C(ω, a),
µ(Ct(ω, a)) > 0. Thus, for all s ∈ Ct(ω, a),

Gt(ω
′
) = Gs(ω

′
) for each ω

′ ∈ Ft(ω) = Fs(ω) and Vt(at)(ω) < Vt(as)(ω).

For all s ∈ Ct(ω, a), consider the allocation bs defined as follows:

bs(ω′) =
{

as(ω′) if ω′ ∈ Ft(ω) = Fs(ω)
at(ω′) otherwise.

Notice that from Gt(ω
′
) = Gs(ω

′
) for each ω

′ ∈ Ft(ω) = Fs(ω), it
follows that bs ∈ Mt and Vt(at)(ω) < Vt(bs)(ω). Since a is a competitive
market equilibrium allocation, bs /∈ Bt(p, ω). Since bs ∈ Mt, this means that
for almost all s ∈ Ct(ω, a)

∑
ω′∈Ft(ω)

p(ω′) · bs(ω′) >
∑

ω′∈Ft(ω)

p(ω′) · e(ω′)
µ(T )

.

Hence, by definition of bs in Ft(ω), it follows that

∑
ω′∈Ft(ω)

p(ω′) · as(ω′) >
∑

ω′∈Ft(ω)

p(ω′) · e(ω′)
µ(T )

.

Moreover, Ft(ω) = Fs(ω) for s ∈ Ct(ω, a) implies that∑
ω′∈Fs(ω)

p(ω′) · as(ω′) >
∑

ω′∈Fs(ω)

p(ω′) · e(ω′)
µ(T )

,

that is as /∈ Bs(p, ω), which is a contradiction. Hence, a is fair*. �

Thus, from Proposition 4.3 and Theorem 4.2, it follows the non emptiness
of the set of fair* allocations, as the following corollary states.

Corollary 4.5. Let the economy E satisfy the irreducibility condition (IC*).
Assume that

∧
t∈T Ft = {∅,Ω} and that each agent has a strictly positive

amount of each good in each state (i.e., et(ω) � 0 for each t ∈ T and each
ω ∈ Ω). Then, a fair* allocation exists, i.e., IF ∗(E) �= ∅.
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5 Coalitional notion of fairness

We have observed that any competitive market equilibrium allocation re-
sulting from an equal sharing of the total initial endowment is fair*. The
following example shows that the converse may not be true.

Example 5.1. Consider the same economy described in Example 3.8 with
Ft = {{a, b}} for t = 1, 2 and F3 = Gt = {{a}, {b}} for all t = 1, 2, 3. We
have already observed that the allocation

(x1(a), x1(b)) = (500, 500)
(x2(a), x2(b)) = (500, 500)
(x3(a), x3(b)) = (200, 800)

is fair*. Clearly, it is not a competitive market equilibrium allocation, simply
because for any price p,

500(p(a) + p(b)) > 400(p(a) + p(b)) = p(a)et(a) + p(b)et(b),

that is xt /∈ Bt(p, ω) for any p, any ω ∈ Ω and any t = 1, 2.

Therefore, the competitive market equilibrium allocation are not the only
fair* allocations. Moreover, a competitive market equilibrium with no equal
income is not necessarily envy free*, as the following example illustrates.

Example 5.2. Consider the following differential information economy with
two equiprobable states of nature Ω = {a, b}, one good and two agents
T = {1, 2}, whose characteristics are as follows:

F1 = {{a, b}} G1 = {{a}, {b}} (e1(a), e1(b)) = (400, 400)
F2 = {{a, b}} G2 = {{a}, {b}} (e2(a), e2(b)) = (600, 600).

Moreover, ut =
√

xt for any t = 1, 2.
Notice that agents have different initial endowment, which is the unique
competitive market equilibrium allocation. However, it is not fair*, since
agent 1 envies 2 in states a and b, i.e.,

V1(e1)(a) = V1(e1)(b) =
√

400 <
√

600 = V1(e2)(a) = V1(e2)(b).

In this section, we highlight the following questions: “which fairness con-
cept characterized the competitive market equilibrium allocations?”; “which
fairness concept should we consider when the total initial endowment is not
equally shared among agents?”.

