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“Unbridled short selling is contributing to the recent sudden price declines in the
securities of financial institutions unrelated to true price valuation.” (Security Ex-

change Commission, News Release 2008-211)

“On 18 September 2008 we introduced temporary short selling measures in relation
to stocks in UK financial sector companies on an emergency basis .. . it was apparent
that sharp share price declines in individual banks were likely to lead to pressure
on their funding and thus create a self-fulfilling loop.” (Financial Service Authority,
DP 09/1, p. 3)

Most stock exchange regulators around the world reacted to the financial crisis of 2007-
09 by banning or restricting short sales. As illustrated by the two quotes in the epigraph,
these interventions were presented as measures to curb unwarranted price drops that
could destabilize financial institutions, and particularly banks. More recently, Furopean
regulators offered the same motivation for the short-selling bans imposed during the
2011-12 eurozone sovereign debt crisis[] Hence, in both financial crises, short-selling bans
appear to have been prompted by concerns about the stability of financial institutions,
and primarily by the solvency of banks: regulators felt that these bans could protect them
from being pushed closer to insolvency by speculative pressures on their stock prices.
Indeed, in most countries, short-selling bans targeted primarily financial institutions.

In this paper, we investigate whether the short-selling bans imposed by regulators
during those two financial crises succeeded in improving the perceived solvency of financial
institutions and reducing the volatility of their stock prices. We also study whether the
effects of the bans were stronger for the banks that were most vulnerable in terms of
solvency and liquidity mismatch. Finally, we seek to determine whether short-selling
bans tended to support stock prices, consistently with a stabilizing impact on indicators
of solvency and volatility.

We find that, contrary to the regulators’ intentions, financial institutions whose stocks
were banned experienced greater increases in the probability of default and volatility than
unbanned ones, and these increases were larger for more vulnerable financial institutions.
Moreover, short-selling bans did not appear to support the stock prices of financial insti-
tutions whose shares were banned.

In our analysis, we take into account that short-selling bans are not imposed randomly,

but in situations of high stock price volatility and financial distress, so a mere correlation

IFor example, in 2012 the Spanish regulator (CNMV) motivated its decision to maintain its 2011 ban
by citing “uncertainties with respect to the Spanish financial system that may affect financial stability”
and arguing that “failure to ban short sales would heighten uncertainty.” It accordingly considered
the ban “to be absolutely necessary to ensure the stability of the Spanish financial system and capital
markets”. See the CNMV document at www.cnmv.es/loultimo/prorrogay,201%20nov_en.pdfl


www.cnmv.es/loultimo/prorroga%201%20nov_en.pdf

between short-selling bans and instability of financial institutions cannot be interpreted
as a causal relationship. Specifically, to take the endogeneity of short sales bans into
account, we use two approaches.

First, we use matching techniques to overcome the sample selection arising from the
fact that short-selling bans may specifically target larger and more vulnerable institutions.
Second, to take into account that short sales bans are themselves triggered by extreme
stock return volatility, we instrument the decision to enact the ban in the FEuropean
debt crisis of 2011-12 with a measure of the propensity of security regulators to impose
short-sales bans, based on their choices in response to the systemic risk of financial
institutions during the 2008 crisis. The rationale for this instrument is that this measure
of the security regulators’ policy rules, being based on their observed behavior three years
before, can be seen as exogenous to indicators of the stability of financial institutions in
2011. The results show that short-sale bans are destabilizing for the financial institutions
whose share are banned, even after controlling for endogeneity issues.

The focus of this paper differs from that of previous research on short-selling bans,
which extensively investigated their effects on stock returns, liquidity, and price discovery
(Battalio and Schultz, |2011; Battalio et al., 2011 |Beber and Pagano| 2013} Boehmer
et al., [2013; |Crane et al., 2019; Marsh and Payne, 2012)), rather than their effects on
financial stability. The only exceptions are the studies by Félix et al. (2016)) and Arce
and Mayordomo| (2016]), both of which focus on the 2011 ban: the first finds that the
ban increased the option-implied jump risk levels of financial stocks with listed options
in the Belgian, French, Italian and Spanish markets, while the second shows that the ban
moderated the solvency risk of Spanish banking institutions. Our study differs from these
for its wider coverage, being based on data for two crises, several countries and various
stability measures, as well as for its attention to endogeneity concerns.

Our work can also be seen as a test of predictions offered by the models of [Brunner-
meier and Oehmke| (2014) and |Liu (2015)). In their frameworks, preventing short sales of a
financial stock can avert a price fall induced by strategic short-sellers, which would result
in a self-fulfilling decline in the stock’s value. Their argument is that short sales may
result in a deterioration of funding conditions, because a declining share price may make
it harder to raise new equity or debt capital; or it might make depositors’ expectations
converge on a bank-run equilibrium, with potential further repercussions on stock prices.
The ban is seen as a way to break this perverse feedback loop, hence as a measure that
can stabilize the fundamental value of the bank, and thus its share price. Hence, these
models view short-selling bans as impacting the fundamentals of stock prices, rather than
just the price discovery process (for given fundamentals) as in previous literature (Miller,
1977; |Diamond and Verrecchia, [1987; Hong and Stein| 2003)).



In Brunnermeier and Oehmke| (2014) the mechanism that links stock price decline
with bank insolvency is the likelihood that the bank will violate a leverage constraint,
which limits the amount of funding that short-term creditors and uninsured depositors
are willing to provide. When these constraints are violated or nearly violated, predatory
short sellers that temporarily depress the share price can force the bank to dispose of
long-term assets in order to pay creditors and prevent a run on the bank. In some
circumstances, predatory short sellers can force the complete liquidation of assets, even
though in their absence the bank could have complied fully with the leverage constraint.

In |Liy/ (2015)), instead, short-selling attacks can damage a bank by amplifying stock
volatility, heightening uncertainty and increasing information asymmetry about the fun-
damentals. Since creditors base their evaluation of the bank’s fundamental value on the
share price, they become increasingly unsure about this value as share prices grow more
volatile. With greater uncertainty, creditors are less willing to roll over their short-term
loans, and if enough creditors call their loans back there is a bank run, triggering failure.

