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Abstract 
Regarding the approximation of Nash equilibria in games where the players have a continuum of strategies, there 
exist various algorithms based on best response dynamics and on its relaxed variants: from one step to the next, 
a player's strategy is updated by using explicitly a best response to the strategies of the other players that  come 
from the previous steps. These iterative schemes generate sequences of strategy profiles which are constructed 
by using continuous optimization techniques and they have been shown to converge in the following situations: in 
zero-sum games or, in non zero-sum ones, under contraction assumptions or under linearity of best response 
functions. In this paper, we propose an algorithm which guarantees the convergence to a Nash equilibrium in two-
player non zero-sum games when the best response functions are not necessarily linear, both their compositions 
are not contractions and the strategy sets are Hilbert spaces. 
Firstly, we address the issue of uniqueness of the Nash equilibrium extending to a more general class the result 
obtained by Caruso, Ceparano, and Morgan [J. Math. Anal. Appl., 459 (2018), pp. 1208-1221] for weighted 
potential games. Then, we describe a theoretical  approximation scheme based on a non-standard (non-convex) 
relaxation of best response iterations which converges to the unique Nash equilibrium of the game. Finally, we 
define a numerical approximation scheme relying on a derivative-free continuous optimization technique applied 
in a finite dimensional setting and we provide convergence results and error bounds. 
 
Keywords: zero-sum game; saddle point; non-cooperative non zero-sum game; Nash equilibrium; uniqueness; 
theoretical and numerical approximation; fixed point; super monotone operator;  best response algorithm; convex 
and non-convex relaxation; local variation method; error bound. 
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1 Introduction

Algorithms for the approximation of a Nash equilibrium in non-cooperative deterministic games where

players have a continuum of strategies have been widely investigated both in Game Theory and in

Optimization literature.

One of the most explored iterative schemes involves best response dynamics: from one step to the next

one, a player's strategy is obtained choosing a best response to the strategies of the other players that

come from the previous steps. Hence, algorithms based on such schemes generate sequences of strategy

pro�les which are constructed by using continuous optimization techniques.

In particular, in a two-player zero-sum games framework, Cherruault and Loridan proposed in [17] two

methods to approach a Nash equilibrium (i.e., a saddle point of the payo� function of any player) when

the strategy sets are Euclidean spaces, the payo� function of each player is jointly twice continuously

di�erentiable, strictly convex and coercive in his variable, and one of the two compositions of the best

response functions is a contraction. When the strategy sets are Hilbert spaces and the two compositions

of the best response functions are not necessarily a contraction, Morgan introduced in [42] a theoretical

algorithm which converges to a saddle point. Such an algorithm relies on a relaxed variant of the best

response dynamics, where a player's strategy is obtained through a convex combination of his previous

step strategy and of the best response. Moreover, a scheme of discretization is presented, together with

a numerical algorithm for the approximation of the discretized problem, error bounds computations, and

applications to di�erential games.

Then, in a general non-cooperative N -player games framework, Gabay and Moulin de�ned in [29] two

types of relaxed procedures (connected to the Jacobi and the Gauss-Seidel methods with relaxation) when

the strategy set of each player is the interval [0,+∞[ and the Jacobian matrix (that is the N ×N matrix

whose general ij element is given by the partial derivative of player i's payo� function with respect

to player i's variable and player j's variable) is strictly diagonally dominant. Li and Ba³ar proposed

in [37] an inaccurate search algorithm when the strategy sets are Hilbert spaces, the payo� function

of each player is strongly convex in his variable and one of the two compositions of the best response

functions is a contraction. Ba³ar investigated in [5] the convergence of some relaxation algorithms for the

approximation of Nash equilibria when the strategy sets are R or R2 and the best response functions are

linear, even when the two compositions of the best response functions are not a contraction. Attouch,

Redont and Soubeyran presented in [2] an alternating proximal algorithm, also used to approach a Nash

equilibrium for a special class of two-player weighted potential games: the players have the same strategy

sets, assumed to be a Hilbert space, and the payo� functions are the sum of an individual component

depending on their own strategy and of a quadratic component, the same for both players, depending

on their joint strategies (hence, such payo� functions de�ne a class of weighted potential games, in light

of [12, Proposition 2]).

Table 1 summarizes the theoretical results previously mentioned; for a best response iterative method

applied to an economic model see, for example, [36].

Hence, to the best of our knowledge, algorithms involving a best response-based approach which

guarantee the convergence to a Nash equilibrium are not yet de�ned in the following situation for a

two-player non zero-sum game: the best response functions are not assumed to be linear, the two

compositions of the best response functions are not assumed to be contractions and the strategy sets are

Hilbert spaces. Aim of this paper is to propose an iterative method which �lls this lack. The iterative

scheme we present involves a non-standard relaxation of the classical best response algorithm. In the

usual relaxation techniques applied to a game theoretical setting (as in [42]), a current player's strategy
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Table 1: Some existing literature

Game class Strategy sets Payo� functions as-

sumptions

Composition of BR

functions

Cherruault, Loridan [17] two-player

zero-sum

�nite dimensional

spaces

strictly convex and coer-

cive in its argument, dif-

ferentiable

contraction

Morgan [42, 40, 41] two-player

zero-sum

Hilbert spaces strictly convex and coer-

cive in its argument, dif-

ferentiable

not necessarily

Gabay, Moulin [29] N-player [0,+∞[ strict diagonally domi-

nant

not necessarily

Li, Ba³ar [37] two-player Hilbert spaces strongly convex in its

argument and di�eren-

tiable

contraction

Ba³ar [5] two-player R or R2 strongly convex in its ar-

gument and quadratic

not necessarily

Attouch, Redont,

Soubeyran [2]

two-player

weighted po-

tential

Hilbert spaces lower semicontinuous

and stricly convex in its

argument

contraction when the

strategy sets are R

is obtained via a convex combination of his previous step strategy and of the best response to the

current strategy of the other player. Di�erently, in our approach the relaxation is obtained via an a�ne

non-convex combination. Such non-standard combination is carried out through the so-called inverse

convex combinator as de�ned in De�nition 2.1. Motivations for its introduction will be illustrated at the

beginning of Section 3, after the presentation of the suitable mathematical tools. The iterative method

will be applied to a class of games for which the existence and uniqueness of the Nash equilibrium is

ensured by extending a previous result obtained in [12] for weighted potential games.

