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Abstract 
 
We study exchange economies in ordered normed spaces (X, || . ||) where agents have possibly different 
consumption sets. We define the notion of semi-interior point of the positive cone X+ of X, a notion weaker than 
the one of interior point. We prove that if X+ has semi-interior points, then the second welfare theorem holds true 
and a quasi equilibrium allocation exists. In both cases the supporting price is continuous with respect to a new 
norm ||| . ||| on X which is strongly related with the initial norm and the ordering, and in some sense can be 
considered as an extension of the norm adopted in classical equilibrium models. Many examples of cones in 
normed and Banach spaces with semi-interior points but with empty interior are provided, showing that this class 
of cones is a rich one. We also consider spaces ordered by strongly reflexive cones where we prove the 
existence of a quasi equilibrium without the closedness condition (i.e. without the condition that the utility space is 
closed). The results in the case of semi-interior points derive from those concerning the case of ordering cones 
with nonempty interior. 
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1 Introduction

In this article we study equilibrium with reference to a new class of cones in normed

spaces, i.e. cones with semi-interior points. As it is known, when a normed space (X, ‖·‖)
ordered by the cone P , i.e. X+ = P , represents the commodity space of a pure exchange

economy, then the existence of interior points of P is a condition with many important

implications, see for example in [9], [15], [2], [16], [5].

In particular, it is well known the relevance in general equilibrium theory of the as-

sumption that the total initial endowment ω is an interior point of X+. Many results and

proofs are based on this assumption and its weakening. Indeed, the interior point con-

dition is not satisfied in several circumstances, what induces scholars to assume suitable

conditions in order to guarantee welfare and existence theorems (see for example [11],

[12], [9], [15],[16],[2], [14], [17] and new results in this direction in [19] and [20]).

Here we focus on the notion of semi-interior point of a cone P in a normed space X,

a notion that is weaker than the one of interior point of P since it is defined as follows.

By definition, for an interior point x0 of P , there exists a real number ρ > 0 so that

x0 + ρU ⊆ P , where U is the unit ball of X. Therefore, we have x0 + ρU+ ⊆ P and

x0−ρU+ ⊆ P , where U+ = U ∩P is the positive part of the unit ball of X defined by the

cone P . While the first of the previous two inclusions is satisfied for any vector x0 ∈ P ,

because the elements of ρU+ are positive, the second one is not always true. If a point x0

of P satisfies this condition, i.e. if x0 − ρU+ ⊆ P for some real number ρ > 0, then we

say that x0 is a semi-interior point of P .

When the commodity space is an ordered normed space (X, ‖ · ‖) whose positive

cone has semi-interior points, we prove the second welfare theorem and the existence of

equilibria. In both cases, the supporting prices are continuous with respect to a new norm

of the commodity space, denoted by ||| · |||. The latter is inspired by the definition of semi-

interior point of P , and defined by means of the initial norm and the positive cone X+.

Indeed, ||| · ||| is the Minkowski functional defined by the convex hull, co(U+ ∪ (−U+)),
of the union of the sets U+ and −U+. It comes out that any semi-interior point of P is an

interior point of P with respect to the norm ||| · ||| of X.

We give several examples of cones in normed spaces with semi-interior points and

empty interior. For instance, consider an intertemporal two goods economy analyzed

along infinitely many time periods n = 1, 2, . . . . For any period n, the commodity space

is IR2 endowed with the usual topology and agents consume vectors of IR2
+. Among the

possible norms that generate the usual topology of the plane, let us fix the use of the norm

‖ · ‖n whose unit ball is the polygon (see the figure below) with vertices

(1, 0), (0, 1), (−n, n), (−1, 0), (0,−1), (n,−n).
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Unit ball of (IR2, ‖ · ‖2)

Consider as commodity space the minimal linear space containing bounded consump-

tion flows x = (x1, x2, . . . ), xi ≥ 0. Then the commodity space is (X, ‖ · ‖∞), where

X = P − P , P is the set of all bounded consumption flows and

‖x‖∞ ≡ supn∈N||xn||n, for x ∈ (IR2)N.

Although the positive cone P of X has empty interior, under standard assumptions (in

particular not invoking properness-like conditions), and thanks to the existence of semi-

interior points in X+, we show that valuation equilibria exist and are supported by linear

prices. As we said before, the equilibrium price comes out to be continuous with respect

to a different norm that can be adopted on X. Such a norm, in the present case, coincides

with the following: ||| · ||| = supn‖ · ‖`1
1.

Now, consider for each y ∈ P a modified vector y[k] ∈ P defined by means of y[k] =
y + (−α, α)1Ak

, where Ak is any subset of {i ∈ N : i ≥ k}. We note that the original

norm in X annihilates the difference between the two flows of consumption y, y[k] ∈ P .

In other words, as time goes, gains/losses for one good are compensated by losses/gains

of the same amount for the other. With respect to the new norm, we do not have that y[k]

converges to y. Hence the new norm better describes problems in which differences in

consumption emerging in the long run do matter.

Concerning the norm ||| · |||, it is also worth to remark that, in general, when X is

a Banach space and the cone P is closed and generating, then the initial norm of X and

the new norm ||| · ||| are equivalent (see Proposition 3.3). So, in the classical equilibrium

models (as for example in the finite dimensional Arrow-Debreu model and in the Banach

lattice equilibrium models) the two norms are equivalent and, therefore, both of them can

be used as the norm of the commodity space. If X is a normed space, this equivalence is

no longer true. However in this case, from the above remarks, the norm ||| · ||| of X can

be considered as a natural norm to work with.

1Namely, with an “usual” `∞-type norm in (IR2)N.
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The paper is organized as follows. After Section 2 introducing the notion of semi-

interior point and presenting examples of cones with semi-interior points and empty inte-

rior, in Section 3 we define the new norm ||| · |||.
Then in Section 4 we present, in ordered normed spaces under the nonempty interior

hypothesis, the classical results of general equilibrium. We also give their proofs fol-

lowing standard methods. We do this both for our sake of completeness and since we

weaken the assumptions of closedness of the utility space and continuity of preferences

by assuming them only radially 2. Section 4 should be considered as an intermediate part

of our study to be applied to the case in which the positive cone of the commodity space

has semi-interior points. The case where the positive cone has nonempty interior has

been studied extensively in the literature. Although some conditions are new and some

improvements are provided, we do not consider the results of this section as new. The

main contributions of the paper are: the notion of semi-interior point, the new topology

which is defined by the positive cone of the space and, as showed in Section 5, the fact

that to ensure the second welfare theorem and the existence of equilibria, we only need

cones with semi-interior, rather than interior, points. The examples of this kind of cones

strengthen the article.

Finally, Section 6 is devoted to the case in which P is a strongly reflexive cone of a

Banach space E and X = P − P is the subspace of E generated by the cone P . Note

that in this case the cone P is a closed cone of the Banach space E and therefore P is

complete, but the space X generated by P is not necessarily a closed subspace of E.

Therefore, we cannot suppose that X is a Banach space. The notion of reflexive cone

has been introduced in [10], where a detailed study of this class of cones is contained. A

cone P of a normed space E is strongly reflexive if the positive part U+ = U ∩ P of the

unit ball of E defined by P is compact. Although in Banach spaces the unit ball need

not necessarily be compact, the class of infinite dimensional, strongly reflexive cones is

a rich one. The examples 2.6 and 2.7 provide strongly reflexive and normal cones P of

Banach spaces E with semi-interior points so that the space X = P − P generated by P

is dense in E (the cone P is almost generating). In particular, example 2.6 is a general

one because it describes cones in the class of Banach lattices E with a positive Schauder

basis. Example 2.7 is an example of a subcone of the positive cone of L1[0, 1].
The second welfare theorem and the existence of equilibrium in strongly reflexive

and normal cones can be proved without the assumption of the closedness of the utility

space. As an application we show that quasi equilibrium allocations exist in the case of

commodity spaces as those described in Examples 2.6 and 2.7.

2A similar form of weak continuity for preferences is adopted in the classical paper [11]
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2 Cones with semi-interior points

In this section we define the notion of semi-interior point of a cone. This notion, the

pioneering example 2.5 as well as the notion of the new norm of the next section, have

been defined by I. Polyrakis and have been announced in Paris 2014, during the XXII

European Workshop on General Equilibrium Theory, in his talk “Cones with semi-interior

points and a second welfare theorem”.

Let X be a normed space and let P be a cone of X. Suppose that X is ordered by the

cone P . We shall denote by U = {x ∈ X | ||x|| ≤ 1} the unit ball of X and by U+ the

set

U+ = U ∩ P.

We shall call U+ the positive part of the unit ball of X or the positive part of the unit ball

of X defined by P , if this clarification is needed.

Definition 2.1 (I. Polyrakis). The vector x0 ∈ P is a semi-interior point of P if there

exists a real number ρ > 0 so that x0 − ρU+ ⊆ P .

Clearly, any interior point of P is a semi-interior point of P . The next characterization

will be useful in the sequel.

Proposition 2.2. Suppose that P is a cone of a normed space X. The vector x0 ∈ P is a

semi-interior point of P if and only if there exists a real number k > 0 so that kx0 is an

upper bound of the positive part U+ of the unit ball of X.

Proof. Suppose that x0 is a semi-interior point of P . Then x0 − ρU+ ⊆ P , x0 is an upper

bound of ρU+ and
1

ρ
x0 is an upper bound of U+.

For the converse, if we suppose that kx0 is an upper bound of U+ then we can show

that x0 −
1

k
U+ ⊆ P and x0 is a semi-interior point of P . �

In the next example, X is a normed space ordered by a closed and generating cone

X+ without semi-interior points. Note that in this example X is not complete.

Example 2.3. Let X = c00 be the space of finite real sequences i.e. the set of sequences

a = {a(i)} with a(i) 6= 0 for at most a finite number of i and suppose that X is ordered

by the pointwise ordering. Then X+ = {a ∈ X | a(i) ≥ 0 for any i} is the positive cone

of X. X is a normed space with norm ||a|| = max{|a(i)| | i ∈ N}.