Both of these theories imply that institutions with sounder capital structures or
stronger fundamentals should be less susceptible to unwarranted short sales and so less
likely to fail. Moreover, given that both models posit short-term creditors as crucial
agents, maturity and liquidity mismatching between assets and liabilities are likely to be
a critical determinant of vulnerability. And while mismatching is common to all financial
institutions, it varies significantly with their type.

Thus, these theories deliver two hypotheses on the effect of short-sales bans that
we can test exploiting the cross-sectional heterogeneity of firms’ balance sheets at the
industry and institution level. The first prediction is that the bans should significantly
reduce the probability of default and stabilize the stock prices of banks compared to
other financial institutions, banks being far more highly leveraged and more exposed to
the risks of maturity mismatching and liquidity shocks.

A second prediction of Brunnermeier and Oehmbke| (2014)) and Liu/ (2015) is that the
effect of short sellers’ actions on banks depends crucially on the vulnerability of the target
banks: short selling should increase default probability, heighten volatility and depress
stock prices more significantly in banks that are closer to the regulatory minimum capital
ratio or feature greater liquidity mismatch between assets and liabilities. By the same
token, a short-selling ban should benefit such fragile banks more than solid ones, and
therefore should bolster their stock returns more strongly, lower their return volatility
more substantially and prompt a sharper recovery in their perceived solvency.

As already mentioned, our empirical findings are inconsistent with both of these pre-
dictions: the evidence suggests that, if anything, short-selling bans are destabilizing, as

they trigger further declines in the stock prices and perceived solvency of financial institu-



tions. While the well-documented negative impact of bans on market liquidity may suffice
to explain their depressing effect on stock prices, one must appeal to additional mech-
anisms to rationalize their detrimental effects on the solvency of financial institutions.
One such mechanism might be that short-selling bans weaken the discipline imposed by
markets on bank managers’ risk taking, by silencing the most skeptical investors. This is
consistent with evidence that increases in the cost of short-selling reduce investors’ ability

to monitor managers and detect fraud (Fang et al., [2016; Massa et al., [2015)).

1 The data

We identify the effect of short-selling bans on banks’ stability and stock prices by ex-
ploiting the cross-sectional variability between banks, other financial institutions and
non-financial corporations during the two recent waves of short sale restrictions, namely
the bans enacted during the credit crisis of 2008-09 and the European sovereign debt
crisis of 2011-12. This empirical framework is well suited for identification, in that banks,
other financial institutions and non-financial companies were affected differently by the
two crises and by short-selling bans. In 2008-09 the U.S., Canada, the UK, Switzer-
land and Ireland imposed short-selling bans before most other countries; in the 2011-12
sovereign crisis, short-selling bans were put on bank stocks in several (but not all) euro-
zone countries; and other countries have not enacted bans in either period. As a result,
in each crisis we have a sizeable control sample of companies not subject to short-selling
bans.

Our data cover 15,983 stocks in the first crisis (2008-09) and 17,586 in the second
crisis (2011-12) for 25 countries: 17 European countries (13 eurozone and 4 non-eurozone
countries)E] the U.S., Australia, Canada, Japan, Hong Kong, Israel, New Zealand and
South Korea, hence all the main developed countries. The data span the period from
June 2008 to April 2012: we do not consider subsequent data to prevent confounding
factors from clouding the potential effects of short-selling bans. Our data are drawn from
different sources: stock returns from Datastream, financial institutions’ 5-year Credit
Default Swap (CDS) quotes from Bloomberg and Datastream, and balance-sheet data
from Bloomberg and SNL Financials.

We winsorize stock return data by eliminating the top and bottom 1% of the obser-
vations as well as zero returns (which presumably correspond to stale prices), so that

the final sample for our return regressions comprises 13,473 stocks in the first crisis and

2The eurozone countries in the sample are: Austria, Belgium, Denmark, Finland, France, Germany,
Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, and Spain. The non-eurozone European
countries are: Norway, Sweden, Switzerland and the UK.



16,424 in the second one. These screens eliminate virtually all the observations that
would be dropped using the protocols used by Hou et al.| (2011)) for stock returns drawn
from Datastream Pl

The estimates of firm-level probability of default (PD) over a three-month horizon
are calculated by the Risk Management Institute (RMI) at the National University of
Singapore. These conditional PDs are estimated by the forward intensity model developed
by Duan et al.| (2012), which permits firm-by-firm forecasts over a range of time horizons.
This reduced-form model is an extension of the hazard-rate approach in|Dufhe et al.| (2007)
and |[Lando and Nielsen! (2010]), but allows to estimate the PD over multiple periods using
only data known at the time of the prediction, thus overcoming the difficulty of specifying
and estimating the time dynamics for covariates. In the model used by the RMI, the input
variables are the domestic stock index return and interest rate for all the firms in a given
country, plus a set of ten firm-specific variables that are transformations of measures
of six firm characteristics (volatility-adjusted leverage, liquidity, profitability, relative
size, market misvaluation/future growth opportunities, and idiosyncratic volatility). The
forward intensity approach actually coincides with the model by Duffie, Saita and Wang
(2007) when the application is limited to the one-month ahead prediction, and on U.S.
data it performs similarly on short horizons, with a 90% accuracy.

As for the volatility of stock returns, we rely on two different measures. The first
is the square root of the 20-day moving average of squared stock returns, which we
compute for all the stocks in our sample, including non-financial firms. The approach
of measuring volatility using moving averages of daily squared returns corresponds to an
Integrated-GARCH filter with zero intercept. Andersen et al. (2003) provide a general
framework for volatility modelling, where they show that these simple GARCH filters
appear to track the low-frequency variation adequately, matching the broad temporal
movement in volatilities (see also |/Andersen and Bollerslev| (1998) for a related empirical
study). Our second measure of volatility is the square root of the daily variance of stock
returns estimated by the NYU Volatility Laboratory (V-Lab) using a GJR-GARCH(1,1)
model as in (Glosten et al.| (1993)). This volatility measure is available only for financial
institutions.

