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Abstract 
Spatial differencing is a spatial data transformation pioneered by Holmes (1998) increasingly used to estimate casual 
effects with non-experimental data. Recently, this transformation has been widely used to deal with omitted variable 
bias generated by local or site-specific unobservables in a “boundary-discontinuity” design setting. However, as well 
known in this literature, spatial differencing makes inference problematic. Indeed, given a specific distance threshold, 
a sample unit may be the neighbor of a number of units on the opposite side of a specific boundary inducing 
correlation between all differenced observations that share a common sample unit. By recognizing that the spatial 
differencing transformation produces a special form of dyadic data, we show that the dyadic-robust variance matrix 
estimator proposed by Cameron and Miller (2014) is, in general, a better solution compared to the most commonly 
used estimators. 
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1 Introduction

In this paper, we provide a practitioners’ corner on spatial differencing estimation with a

special focus on inference. Spatial differencing is a spatial data transformation pioneered by

Holmes (1998) increasingly used thereafter to deal with omitted variable bias generated by

local or site-specific unobservables arbitrarily correlated with the explanatory variables. This

approach is at the heart of the so-called “boundary-discontinuity” design, a regression discon-

tinuity design, more and more popular in public and urban economics literature, exploiting

the spatial discontinuity that occurs at administrative boundaries to identify the treatment

effect of interest. In this framework, spatial differencing consists in taking the difference be-

tween each sample unit located near a specific (administrative) area boundary and any other

neighboring unit that lies on the other side of that boundary at a distance less than a specified

threshold. Under the assumption that site-specific unobservables vary smoothly across space,

i.e. very close units share the same site-specific unobservables, this transformation allows to

rule out these unobservables from the estimating equation. In presence of panel data, it is

even more appealing given that it can be applied after the standard within-group transforma-

tion to partial out site-specific time-varying unobservables (Duranton et al., 2011). Typical

applications include studies of the effects of school quality on house prices (Black, 1999, Fack

and Grenet, 2010, Gibbons et al., 2013, Kortelainen et al., 2014), the effect of local taxes on

firm performance (Duranton et al., 2011, Belotti et al., 2016), the effects of tax policies at

county level (Chirinko and Wilson, 2008), the evaluation of area-based interventions (Einio

and Overman, 2016), the effect of pollution havens on cancer deaths (Kahn, 2004).

However, spatial differencing introduces some concerns for statistical inference. Indeed,

given a specific distance threshold, a sample unit may be the neighbor of a number of units

on the opposite side of a specific boundary. This induces correlation between all differenced

observations that share a common sample unit. Under homoskedasticity, the best solution to

perform valid inference is represented by the analytically corrected variance matrix proposed

by Duranton et al. (2011). As reported by Kortelainen et al. (2014) in this special issue,

an alternative solution is represented by the one-way cluster-robust variance matrix at the

boundary level, which allows for arbitrary correlation between all differenced observations

on either side of a given boundary as well as for heteroskedasticity-robust inference. By

recognizing that the spatial differencing transformation produces a special form of dyadic

data, we show that the dyadic-robust variance matrix estimator proposed by Cameron and

Miller (2014) is, in general, the right choice in order to perform valid inference. By running

Monte Carlo simulations we compare, in the context of a “boundary-discontinuity” cross-

sectional design, the finite sample properties of the dyadic-robust variance matrix estimator

with those of the aforementioned commonly employed estimators. The results indicate that

dyadic-robust standard errors are well calibrated, outperforming all the alternatives in almost
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all considered design.

The remainder of the paper proceeds as follows. After a review of the spatial differencing

estimation approach in the context of a “boundary-discontinuity” cross-sectional design in

Section 2, Section 3 presents the set-up and the results of a set of Monte Carlo experiments.

Finally, Section 4 concludes.

2 Spatial Differencing

2.1 Estimation

Let us consider a sample of N units drawn at random from a given population. The statistical

model for the data is a linear model with local (or site-specific) unobserved effects

yic = θz + x′icβ + εic, (1)

where yic is the outcome of unit i located in area c with c = 1, . . . , C, xic is a k-vector of

exogenous covariates, εic is the idiosyncratic error and θz is an unobserved local effect for the

unobserved location z, z = 1, . . . , Z, possibly at a finer spatial scale than c. Estimating (1) by

ordinary least squares (OLS) ignoring θz gives a consistent estimate of β only if E(θz|xic) = 0.