X+ does not have semi-interior points. Indeed, if we suppose that a = {a(i)} is a

semi-interior point of X+, there exists a real number k > 0 so that ka is an upper bound

of the positive part U+. Since ei ∈ U+ for any i, where ei(j) = 0 for any j 6= i and

ei(i) = 1, we have that a(i) ≥
1

k
ei(i) =

1

k
> 0 for any i and a contradiction. Hence X+

does not have semi-interior points.
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For the Krein-Smulian theorem below, see for example in [13, Theorem 3.5.2].

Theorem (Krein-Smulian). If the positive cone P of an ordered Banach space X is closed

and generating, then P gives an open decomposition of X, i.e. there exists a real number

a > 0 so that aU ⊆ U+ − U+ .

By this theorem we obtain the next proposition:

Proposition 2.4. If X is a Banach space ordered by the closed and generating cone P ,

then any semi-interior point of P is an interior point of P .

Proof. Let x0 be a semi-interior point of P . Then x0 − ρU+ ⊆ P , for some ρ > 0,

therefore

(x0 − ρU+) + ρU+ = x0 + ρ(U+ − U+) ⊆ P.

By the Krein-Smulian theorem, there exists a real number a > 0 so that aU ⊆ U+ − U+,

therefore we have x0 +aρU ⊆ x0 +ρ(U+−U+) ⊆ P and x0 is an interior point of P . �

The next example is crucial for the development of the theory of semi-interior points.

It shows the shape of the unit ball of an ordered normed space whose positive cone does

not have interior points but has semi-interior points. In this example we can see that the

norm takes much lower values in some directions of non positive and non negative vectors

than in the direction of positive and negative ones. So the unit ball is ”compressed” to the

direction of positive or negative vectors and ”flattened” to some direction of non positive

and non negative vectors. This shape of the unit ball gives a geometrical intuition and

explains (in some sense) how the positive cone of the space fails to have interior points

but has semi-interior points.

Example 2.5. Let Xn be the space R
2 ordered by the pointwise ordering and with norm

||.||n having, as unit ball, the polygon Dn of R
2 with vertices

(1, 0), (0, 1), (−n, n), (−1, 0), (0,−1), (n,−n).

It is easy to show, by taking the Minkowki’s functional of Dn, that this norm is given by

the formula:

||(x, y)||n = |x|+ |y|, if xy ≥ 0,

and

||(x, y)||n = max{|x|, |y|} −
n − 1

n
min{|x|, |y|}, if xy < 0.

Suppose that E is the space of sequences x = (xn)n∈N so that xn = (xn
1 , x

n
2) ∈ Xn and

||xn||n ≤ mx for any n (the real number mx > 0 depending on x).

Assume that E is ordered by the cone P = {x = (xn) ∈ E | xn ∈ R
2
+ for any n}

and that it is equipped with the norm

||x||∞ = supn∈N||xn||n.
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Suppose also that X = P −P is the subspace of E generated by the cone P and suppose

that X is ordered by the cone X+ = P .

Let 1 be the constant sequence (1, 1) of X, i.e. xn = (1, 1) for any n. Then 1 is not an

interior point of X+. Indeed, if for any natural number m we take the vector y = (yn) of

X with ym = (−2, 2) and yn = (0, 0) for any n 6= m. It is easy to show that ||y||∞ =
2

m
and 1 + y 6∈ X+. Therefore 1 + ρU 6⊆ X+, for any ρ > 0, and 1 is not an interior point

of X+. Similarly, we can show that any vector x ∈ X+ is not an interior point of X+ and

then that X+ has empty interior. The positive part of the closed unit ball U of X is the set

U+ = {x ∈ X+ | ||x||∞ ≤ 1}

and it is easy to see that for any x = (xn) ∈ U+ we have ||xn||n = x1
n + x2

n ≤ 1. So,

1 − U+ ⊆ X+

and 1 is a semi-interior point of X+.

In particular, by Proposition 2.4, the space X is not complete.

The next two examples are examples of strongly reflexive cones P with semi-interior

points but with empty interior which generate a dense subspace, i.e. P − P = X. Recall

that a cone P of X is strongly reflexive if the positive part U+ = U ∩ P of U defined by

P is ||.||-compact. Note that the notion of strongly reflexive cone has been defined in [10]

where it is shown that the class of strongly reflexive cones is a rich one.

Example 2.6. Let E be an infinite dimensional Banach lattice with a positive Schauder

basis {ei}. Without loss of generality, we may suppose that this basis is normalized, i.e.

||ei|| = 1, for any i. For example, E can be one of the spaces c0, `1 or one of the reflexive

spaces `p with 1 < p < ∞. In Theorem 5.7 of [10], it is proved that E+ contains a

strongly reflexive cone which generates a dense subspace of E. In the present example,

by a similar way we construct strongly reflexive cones P ⊆ E+ with semi-interior points

and empty interior with P − P = X.

By definition of Schauder basis, any vector x ∈ E has a unique expansion x =∑∞
i=1 xiei, where the real numbers xi are the coordinates of x in the basis {ei}. Moreover,

since the basis {ei} is positive, for any vector x of E we have: x ≥ 0 if and only if xi ≥ 0
for any i. We start with a fixed real number α ∈ (0, 1) and we consider the vector

y =
∞∑

i=1

αi−1ei,

of E+. Then we have ||y|| ≥ 1 because y ≥ e1 and E is a Banach lattice. We consider the

closed subcone

K = {x ∈ X | 0 ≤ x ≤ x1y}

7



of E+. Then, by definition, we have that
∑n

i=1 αi−1ei ∈ K, for any n. Moreover, for any

x ∈ K we have that 0 ≤ x ≤ x1y. Therefore for any x ∈ K we have ||x|| ≤ x1||y||
because E is a Banach lattice. For any x ∈ U+

K = U ∩ K we have ||x|| ≤ 1 and

0 ≤ x1e1 ≤ x and by taking norms we have 0 ≤ x1 ≤ 1, therefore 0 ≤ x ≤ y. So we

have that U+
K ⊆ [0, y] which implies that U+

K is compact because each order interval of

a Banach lattice with a positive basis is compact, see in [21], Theorem 16.3. Hence the

cone K is strongly reflexive. The set U+
K ∪ (−U+

K) is compact, therefore its convex hull

V = co(U+
K ∪ (−U+

K)),

is also compact. So the set Ω = 3y + V is compact and we consider the cone

P =
⋃

t≥0

tΩ

generated by Ω. It is easy to show that the cone P is strongly reflexive. Indeed, for any

z = 3y + x ∈ Ω, where x ∈ V we have ||x|| ≤ 1 therefore 2 ≤ ||z|| ≤ 3||y||+ 1. So the

set

R =
⋃

0≤t≤1

tΩ

is compact. For any w ∈ U+
P = P ∩ U we have that w = tz where z ∈ Ω therefore

||w|| = t||z|| hence t =
||w||

||z||
≤

||w||

2
≤

1

2
. Hence any vector of U+

P is of the form

z = 3ty + tx, where x ∈ V and 0 ≤ t ≤
1

2
. This implies that U+

P ⊆ R and the set U+
P as

a closed subset of R is compact. To show that 3y is a semi-interior point of P it is enough

to show that 3y is an upper bound of U+
P in the ordering of P or equivalently that for any

z ∈ U+
P we have that 3y − z ∈ P . Suppose that z ∈ U+

P . As we have shown above it is of

the form z = 3ty + tx, where x ∈ V and 0 ≤ t ≤
1

2
, hence

3y − z = 3(1 − t)y + t(−x) = (1 − t)

(
3y +

t

1 − t
(−x)

)
∈ P,

because
t

1 − t
(−x) ∈ V for any x ∈ V and any 0 ≤ t ≤

1

2
. Note that 0 ≤

t

1 − t
≤ 1 for

any 0 ≤ t ≤
1

2
. Therefore 3y is a semi-interior point of P . To show that P − P = X we

remark that e1 ∈ U+
K ⊆ V , therefore e1 = (3y + 0) − (3y − e1) ∈ P − P . Also

e2 =
||e1 + ae2||

α

(
3y −

e1

||e1 + ae2||
−

(
3y −

e1 + ae2

||e1 + ae2||

))
,

therefore

e2 ∈
||e1 + ae2||

α
(P − P ) = P − P.
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By continuing this process we can show that ei ∈ P − P for any i, therefore P − P is

dense in E. If we suppose that x is an interior point of P we get a contradiction as follows:

x + δU is contained in P for some real number δ > 0, therefore x + δU is contained

in a positive multiple of U+
P , therefore the unit ball U of E is compact, contradiction.

Therefore the cone P does not have interior points.

Example 2.7. In [10, Example 5.9] a strongly reflexive cone P of L+
1 [0, 1] is determined

which generates a dense subspace in L+
1 [0, 1], i.e. P − P = L+

1 [0, 1]. Also the positive

part U+ of the unit ball of L+
1 [0, 1] defined by P is dominated by the vector y = 2T (η) in

the ordering of L+
1 [0, 1], where T (η) is a vector of P which is defined in Example 5.9 of

[10].

Here we change the notations. So we denote the cone P of [10, Example 5.9] by K

and the set U+ by U+
K . Also we will denote by V the convex hull of the set U+

K ∪ (−U+
K),

and by P the cone of L+
1 [0, 1] which is generated by the set Ω = 3y + V . As in the

previous example we can show that P is strongly reflexive and the vector 3y is an upper

bound of the positive part U+
P of the unit ball of L+

1 [0, 1] defined by P , in the ordering of

P . Hence 3y is a semi-interior point of P . Moreover, the space P − P generated by P

and the space K − K generated by K, coincide. Indeed, any vector of P is of the form

3ty + tx with t ≥ 0 and x ∈ V . Also any vector of K −K is of the form t1x1 − t2x2 with

t1, t2 ≥ 0 and x1, x2 ∈ U+
K or equivalently of the form tx, with t ≥ 0 and x ∈ V because

t1x1 − t2x2 = (t1 + t2)(
t1

t1 + t2
x1 +

t2

t1 + t2
(−x2)).

So for any vector z = 3t1y + t1x1 − (3t2y + t2x2) of P − P we have z = (3t1y −
3t2y) + (t1x1 − t2x2) ∈ (K − K) + (K − K) = K − K. Also for any vector w = tx

of K − K we have w = (3y + tx) − 3y ∈ P − P . Therefore P − P = K − K and

P − P = K −K = L+
1 [0, 1].