The measures of financial institutions’ leverage and banks’ systemic risk are also
provided by the NYU V-Lab. The leverage of financial institutions is defined as market

value of equity plus the difference between the book value of assets and the book value

3Since the protocol proposed by Hou et al.|(2011)) is designed for monthly data, we applied it to the
monthly returns of the stocks in our data set, and found that the protocol would lead to dropping a
very small additional number of observations compared to the screen described in the text, namely 0.03
percent (27 observations) of the sample in the first crisis and 0.02 percent (27 observations) in the second
crisis.



of equity, all divided by the market value of equity. The systemic risk measure (labeled
SRISK by NYU VLab) is an estimate of the capital shortfall (relative to the prudential
capital ratio of 8%) that banks are expected to incur in the event that the broad stock
market index falls by 40% over 6 months, based on Brownlees and Engle| (2012) and
Acharya et al.[(2012)). Though produced from publicly available information, this estimate
is conceptually similar to those obtained via stress tests by U.S. and European regulators,
and takes account of the correlation between the value of the single bank’s assets and
that of the financial sector aggregate in a crisis. A bank’s SRISK is a function of its
initial leverage and an estimate of its “downside beta” — that is, the sensitivity of the
bank’s equity value to large declines in the broad stock market index. We standardize
this variable by the corresponding company’s stock market capitalization, to compute
the systemic risk per unit of asset: this normalization ensures that the results are not
driven by the size of individual banks. Furthermore, following Acharya et al.| (2012), we
replace negative observations on this measure of systemic risk intensity by truncating the
variable at zero, since negative equity shortfalls do not contribute to systemic risk. More
than half of the observations on this variable are negative, which implies that systemic
risk is concentrated in a minority of banks.

Finally, the dates when short sales bans were enacted and lifted and the characteristics
of short-selling regimes are taken from the websites of national regulatory bodies and of
the European Securities and Markets Authority (ESMA). For each country, we determine
whether a short-selling ban was enacted and when, which stocks it applied to, and what
restrictions it imposed. In particular, we distinguish between “naked” and “covered” bans:
the former forbid only transactions in which the seller does not borrow the stock to deliver
it to the buyer within the standard settlement period, while the latter also forbid covered

short sales, i.e. those in which the seller does borrow the stock []]
[Insert Table 1]

Table 1 describes our data set, separately for the two financial crises: the left panel
refers to the bans enacted in 2008, the right panel to those enacted in 2011. In 2008,
regulators often imposed both naked and covered bans, in several cases subsequently
lifting the latter but retaining the former. We show the dates of imposition and revocation
and the scope of the first ban imposed in each country, be it naked or covered. In 2011,
all the new bans were covered bans, so the right panel shows the inception and lifting
dates and the scope of covered bans only. In many of these countries the naked bans

imposed in the previous financial crisis were still in force through 2011. The bans for

4See (Griinewald et al.| (2010) for a description of the different types of short-selling restrictions and a
discussion of their possible rationale.



which the table indicates an inception date but no lifting date were still in effect at the
end of our sample period, 30 April 2012.

From the table, it is clear that there is great heterogeneity in the geographical area,
timing, type, and scope of the bans in the two crises. First, in the 2008-09 subprime
crisis short-selling bans were much more widespread than in the 2010-11 eurozone debt
crisis. Moreover, in the former case regulators in the U.S., Australia, Canada, Switzerland
and UK imposed more stringent (i.e., covered) bans and moved faster than most other
regulators, whereas in the latter only a handful of eurozone countries (Belgium, Greece,
France, Italy and Spain) and South Korea imposed covered bans. This accords with
the fact that the subprime crisis had its epicentre in the U.S. and was more global in
nature and impact than the eurozone debt crisis. Finally, some countries (Finland, Hong
Kong, Israel, New Zealand and Sweden) imposed no ban in either crisis. The scope of
the bans also varied from country to country and between episodes. In 2008, short sales
were banned for all stocks in Greece, Italy, Spain, Australia, Japan and South Korea,
while it was limited to financials (or a subset of financials) in the other countries that
imposed a ban; in 2011 the bans applied to all stocks in Greece, Italy and South Korea,
and to a subset of financials only in Belgium, France and Spain[| This heterogeneity of
geography, timing and scope, combined with the availability of data for both the 2008
and the 2011 wave, allows for sufficient experimental variation and gives us a large group

of non-banned stocks to be used as a control group in each ban episode.
[Insert Table 2]

Table 2 shows descriptive statistics for banks, broken down by geographic area (U.S.
and eurozone) and by period (June-December 2008 and May-November 2011), respec-
tively. Specifically, the table reports the daily median values of stock returns; the volatility
measure estimated from the GJR-GARCH(1,1) model; the three-month default probabil-
ity obtained as in Duan et al| (2012)); leverage, defined as the sum of book value of debt
and market value of equity over market value of equity; standardized SRISK, i.e., capital
shortfall for a given financial institution as a fraction of its stock market capitalization,
whenever SRISK is positive; the Tier-1 ratio as a measure of regulatory capital, and the
stable funding ratio, defined as the ratio of customers’ deposits plus equity to long-term
assets, to capture maturity mismatch between liabilities and assets; and finally, the CDS
spread for the banks for which it is available.

In the entire sample, the overall median daily stock return was zero in both crises,

and the median bank had similar leverage in both sub-periods, even though it had more

5More precisely, Italy modified the scope of the bans in both crises, initially applying it to financials
only and then extending it to all stocks (see the footnotes to Table 1)



regulatory capital (as measured by the Tier-1 ratio) and less maturity mismatch between
assets and liabilities during the second crisis. Regarding risk-related measures, the me-
dian bank’s stock return variance and PD were higher in 2008 than in 2011, while the
opposite applies to the median CDS premium and systemic risk (standardized SRISK).
However, these overall median values mask substantial differences between U.S. and Euro-
pean banks: in both crises the median eurozone bank’s daily stock return was significantly
lower than for U.S. banks (based on the Wilcoxon test), and the median eurozone bank
also displayed greater default probability, much higher leverage, lower regulatory capital,
stronger asset-liability maturity mismatch, and far greater systemic risk than the median
U.S. bank or the median bank for the entire sample. These differences were more pro-
nounced in 2011 than in 2008. On the whole, therefore, European banks seem riskier and

more fragile than the others in both crises, and especially in the second.