The key is to allow groups of agents to make utility comparisons, that
is we need coalitional fairness notions. In the coalitional envy that we are
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going to introduce, an allocation a is not equitable if it treats coalitions in
a discriminatory way: there exists in each state a coalition whose agents
prefer to receive the net trade assigned by a to some other disjoint coalition
instead of keeping their own net trade. The reason is that they would be
able to redistribute this net trade in such a way that each of them, given his
private information, is better off. This kind of notion of envy is closer to a
blocking notion. Since there are no individual comparisons between agents,
we do not need to impose equal sharing of the total initial endowment nei-
ther restrictions on informational opportunities. Moreover, the absence of
individual envy, makes impossible for agents of a potentially envious coali-
tion to receive additional information from the comparisons.

Let a be an allocation that one can see as a potential outcome and let
a′ be an alternative allocation. Denote by D(a, a′, ω) the set of deviators in
state ω, that is the set of agents that, given their private information, would
prefer to receive a′ instead of keeping a, i.e.,

D(a, a′, ω) = {t ∈ T : Vt(a′t)(ω) > Vt(at)(ω)}.

Notice that by measurability assumption of the mapping (t, x) �→ ut(ω, x),
the set of deviators is always measurable.

Definition 5.3. An allocation a is said to be blocked in the c-type fair sense
by a′ if for almost all t ∈ T , a′t(·) is Gt-measurable and if for all ω ∈ Ω there
exists a coalition S(a, a′, ω) ⊆ T such that

(1) µ(D(a, a′, ω) ∩ S(a, a′, ω)) = 0

(2)
∫

D(a, a′, ω)
(a′t(ω) − et(ω)) dµ ≤

∫
S(a, a′, ω)

(at(ω) − et(ω)) dµ,

with µ(D(a, a′, ω)) > 0 in at least one state of nature.

Notice that we do not require that S(a, a′, ω) has positive measure.
The interpretation goes as follows: a is blocked in the c-type fair sense by

a′ if in each state ω the set of deviators can redistribute among its members
the net trade of another disjoint coalition S(a, a′, ω) by using only their own
private information. In this case, we say that for each state ω, the deviators
t ∈ D(a, a′, ω) envy the net trade of coalition S(a, a′, ω).

Definition 5.4. An allocation a is c-type fair if it is feasible and it is not
blocked in the c-type fair sense. We denote by Cfair

type (E) the set of c-type fair
allocations for the economy E.

An allocation is qualified c-type fair if there is zero probability of a set
of deviators envying the net trade of any other coalition. Under such dis-
tribution of resources, there does not exist an alternative allocation and a
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state at which potentially deviators are treated in a discriminatory way by
the market. According to the c-type fair criterion, agents in a potentially
envious coalition make comparisons given their private information and not
after the observation of the state.

Notice that the c-fairness notions introduced in [5], [11] and [15] can be
viewed as particular case of Definition 5.4, by specifying properly the alge-
bras Ft and Gt as in Remark 2.3. In economies in which the Core-Walras
equivalence theorem has been proved, one can obtained a characterization of
competitive equilibria in terms of coalitional fair allocations. In other con-
texts, like in interim models in which ex post agents are still asymmetrically
informed (i.e., Ft ⊆ Gt for all t ∈ T ), such an equivalence is still an open
question. We will work on it in a future paper.

It is easy to show that any c-type fair allocation is efficient in the sense
that we specify below.

Definition 5.5. An allocation a′ Pareto* dominates an allocation a if
a′ is feasible and if everybody strictly prefers (given his private information)
a′ over a in each state, that is

(1) Vt(a′t)(ω) > Vt(at)(ω) for almost all t ∈ T and for all ω ∈ Ω

(2)
∫

T
a′(ω) dµ ≤

∫
T

et(ω) dµ for all ω ∈ Ω.

An allocation a is said to be efficient* (or Pareto* optimal) if it is not
Pareto* dominated by any other allocation. We denote by PO∗(E) the set
of interim Pareto* optimal allocations.

Remark 5.6. We can easily notice that PO(E) ⊆ PO∗(E). Moreover,
Example 3.5 can be also used to prove that PO(E) � PO∗(E). Indeed,
x∗ /∈ PO(E), but it cannot be Pareto* dominated by any other feasible
allocation.

To show that a c-type fair allocation is Pareto* optimal, we just need,
for all ω, that the set of deviators is taken equal to the whole set of agents
T and the disjoint coalition equal to the empty set.

Moreover, competitive market equilibrium allocations are c-type fair.

Proposition 5.7. Any competitive market equilibrium allocation is c-type
fair8.

proof: See Appendix.