Theorem 2.8. If X is a normed space ordered by the generating cone P , then any semi-

interior point of P is an order unit of X.

Proof. Suppose that x0 is a semi-interior point of P . Then by Proposition 2.2, there

exists a real number k > 0 so that kx0 is an upper bound of the positive part U+ of the

unit ball of X. Let x ∈ X. Then x = x1 − x2, where x1, x2 ∈ P and suppose that

a = max{||x1||, ||x2||}. We have

x = x1 − x2 ≤ x1 = ||x1||
x1

||x1||
≤ ||x1||kx0 ≤ akx0

and similarly

x = x1 − x2 ≥ −x2 = ||x2||
−x2

||x2||
≥ −||x2||kx0 ≥ −akx0,

therefore x ∈ [−akx0, akx0] and x0 is an order unit of X. �
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We recall the next result from the theory of ordered spaces, see for example [3, Theo-

rem 2.8].

Theorem 2.9. If X is a Banach space ordered by the closed and generating cone P , then

any order unit of X is an interior point of P .

Remark 2.10. Theorem 2.8 combined with Proposition 2.2, says that the set of semi-

interior points of a cone P of a normed space X is exactly the set of order units of X

each of which is also an upper bound of some positive multiple of the positive part U+

of the unit ball U of X. So the set of semi-interior points of a cone P is a subclass of

the class of the order units of X. From Theorem 2.9 we have that in Banach spaces these

two classes coincide. However, the next example shows that in normed spaces, the set of

semi-interior points of P is a proper subset of the set of the order units of X, in general.

Example 2.11. This is an example of a normed space with generating positive cone P

with an order unit but without semi-interior points. So by this example we get that the

converse of Theorem 2.8 is not true. Analogously to Example 2.5, suppose that Xn is

the space R
2 ordered by the pointwise ordering and with norm ||.||n, having as unit ball

the polygon Dn of R
2 with vertices

(1, 0), (n, n), (0, 1), (−1, 0), (−n,−n), (0,−1).

As in Example 2.5, E is the space of sequences x = (xn)n∈N with xn = (xn
1 , x

n
2) ∈ Xn

so that there exists a real number mx > 0 depending on x with ||xn||n ≤ mx for any n.

Then it is easy that ||(n, n)||n = 1 for any n.

Suppose that E is ordered by the cone P = {x = (xn) ∈ E | xn ∈ R
2
+ for any n}

and that E is equipped with the norm

||x||∞ = supn∈N||xn||n.

Suppose also that X = P −P is the subspace of E generated by the cone P and suppose

that X is ordered by the cone X+ = P .

It is easy to see that the constant sequence 1 i.e the sequence x = (xn) with xn = (1, 1)
for any n is an order unit of X. If we suppose that z = (zn) is a semi-interior point of

X, then kz is an upper bound of U+. Since 1 is an order unit, we have h1 ≥ kz for

some real number h > 0, therefore h1 is an upper bound of U+. But for any m the vector

xm = (xn) with xm = (m, m) and xn = (0, 0) for any n 6= m belongs to U+ therefore

(m, m) ≤ h(1, 1) for any m, which is impossible. Hence P does not have semi-interior

points.

3 The topology generated by the positive cone

Suppose that X is a normed space ordered by the positive cone P , i.e X+ = P , and

suppose also that X+ is generating. This can be considered as the general case because if

10



the cone P is not generating, we shall restrict our analysis to the normed space Y = P−P .

In this section we pass to a new norm of X. This norm is related with the initial norm.

Let us denote by V the convex hull of the union of the positive and the negative part

of U , i.e.

V = co(U+ ∪ (−U+)) ⊆ U.

The vectors of V are the convex combinations between positive and negative vectors of

X with norm lower than or equal to one. In other words, the vectors of V are linear

combinations of ”gains” and ”losses” of ”size” at most one. In order to show that the set

V generates a norm we need to show that it is absorbing. Indeed, for any x ∈ X we have

that x = x1 − x2 where x1, x2 ∈ P and we have

x = (||x1|| + ||x2||)

(
||x1||

||x1|| + ||x2||

x1

||x1||
+

||x2||

||x1|| + ||x2||

−x2

||x2||

)
,

therefore x ∈ (||x1|| + ||x2||)V and x ∈ tV for any t ≥ ||x1|| + ||x2||. Therefore the

Minkowki’s functional

q(x) = inf{t ∈ R+ | x ∈ tV },

is a norm of X and we shall denote this norm by ||| · |||.

Definition 3.1 (I. Polyrakis). We shall refer to the norm ||| · ||| of X introduced above as

the norm of X generated by the positive part of the unit ball of X or by the positive cone

of X, or simply by the cone P of X.

It is easy to see that |||x||| ≥ ||x|| for any x ∈ X, and |||x||| = ||x|| for any x ∈
P ∪ (−P ). Therefore, the ||| · |||-topology of X is finer than the initial topology of X

defined by the norm || · ||, and the dual of the initial normed space (X, || · ||) is contained

in the dual of the normed space (X, ||| · |||).
We denote by W the unit ball of |||.|||. Then W is the |||.|||-closure of V , and W ⊆ U .

Also we have

W+ = W ∩ P = V ∩ P = U ∩ P = U+.

Proposition 3.2. Suppose that X is a normed space ordered by the |||.|||-closed cone P .

If x0 is a semi-interior point of P , then x0 is an interior point of P with respect to the

norm |||.||| of X defined by the positive cone of X.

Proof. By the definition of semi-interior point there exists ρ > 0 so that x0 − ρU+ ⊆ P .

But x0 + ρU+ ⊆ P , therefore the convex hull of the union of these sets is contained in P

i.e.

co((x0 + ρU+) ∪ (x0 − ρU+)) = x0 + ρ co(U+ ∪ (−U+)) = x0 + ρV ⊆ P.

Hence x0 + ρW ⊆ P since the |||.|||-closure of x0 + ρV is contained in P and the

proposition is proved.

�
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One more appeal to the Krein-Smulian Theorem gives the next equivalence theorem

of the two norms.

Proposition 3.3. If X is an ordered Banach space with closed and generating positive

cone X+, then the initial norm ||.|| of X and the norm |||.||| of X generated by the positive

cone X+ of X, are equivalent.

Remark 3.4. In the above proposition, X is a Banach space ordered by a closed cone P .

If the cone P is not generating, then the subspace Y = P −P of X generated by P is not

a Banach space in general. Therefore, we cannot say that in Y the initial norm and the

norm of Y generated by its positive cone Y+ = P are equivalent. Indeed, in Example 2.6

and 2.7, the subspace Y = P − P is not a Banach space because in both cases P has

semi-interior but not interior points. In these examples Y is dense in X.

Remark 3.5. Suppose that in an exchange economy the commodity space is a normed

space X, the consumption set is a closed and generating cone P and X is ordered by the

cone P . ¿From Proposition 3.3 we have that if X is complete, then the norm of X and

the norm of X defined by the cone P are equivalent. In particular this is the case if X is a

Banach lattice. So, in the classical equilibrium models (for example the finite dimensional

Arrow-Debreu model, the Banach lattices equilibrium models) both norms ||.|| and |||.|||
of the commodity space can be equivalently adopted.

For a normed space X (i.e. not necessarily a complete one), these two norms are not

equivalent in general. On the other hand, according to what above, studying equilibrium

with respect to the norm |||.||| can be considered as a natural way to extend the study of

classical equilibrium models.

We compare below the two norms ||.|| and |||.||| in the case of Example 2.5.

Example 2.5 continued (comparison of the two norms). We shall determine the |||.|||-
norm of the subspace X = P − P of E introduced in Example 2.5. We have X+ = P

and

U+ = {x = (xn) ∈ X+ | xn = (xn
1 , x

n
2) ∈ R

2
+ : ||xn||n = xn

1 + xn
2 ≤ 1}.

For any x = (xn), y = (yn) ∈ U+ and any t ∈ [0, 1] we have

tx + (1 − t)(−y) = (t(xn
1 , x

n
2 ) + (1 − t)(−yn

1 ,−yn
2 )).

Since x, y ∈ U+
n and U+

n = U+
`1

where ||(a, b)||`1 = |a| + |b| for any (a, b) ∈ R
2 is the

`1-norm of R
2 and U+

`1
is the `1-unit ball of R

2. It is easy to show that U`1 is the convex

hull of U+
`1
∪ (−U+

`1
), therefore we have that the unit ball W of the |||.|||-norm of X is the

cartesian product

W = Π∞
i=1Di,

12



where Di = U`1 for any i. By the above remarks it is easy to see that

|||x||| = supn∈N||xn||`1,

for any x = (xn) ∈ X.

So if we have two not comparable commodities x = (xn), y = (yn) ∈ X+ (i.e. x 6≥ y

and y 6≥ x) and if we suppose that xi = yi for any i 6= n and xn = yn + (−1, 1) then

we have that ||x − y|| =
1

n
but |||x − y||| = 2. This shows that the initial norm, ||.||, of

X destroys the differences between the commodities x and y as n increases but the norm

|||.||| of X generated by X+ perceives more precisely the differences.

4 Cones with nonempty interior and equilibrium

In this section we study the equilibrium in an ordered normed space X whose positive

cone X+ has nonempty interior, assuming that consumers have, as consumption sets,

different subcones Pi of X+. This is an intermediate part of our study that will be applied

to the case where the cone X+ ordering the commodity space may have empty interior

but has semi-interior points. We present here the results we need and give, for the sake of

completeness, their proofs following standard methods. We do not consider the results of

this section as new, although some of our assumptions are weaker than or sometimes not

comparable with the usual ones (see remark 4.15). Note also that in the proofs, instead of

continuity we use the radial continuity of the utility functions and for the utility space we

assume radial closedness instead of closedness.

4.1 The model

We consider an exchange economy with l consumers. We suppose that the commodity

space X is an ordered normed space with closed positive cone X+. For each i = 1, 2, ..., l,
suppose that consumer i has:

• as consumption set, a closed subcone Pi of X+,

• a preference relation %i which is defined on Pi, and

• as initial endowment, a nonzero vector ωi ∈ Pi.

Let us denote the economy by

E =< X, (Pi, %i, ωi)i=1,2,...,l > .