2 The results

Our objective is to assess the impact of short-selling bans on the stability of financial
institutions in the two financial crises of 2008 and 2010-11. We start by estimating simple
panel regressions whose dependent variables are, alternatively, the probability of default,
the CDS premium, the volatility and the level of stock returns, while the explanatory
variables include dummies for the short-selling bans, stock-level fixed effects and, in stock
return regressions, the market return of the corresponding country. We estimate these
regressions on daily data, first for all stocks, then for financials only, and finally for banks
only. All regressions are estimated separately for the two financial crises.

Next, to address problems of sample selection, we construct a matched sample of
“banned” and exempt financial institutions. The matching, which is implemented via the
coarsened matching algorithm proposed by [lacus et al.| (2011), seeks to identify banks
with similar characteristics in terms of size (as measured by market capitalization) and
insolvency risk (as measured by leverage and regulatory capital ratio). We estimate a
second set of panel regressions on the matched sample, again controlling for stock-level
fixed effects.

Finally, to take into account the potential endogeneity of the ban’s enactment, we
estimate Instrumental Variable (IV) regressions. The decision to enact a short-sales
ban in the second crisis period is instrumented with the propensity of national security
regulators to ban short sales of financial institutions’ shares in response to their systemic
risk during the first crisis. The idea behind this instrument is that the propensity of
a given regulator to impose a ban is determined not only by the level of systemic risk

featured by the financial institutions that it supervises, but also by its aversion to systemic



risk, so that the ban is triggered by a different level of systemic risk for different regulators.
This measure of a regulator’s propensity to ban short sales in response to a financial
institution’s systemic risk in the 2008 crisis is arguably a valid instrument for the 2011

short-sales ban decision by the same regulator.

2.1 Baseline estimates

Our first set of estimates address the question of whether short-selling bans reduce the
probability of default of financial institutions, and of banks in particular, based on the
estimates of panel regressions in which the respective dependent variables are the PD and
the CDS premium. Each regression includes stock-level fixed effects, and two dichotomous
variables that capture the presence of short-selling bans and their stringency: those
forbidding only naked short sales (Naked Ban), and those that also forbid covered short
sales (Covered Ban). The Naked Ban variable equals 1 when only naked short sales are
forbidden, Covered Ban equals 1 when covered short sales are also forbidden. Therefore,
the effect of Naked Ban is measured by the observations for which the ban does not
extend to covered short sales. The estimation is conducted separately for the first and
second crises, allowing potentially different values in the two cases: columns 1-3 report
the estimates from June to December 2008, columns 4-6 those from May to November
2011. For each sub-period three regressions are reported — for all stocks (columns 1 and
4), financial stocks only (columns 2 and 5), and bank stocks only (columns 3 and 6).
Table 3 shows that in the first crisis, the PD over a 3-month horizon increased for
all stocks when subject to naked or covered bans (column 1), for financials under either
type of ban (column 2), and for bank stocks under naked but not covered bans (column
3). In the second crisis, PD increased significantly for all stocks subject to covered bans
(column 4), especially financials (column 5) and even more so bank stocks (column 6):
comparing the coefficient in column 6 with that in column 4 indicates that the increase in
PD associated with the 2011 ban is eight times greater for banks than for “banned” stocks
in general. This is an interesting finding: that is, while regulators have imposed bans in
order to stabilize banks, these appear to have featured a larger increase in solvency risk
than other companies with the enactment of naked short-selling bans in the first crisis
and of covered bans in the second. The magnitude of the coefficients indicates that these
effects are also economically significant: compared to the sample medians of banks shown
in Table 2, the PD of banks doubled in coincidence with the naked bans of 2008, and

more than doubled concomitantly with the covered bans of 2011.
[Insert Table 3]

A similar qualitative pattern of results emerges from the panel estimates of Table 4,



where the dependent variable is the CDS premium. Although the number of observations
is much smaller than in Table 3, being limited by CDS data availability, the estimates
indicate that the bans were also associated with significantly greater CDS premia for all
stocks in both crises. Moreover, CDS premia increased significantly more for financials
than for other stocks in both crises, as can be seen by comparing the estimates shown
in columns 2 and 5 with the corresponding estimates in columns 1 and 4. As for the
PDs, the economic magnitude of the estimated coefficients is large: benchmarking them
against the corresponding sample medians in Table 2, the CDS premia of banks increased
respectively by 56% and 45% in response to the 2008 naked and covered bans, and by

92% in response to the covered bans of 2011, based on the estimates in columns 3 and

60
[Insert Table 4]

An equally consistent picture emerges also from the estimates of the volatility regres-
sions in Table 5, which refer to the measure estimated from the GJR-GARCH(1,1) model
for financial institutions only. Also in this case, the coefficients of the short-selling ban
variables are positive and statistically different from zero at the 1% significance level,
both in the first crisis and in the second. Moreover, also in this case naked bans in 2008
coincide with a doubling of the volatility of bank stocks relative to their median value, and
covered bans in 2011 with a 267% increase in their volatility. Table A.1 in the Appendix
shows that very similar results are obtained when using the simpler volatility measure
based on squared daily returns: this table, beside providing a robustness check of the es-
timates of Table 5 for financials and banks, shows that short-selling bans were associated
with an increase in volatility also for non-financial stocks. [Félix et al.| (2016 document
that also option-based implied volatility measures increased in coincidence with the 2011

short-selling bans on eurozone stocks featuring option markets.
[Insert Table 5]

In summary, all the baseline regressions indicate that short-selling bans are associated
with significant increases in risk measures. Moreover, the naked ban in the first crisis
and the covered ban in the second were associated with a larger increase in the perceived
insolvency risk of banks compared to other firms. This overall pattern is mirrored in the
response of stock prices to the bans, shown in Table 6: the bans were associated with
an overall decline in stock returns, and the decline was larger for bank stocks than for

other stocks in coincidence with naked bans in the first crisis and with covered ones in the

6To exemplify, the impact of the 2008 ban is obtained by dividing the coefficient in column 3 of Table
4 (0.0049) by the median CDS spread in the first column of Table 2 (0.0105).