If we set aside the latter unrealistic assumption by allowing for arbitrary correlation between

the local unobservables and the explanatory variables, i.e. E(θz|xic) 6= 0, a non-experimental

approach to estimating equation (1) involves, in some way, transforming the data to rule

out θz. An increasingly common way to deal with this issue in a “boundary-discontinuity”

cross-sectional design is the so-called “spatial differencing” approach (Holmes, 1998).

Given a certain distance threshold d, denote with Sd
i the set of unit i’s neighbors lying on

the other side of the area c’s boundary where i is located, and with ∆d
ij = xic−xjc′ the spatial

difference operator, which takes the difference between each unit i located in c and any other

unit j located in c′ (at a distance less than d from unit i), with c and c′ being two contiguous

areas. Under the assumption that site-specific effects vary smoothly across space and d = d∗,

by applying the spatial difference operator to (1) gives

∆d
ijyic = ∆d

ijx
′
icβ + ∆d

ijεic. (2)

In other words ∆d
ijθz ≈ 0 if d is small enough to allow the site-specific unobserved effect hitting

two units located at a distance less than d to be (approximately) the same. Given model (2),
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the SD estimator can be defined as

β̂SD =

 n∑
i=1

∑
j∈Sd

i

∆d
ijxic∆

d
ijxic

−1 n∑
i=1

∑
j∈Sd

i

∆d
ijxic∆

d
ijyic. (3)

Clearly, under the assumption that E(εic|xic, θz) = 0 and that θz is smooth over space, there

exists β̂SD such that, as N →∞, β̂SD is consistent for β, and N
1
2 (β̂SD − β) ∼ N (0, V ).

2.2 Inference

While solving the main identification issue related to the presence of local unobservables

correlated with the regressor(s) of interest, spatial differencing introduces some problems for

statistical inference. The estimator of the asymptotic variance matrix, say V̂ , needs indeed

to account for the fact that the error of unit i enters the error of mi pairs, where mi is the

number of unit i’s neighbours. By recognizing that the spatially differenced data is a special

form of dyadic data, we propose to use the dyadic-robust estimator described in Cameron and

Miller (2014). To clarify why this estimator should perform better than others, consider the

random sample {(xi, yi), i = 1, . . . , 4} reported in Table 1

Table 1: Original data.

id y x c
1 -1.83 0.37 1
2 -0.71 0.65 2
3 0.56 0.03 3
4 -1.23 0.68 4

Suppose that the optimal distance d∗ = 1km, i.e. by applying the spatial differencing

transformation one is able to completely rule-out local unobservables, and that S1
1 = {2, 3},

S1
2 = {1, 3}, S1

3 = {1, 2, 4} and S1
4 = {3}. Then, the spatially paired data will be as reported

in Table 2.

Table 2: Spatially paired data at d = 1km.

pair id y x c
1 1 -1.83 0.37 1
1 2 -0.71 0.65 2
2 1 -1.83 0.37 1
2 3 0.56 0.03 3
3 2 -0.71 0.65 2
3 3 0.56 0.03 3
4 3 0.56 0.03 3
4 4 -1.23 0.68 4
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It is worth noting that the number of unit-pairs observations are strictly less than n(n −
1)/2, i.e. the number of pairs in presence of fully dyadic data.1 In this example, there are 4

unit-pair observations (< (4(4− 1)/2) = 6), namely (1,2), (1,3), (2,3) and (3,4), among which

we do not include pairs (i, j) for which i > j to avoid duplications. If we apply the spatial

operator to the paired data reported in Table 2, we will obtain the spatial differenced data

reported in Table 3.

Table 3: Spatially differenced data (at d = 1km).

pair g h ∆y ∆x c
1 1 2 -1.12 -.28 1
2 1 3 -2.39 .34 1
3 2 3 -1.27 .62 2
4 3 4 1.79 -.65 3

As can be noted by looking at Table 4, clustering at unit-pair level (up in Table 4),

which coincides with using the White (1980)’s heteroskedastic robust variance estimator, only

controls for correlation when (g, h) = (g′, h′). The case of one-way clustering on the area

boundary c (c in Table 4), controls for correlation when g = g′ but only if g is located in c.

Two-way clustering on g and on h, additionally controls for correlation when g = g′ and/or

h = h′ (2way in Table 4). Finally, dyadic clustering additionally picks up cases where g = h′

or h = g′ (dyad in Table 4), allowing to obtain a heteroskedastic robust variance estimator

accounting at the same time for all potential correlations.

Table 4: Correlations for the spatially differenced data.