13



The total endowment is ω =
∑l

i=1 ωi. Also, suppose that the preferences are reflexive,

complete and transitive. By monotone preference relations we mean that for any i and

x, y ∈ Pi, then x ≥ y implies x % y. We denote by

A = {x ≡ (x1, x2, . . . , xl) ∈ P1 × P2 × ... × Pl |
l∑

i=1

xi = ω},

the set of NFD-allocations (non-free disposal allocations) and by

K = {x ≡ (x1, x2, . . . , xl) ∈ P1 × P2 × ... × Pl |
l∑

i=1

xi ≤ ω},

the larger set of FD-allocations (free disposal allocations).

For any x, y ∈ K, we write x � y if xi %i yi for any i, x � y if xi %i yi for any i and

xi �i yi for at least one i and we shall write x �� y if xi �i yi for any i.

Let us introduce the following properties repeatedly used throughout the sequel.

(A1) for each x ∈ X+, there exist vectors xi ∈ Pi so that x =
∑l

i=1 xi.

(A1b) For any i = 1, 2, ..., l, for any x ∈ Pi and any real number t > 0, there exists

yi,x,t ∈ Pi, depending on i, x, t so that 0 ≤ yi,x,t ≤ tω and x + yi,x,t �i x.

(A1c) The property (A1b) is satisfied; moreover, for any i, and any x ∈ Pi the fam-

ily (yi,x,t)t>0 of (A1b) can be chosen in such a way that it satisfies the property:

limt−→0 yi,x,t = 0.

The property A(1b) is a generalization of the classical assumption that ω is extremely

desirable 3 for any consumer, in the case where Pi = X+ for any i. In our model we have

different consumption sets and we do not assume that ω ∈ Pi for any i. So we cannot

assume that ω is extremely desirable for any consumer but we replace this assumption by

the properties A(1b) and A(1c).

Proposition 4.1. If ω ∈ Pi , for any i and ω is extremely desirable for any preference

relation �i (i.e. for any x ∈ Pi we have x + λω �i x for any real number λ > 0) then

A(1c) is satisfied.

Proof. Let x ∈ Pi and t > 0. By our assumption we have that ω ∈ Pi for any i and

x + tω �i x, for any t > 0, therefore A(1b) is satisfied with yi,x,t = tω. Also we have

that limt−→0 yi,x,t = limt−→0 tω = 0 and A(1c) is true.

�

3For the notion of extremely desirable bundle see for example in [2].

14



Proposition 4.2. If the positive cone X+ of X is normal, then (A1b) implies (A1c).

Proof. By (A1b), for any x ∈ Pi and any real number t > 0, there exists yi,x,t ∈ Pi,

depending on i, x, t so that 0 ≤ yi,x,t ≤ tω and x + yi,x,t �i x. Since the cone X+

is normal and limt−→0 tω = 0, we have that limt−→0 yi,x,t = 0, see in [3], Theorem

2.23. �

Proposition 4.3. If the preferences are monotone and (A1) holds, then for any x ∈ K
there exists y ∈ A so that y % x.

Proof. Let x 6∈ A. Then
∑l

i=1 xi < ω and suppose that z = ω −
∑l

i=1 xi. Then we have

z =
∑l

i=1 ϕi with ϕi ∈ Pi for any i, therefore the allocation

ỹ = (x1 + ϕ1, x2 + ϕ2, . . . , xl + ϕl) ,

is the requested one. �

Remark 4.4. Recall that a vector x0 of an ordered normed space X is a quasi-interior

point of X+ or an almost order unit of X if x0 ∈ X+ and the solid subspace Ix0
=⋃∞

n=1[−nx0, nx0] generated by x0 is dense in X, i.e. Ix0
= X. Recall also that any

interior point of X+ is an order unit of X and each order unit of X is an almost order unit

of X but the converse of the above implications is not true in general. Any almost order

unit x0 of X is strictly positive i.e. p(x0) > 0 for any nonzero, positive, continuous,

linear functional p of X. Indeed, if we suppose that p(x0) = 0, then for any x ∈ Ix0
, there

exists a natural number nx > 0 so that −nx x0 ≤ x ≤ nn x0. Since p is positive we have

−nx p(x0) ≤ p(x) ≤ nx p(x0),

therefore p(x) = 0, for any x ∈ Ix0
. Hence p = 0 on Ix0

and therefore p = 0 on X

because Ix0
is dense in X and p is continuous. But this is a contradiction because we

have supposed that p 6= 0, therefore p(x0) > 0 because p is positive. This conclusion

holds true in particular for the |||.|||-almost order units of X and for any positive and

|||.|||-continuous linear functional of X. Note also that any |||.|||-almost order unit x0 of

X is an almost order unit of X because I
|||.|||

x0
⊆ I

||.||

x0
.

Let us now recall that for x = (x1, x2, . . . , xl) ∈ A, one says that:

• x is Pareto optimal if there does not exist an allocation y so that y � x;

• x is weakly Pareto optimal if there does not exist an allocation y so that y �� x.

For x = (x1, x2, . . . , xl) ∈ P1 × P2 × ... × Pl, one says that x is supported by the

linear functional p of X if p is nonzero and for any i and any z ∈ Pi we have z �i xi =⇒
p(z) ≥ p(xi).

In the next section we shall prove the supportability of any weakly Pareto optimal

allocation in cones with nonempty interior, without the assumption that the total endow-

ment ω is itself an interior point of the cone. The supporting price vector p is nonzero on

X, but we do not ensure that p(ω) > 0. If moreover ω is an almost order unit of X+, then

the condition that p(ω) > 0 is ensured.
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4.2 A second welfare theorem

Theorem 4.5. Suppose that in the economy E the conditions (A1) and (A1b) are satisfied

and that the preferences are monotone and convex. If x0 is an interior point of X+,

then any weakly Pareto optimal allocation is supported by a positive, continuous linear

functional p of X with p(x0) = 1.

If moreover ω is an almost order unit of X, then we have that p(ω) > 0.

Proof. Suppose that

x = (x1, ..., xl)

is a weakly Pareto optimal allocation and

G = {y = y1 + y2 + ... + yl | yi ∈ Pi, yi %i xi for any i}.

If F is the closure of G, then F is a closed and convex subset of X+ with ω ∈ F . Suppose

that ω is an interior point of F . Then ω + ρU ⊆ F where U is the unit ball of X and

ρ > 0. We get a contradiction as follows: Since ω is also an interior point of X+, then tω

is an interior point of ρU+ for any real number 0 < t <
ρ

||ω||
. Hence z1 = ω(1 −

ρ

2||ω||
)

is an interior point of the set W = ω−ρU+ and similarly we have that z2 = ω(1−
3ρ

4||ω||
)

is an interior point of the set K = z1 −
ρ

2
U+. Note that ||ω − z1|| =

ρ

2
, ||ω − z2|| =

3ρ

4
,

z1 − z2 =
ρω

4||ω||
and ||z1 − z2|| =

ρ

4
with z1 > z2.

But K ⊆ W ⊆ F , therefore K contains vectors of G, because G is dense in F and K

has interior points. So we can suppose that there exists y ∈ K ∩ G.

Since y ∈ K ⊆ z1−X+ we have that y ≤ z1 < ω, therefore w = ω−y > 0. Suppose

that y = y1 + y2 + ... + yl where yi ∈ Pi with yi %i xi for each i. We have

w = ω − y ≥ ω − z1 =
ρ

2||ω||
ω.

Then by (A1b), for any i, any yi and t =
ρ

2l||ω||
, there exists vi = yi,yi,t ∈ Pi so that

0 ≤ vi ≤
ρ

2l||ω||
ω and yi + vi �i yi. Then it is easy to see that

m = (mi = yi + vi) ∈ K

because

l∑

i=1

mi = y +

l∑

i=1

vi ≤ y +
ρ

2||ω||
ω = y + (ω − z1) ≤ y + (ω − y) = ω.

Also we have
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m �� y < x.

So, by Proposition 4.3, there exists u ∈ A so that u % m �� x. This is a contradiction

because x is weakly Pareto optimal. Therefore, ω cannot be an interior point of F .

Because of this, there exists a sequence {wn} of X so that wn 6∈ F which converges

to ω. Therefore, by the separation theorem, for any n, there exists pn ∈ X∗\{0} which

separates wn and F , i.e. pn(wn) < pn(w) for any w ∈ F . We shall show that pn is

positive, i.e. that pn(x) ≥ 0 for any x ∈ X+. So we take a vector x ∈ X+. Then,

by (A1), there exist vectors φi ∈ Pi so that x =
∑l

i=1 φi. So for any λ ≥ 0 we have

ω +λx = x1 +λφ1 +x2 +λφ2... +xl +λφl ∈ F , because the preferences are monotone.

Hence pn(ω + λx) ≥ pn(wn). Therefore

λpn(x) ≥ pn(wn − ω), for any λ ≥ 0.

This shows that pn(x) ≥ 0, because if we suppose that pn(x) < 0, the above relation

cannot hold for any λ. Hence pn(x) ≥ 0 for any x ∈ X+ and pn is positive.

Since we have assumed that x0 is an interior point of P , then we can show (see [13,

Theorem 3.8.4 and 3.8.5]) that the set

B = {f ∈ X∗
+ | f(x0) = 1}

is a weak-star closed and norm bounded base for the cone X∗
+ and therefore weak-star

compact. We can also suppose that pn ∈ B for any n, because the linear functionals
pn

pn(x0)
separate wn and F and belong to B. Since the base B is weak star compact, the

sequence {pn} has an accumulation point p ∈ B, therefore for any V ∈ I , where I is the

set of the neighborhoods of 0 in the weak-star topology, there exists nV so that pnV
∈ V

and the net (pnV
)V ∈I converges to p. So we have p(x0) = 1 and also the subnet (wnV

)V ∈I

converges to ω. Hence, for any x ∈ F we have

p(ω) = lim
V

pnV
(wnV

) ≤ lim
V

pnV
(x) = p(x),

therefore p supports F at ω.

To show that p supports the allocation x, suppose that x ∈ Pi is such that x %i xi for

some i. Then we have

x +
l∑

j=1,j 6=i

xj ∈ F,

therefore (
x +

l∑

j=1,j 6=i

xj

)
≥ p(ω) = p

(
l∑

j=1

xj

)
,

therefore p(x) ≥ p (xi) and p supports the allocation x.