8Notice that contrary to Proposition 4.3, we do not need to assume that agents have
the same initial endowment in each state of nature.
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Proposition 5.8. Let the economy E satisfy the irreducibility condition
(IC∗). Assume that

∧
t∈T Ft = {∅,Ω} and that each agent has a strictly

positive amount of each good in each state (i.e., et(ω) � 0 for all t ∈ T and
all ω ∈ Ω). Then, a c-type fair allocation exists, i.e., Cfair

type (E) �= ∅.

6 Appendix

6.1 Fictitious economy

In order to prove the main results, following Wilson’s idea [32] (see also [5]
and [8]), we consider a type-agent representation E∗ of the original differ-
ential information economy E described before. It is a fictitious market for
state-contingent claims that can be formalized as follows:

E∗ =
{
(T ∗,T ∗, µ∗); IR

�×|Ω|
+ ;

(
X(t,E), V(t,E), e(t,E)

)
(t,E)∈T ∗

}
where:

1. T ∗ is the set of the type agents. More precisely, T ∗ coincides with the
graph of the correspondence Φ : T → 2F defined by Φ(t) = Ft, i.e., T ∗

is the set of couple (t, E), where t is an agent and E is an atom of his
information partition.
T ∗ is the family of coalitions: a coalition S∗ is a measurable subset of
T ∗, i.e., S∗ ∈ T ⊗B(2F ), where B(2F ) denotes the Borel σ-algebra on
the discrete topological space 2F and ⊗ denotes the product σ-algebra.
Finally, the measure µ∗ on T ∗ is defined as the product measure of µ
and of the counting measure.

2. X(t,E) is the consumption set of the type agent (t, E) defined as follows:

X(t,E) :=
⋃

β∈Mt

{α : Ω → IR�
+ : α(ω) = β(ω)χE (ω) for all ω ∈ Ω}.

3. The couple (V(t,E), e(t,E)) characterizes the type-agent (t, E): given a
type-agent (t, E), his preference for a commodity α ∈ X(t,E) is defined
by

V(t,E)(α) =
∑
ω∈E

ut(ω,α(ω))π(ω),

while e(t,E) represents his initial endowment of physical resources de-
fined as follows

e(t,E)(ω) =
{

et(ω) if ω ∈ E
0 otherwise.
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Notice that since et(·) is Gt-measurable for all t ∈ T , it follows that for
all (t, E) ∈ T ∗, e(t,E) ∈ X(t,E).

Clearly, assuming that Ft = Gt for each agent t ∈ T , then X(t,E) is made
by all functions that are constant on E and zero on Ω \ E . In the case the
true state of nature is publicly announced, for each type-agent (t, E) the
consumption set is simply made by functions on Ω that are null outside E .
Notice also that if in the differential information economy E there is equal
income, that is agents have the same initial endowment, the equal sharing of
initial resources among the type-agents in the associated economy E∗ may
not hold.

An allocation in the fictitious economy is a function α : Ω × T ∗ → IR�
+

such that for each (t, E) ∈ T ∗, α(t,E) : Ω → IR�
+ belongs to X(t,E), where α(t,E)

represents the bundle that the type-agent (t, E) receives under the allocation
α.
An allocation α is feasible for the coalition S∗ if∫

S∗
α(t,E)(ω) dµ∗ ≤

∫
S∗

e(t,E)(ω) dµ∗ for all ω ∈ Ω,

and it is feasible if it is feasible for the whole coalition of agents T ∗.

Definition 6.1. An allocation α is c-fair blocked by an assignment α′ if
there exist two disjoint coalitions S∗

1 and S∗
2 (i.e., µ∗(S∗

1 ∩ S∗
2) = 0), such

that

(1) µ∗(S∗
1) > 0

(2) α′
(t,E) ∈ X(t,E) for almost all (t, E) ∈ S∗

1

(3) V(t,E)(α
′
(t,E)) > V(t,E)(α(t,E)) for almost all (t, E) ∈ S∗

1

(4)
∫

S∗
1

[
α′

(t,E)(ω) − e(t,E)(ω)
]

dµ∗ ≤
∫

S∗
2

[
α(t,E)(ω) − e(t,E)(ω)

]
dµ∗ for all ω ∈ Ω.

An allocation α is c-fair for E∗ if it is feasible and it is not c-fair blocked.