10



second. This evidence appears inconsistent with the thesis by |Brunnermeier and Oehmke
(2014)) that short-selling bans can support bank shares by deterring predatory trading
and by Liu| (2015)) that they should reduce their price volatility. It is also inconsistent
with (Miller, 1977)), who argued that in general short-selling bans should support share

prices by suppressing the trades of the most pessimistic investors.
[Insert Table 6]

A natural question is whether the increase of PDs and stock price volatility in response
to short-selling bans are just reflections of the bans’ negative impact on price discovery
and market liquidity, which have already been extensively documented by other studies,
such as Battalio and Schultz (2011)), [Beber and Pagano (2013) and Boehmer et al.| (2013),
or whether they point to an additional direct effect of bans on stock fundamentals, par-
ticularly for financials — though opposite in sign to the predictions of [Brunnermeier and
Oehmke (2014) and |Liu/ (2015). In principle, by suppressing valuable negative information
in the price discovery process, short-selling bans may increase the uncertainty of investors
and reduce stock market liquidity, resulting in a drop of equilibrium stock prices. In turn,
the lower stock prices may increase the market leverage of the corresponding firms and
thus increase their PDs and price volatility; the latter may also increase because of the
greater bid-ask bounce associated with wider bid-ask spreads. This line of reasoning may
also explain why the response of volatility and PDs was greater for financials, and banks
in particular: the suppression of negative information may have created more uncertainty
regarding the value of financials, which were at the center of the crisis.

To investigate whether this interpretation of the results is warranted, in columns 1
and 2 of Table 7 we expand the specification of the PD regressions for financials by con-
trolling for the contemporaneous return of the corresponding stock: the estimates shown
in columns 1 and 2, which refer to the first and the second crisis respectively, show that
the coefficients of the ban dummies are almost identical to those of the comparable re-
gressions in columns 2 and 5 of Table 3, even though the coefficients of stock returns are
strongly significant and negative, in accordance with intuition. Similar results are ob-
tained controlling for lagged stock returns (up to one week) rather than contemporaneous
ones: these results are not reported for brevity. The fact that the estimated coefficients
of the ban dummies are almost unaffected in this expanded specification indicates that
the increase of PDs in response to short-selling bans is not just a mechanical implication
of the drop in stock prices via changes in leverage. In other words, short-selling bans
appear to convey bad news about the perceived solvency of financial institutions, over
and above the impact that they have on stock returns. This may be the case, for instance,

because short-selling bans weaken the discipline imposed by markets on bank managers’

11



risk taking, consistently with evidence that increases in the cost of short-selling reduce

investors’ ability to monitor managers (Fang et al.l 2016; Massa et al., [2015)).
[Insert Table 7]

Columns 3 and 4 of Table 7 present a similar robustness check for the volatility
regressions, by including not only the corresponding stock’s return, but also its illiquidity
(measured by the contemporaneous value of the relative bid-ask spread) as additional
controls. Illiquidity turns out to be positively and significantly correlated with stock
return volatility, possibly reflecting the impact of the bid-ask bounce. However, the
estimated coefficients of the ban variables are still precisely estimated and similar to the
baseline estimates in columns 2 and 4 of Table 5. Also in this case, similar results are
obtained by controlling for lagged values of the stock return and illiquidity (again, not
reported for brevity).

As a further robustness check, in Table A.2 of the Appendix the specifications of
Table A.1 are re-estimated using the volatility of weekly returns rather than that of daily
returns as dependent variable, so as to reduce even further the possible role of the bid-ask
bounce as a determinant of stock price volatility: the ban coefficients are still positive and
significant. Hence, the response of volatility to short-selling bans is not just mechanically

driven by the response of prices and illiquidity documented in previous studies.

2.2 Estimates obtained from matched samples

A possible objection to the results in Section is that the stocks subject to short-selling
bans differ from those that were exempt. In particular, bans may be targeted mainly to
the financial institutions that are the most fragile owing to their greater leverage or
maturity mismatch, rather than to randomly selected ones. Indeed, policy makers should
have the incentive to apply bans in this selective fashion if they hold the belief that bans
can stabilize financial institutions, as witnessed by the quotes in the epigraph of this
paper. If so, the results reported above are vitiated by sample selection bias.

To address this selection concern, we match the observations for each financial insti-
tution whose stock was subject to a ban with those for another financial institution with
similar characteristics in terms of size and riskiness but not subjected to a ban. For each
financial institution subject to a short-selling ban, we identify non-banned stocks within
the same category (banks, insurance companies, financial service companies, real estate
firms) whose issuers are closest to it in (i) market capitalization, (ii) core tier-1 capital
ratio and (iii) leverage.

The matching is implemented via the coarsened matching (CEM) algorithm proposed
by [lacus et al| (2011), which proceeds in three steps. First, the data are temporarily
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coarsened by defining bin intervals, called “strata”, according to the three above-listed
variables chosen as matching criteria[] Second, an exact matching is carried out on the
coarsened data, by retaining all the strata in which there are at least one treated and one
control observation (i.e., a banned and a non-banned financial institution), and discarding
the others. Third, only the retained observations are used in the estimation, weighting
them by the size of the corresponding “stratum size”. Hence, this method allows for
more than a single control observation to be matched to a single treated observation, and
viceversa, but corrects the potential imbalance of observations using these weights.