If ω is a almost order unit of X then by the Remark 4.4 above we have that p(ω) > 0.

�
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Remark 4.6. In [6, Lemma 3.2], it is supposed that the space X = R
3 is ordered by the

ice-cream cone P = {(x, y, z) ∈ R
3 | z ≥ (x2 + y2)

1

2}. In the economy there are two

consumers with total endowment ω = (0, 1, 1) and utility functions u1(x, y, z) = 2z and

u2(x, y, z) = x + 2z. In this example any allocation x = (x1, x2) is of the form x1 = aω

and x2 = (1 − a)ω with a ∈ [0, 1] because ω defines an extremal ray of the cone P . It is

easy to see that any allocation is Pareto optimal. Moreover, it cannot be supported by a

price vector p so that p(ω) > 0. This is not in conflict with our result. Note that P is a cone

with nonempty interior but ω is not an interior point of P . Also, all the assumptions of the

above theorem are satisfied, therefore by our theorem any allocation must be supported by

a nonzero price vector. It is easy to see that the price vector p = (0, 1, 1) is positive with

respect to the cone P , is nonzero on X and that p supports any allocation. But p(ω) = 0.

4.3 Equilibrium

We introduce two more conditions, (A2) and (A3), in order to guarantee existence of

equilibria.

(A2) The preferences %i are defined by the utility functions ui : Pi −→ [0, +∞) with

ui(0) = 0 for each i = 1, 2, ..., l, and each ui is bounded on the subset

Ωi = {x ∈ Pi | 0 ≤ x ≤ ω}

of Pi.

Remark 4.7. The condition ui(0) = 0 does not introduce any loss of generality because

if we suppose that %i is defined by the utility function ui and ui is monotone, then the

utility function ũi(x) = ui(x)− ui(0) is monotone, defines %i and ũi(0) = 0.

If ω ∈ Pi and ui is monotone, then ui is bounded on Ωi. If ui is the restriction of a

monotone utility function on X+, then it is in any case bounded on the set Ωi.

Assumption (A3) says what follows.

(A3) There exists x = (x1, x2, ..., xl) ∈ K so that ui(xi) > 0, for any i.

Proposition 4.8. The condition (A1b), and therefore also (A1c), implies (A3).

Proof. Suppose that (A1b) is true. Let w = (
ω1

2l
,
ω2

2l
, ...

ωl

2l
) ∈ K. Then by (A1b) for any

i there exists yi ∈ Pi so that
ωi

2l
+ yi �i

ωi

2l
and 0 < yi < tω with t =

1

2l
. If x = (

ω1

2l
+

y1,
ω2

2l
+y2, ...,

ωl

2l
+yl) then we have that x ∈ K with ui(xi) = ui(

ωi

2l
+yi) > ui(

ωi

2l
) ≥ 0

for any i therefore (A3) is true. By definition of (A1c), we have that (A1c) =⇒ (A3). �
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We recall the notion of radially continuous function which has been defined in [18].

We say that the function ui is radially continuous if for any x ∈ Pi, the restriction

of ui on the half-line {tx|t ∈ R+} is continuous. It is easy to show that ui is radially

continuous on Pi if for any x ∈ Pi and for any sequence {tn} of positive real numbers

with tn −→ t we have ui(tnx) −→ ui(tx). A stronger notion we shall also use is that of

linear continuity. The function ui is linearly continuous4 if the restriction of ui on any

line of Pi is continuous. This is equivalent with the property: for any x, y ∈ Pi with y 6= 0
and any sequence of real numbers tn −→ t ∈ R we have that ui(x + tny) −→ ui(x + ty),
whenever x + tny, x + ty ∈ Pi.

Let us introduce the total utility function

u(x) = (u1(x1), u2(x2), . . . , ul(xl)), x = (x1, x2, ..., xl) ∈ P1 × P2 × ... × Pl,

and the utility space

U = {u(x) | x ∈ K}.

Proposition 4.9. If (A2) is satisfied, the utility space U has the properties:

(i) U is bounded.

(ii) If the preferences are radially continuous, then U is solid, in the sense that for any

α ∈ U the order interval [0, α] of R
l is contained in U , i.e. [0, α] ⊆ U .

(iii) If the preferences are radially continuous and (A3) is true, then the set U contains

the positive part of the ball of R
l with center zero and radius r.

Proof. (i) By (A2) each ui is bounded on the set Ωi. So for any x = (x1, x2, ..., xl) ∈ K
we have 0 ≤ xi ≤ ω, therefore 0 ≤ ui(xi) ≤ ai, where ai is an upper bound of ui on Ωi.

Therefore the set U is bounded.

(ii) Let α ∈ U . Then there exists x ∈ K with α = u(x). Suppose that β ∈ R
l
+ with

0 ≤ β ≤ α. We claim that β ∈ U . We have

0 ≤ βi ≤ ui(xi) for each i.

Since the restriction of ui on the line segment

{txi | t ∈ [0, 1]},

is continuous, by the mean value theorem, there exists ti ∈ [0, 1] so that ui(tixi) = βi.

For these ti we have

u(t1x1, t2x2, . . . , tlxl) = β,

4This notion of linear continuity is very similar to a notion of weak continuity of preferences, used by

G. Debreu in [11], see Remark 4.15 below.
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therefore β ∈ U .

(iii) By (A3), there exists x = (x1, x2, ...xl) ∈ K with ui(xi) > 0 for any i. Then

u(x) ∈ U . We put r = mini{ui(xi)}. Then r > 0 because ui(xi) > 0 for any i. If

we suppose that z ∈ R
l
+ with ||z|| ≤ r, we have that 0 ≤ zi ≤ r for each i, therefore

0 ≤ z ≤ u(x) and by (ii) we have that z ∈ U . Hence (iii) is true.

�

Denote by ∆ the unit simplex of R
l
+.

Under the assumption (A2) and the hypothesis that the utility functions ui are mono-

tone, by Proposition 4.9, the utility space is bounded. We introduce the function ρ given

by

ρ(s) = sup{α ∈ R+ | αs ∈ U}, s ∈ ∆

which is well defined (see [2, p. 156]).

We say that the utility space U is radially closed if for any α ∈ U the intersection of

U with the half-line {tα | t ≥ 0} is closed.

Proposition 4.10. If (A1), (A2), (A3) are satisfied, the utility functions are monotone and

radially continuous and the utility space U is radially closed, then for each s ∈ ∆, we

have:

(i) ρ(s) > 0 and ρ(s)s ∈ U;

(ii) the intersection of U with the half-line {tρ(s)s | t ≥ 0} is the line segment defined

by 0 and ρ(s)s;

(iii) if x ∈ K with u(x) ≥ ρ(s)s, then we have that u(xi) = ρ(s)si for at least one i,

where si is the i-coordinate of s;

(iv) if x ∈ A with u(x) ≥ ρ(s)s, then x is weakly Pareto optimal;

(v) there exists a weakly Pareto optimal allocation y so that u(y) ≥ ρ(s)s;

(vi) if Pi = X+ for any i, and the utility functions ui are linearly continuous, there

exists a weakly Pareto optimal allocation y so that u(y) = ρ(s)s.

Proof. (i) By Proposition 4.9, (iii), U contains the positive part Dr of a ball of R
l with

center zero and radius r > 0. For any s ∈ ∆ we have that
r

||s||
s ∈ Dr , therefore

r

||s||
s ∈

U . Hence, by the definition of ρ, we have that ρ(s) ≥
r

||s||
≥

r

d
where d = sups∈∆||s||.

Also, by the definition of ρ(s), there exists an increasing sequence of real numbers

{αn} which converges to ρ(s) so that αns ∈ U . Then αns −→ ρ(s)s, therefore ρ(s)s ∈ U
because U is radially closed.

(ii) Let us show now that the intersection of U with the half-line {tρ(s)s} is the line

segment defined by 0 and ρ(s)s.

Since the order interval [0, u(x)] of R
l is contained in U for any x ∈ K, we have that

for each 0 ≤ t ≤ 1, tρ(s)s ∈ U . So the line segment defined by 0 and ρ(s)s is contained

in U . By the definition of ρ(s) we have that for each t > 1, tρ(s)s 6∈ U , therefore the
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intersection of U with the semiline {ts|t ∈ R+}, is the line segment defined by 0 and

ρ(s)s.

(iii) Assume that x ∈ K and u(x) ≥ ρ(s)s.

If we suppose that ui(xi) > ρ(s)si for any i, and if we put

t′ = min

{
ui(xi)

ρ(s)si

| for any i with ρ(s)si > 0

}
,

then we have that t′ > 1 and it is easy to show that u(x) ≥ t′ρ(s)s, therefore t′ρ(s)s ∈ U .

Consequently we have t′ρ(s)s ∈ U with t′ > 1, a contradiction. So, we conclude that

ui(xi) = ρ(s)si for at least one i.

(iv) Suppose that x ∈ A with u(x) ≥ ρ(s)s. If we suppose that an allocation z exists

so that zi �i xi for any i, we have that ui(zi) > ρ(s)si, for any i, a contradiction by (iii).
Therefore x is weakly Pareto optimal.

(v) Suppose that x ∈ K with u(x) = ρ(s)s. Then by Proposition 4.3, there exists

y ∈ A so that y � x, therefore y is weakly Pareto optimal by (iv).
(vi) Suppose that x ∈ K with u(x) = ρ(s)s. If we suppose that x ∈ A, then x is

weakly Pareto optimal by (iv) and (vi) is true. So we suppose that

z = ω −
l∑

i=1

xi > 0

and we take the allocation w with wi = xi +
z

l
for any i. Since the utility functions are

monotone we have that u(w) ≥ u(x) = ρ(s)s, therefore by (iii) we have that there exists

j so that uj(xj +
z

l
) = uj(xj) = ρ(s)sj and we fix such a j.

We define the vector y1 ∈ K so that

y1
i = xi, for any i 6= j and y1

j = xj +
z

l
,

where j is the above fixed index. Then we have

u(y1) = u(x) and ω −
l∑

i=1

y1
i = z

l − 1

l
.

As before, starting by y1 we consider the allocation w so that wi = y1
i + z

l − 1

l

1

l
for any

i. Then as we have noted before, we have that uj(wj) = uj(y
1
j ) = uj(xj) for at least one

j and we fix such a j. We define the vector y2 ∈ K so that

y2
i = y1

i , for any i 6= j and y2
j = y1

j + z

(
l − 1

l

)
1

l
, for the fixed j.