Definition 6.2. An allocation α is a Walrasian (or Arrow-Debreu) alloca-
tion of the type-agent economy E∗ if there exists a price p : Ω → IR�

+ such
that for almost all (t, E) ∈ T ∗,

(1) α(t,E) ∈ X(t,E)

(2) α(t,E) ∈ arg maxα′∈B(t,E)(p) V(t,E)(α′), where

B(t,E)(p) =

{
α′ ∈ X(t,E) |

∑
ω∈Ω

p(ω) · α′(ω) ≤
∑
ω∈Ω

p(ω) · e(t,E)(ω)

}
.
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The pair (α, p) is said to be a Walrasian (or Arrow-Debreu) equilibrium.
The allocation α is said to be a quasi-Walrasian allocation of the type

agent economy when condition (2) is replaced by the following

(2) α(t,E) ∈ arg maxα′∈B(t,E)(p) V(t,E)(α′), for almost all (t, E) such that
inf p · X(t,E) < inf p · e(t,E).

Remark 6.3. With standard arguments one can easily show that any Wal-
rasian equilibrium allocation is c-fair in E∗.

We are going to show that any competitive market equilibrium of the
economy E is a Walrasian equilibrium of the associated type economy E∗.
To this end, we construct a natural isomorphism between E and its type-
agent representation E∗.

Given an allocation a of E, its type-agent representation is the allocation
α such that for each (t, E) in T ∗

α(t,E)(ω) = at(ω)χE (ω).

Notice that since at(·) is Gt-measurable, then α(t,E) ∈ X(t,E).

Given an allocation α of E∗, its associated allocation a in the original
economy E is such that for each t in T and each ω in Ω

at(ω) = α(t,Ft(ω))(ω).

Since α is an allocation of E∗, by definition α(t,E) ∈ X(t,E) for all (t, E) ∈
T ∗. Thus, α(t,Ft(ω))(ω) = α(t,Ft(ω))(ω′) for all ω′ ∈ Gt(ω). This implies that
at(·) is Gt-measurable.

Therefore, at(·) is Gt-measurable if and only if α(t,E) ∈ X(t,E) for all
(t, E) ∈ T ∗.

Remark 6.4. By adopting similar arguments used in [5] and [8], it is easy
to show that there exists a one to one correspondence between a differential
information economy E and the associated economy E∗ in terms of compet-
itive equilibrium and c-fair allocations. Precisely, if (a, p) is a competitive
market equilibrium for E, then the associated allocation α is such that the
pair (α, p) is an Arrow-Debreu equilibrium for E∗. Conversely, if (α, p) is an
Arrow-Debreu equilibrium for E∗, then the associated allocation a is such
that the pair (a, p) is a competitive market equilibrium for E. Analogously,
to any c-type fair allocation a in E corresponds a c-fair allocation α in E∗

and vice versa.

From the above remark we can deduce Proposition 5.7 as follows.
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6.2 Proof of Proposition 5.7

Let a be a competitive market equilibrium allocation. We need to show that
it is c-type fair. To this end, consider the associated allocation α in the
type-agent economy E∗, which is a Walrasian equilibrium allocation (see
Remark 6.4). From Remark 6.3 it follows that α is c-fair for E∗, and hence
by coming back to the original differential information economy E we get
that a is c-type fair (see Remark 6.4). �

6.3 Proof of Theorem 4.2

Our next goal is to prove the existence of a competitive market equilibrium.
We will proceed by following the steps below:

1. Starting from the mixed differential information economy E, we con-
struct the associated mixed type-agent economy E∗ as before. For each atom
t ∈ T1, the type agent A∗ = (t, E) for any E is an atom of E∗. Thus, the set of
type agents T ∗ can be decomposed into the disjoint union of the nonatomic
sector T ∗

0 and the atomic part T ∗
1 , where T ∗

1 is the disjoint union of at most
countable many atoms A∗

i . Precisely,

T ∗
0 = {(t, E) ∈ T0 ×F : E ∈ Ft} and

T ∗
1 = {(A, E) ∈ T1 ×F : E ∈ FA} that is T ∗

1 = T ∗ \ T ∗
0 .

We have already observed that there is a one to one correspondence be-
tween E and E∗ in terms of competitive equilibrium (Remark 6.4; see also
[5] and [8]), that is if (a, p) is a competitive market equilibrium for E, then
the associated allocation α is such that the pair (α, p) is an Arrow-Debreu
equilibrium for E∗. Conversely, if (α, p) is an Arrow-Debreu equilibrium for
E∗, then the associated allocation a is such that the pair (a, p) is a compet-
itive market equilibrium for E.