The matching algorithm is the same for the two crises, but the matching is done sep-
arately for each, since the institutions’ characteristics could have changed in the mean-
time. We measure the average characteristics of treated and control financial institutions
in June, July and August 2008 for the first wave, and in April, May and June of 2011 for
the second wave. Table 8 illustrates the results of the matching algorithm separately for
the two crises. In the first crisis (top panel), the algorithm results in a sample of 1,034
treated and 935 control financial institutions, starting from two subsamples of 1,419
treated and 999 control observations. In the second crisis (bottom panel), it results in a
sample of 165 treated and 1,617 control financial institutions, starting from 194 treated
and 2,465 control observations, reflecting the much more limited scope of the covered
ban in the second crisis. The quality of the matching is highlighted by the improvement
in the similarity of the three chosen characteristics for the treated and control groups in
both crises: banned financial institutions are significantly more levered and larger than
non-banned ones in both crises, and feature significantly lower regulatory capital in the
second crisis; but after the matching, the two subsamples are not significantly different

in any of these three dimensions.
[Insert Table §]

Table 9 shows the results from estimating the effects of the bans on the PD, volatility
and stock returns (i.e., the specifications of Tables 3, 5 and 6) on the sample of financial
institutions resulting from our matching procedure. Owing to the relatively small size
of the sample, we now use a single ban variable, equal to 1 whenever a short-selling
ban (whether naked or covered) was enacted and 0 otherwise. In the 2011 crisis, as
noted above, this variable coincides with the covered ban dummy. Columns 1-3 present
the estimates for the 2008 crisis in regressions where the dependent variables are PD,
volatility and stock return, respectively; columns 4-6 show the corresponding estimates
for the 2011 crisis. In the PD and volatility regressions of columns 1-2 and 4-5, we

also control for the stock’s own return, as in Table 7, in order to focus on the effect

"The number and width of bins are chosen by applying Sturges’ rule (1926)).
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of short-selling bans that does not arise mechanically from their effects on the stock
price. In these matched sample regressions too, short-selling bans are associated with
significantly greater volatility, higher probability of default and lower stock returns, in
both crises. The magnitudes of the coefficients are very close to the estimates for the
full sample of financial institutions in columns 2 and 5 of Tables 3, 5 and 6, respectively.
This indicates that the baseline estimates reported in those tables are not significantly

affected by selection bias.
[Insert Table 9]

We use our matched sample also to test a prediction specific to the Brunnermeier and
Oehmke (2014) model, exploiting cross-sectional differences in the fragility of financial
institutions. Recall that in this model short-selling bans should stabilize particularly the
most vulnerable financial institutions. Hence, we re-estimate the regressions in Table 9
with the addition of an interaction between the ban dummy and a dummy for financial
vulnerability, which is equal to 1 for the institutions with greater than median vulnerabil-
ity and 0 for the others. This interaction variable allows the coefficient of the short-selling
ban to take a different sign for more vulnerable institutions. We measure vulnerability
alternatively by one of the following four variables (measured as of May-June 2008 for the
first crisis, and April-May 2011 for the second): (i) leverage, (ii) systemic risk (SRISK),
(iii) the (negative of the) Tier-1 capital ratio (T1), and (iv) the (negative of the) “stable
funding ratio” , to capture maturity mismatch between liabilities and assets. Of course,
since the last two indicators apply only to banks, the regressions involving them are
estimated only for banking stocks.

The estimates are reported in Table 10, separately for default probability (Panel A)
and return volatility (Panel B). In each panel, vulnerability is measured with leverage in
columns 1-2, systemic risk in columns 3-4, the T1 capital ratio in columns 5-6, and the

stable funding ratio in columns 7-8. Each column refers to one of the two crises.
[Insert Table 10]

The results indicate that short-selling bans were associated with even greater proba-
bility of default and stock return volatility for more vulnerable financial institutions than
for others. In particular, in the PD regressions in Panel A, the coefficients of the interac-
tion with all the vulnerability indicators are positive and significantly different from zero
for both crises, implying that after the introduction of the bans the probability of de-
fault rose significantly more for the banks with above-median leverage and systemic risk,

below-median Tier-1 capital ratios and above-median maturity mismatch between assets

14



and liabilities. The impact of short-selling bans on the PD of the more vulnerable insti-
tutions is larger than the corresponding impact for stronger institutions. For instance,
focusing on the estimates for the 2011 crisis (shown in even columns), the impact of the
bans on the PD was 2.5 times larger for the more highly leveraged banks, 3.5 times larger
for those with more systemic risk, 2.75 for those with less regulatory capital, and 9 times
larger for those with greater maturity mismatch between assets and liabilities.ﬁ Panel B
of the table shows qualitatively similar, but quantitatively smaller results for volatility: in
both crises the ban was associated with a larger increase in the volatility of stock returns
for more fragile and unstable financial institutions, especially during the eurozone debt
crisis. Hence, there is no evidence in either crisis for the hypothesis that bans on short

sales support the less capitalized banks, or more fragile financial institutions in general.

2.3 Instrumental variables estimates

While the matching method described in Section [2.2f addresses the possible selection bias
arising from the regulators’ choice of the banned stocks, it does not address the possible
endogeneity arising from the regulator’s decision to impose a ban. If regulators impose
short-selling bans when financial companies are particularly distressed, and feature abnor-
mally high return volatility or steep price declines, the correlation between short-selling
bans and bank instability documented so far cannot be interpreted as a causal relation-
ship. Indeed, the causality could run the other way, from the rise in volatility, the increase
in default risk or the drop in stock prices to the bans. To address this concern, we es-
timate an instrumental variables (IV) regression for the stocks of financial institutions
in the second crisis, where the first stage is a linear probability model determining the
likelihood of a ban and the second stage models the ban’s effects on volatility, probability
of default and stock returns.