21



Then we have

u(y2) = u(y1) = u(x) and ω −
l∑

i=1

y2
i = z

(
l − 1

l

)2

.

By continuing this process we get a sequence {yn} of K so that

u(yn) = u(x) for any n and ω −
l∑

i=1

yn
i = z

(
l − 1

l

)n

.

By this process we have that for any fixed i, the sequence {yn
i } is of the form

yn
i = xi +

z

l

(
a1 + a2

(
l − 1

l

)
+ a3

(
l − 1

l

)2

+ ... + an

(
l − 1

l

)n
)

,

where ak = 1 if during the k step i = j and ak = 0 if i 6= j. So we have that {yn
i } is an

increasing sequence of the line segment defined by the vectors xi and az where

a =
1

l

∞∑

i=0

(
l − 1

l

)i

and this sequence is Cauchy because

||yr+m
i − yr

i || ≤
||z||

l

r+m∑

s=r+1

(
l − 1

l

)s

.

Therefore the sequence is convergent to a vector yi of the line segment and yi ∈ X+

because xi, az ∈ X+ and X+ is convex. Then, by taking limits we have that
∑l

i=1 yi = ω

therefore we have that y = (y1, y2, ..., yl) is an allocation. Hence u(y) ≥ u(x), therefore

the allocation y is weakly Pareto optimal by (iv). Also we have ui(yi) = limn ui(y
n
i ) =

ui(xi) for any i, because we have assumed that the functions ui are linearly continuous.

Hence y = (y1, y2, ..., yl) is a weakly Pareto optimal allocation with u(y) = u(x) and the

proof of (vi) has been completed.

�

In the Proposition 4.10 above we have proved that for any s ∈ ∆, there exists a weakly

Pareto optimal allocation y so that u(y) ≥ ρ(s)s. Therefore, if x ∈ K and u(x) = ρ(s)s,

we have ui(xi) ≤ ui(yi) for any i. The next condition (A4) strengthens this property by

adding the extra condition that ui(yi) ≤ ui(ωi), for any i with ρ(s)si = 0.

(A4) If x ∈ K with u(x) = ρ(s)s, there exists a weakly Pareto optimal allocation y so

that

(i) ui(xi) ≤ ui(yi) for any i and

(ii) for any i with ui(xi) = 0 we have ui(yi) ≤ ui(ωi).
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Note that in the case where Pi = X+ for any i and the utility functions are lin-

early continuous, we have by (vi) of Proposition 4.10, that a weakly Pareto optimal al-

location y exists so that u(y) = ρ(s)s. Therefore for any i with ρ(s)si = 0 we have

ui(yi) = ρ(s)si = 0 ≤ ui(ωi) hence (A4) is satisfied.

A sufficient condition to ensure that (A4) holds true is given in the following

Proposition 4.11. If the preferences are monotone and satisfy the next conditions

(A4a) any preference relation ui has the property:

xi, yi ∈ Pi, ui(xi) = 0 =⇒ ui(yi) = ui(xi + yi),

(A4b) for each x ∈ X, 0 ≤ x ≤ ω there exist vectors xi ∈ Pi so that x =
∑l

i=1 xi with

0 �i xi �i ωi, for any i,

then (A4) is true.

Proof. Suppose that x ∈ K with u(x) = ρ(s)s, for some s ∈ ∆. Let z = ω −
∑l

i=1 xi.

Then by (A4b), z =
∑l

i=1 zi with zi ∈ Pi and 0 �i zi �i ωi for any i. The allocation y

with yi = xi +zi for any i is weakly Pareto optimal, by Proposition 4.10 (iv), with y � x.

Also for any i with ui(xi) = 0, by (A4a), we have that ui(xi + zi) = ui(zi) ≤ ui(ωi).
Hence (A4) is satisfied. �

It is worthwhile to observe that

Proposition 4.12. If any preference relation is strictly monotone, or if any preference

relation is monotone and strictly convex, then condition (A4a) in Proposition 4.11 is

satisfied.

Proof. Suppose first that any preference relation is strictly monotone. Suppose that xi, yi ∈
Pi with ui(xi) = 0. Since xi ≥ 0, ui(0) = 0 and ui is strictly monotone we have xi = 0,

therefore ui(yi) = ui(xi + yi) and (A4a) is true.

If any preference relation �i is monotone and strictly convex, we have that any pref-

erence relation �i is strictly monotone, as follows: For any x, y ∈ Pi with x > y we have

x = y + (x − y), and by the strict convexity of the preference �i, for any t ∈ (0, 1) we

have t(y + (x − y)) + (1 − t)y �i y, therefore t(x − y) + y �i y. But �i is monotone,

therefore by the relation x > t(x − y) + y, we have x �i t(x− y) + y �i y and x �i y.

Hence by the first part of proof, (A4a) is satisfied. �

Proposition 4.13. If Pi = X+ for any i, the cone X+ has the Riesz decomposition prop-

erty and the preferences �i are monotone, then condition (A4b) in Proposition 4.11 is

satisfied.
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Proof. Let x ∈ X with 0 ≤ x ≤ ω. Since ω =
∑l

i=1 ωi, by the Riesz decomposition

property, there exist vectors xi ∈ X, i = 1, 2, ..., l so that 0 ≤ xi ≤ ωi, for any i and

x =
∑l

i=1 xi. Since the preferences are monotone we have 0 �i xi �i ωi, for any i. �

For each price vector p we denote by Gp the function

Gp(x) = (p(x1), p(x2), . . . , p(xl)),

where x = (x1, x2, . . . , xl) ∈ (X)l. Also we shall denote by

w = (ω1, ω2, ..., ωl),

the initial allocation.

As it is standard, we say that a NFD-allocation x ∈ A is:

• a quasi equilibrium, supported by the linear functional p, if for any i and any

z ∈ Pi we have z �i xi =⇒ p(z) ≥ p(ωi);

• a quasi-valuation equilibrium, if moreover p(ω) > 0

In the literature, in the above definitions the continuity of the supporting functional

p is also required. In our terminology, we do not require the continuity of p in order to

specify in our results the topology of the continuity of p.

For the next theorem we recall (Proposition 4.8) that (A1c) implies (A3).

Theorem 4.14. Suppose that in the economy E the conditions (A1), (A1c), (A2), are

satisfied, the preferences are monotone and convex, the utility functions are radially con-

tinuous and the utility space U is radially closed. If the interior of X+ is non-empty and

(A4) is satisfied, then a quasi equilibrium allocation x exists supported by a continuous,

positive linear functional p of X.

If moreover ω is an almost order unit of X, then we have p(ω) > 0 and x is a quasi-

valuation equilibrium.

Proof. Suppose that x0 is an interior point of P . Then we can show, see [13, Theorem

3.8.4 and 3.8.5], that the set

B = {f ∈ X∗
+ | f(x0) = 1},

is a weak-star closed and norm bounded base for the dual cone X∗
+ = {f ∈ X∗ | f(x) ≥

0, for any x ∈ X+} of X+, therefore the base B is weak-star compact.

For each s ∈ ∆, we select an element xs = (xs1, xs2, ..., xsl) of K so that u(xs) =
ρ(s)s. Then by using Proposition 4.10, we can select a weakly Pareto optimal allocation

xs = (x1
s, x2

s, ..., xl
s) so that u(xi

s) ≥ ρ(s)s. Also by (A4) we may suppose that for any

i with ui(xi
s) = 0 we have ui(xi

s) ≤ ui(ωi).
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By Theorem 4.5, there exists a price vector p ∈ B which supports xs and we denote

the set of these supporting prices by L(s), i.e.

L(s) = {p ∈ B | p supports xs}.

We define the sets

Φ(s) = {Gp(w − xs) = (p(ω1 − xs
1), p(ω2 − xs

2), ..., p(ωl − xs
l )) | p ∈ L(s)}

and

Ψ(s) = s + Φ(s).

If we suppose that s ∈ ∆ is a fixed point of Ψ, i.e. s ∈ Ψ(s), then we get a quasi

equilibrium allocation as follows:

s = s + h, where h ∈ Φ(s), therefore h = 0 ∈ Φ(s).

So there exists p ∈ L(s) so that Gp(w − xs) = 0, hence p · ωi = p · xs
i for each i.

Since p supports the allocation xs we have

x ∈ Pi, x %i xi ⇒ p · x ≥ p · xs
i = p · ωi,

hence (xs
1, x

s
2, . . . , x

s
l) is a quasi equilibrium allocation supported by p.

To show that Ψ has a fixed point, we prove first that the set Ψ(s) is convex for each s

and that the graph of Ψ is closed. It is enough to show that Φ has these properties. The

first is obvious. To show that the graph of Φ is closed, we suppose that

sn −→ s, γn ∈ Φ(sn) and γn −→ γ

and we have to show that γ ∈ Φ(s). Let

γn = Gpn
(w − xsn), where pn ∈ L(sn).

Since the base B is weak star compact, the sequence {pm} has an accumulation point

p ∈ B, therefore for any V ∈ I , where I is the set of the neighborhoods of 0 in the

weak-star topology, there exists mV so that pmV
∈ V and the net (pmV

)V ∈I converges to

p. we shall show that p supports the allocation xs. Consider x ∈ Pi such that x %i xs
i .

Then by (A1c), for any t > 0 there exists yi,x,t ∈ Pi so that yi,x,t ≤ tω with

limt−→0yi,x,t = 0 and x + yi,x,t �i x �i xs
i ,

therefore ui(x + yi,x,t) > ui(x
s
i ) for each t > 0. Since pn supports the allocation xsn we

have

pn(x + yi,x,t) = pn(x) + pn(yi,x,t) ≥ pn(xsn

i ) for each t > 0,
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and by taking limits as t −→ 0 we have that pn(x) ≥ pn(xsn

i ), for each n. Therefore we

have

pn(x) ≥ pn(x
sn

i ) = pn(ωi) − pn(ωi − xsn

i ) = pn(ωi) − γi
n,

where γi
n is the i coordinate of γn.