(g, h) / (g′, h′) (1,2) (1,3) (2,3) (3,4)
(1,2) up,c 2way,c dyad 0
(1,3) 2way,c up,c 2way dyad

(2,3) dyad 2way up,c dyad

(3,4) 0 dyad dyad up,c

The variance estimator has in all cases the classical sandwich form, that is V̂ = aA−1BA−1,

with A =
[∑n

i=1

∑
j∈Sd

i
∆d

ijx
′
ic∆

d
ijxic

]
= ∆X ′∆X, and a the finite sample adjustment. In the

case of the heteroskedaticity-robust White (1980) variance matrix, we have that a = N
N−k and

B =
∑
i

∑
j∈Sd

i

∆d
ijû

2
ic∆

d
ijx
′
ic∆

d
ijxic.

1The only (unrealistic) case in which the spatially paired data is fully dyadic is when each unit in the sample
is a neighbor of all the others, given a specific distance threshold d. In this case the number of unit-pairs
observations will be equal to n(n− 1)/2.
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As for the one-way cluster-robust variance matrix, clustered at c-level, a = C
C−1

N−1
N−k and

B =
∑
c

∑
i

∑
j∈Sd

i

∆d
ijx
′
ic∆

d
ijûic∆

d
ijû
′
ic∆

d
ijxic.

The two-way cluster-robust variance matrix, clustered at g and h-level, is V̂ = A−1BA−1 with

B̂ = a1
∑
i

∑
j∈Sd

i

1(gi = g′j)Pij + a2
∑
i

∑
j∈Sd

i

1(hi = h′j)Pij − a3
∑
i

∑
j∈Sd

i

1[(gi, hi) = (g′j, h
′
j)]Pij,

(4)

where Pij = ∆d
ijûic∆

d
ijûjc∆

d
ijx
′
ic∆

d
ijxjc, a1 = G−1

G−2
N

N−k , a2 = a1 and a3 = N
N−k , with G the

number of units effectively used in the estimation which, due to the spatial differencing at a

given distance, is usually smaller than N . The dyadic-robust estimator has a = a1 and

B̂ =
∑
i

∑
j∈Sd

i

1(gi = g′j|gi = h′j|hi = g′j|hi = h′j)Pij.

Finally, the analytically-corrected variance matrix estimator proposed by Duranton et al.

(2011) adapted for the cross-sectional case is

V̂ = σ̂2A
−1BA−1

with

B = ∆X ′∆∆′∆X

A = ∆X ′∆X.

and

σ̂2 = (tr(∆∆′)− tr(AB))−1
∑
i

∑
j∈Sd

i

∆d
ijû
′
i∆

d
ijûi

The main feature of this estimator is that it allows for an analytical correction of the variance

matrix exploiting the spatial difference matrix ∆. In the cross-sectional case the latter has

the following structure 
. . . 1 0 0 −1 0 0 0 . . .

. . . 0 1 0 0 −1 0 0 . . .

. . . 0 0 1 0 0 −1 0 . . .

. . . 0 0 0 1 0 0 −1 . . .


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where each column can contain the values 1 and -1 several times depending on the number of

times a unit has been matched with neighbours. The main drawback is that it is not robust

to heteroskedasticity.

Differently from the one-way cluster-robust method where asymptotic results require that

the number of clusters C → ∞, the dyadic-robust approach requires G → ∞. Thus, the

dyadic-robust approach can be very useful when the number of cluster C is small but the

number of units G used in the estimation is not so small, as is common in empirical appli-

cations. It is well-known that the Wald tests based on one-way (and two-way) cluster-robust

standard errors can over-reject when there are few clusters (say, less than 10, see Cameron

and Miller, 2015, for a detailed discussion) and the same is true for the dyadic-robust stan-

dard errors when there are few units (say, less than 100, see Cameron and Miller, 2014, for a

detailed discussion). In the next Section we shall consider finite-cluster and finite-unit issues

in some detail.

3 Monte Carlo Evidence

3.1 Set-up

By theory, the coefficient estimate of a 95% confidence interval should contain the true co-

efficient value in 95 out of 100 cases. However, when a variance estimator is not perfectly

calibrated, the related standard error estimates are biased and statistical tests (such as the

t-test) lose their validity. In what follows, we use the coverage rate (CR) of the 95% confi-

dence interval to assess the finite sample properties of the five variance estimators reported in

Section 2.2.2

To simulate the data, we consider the cartographic boundary shapefile of Kansas at county

level.3 We start by over-imposing a fishnet of 7× 3 rectangular cells. Then, a buffer of 15km

radius was placed around the centroid of each rectangular cell and n random points were

created within each of these buffers, which in our simulated space represent the Z = 21 unob-

served locations.4 In this way, the spatial difference transformation at d <= 30km will pick up

only units with the same θz, thus ensuring the consistency of the spatial difference estimator

in (3). We used n = (25; 50), which creates two samples with size N = (525; 1050). Finally,

we select only the random points completely within the cartographic boundaries (loosing 3

and 16 points, respectively) and only the counties effectively containing the random points.