2. It has been proved in [16] that E∗ can be identified with the atomless
economy Ẽ∗ in which the set of agents T̃ ∗ is the union of T ∗

0 and the intervals
Ã∗

i corresponding to atoms A∗
i , such that µ∗(A∗

i ) = µ̃∗(Ã∗
i ). Agents of Ã∗

i

have the same characteristics (i.e. the same utility function, consumption set
and initial endowment) of atom A∗

i (see also [7] for economies with infinitely
many commodities and [26] for differential information economies). It is easy
to show that given a quasi equilibrium (α̃, p) of the atomless economy Ẽ∗,
the pair (α, p) where αt = α̃t for all t ∈ T ∗

0 and α(A∗
i ) =

∫
Ã∗

i
α̃tdµ̃∗ is a quasi

equilibrium of E∗.

3. Consider the atomless economy Ẽ∗ and notice each consumption set
X(t,E) and each utility function V(t,E) satisfy standard requirements ensuring
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the existence of a quasi equilibrium (α̃, p) of Ẽ∗ (see [20]), that is for almost
all (t, E) ∈ T̃ ∗,

(1) α̃(t,E) ∈ B(t,E)(p) where

B(t,E)(p) =

{
α′ ∈ X(t,E) |

∑
ω∈Ω

p(ω) · α′(ω) ≤
∑
ω∈Ω

p(ω) · e(t,E)(ω)

}
.

(2) α̃(t,E) ∈ arg maxα′∈B(t,E)(p) V(t,E)(α′), whenever p · e(t,E) �= 0.

This pair (α̃, p) corresponds to a quasi equilibrium (α, p) of the mixed econ-
omy E∗.

4. Prove that (α, p) is actually an Arrow-Debreu equilibrium of E∗; use
Remark 6.4 and observe that (α, p) corresponds to a competitive market
equilibrium (a, p) of the “original” mixed differential information economy
E. Thus, a competitive market equilibrium for E exists.

We now show the details of our proof. Let (α̃, p) be a quasi equilibrium
of the atomless economy Ẽ∗, whose existence is proved in [20]; and let (α, p)
be the associated quasi equilibrium of the economy E∗. We now want to
prove that (α, p) is an Arrow-Debreu equilibrium for E∗. To this end, let us
denote by C∗

1 the set9

C∗
1 = {(t, E) ∈ T ∗ : p · e(t,E) = 0}

and assume that µ∗(C∗
1 ) ∈ (0, µ∗(T ∗)). Denote by T1(ω) the set

T1(ω) = {t ∈ T : (t, Ft(ω)) ∈ C∗
1}

and by T2(ω) the set T2(ω) = T \ T1(ω).

We claim that in at least one state ω ∈ Ω it is true that

µ(T1(ω)) · µ(T2(ω)) > 0,

that is both sets have positive measure. Since the pair {T1(ω), T2(ω)} is a
partition of T , it is enough to show that in at least one state ω ∈ Ω the set
T1(ω) has measure in the interval (0, µ(T )).

Assume by contradiction that in each state ω it is true that µ(T1(ω)) ∈
{0, µ(T )}. Define the two sets

A = {ω ∈ Ω : µ(T1(ω)) = 0}
9Notice that the assumption et � 0 does not ensure that e(t,E) � 0 and hence the set

of type-agents for which p · e(t,E) = 0 may have positive measure.
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and
B = Ω \ A.

Then A is not empty, otherwise from µ(T1(ω)) = µ(T ) for each ω it would
follow µ∗(C∗

1 ) = µ∗(T ∗) a case that is excluded by strict positivity of initial
endowments in each state. On the other hand, the case in which the set
B is empty is excluded by the assumption µ∗(C∗

1 ) > 0. Let ω ∈ B. Then
µ(T1(ω)) = µ(T ) means that for almost all agents t ∈ T

p · e(t,Ft(ω)) =
∑

ω′∈Ft(ω)

p(ω′) · et(ω
′
) = 0.

Now observe that from ω ∈ B it follows that Fi(ω) ⊆ B, for each infor-
mation type i ∈ I. If not, there would exist i ∈ I and ω̄ ∈ Fi(ω) such that
ω̄ /∈ B, that is µ(T2(ω̄)) = µ(T ), and hence

∑
ω′∈Fi(ω̄)

p(ω′) · et(ω′) > 0 for each agent t ∈ T.

Since for each agent t with information type i, Fi(ω̄) = Fi(ω) = Ft(ω), we
have a contradiction.