Since pnV
−→ p in the weak star topology of X∗, by the previous relation and the hy-

pothesis that γn −→ γ we have that γnV
−→ γ, and also that

p(x) ≥ p(ωi) − γi for each i,

where γi is the i coordinate of γ. But

p(ωi) − γi = p(ωi) − p(ωi − xs
i ) = p(xs

i ),

therefore p(x) ≥ p(xs
i ) and p supports the allocation xs. Also by the above relation we

have that γi = p · (ωi − xs
i ), hence

γ = Gp(w − xs),

therefore γ ∈ Φ(s) and the function Φ has closed graph.

Let us show that the set Φ is bounded valued. For any i we have ωi − xs
i ≤ ωi ≤ ω

and ωi − xs
i ≥ ωi − ω ≥ −ω. Therefore for any p ∈ L(s) and any i we have

0 ≤ |p(ωi − xs
i )| ≤ p(ω) ≤ M = max{p(ω) | p ∈ B}.

Note that the linear functional ω̂ ∈ X∗ defined by ω, i.e. the linear functional ω̂(f) =
f(ω), for any f ∈ X∗, is weak-star continuous. Therefore ω̂ takes maximum on the

weak-star compact base B of X∗
+ and the maximum in the above relation exists.

Therefore our function Φ takes values in a closed ball of R
l. Hence Φ and also Ψ

take value in a compact metric space. So , by the closed graph theorem for multivalued

functions, see [1, Theorem 17.11], we have that Ψ is upper hemicontinuous.

Let us prove now that Ψ is inward pointing, i.e. for each s ∈ ∆ there exists y ∈ Ψ(s)
and λ > 0 such that

s + λ(y − s) ∈ ∆.

Precisely, we shall show that for any s ∈ ∆ and any z ∈ Φ(s) i.e. for any z = Gp(w−xs),
where p ∈ L(s), the vector

y = s + z

of Ψ(s) satisfies this condition. We have to show that the vector

b = s + λ(y − s) = s + λz

belongs to ∆, where λ is a suitable real number which will be defined below.

Let s ∈ ∆ be fixed. For this s we have selected an element xs of K so that u(xs) =
ρ(s)s. To simplify our notations below, we shall denote xs by x.
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For any i with si > 0, there exists a real number λi > 0 such that si + λizi > 0.

Therefore we can select a real number λ = λ0 > 0 so that bi = si + λ0zi > 0, for each i

with si > 0.

For any i with si = 0 we have ui(x
s
i ) ≥ ρ(s)si = 0 and according to our remarks in

the beginning of the proof, we have ωi �i xs
i . Hence p(ωi) ≥ p(xs

i ), because p supports

the allocation xs.

For any i with si = 0 we have

zi = p(ωi − xs
i ) ≥ 0 and bi = si + λ0zi ≥ 0.

So, for the real number λ0, we have bi = si + λ0zi ≥ 0, for any i, hence b ≥ 0.

Also we have that b ∈ ∆ because s ∈ ∆, and
∑l

i=1 zi = 0. The last equality is true

because z = Gp(w − xs) = (p(ω1 − xs
1), p(ω2 − xs

2), ..., p(ωl − xs
l )) and w, xs are NFD-

allocations. Therefore Ψ is inward pointing. By the theorem of Halpern-Bergman, see

[1, Theorem 17.54,], we have that Ψ has a fixed point and the proof has been completed.

If ω is a almost order unit of X+, by Remark 4.4 we have p(ω) > 0. �

Remark 4.15. We briefly recall some main equilibrium existence results given in frame-

works close to that of our paper. Among the papers present in the literature dealing with

commodity space of infinite dimension, [11] is pioneering. In the latter paper, the hypoth-

esis of free disposal is assumed and also a weak axiom of continuity for preferences (the

assumption III of page 590) is used. This assumption is the following:

For any i, any xi, x
′
i, x

′′
i ∈ Pi and any real sequence tn ∈ [0, 1] with tn −→ t, we have:

tnx
′
i + (1 − tn)x

′′
i �i xi for each n =⇒ tx′

i + (1 − t)x′′
i �i xi,

and

tnx
′
i + (1 − tn)x

′′
i �i xi for each n =⇒ tx′

i + (1 − t)x′′
i �i xi.

It is easy to see that our assumption of linear continuity of the utility functions implies

the assumption III of Debreu and if in our economy E we add the extra assumption (∗)
below, then assumption III implies the linear continuity of the utility functions5 and these

two conditions are equivalent. For this equivalence, the closedness of the cones Pi, the

monotonicity of the utility functions and property (∗) are only needed. The condition is

a kind of completeness of the preferences and is the following: We say that assumption

5The proof is the following: Suppose that III is satisfied , xi, yi ∈ Pi, zn = tnxi + (1 − tn)yi,

tn −→ t and z = txi + (1 − t)yi. If there exists a subsequence of ui(zn) that we denote again by

ui(zn) and a real number a > ui(z) with ui(zn) ≥ a, for any n, then there exists w ∈ Pi so that

ui(z1) ≥ a > ui(w) > ui(z). Then ui(zn) ≥ a > ui(w) > ui(z) for each n, hence zn � w for

any n, therefore z � w by III. So we have z � w � z, a contradiction. Similarly, ui(zn) ≤ a < ui(z)
for a subsequence of ui(zn), there exists w ∈ Pi with ui(z1) ≤ a < ui(w) < ui(z) and we have the

contradiction z � w ≺ z, by III. Therefore u(zn) −→ u(z) and ui is linearly continuous.
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(∗) is satisfied if for any i, any xi, yi ∈ Pi and any real number ai ∈ (ui(xi), ui(yi)) there

exist zi, wi ∈ Pi with ui(xi) < ui(zi) < ai < ui(wi) < ui(yi).
As it is made clear by [12], and also evident in [9], two important points matter in

the case of equilibrium existence with general consumption sets: one is the possibility to

have relative compactness of bounded sets with respect to a weak-star topology on the

commodity space and the other one concerns the free disposal assumption. The approach

of [15] and [4], which has the advantage to admit the possibility of an empty interior

for the positive cone, strongly relies on the lattice structure of the commodity space and

on the fact that consumption sets coincide with the positive cone. In the same context,

the paper by [8] considers general consumption sets but, in order to work with them,

assumes a form of comprehensiveness with respect to vectors of the positive cone. An

approach slightly different, based on a separating argument in the space of allocations, is

presented in [14], again under the assumption that the consumption sets coincide with the

positive cone. Finally, the asymmetric information model considered in [17], produces an

existence theorem which generalizes results by [9] and [12] at several instances. Notice

that in this paper, the non-free disposal assumption entails that the linear supporting price

is not necessarily positive.

4.3.1 The case where Pi = X+ for any i.

In order to show that our assumptions are natural extensions or variations of the usual

ones, in this subsection we consider the case where all the consumers have as consumption

set the positive cone X+ of X, i.e. Pi = X+ for any i. In this case (A1) is trivially true and

(A1b) and (A1c) are equivalent to the hypothesis that ω is an extremely desirable bundle

for any consumer. In particular, if the preferences are strictly monotone, then ω is an

extremely desirable bundle for any consumer. Moreover, if the preferences are monotone

and strictly convex, then they are strictly monotone (for this see the proof of Proposition

4.12) hence ω is an extremely desirable bundle for any consumer.

If the preferences �i are defined by monotone utility functions ui, we have that (A2)
is true as follows: As we have observed after the definition of (A2) we may suppose that

ui(0) = 0 for any i. Also, by the definition of Ωi and our assumption that Pi = X+

for any i, we have that Ωi = [0, ω] for any i, therefore, for any x ∈ Ωi, we have that

0 ≤ ui(x) ≤ ui(ω) hence ui is bounded on Ωi and (A2) is true.

By statement (vi) of Proposition 4.10 and the above remarks we have: If the prefer-

ences �i are defined by monotone utility functions, ω is an extremely desirable for any

consumer and the utility functions are linearly continuous, then (A4) is true.

Recall that ui is linearly continuous if the restriction of ui on any line of Pi is contin-

uous. After these remarks, by Theorem 4.14 we have:

Theorem 4.16. Suppose that in the economy E we have Pi = X+ for any i. Suppose also

that the preferences �i are convex and defined by monotone utility functions. If ω is an

extremely desirable bundle for any consumer, the utility space U is radially closed, X+
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has nonempty interior and (A4) is satisfied (in particular if the utility functions are lin-

early continuous), then a quasi equilibrium allocation x exists supported by a continuous,

positive linear functional p of X.

If moreover ω is a almost order unit of X, then we have p(ω) > 0, therefore x is a

quasi-valuation equilibrium.

5 Cones with nonempty semi-interior and equilibrium

In this section we still study the exchange economy as defined in subsection 4.1. How-

ever, we shall add to conditions (A1)− (A4) the non emptiness of the set of semi-interior,

rather than interior, points of X+.

Suppose that X is a normed space ordered by the positive cone X+. we shall denote

by ||.|| the initial norm of X and by |||.||| the norm of X defined by the positive cone X+

of X. Recall that the ||.||-topology of X is coarser than the |||.|||-topology of X. Recall

also that x ∈ X+ is a semi-interior of X+ if x − ρU+ ⊆ X+ for some real number ρ > 0,

where U is the unit ball of the initial norm ||.|| of X.

Theorem 5.1. Suppose that in the economy E the conditions (A1) and (A1b) are satisfied

and that the preferences are monotone and convex. If x0 is a semi-interior point of X+,

then any weakly Pareto optimal allocation is supported by a positive, |||.|||-continuous

linear functional p of X with p(x0) = 1. If moreover ω is a |||.|||-almost order unit of X,

we have that p(ω) > 0.

Proof. Consider the space X equipped with the |||.|||-topology defined by the positive

cone X+. Since the cone X+ and the subcones Pi of X+ are ||.||-closed, we have that

the cone X+ and the subcones Pi are |||.|||-closed. Since x0 is a semi-interior point of

X+, by Proposition 3.2, x0 is an |||.|||-interior point of X+. So we consider as commodity

space the ordered normed space (X, |||.|||). Then all the assumptions of Theorem 4.5 are

satisfied, hence any weakly Pareto optimal allocation is supported by a positive, linear

functional p of X, which is continuous with respect to the |||.|||-topology of X and such

that p(x0) = 1.