The final spaces are rendered in Figure 1 and 2. They include, respectively, a total of 522 and

2Clearly (1− CR95%) gives the size of the statistical test, i.e. α = 5%.
3We have chosen the Kansas US states for the regularity of its county’s polygons. The Kansas state (with
its 105 counties) has been selected from the complete US shapefile at county level, the latter downloaded at
http://www2.census.gov/geo/tiger/GENZ2016/shp/cb 2016 us county 20m.zip.

4We used the create fishnet and create random points toolboxes of ARCGIS 10.3.1 for Desktop.
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1034 units, 82 and 88 counties, and 21 “unobserved” locations.

We then consider the following data generating process (DGP) with just one regressor

yic = θz + xicβ + exp(δxic)εic,


i = 1, . . . , N

c = 1, . . . , C

z = 1, . . . , Z

(5)

with N = 522, 1034 , C = 82, 88, Z = 21. θz is assumed to be correlated with xic. For

simplicity but without loss of generality, we assume that

xic = φθz + (1− φ2)1/2zic, (6)

with εic and zic being standard Gaussian i.i.d. random variables, independently distributed

from θz, the latter itself is simulated as a standard Gaussian i.i.d. random variable. Thus,

the covariance of xic and θz is proportional to φ; when φ = 0, xic and θz are uncorrelated,

and θz is a Standard Gaussian random variable. The DGP in equation (5) allows to consider

homoskedastic errors (δ = 0) as well as different degrees of heteroskedasticity according to

the value of the parameter δ. For each space, that is for each sample size, we set β = 1 and

φ = 0.5. We then consider d = 5km, 10km, 15km, 20km, 30km and δ = 0, 0.25, 0.5, 1 for a total

of 40 different experiments. Simulations are based on 1000 replications for each experiment.

To summarize, the Monte Carlo simulations for each of the 40 parameter settings defined

above proceed as follows:

1. Generation of 8 cross-sectional datasets with N = 522, 1034 and δ = 0, 0.25, 0.5, 1 as

specified above;

2. Estimation of the spatial difference estimator in (3) using different distance thresholds,

i.e. d = 5km, 10km, 15km, 20km, 30km;

3. After having replicated steps (1) and (2) 1000 times, the CRs of the 95% confidence

intervals for all five standard error estimates are gathered. This is achieved by obtain-

ing the fraction of times the nominal 95%-confidence interval for β̂ contains the true

coefficient value of β = 1.

3.2 Results

Results of the simulations are presented graphically in Figures 3 and 4 when the sample size

is N = 522, and in Figures 5 and 6 for N = 1034.5

5A Stata command implementing the methods described in this paper is available. It can be installed from
within Stata by typing net install sreg, from(http://www.econometrics.it/stata). Please, notice
that the command cannot be downloaded from the website but just directly installed through the Stata
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Before going through the main findings of our analysis it is relevant to highlight that the

distance threshold used to spatially differentiate the data dramatically affects the characteris-

tics of the estimation sample. For instance, when the original sample size is N = 522 (C = 81),

a distance threshold of 5km implies that only 38 units (located in C = 16 administrative ar-

eas) will be considered for spatial differencing, producing a sample of 23 pairs. On the other

hand, when the threshold increases to 10km, 153 units (located in C = 52 administrative

areas) will be included in the estimation sample, increasing the sample size to 123 pairs. This

has important implications for the interpretation of the results. Indeed, when the sample size

grows, a larger number of correlated observations will be included in the sample affecting in

different ways the properties of the considered variance matrix estimators.