Also observe that from ω ∈ A it follows that Fi(ω) ⊆ A, for each infor-
mation type i ∈ I. If not, there would exist i ∈ I and ω̄ ∈ Fi(ω) such that
ω̄ ∈ B that is, by the previous argument, Fi(ω) ⊆ B and this is impossible.

Then {A,B} is a measurable partition of Ω and Fi ⊆ {A,B}, for each i ∈
I contradicting the assumption that

∧
i Fi = {∅,Ω}. This proves our claim,

that is there exists at least one state ω ∈ Ω in which µ(T1(ω)) ·µ(T2(ω)) > 0.

Let us denote by a the allocation of E corresponding to the quasi equi-
librium allocation α of E∗ and apply the condition (IC∗) to the partitions
{T1(ω), T2(ω)}ω∈Ω and to the allocation a. Let us denote by b the allocation
defined by (IC∗) in E and let β be the corresponding allocation in E∗. Then
for each ω ∈ Ω and for each t ∈ T2(ω) we have

V(t,E)(β(t,E)) ≥ V(t,E)(α(t,E)),

and in at least one state ω0 ∈ Ω the inequalities is strict for each t ∈ T2(ω0)
and (t, Ft(ω0)) ∈ C∗

2 . Hence there exists a coalition C∗
0 ⊆ C∗

2 for which
p · β(t,E) > p · e(t,E), while for the remaining type-agents (t, E) ∈ C∗

2 \C∗
0 , by

continuity and monotonicity p · β(t,E) ≥ p · e(t,E).

Since for each state ω ∈ Ω,
∫

C∗
1

e(t,E)(ω) dµ∗ =
∫

T1(ω)
et(ω) dµ, and∫

T1(ω)
et(ω) dµ +

∫
T2(ω)

at(ω) dµ ≥
∫

T2(ω)
bt(ω) dµ
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then ∫
C∗

1

e(t,E) dµ∗ +
∫

C∗
2

α(t,E) dµ∗ ≥
∫

C∗
2

β(t,E) dµ∗ .

It follows that

p ·
∫

C∗
2

α(t,E) dµ∗ = p ·
∫

C∗
1

e(t,E) dµ∗ + p ·
∫

C∗
2

α(t,E) dµ∗

≥ p ·
∫

C∗
2

β(t,E) dµ∗ > p ·
∫

C∗
2

e(t,E) dµ∗

≥ p ·
∫

C∗
2

α(t,E) dµ∗,

which is a contradiction. The previous argument shows that the case µ∗(C∗
1 ) ∈

(0, µ∗(T ∗)) is excluded. Since µ∗(C∗
1 ) = µ∗(T ∗) is excluded by the assump-

tion of strictly positive initial endowments, then µ∗(C∗
1 ) = 0 and hence (α, p)

is an Arrow-Debreu equilibrium. Coming back to the original mixed market
E, from Remark 6.4, one can deduce that the corresponding allocation a
is a competitive market equilibrium of E. Hence, the set CME(E) is non
empty. �

Whenever in the economy E there is a group of fully informed agents at
the time of implementing contracts, the irreducible condition (IC∗), needed
in Theorem 4.2, can be weakened as the next proposition indicates.

Proposition 6.5. Let us denote by S the set of the ex post fully informed
traders. Assume

∧
t∈T Ft = {∅,Ω}, that µ(S ∩ Θi) > 0 for each i ∈ I and

that each trader is endowed with a strictly positive amount of each good in
each state. Then, the economy E has a competitive market equilibrium.

proof: We only need to prove that the economy E satisfies the irreducible
condition (IC∗) and apply Theorem 4.2. Thus, let {T1(ω), T2(ω)}ω∈Ω be a
partition as in the (IC∗). Let us denote for each ω ∈ Ω, by S2(ω) the set
S2(ω) = T2(ω) ∩ S. Then there exists a state ω in which µ(T1(ω)) > 0 and

µ(S2(ω)) > 0. Again, whenever T1(ω) has positive measure,
∫

T1(ω)
et(ω)dµ � 0.

Consequently, there exists a strictly positive vector v(ω) ∈ R� such that∫
T1(ω)

et(ω)dµ � v(ω)µ(S2(ω)). Hence for each allocation a, the allocation

b defined on T2(ω) by

bt(ω) =
{

at(ω) if µ(T1(ω)) = 0 or µ(T1(ω)) > 0 and t /∈ S2(ω)
at(ω) + v(ω) otherwise

satisfies properties required by (IC∗). �
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