The presence of two distinct waves of short-selling bans in our data, each triggered
by a specific crisis, enables us to attack this identification problem by using the data
generated by the first crisis to infer the propensity of regulators to impose a short-selling
ban in the second crisis. Specifically, we denote by srisk7, the threshold level of systemic
risk of stock j above which the regulator of country ¢ chose to impose the first short-
selling ban (whether naked or covered) on stock j during the first crisis, and infer the

policy rule that accordingly it should have followed in the second crisis by the following

8To exemplify, the effect of the ban for institutions with above-median leverage is 0.0005, that is, the
sum of the two coefficients in column 2 of Table 10. Dividing this figure by the coefficient for institutions
with below-median leverage, i.e. 0.0002, yields 2.5.
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indicator function:

1if sriskjee > srisk;fc,

ban_rulej, = (1)

0 otherwise.
The variable defined by is supposed to capture the propensity of regulator ¢ to impose
a short-selling ban on stock j during the second crisis, as it equals 1 if the systemic risk
level srisk;q (as measured by the standardized SRISK variable) would have triggered a
ban in the first crisis, and equals zero otherwise. For the stocks that were not banned
in the first crisis the threshold is set equal to the highest level of systemic risk achieved
during the first crisis.

Our instrument exploits not only the different timing of bans across countries but also
the fact that in several countries bans were imposed selectively across financial stocks,
rather than on all of them at the same time. For instance, in Austria, Belgium, France,
Germany and the Netherlands only a fraction between 6% and 14% of financial stocks
was affected by the short selling ban. Even in the United States, the SEC emergency
order of 18 September 2008 (Release No. 34-58592) prohibited short sales “in the publicly
traded securities of certain financial firms, which entities are identified in Appendix A
(‘Included Financial Firms’)” [emphasis added]|: indeed it banned short sales only for
472 stocks out of 558 financial stocks. This is why our instrument is not based on
an aggregate measure, but on a stock-by-stock measure of systemic risk. (However, as
explained below, for robustness we also consider an alternative instrument based on the
idea that the decisions to impose short-selling bans were based on aggregate country-level
measures of financial instability.)

We use the ban_rulej; variable to instrument the decision to enact the ban in the
second crisis. More precisely, using data for the 2011 sample, we estimate the following

first-stage regression:
djet = 0 + Prban_ruleje + Posriskje + Bsret + €jet, (2)

where the ban dummy d, is 1 if stock j is banned by the regulator of country c at time ¢,
and 0 otherwise, srisk;q is the systemic risk of company j and r. is the market return of
country ¢ at time ¢ (the latter variable being included only in the regression for individual
stock returns). Our instrument varies not only across stocks but also across regulators
(for the same stock and level of systemic risk) and over time (being a function of systemic
risk), which avoids perfect collinearity with the stock-level fixed effects.

The validity of this instrument rests on the exogeneity of the regulator’s preferences,
namely the assumption that the threshold level for systemic risk used by a regulator in its

policy rule (1)) during the first crisis is not affected by the probability of default, volatility
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or stock return of company j in the second crisis, once one controls for that company’s
systemic risk sriskj.. It is important to realize that we do not assume srisk;., per se
to be exogenous: it may well respond to company j’s probability of default, volatility or
stock return. Our identifying restriction is instead that the non-linear impact of srisk;q
on the ban enactment via the threshold policy rule is exogenous with respect to that
institution’s solvency risk, volatility and stock return, once the linear impact of srisk;e
is accounted for.

The IV estimates are shown in Table 11. The first-stage estimates are reported in the
odd columns and the corresponding second-stage estimates in even columns. Columns
1 and 2 refer to the PD regression, columns 3 and 4 to the volatility regression, and
columns 5 and 6 to the stock return ones/’] The first-stage estimates indicate that the
instrument is relevant, as its coefficient is significantly different from zero and the first-
stage F-test statistic exceeds 13 in all specifications. Moreover, the estimated coefficient
of the instrument has the expected sign: 1 > 0. The second-stage estimates confirm the
qualitative results of OLS estimation conducted on the whole panel in Tables 3, 5 and
6, and on the matched sample in Table 9: the covered bans imposed in the second crisis
appear to have increased the conditional default probability, the volatility and the drop

in stock prices of the relevant financial institutions.
[Insert Table 11]

Indeed, short-sale bans appear to be even more destabilizing once the endogeneity of
the policy response is taken into account, as the IV estimates of the bans’ effects exceed
the corresponding OLS estimates: for instance, in the volatility regression the covered
ban’s coefficient is 0.0127 in column 4 of Table 11, to be compared with the OLS estimate
of 0.0011 in column 3 of Table 5. Hence,

A possible concern about the above IV strategy is that it assumes that each regulator
triggers the ban for each stock based on a stock-specific threshold for its systemic risk,
rather than in response to an aggregate, country-level measure of financial instability.
To allay this concern, we adapt our instrument by assuming that the threshold used by
each regulator is calibrated on the mean value of systemic risk for the financial companies
in the relevant country, computed on the first day in which the regulator of country c
imposed a short-selling ban (whether naked or covered) during the first crisis. Hence,
the instrument becomes a country-time dummy that equals 1 if during the second crisis
the mean systemic risk for the financial companies of country ¢ at time ¢ exceeds this

threshold, and 0 otherwise. The results obtained using this alternative IV strategy, which

9Even though the specification of the first-stage regressions in columns 1 and 3 are identical, theirs
coeflicients differ because they are estimated on different samples, due to different data availability for
the PD and volatility.
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are presented in Table A.3 of the Appendix, are similar to those shown in Table 11, the

only difference being that the ban dummy coefficient estimates are smaller.

3 Conclusions

Previous research has shown that the bans on short sales in 2008-09 reduced market
liquidity, slowed price discovery, and were ineffective in supporting stock prices. Yet this
dismal outcome did not deter a number of EU regulators from a new wave of short-selling
bans on financials when the European debt crisis broke out in 2010. In both crises, the
main motivation for the bans offered in the regulatory debate was the danger that a
collapse of bank shares could engender funding problems or even a full-fledged bank run.

This paper tests whether bans on short sales of bank stocks do stabilize vulnerable
banks at times of market stress. We test this hypothesis by scrutinizing the evidence
produced by the crises of 2008-09 and 2010-12. To assess the effects of the bans on bank
stability empirically, we compare the evolution of solvency measures, volatility and stock
returns, for a large set of corporations and specifically for financial institutions and banks,
only a subset of which were subject to the bans either once or repeatedly.