As expected, when errors are homoskedastic, the Duranton et al. (2011) estimator, the

benchmark in this case, delivers CRs in line with their nominal value, irrespective of the

distance threshold used to spatially differentiate the data, while the other way around is true

for the less “robust” White (1980) standard errors, with CRs that are increasingly below the

nominal value as the threshold increases. On the other hand, both one-way clustering (on c)

and two-way clustering (on g and h) exhibit CRs that are below their nominal value (around

90%), with the latter being much less sensitive to the distance threshold. Interestingly, the

one-way clustering CRs significantly deteriorate as the distance threshold grows. This rather

contradictory result is due to the fact that the one-way clustered standard errors are not robust

to the “twoway” and/or “dyadic” correlations that are gradually included in the estimation

sample. As expected, due to the fact that the number of units included in the estimation is

far below the rule of thumb suggested by Cameron and Miller (2014), also the dyadic-robust

standard errors show a not perfectly calibrated CR (around 91%) when the distance threshold

is 5km. However, and contrary to the one- and two-way clustering cases, the dyadic-robust

CRs converge to the nominal value as the distance threshold grows.

As shown in Figure 3, the results change significantly when heteroskedasticity is present.

For Duranton et al. (2011) standard errors, heteroskedasticity leads to CRs that are far below

their nominal value, much worse when the distance threshold increases. On the other hand,

what is striking is that the dyadic-robust CRs are perfectly calibrated even in presence of ex-

treme heteroskedasticity and, except for the aforementioned case where the distance threshold

is 5km, it always outperforms the competitors.

Figure 4 contains a complementary representation of the results presented in Figure 3.

Here, for each variance estimator considered in the analysis, the average standard error es-

timate from the simulation is divided by the standard deviation of the coefficient estimates.

Since the standard deviation of the Monte Carlo estimated coefficients approximates the true

standard errors as the number of replications grows, for a variance estimator to be unbiased

software.
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this ratio should be close to one. Consistently with the findings from above, Figure 4 shows

that dyadic-robust standard errors are very well calibrated even in presence of heteroskedas-

ticity. The only competitor who does best being the Duranton et al. (2011) estimator under

homoskedasticity.

Finally, Figures 5 and 6 show very similar results as the original sample size grows (N =

1034), further confirming the properties of the dyadic-robust variance estimator.

Summarizing, under the fairly general data generating processes described in Section 3.1,

the results show that the finite sample performances of the considered approaches improve the

greater the “robustness” of the variance estimation method to the correlation induced by the

spatial differencing transformation, with the dyadic-robust variance matrix estimator being

always the best in presence of heteroskedasticity, followed in order by two-way and one-way

clustering.

4 Concluding Remarks

In this paper, we provide a practitioners’ corner on spatial differencing estimation, with a

special emphasis on the issues affecting inference. Failure to properly control for the error

correlation induced by spatial differencing can lead to greatly under-estimated standard errors

and over-stated t-statistics. Differently from previous literature we argue that, since the

spatial differencing transformation produces a special form of dyadic data, the dyadic-robust

variance matrix estimator proposed by Cameron and Miller (2014) is, in general, a better

solution compared to the commonly used approaches. In particular, the Monte Carlo analysis

conducted in this paper suggest that the choice of the covariance matrix estimator is crucial

for inference’s validity. The results confirm that, under homoskedasticity, the Duranton et al.

(2011) “analytically corrected” variance estimator is always the right choice, even thought

the dyadic-robust estimator shows comparable performance when there are enough (> 100)

underlying units forming the dyads. The presence of heteroskedasticity changes significantly

the ranking of the considered estimators and, with the exception represented by the case in

which too few units are used to forming the dyads, dyadic-robust standard errors are always

the best choice. By comparison, the other methods generally under-estimate the standard

errors leading to coverage rates far below the nominal size.
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Figure 1: Kansas counties with simulated random points (N=522, Z=21, C=82)

Figure 2: Kansas counties with simulated random points (N=1034, Z=21, C=88)
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Figure 3: Coverage rates of 95% confidence intervals: Comparison of different techniques for estimat-
ing standard errors. Monte Carlo simulation with 1,000 runs per parameter setting for a cross-section
of N=522 units.The y-axis labels denote the values of the heteroskedasticity parameter δ.

Figure 4: Ratio of estimated to true standard standard errors: Monte Carlo simulation with 1,000
runs per parameter setting for a cross-section of N=522 units.The y-axis labels denote the values of
the heteroskedasticity parameter δ.
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Figure 5: Coverage rates of 95% confidence intervals: Comparison of different techniques for estimat-
ing standard errors. Monte Carlo simulation with 1,000 runs per parameter setting for a cross-section
of N=1034 units.The y-axis labels denote the values of the heteroskedasticity parameter δ.

Figure 6: Ratio of estimated to true standard standard errors: Monte Carlo simulation with 1,000
runs per parameter setting for a cross-section of N=1034 units.The y-axis labels denote the values
of the heteroskedasticity parameter δ.
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