If ω is a |||.|||-almost order unit of X, by Remark 4.4 we have that p(ω) > 0. �

Theorem 5.2. Suppose that in the economy E the conditions (A1), (A1c), (A2), are

satisfied, the preferences are monotone and convex and the utility functions are radially

continuous. If the utility space U is radially closed, X+ has at least one semi-interior

point and (A4) is satisfied, then a quasi equilibrium allocation x exists which is supported

by a positive, |||.|||-continuous linear functional p of X, where |||.||| is the norm of X

defined by the cone X+. If moreover ω is a |||.|||-almost order unit of X, we have that

p(ω) > 0 and x is a |||.|||-quasi-valuation equilibrium.
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Proof. Consider, as commodity space, the ordered normed space (X, |||.|||). Then, by

Proposition 3.2, x0 is a |||.|||- interior point of X+. The cone X+ and the subcones Pi of

X+ are |||.|||-closed. Also the utility functions are radially continuous with respect to the

|||.|||-topologyof X because the |||.|||-topologyof X is finer than the ||.|| -topology. So for

the commodity space (X, |||.|||), all the assumptions of Theorem 4.14 are satisfied, hence

a quasi equilibrium allocation x exists which is supported by a positive |||.|||-continuous

linear functional p of X. If moreover ω is a |||.|||-almost order unit of X, we have that

p(ω) > 0 by Remark 4.4 and x is a |||.|||-quasi-valuation equilibrium. �

In the case where Pi = X+ for any i, Theorem 4.16 takes the following form and can

be applied, for example, with reference to the space of Example 2.5

Theorem 5.3. Suppose that in economy E we have Pi = X+ for any i. Suppose also

that the preferences �i are convex and defined by monotone utility functions. If ω is

an extremely desirable bundle for any consumer, the utility space U is radially closed,

X+ has at least one semi-interior point and (A4) is satisfied (in particular if the utility

functions are linearly continuous), then a quasi equilibrium allocation x exists supported

by a |||.|||-continuous, positive linear functional p of X.

If moreover ω is an |||.|||-almost order unit of X, we have p(ω) > 0 and x is a |||.|||-
quasi-valuation equilibrium.

6 Strongly reflexive cones

In this section we apply our results in the case where X is a normed space ordered by a

strongly reflexive and normal cone P , i.e X+ = P . Recall that the cone P is strongly

reflexive if the positive part U+ = U ∩ P of the unit ball U of X is compact. Strongly

reflexive cones have been studied in [10], where it is shown that this class of cones is a

rich one. Also our examples 2.6 and 2.7 are examples of strongly reflexive cones with

semi-interior points.

In the next theorem we avoid the closedness condition. In particular we avoid the

assumption of Theorem 5.2 that the utility space is radially closed. However, the radial

continuity is replaced by the stronger condition of the continuity of the utility functions.

Theorem 6.1. Suppose that in the economy E the commodity space X is a normed space

ordered by the normal and strongly reflexive cone X+. Suppose that the conditions

(A1), (A1c), (A2), are satisfied, the preferences are monotone and convex and the utility

functions are continuous. If X+ has at least one semi-interior point and (A4) is satisfied,

then a quasi equilibrium allocation x exists supported by a positive linear functional p of

X and p is continuous with respect to the |||.||| norm of X which is defined by the cone

X+. If moreover ω is a |||.|||-almost order unit of X, then p(ω) > 0.
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Proof. According to Theorem 5.2 it is enough to show that the utility space U is radially

closed. Since the cone X+ is normal, there exists a real constant c > 0 so that for any

x, y ∈ X we have: 0 ≤ x ≤ y =⇒ ||x|| ≤ c||y||.
For any x = (x1, x2, ..., xl) ∈ K we have xi ∈ [0, ω] for any i, then we have ||xi|| ≤

c||ω|| and xi ∈ c||ω||U+.

Then the set

W = c||ω||U+,

is a compact subset of X because U+ is compact and it is easy to show that the set K is

a closed subset of the compact subset W l of X l. Therefore K is compact. Since the total

utility function u is continuous, we have that the utility space U , as the image of K via the

total utility, is compact. Therefore U is closed and hence radially closed and the theorem

is true.

�

In the case where Pi = X+ for any i, and X+ is strongly reflexive, Theorem 4.16

takes the form:

Theorem 6.2. Suppose that in the economy E we have Pi = X+ for any i and that the

cone X+ is strongly reflexive and normal. Suppose also that the preferences �i are convex

and defined by monotone utility functions. If the utility functions are continuous and X+

has at least one semi-interior point, then a weak equilibrium allocation x exists supported

by a |||.|||-continuous, positive linear functional p of X.

If moreover ω is an almost order unit of X, then we have p(ω) > 0, therefore x is a

|||.|||-quasi-valuation equilibrium.

In the next examples we continue Example 2.6 and Example 2.7 by proving the ex-

istence of equilibrium. In these examples E is a Banach lattice, P is a subcone of E+,

and X = P − P is the subspace of E generated by the cone P . In both cases the cone

P is strongly reflexive with semi-interior points. Note also that P as a subcone of E+ is

normal. We consider X ordered by the cone P and our economic model is considered

with respect to the new ordering. Therefore, by the previous theorem, a quasi valuation

equilibrium allocation exists. Note that in both examples the closedness (compactness) of

utility space U is not needed. Also the space X is dense in the initial space E.

Example 2.6 continued. Let E be an infinite dimensional Banach lattice with a normal-

ized, positive Schauder basis {ei}. For example, we may suppose that E is one of the

spaces c0 or `p for 1 ≤ p < +∞. Suppose that P is the cone of Example 2.6. Suppose

that in our economy of subsection 4.1 the commodity space is the subspace X = P − P

of E and suppose that X is ordered by the cone P , i.e. X+ = P .

As we have noted in this example X is dense in E and also P has semi-interior points.

Suppose that the total endowment ω is such a semi-interior point of X+. Suppose also

that all the consumers have the same consumption set i.e. Pi = X+ for any i and that
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the preferences are continuous, monotone and strictly convex. Then the preferences are

strictly monotone hence ω is extremely desirable for any consumer. Then by Theorem

6.2 a quasi equilibrium allocation x exists supported by a |||.|||-continuous, positive lin-

ear functional p of X, where |||.||| is the norm of X defined by the cone X+.

Also ω, as a semi-interior point of X, is an order unit of X therefore p(ω) > 0 and x is a

|||.|||-quasi-valuation equilibrium.

Example 2.7 continued. Let E be the space L1 [0, 1] and suppose that P is the subcone of

E+ of Example 2.7. Suppose that in our economy the commodity space is the subspace

X = P − P of E ordered by the cone P , i.e. X+ = P . As we have noted in this

example X is dense in L1 [0, 1] and P has semi-interior points. Suppose that the total

endowment ω is such a semi-interior point. Suppose also that all the consumers have the

same consumption set i.e. Pi = X+ and that the preferences are monotone and strictly

convex. Then the preferences are strictly monotone and ω is extremely desirable for any

consumer. Then a quasi equilibrium allocation x exists supported by a |||.|||-continuous,

positive linear functional p of X, where |||.||| is the norm of X defined by the cone X+.

As above x is a |||.|||-quasi-valuation equilibrium.

7 Appendix: Ordered linear spaces

In this paragraph, we give some essential notions and results from the theory of (partially)

ordered linear spaces which are needed in this paper. For more information see in [3], [13]

and [1].

An ordered vector space is a linear space X equipped with a reflexive, antisymmetric

and transitive relation ≥ with the property: x ≥ y =⇒ x + z ≥ y + z and λx ≥ λy, for

any x, y, z ∈ X and any real number λ ≥ 0. Then we say that ≥ is an order relation of X

and X+ = {x ∈ X | x ≥ 0} is the positive cone of X. Note that the order relation of X

is not necessarily complete.

Let X be a vector space and let P be a cone of X (i.e. P is a nonempty, convex subset

of X so that λP ⊆ P for every real number λ ≥ 0 and P ∩ (−P ) = {0}). The cone

P ⊆ X induces the order relation ≥ in X so that x ≥ y if and only if x − y ∈ P , for any

x, y ∈ X. Then X is an ordered vector space with positive cone the cone P , i.e. X+ = P .

If P − P = X the cone P is generating or reproducing. For any x, y ∈ X with

x ≤ y, the set [x, y] = {z ∈ X | x ≤ z ≤ y} is the order interval defined by x, y. A

linear functional f of X is positive if f(x) ≥ 0 for each x ∈ P and strictly positive if

f(x) > 0 for each x ∈ P, x 6= 0. A subset B of P is a base for the cone P if a strictly

positive linear functional f of X exists so that, B = {x ∈ P | f(x) = 1}. Then we say

that the base B is defined by the functional f . A vector x ∈ P is strictly positive if for

any non-zero, positive and continuous linear functional f of X we have f(x) > 0.

If for any x, y ∈ E the supremum x ∨ y and the infimum x ∧ y of the set {x, y} exist
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in X, then X is a vector lattice and we denote by x+ = x ∨ 0, x− = (−x) ∨ 0 and

|x| = x ∨ (−x) the positive part, the negative part and the absolute value of x. A vector

e ∈ X+ is an order unit of X if X = ∪∞
n=1[−ne, ne].

If X is a normed space, then every interior point of P is an order unit of X, [3,

Lemma 2.5], but the converse is not always true. For the converse the completeness of X

is needed. We have: If X is a Banach space and P is closed, then every order unit of P is

an interior point of P [3, Theorem 2.8]. If X is a normed space and int(P ) 6= ∅ we have:

a vector x ∈ P is strictly positive if and only if x is an interior point of P , [3, Lemma

2.17].

Recall that for any A ⊆ X we denote by A, the closure of A, by int(A) the set of

interior points of A by co(A) the convex hull of A and by co(A) the closed convex hull of

A.

If X is a Banach space, the sequence {xn} is a positive basis of X if it is a Schauder

basis of X and the positive cone P of X and the positive cone of the basis {xn} (i.e. the

set of elements of X with positive coordinates) coincide. Note that the usual bases of the

spaces `p , 1 ≤ p < ∞ and the space c0 are the simplest examples of positive bases.

Finally note that a Banach lattice is an ordered Banach space X which is a lattice,

with the property: |x| ≥ |y| =⇒ ||x|| ≥ ||y||, for any x, y ∈ X.
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