Our evidence indicates that short-selling bans are not associated with greater bank
stability. In fact, our estimates, even controlling for the endogeneity of the bans, point
to the opposite result, namely that bans on short sales tend to be correlated with higher
probability of default, greater return volatility and steeper stock price declines, particu-
larly for banks. A possible interpretation of these detrimental effects of short-selling bans
is that they weaken the discipline imposed by markets on bank managers’ risk taking, by

silencing investors most critical of their strategies.
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Table 8. Statistics on matched samples

First Crisis

Treated group Control group

Mean SD Mean SD Diff.
Leverage 6.05 7.54 3.63 6.04 243
Market Cap. 1596 4044 1243 3092 352"
Tierl-RW 10.47 3.09 9.67 3.15 0.80*

Observations 1,419 999
Matched Matched
treated group control group
Leverage 2.08 2.84 2.15 2.87 -0.07
Market Cap. 835 2203 816 2185 19
Tierl-RW 8.88 1.64 9.05 1.67 -0.17
Observations 1,034 935

Second Crisis

Treated group Control group

Mean SD Mean SD Diff.
Leverage 10.03 12.79 5.50 8.52 4.53 ***
Market Cap. 2597 4749 1149 2951 1448 ***
Tierl-RW 10.95 3.29 13.00 4.39 -2.05%**

Observations 194 2,465
Matched Matched
treated group control group
Leverage 6.16 9.74 6.03 9.73 0.14
Market Cap. 1314 3163 1230 3239 84
Tierl-RW 10.66 1.58 11.12 1.38 -0.46
Observations 165 1,617

The table reports the mean and standard deviation of leverage, market
capitalization and Tier-1 capital for financial institutions included in the
group of banned stocks (the treated group) and that of unbanned ones
(the control group), before and after matching, separately for the two cri-
sis episodes.
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Table 11. Stability of Financial Institutions and Short-Selling Bans: IV Esti-
mates

Prob. of Default Volatility Return
First Second First Second First Second
Stage Stage Stage Stage Stage Stage
(1) (2) (3) (4) (5) (6)
Ban 0.0062*** 0.0127*** -0.0616***
(3.15) (6.76) (-3.84)
Market Return 0.2522***  (0.8469***
(5.18)  (74.01)
Srisk 0.0548***  0.0002* 0.0104***  0.0000 0.0110***  -0.0002
(12.92) (1.95) (6.75) (1.53) (6.61) (-0.82)
Instrument 0.0223*** 0.0454*** 0.0444***
(3.60) (7.45) (7.36)
Stock FE Yes Yes Yes Yes Yes Yes
First Stage F-Test 13 56 54
Observations 38,388 38,388 40,900 40,900 41,139 41,139

The table shows the IV estimates of regressions for financial institutions. Columns 1, 3 and 5 show the
estimates of the first-stage regression coefficients, and columns 2, 4 and 6 those of the corresponding
second-stage regressions. In the first-stage regressions, the dependent variable is the ban dummy. In the
second-stage regressions, the dependent variable is 3-month probability of default in column 2, stock re-
turn volatility based on a GJR-GARCH(1,1) model in column 4, and the stock return in column 6. The
Ban dummy variable equals 1 if covered short sales are forbidden in the second crisis, 0 otherwise. The
regression is estimated using daily data for financials only for the second crisis (from 1 May 2011 to 30
November 2011). In all regressions, the instrument used for the Ban variable is a stock-time dummy that
equals 1 if during the second crisis the systemic risk for the relevant financial stock exceeds a threshold
given by its systemic risk on the day in which a short-selling ban (whether naked or covered) was im-
posed on it during the first crisis, and 0 otherwise. For the stocks that were not banned in the first crisis
the threshold is set equal to the highest level of systemic risk achieved during the first crisis. The specifi-
cation includes stock-level fixed effects. The number in parentheses below each coefficient estimate is its
t-statistic, obtained with robust standard errors. Statistical significance is denoted as follows: * p < 0.10,
** p < 0.05, *** p <0.01.
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Table A.3. Stability of Financial Institutions and Short-Selling Bans: IV
Estimates Based on a Country-Level Ban Rule

Prob. of Default Volatility Return

First Second First Second First Second
Stage Stage Stage Stage Stage Stage

(1) (2) (3) (4) (5) (6)

Ban 0.0041*** 0.0060*** -0.0210*
(11.36) (12.15) (-1.94)
Market Return 0.2830***  0.7814***
(5.85) (87.49)
Srisk 0.0090*** 0.0001*** 0.0083*** 0.0001*** 0.0081*** -0.0002
(17.42) (9.45) (18.71) (8.27) (18.67) (-0.87)
Instrument 0.0611*** 0.0577*** 0.0562***
(15.55) (15.49) (15.54)
Stock FE Yes Yes Yes Yes Yes Yes
First Stage F-Test 242 240 241
Observations 42,459 42,459 45,546 45,546 45,734 45,734

The table shows the IV estimates of regressions for financial institutions. Columns 1, 3 and 5 show the
estimates of the first-stage regression coefficients, and columns 2, 4 and 6 those of the corresponding
second-stage regressions. In the first-stage regressions, the dependent variable is the ban dummy. In the
second-stage regressions, the dependent variable is 3-month probability of default in column 2, stock re-
turn volatility based on a GJR-GARCH(1,1) model in column 4, and the stock return in column 6. The
Ban dummy variable equals 1 if covered short sales are forbidden in the second crisis, 0 otherwise. The
regression is estimated using daily data for financial stocks only between 1 May 2011 and 30 November
2011. In all regressions, the instrument used for the Ban variable is a country-time dummy that equals 1
if during the second crisis the mean systemic risk for the financial stocks of country ¢ exceeds the mean
level for the same stocks on the first day in which a short-selling ban (whether naked or covered) was
imposed in country ¢ during the first crisis, and 0 otherwise. Data for the countries in which no ban was
imposed in the first crisis are excluded from the sample. The specification includes stock-level fixed ef-
fects. The number in parentheses below each coefficient estimate is its t-statistic, obtained with robust
standard errors. Statistical significance is denoted as follows: * p < 0.10, ** p < 0.05, *** p < 0.01.
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