Moreover, it will be designed a numerical approximation scheme (applicable o�ine with full knowledge of

the game) for the unique Nash equilibrium which exploits a derivative-free optimization technique called

local variation method, that was introduced in [15] for variational problems and used, in particular, in [17]

for functional minimization problems and in [42, 19] for zero-sum games. The features of such a method

will allow to prove the convergence of our numerical scheme and to compute error bounds and rates of

convergence. However, apart from the local variation method, also �rst order and second order methods

could be exploited in the implementation of the numerical approximation scheme; this investigation will

be the subject of a future research.

We highlight that for constrained zero-sum games various numerical methods which make use of

derivatives have been employed: for example, in [19] the local variation method, a conjugate gradient

method and a quasi-Newton method have been used and compared, in [46, 14] primal-dual methods are

involved, in [44, 31] proximal-like methods are entailed, and in [45] a comparison between two methods

for stochastic optimization is illustrated.

For the sake of completeness we report that, beyond the best response dynamics approaches, various

algorithms for �nding Nash equilibria of general games make use of: the Nikaido-Isoda function (see, e.g.,

[53, 34, 18, 1]), the characterization of a Nash equilibrium by a variational inequality (see, e.g., the just

cited [44, 46, 31] and [21, 23] for further discussions and references), the ordinary di�erential equation

(ODE) methods (see, e.g., [51, 26, 13, 28, 50]) or sequences of Nash equilibria of �better-behaved� games

(meaning that such approximating Nash equilibria are easier to compute, see e.g. [27] and [43, Section

4]). For algorithms on Generalized Nash equilibria (also called Social Nash equilibria) see, e.g, [22,

Section 5].

Finally, we just mention that in situations where players have only partial knowledge of the strategy sets
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and payo� functions, a broad literature concerns how a Nash equilibrium can be reached by means of

adaptive or learning procedures (see, e.g., [49, 9, 11, 38] and references therein).

The paper is structured as follows. Section 2 concerns the issue of uniqueness of Nash equilibria:

notation, assumptions and preliminary results are provided (Section 2.1), the existence of a unique Nash

equilibrium is proved (Section 2.2) and a �tting class of games is de�ned together with a di�erential

game example (Section 2.3). A theoretical iterative method for the approximation of the (unique) Nash

equilibrium, called Inverse-Adjusted Best Response Algorithm, is presented in Section 3: the convergence

is shown and error estimations are obtained. Section 4 is devoted to games with �nite dimensional strat-

egy sets. First, new assumptions are given in order to also handle situations where the best response

functions are not analytically available and examples are presented. Then, a numerical approxima-

tion scheme, called Numerical Inverse-Adjusted Best Response Algorithm, is described by combining the

theoretical iterative method with a continuous optimization technique (the local variation method, Sec-

tion 4.1) in order to approximate the Nash equilibrium (Section 4.2). Finally, error bounds and rates of

convergence for such an algorithm are proved in Section 4.3.

2 Uniqueness of the Nash equilibrium

Let Γ := {2, X, Y, F,G} be a two-player normal form game. The �rst player's strategy set X and the

second player's strategy set Y are real Hilbert spaces with inner products (·, ·)X and (·, ·)Y , respectively,
and associated norms ‖·‖X and ‖·‖Y , respectively. The payo� functions F and G of the �rst and

second player, respectively, are de�ned on X × Y with values in R. We denote by R1 the best response

correspondence of player 1, i.e. R1 is the set-valued map de�ned on Y by

R1(y) := Arg max
x∈X

F (x, y) = {x′ ∈ X | F (x′, y) ≥ F (x, y), for any x ∈ X} ⊆ X.

Analogously, we denote by R2 the best response correspondence of player 2, that is the set-valued map

de�ned on X by R2(x) := Arg maxy∈Y G(x, y) ⊆ Y . Recall that a Nash equilibrium of Γ is a couple

(x̄, ȳ) ∈ X × Y such that (x̄, ȳ) ∈ R1(ȳ) × R2(x̄). When R1 and R2 are single-valued, the function r1,

de�ned by {r1(y)} := R1(y) for any y ∈ Y , and the function r2, de�ned by {r2(x)} := R2(x) for any

x ∈ X, are called best response function of player 1 and best response function of player 2, respectively,

and we denote by ρ : X → X the function de�ned by

ρ(x) := (r1 ◦ r2)(x) = r1(r2(x)). (1)

In the next subsections, �rstly the assumptions we deal with are stated together with some preliminary

results, secondly the existence of a unique Nash equilibrium is proved for games satisfying such assump-

tions, �nally a class of games �tting the uniqueness theorem is described. Such a class involves games

with in�nite dimensional strategy spaces and it contains also an example of di�erential games.

2.1 Assumptions

Let us introduce the following hypothesis on the best response correspondences that will be used for the

uniqueness result.

(H1)(H1)(H1) The best response correspondences R1 and R2 in Γ are single-valued.
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Figure 1: Some graphical representations of gδ.

Remark 2.1 Assumption (H1) is satis�ed if, for example, the function F (·, y) is strongly concave on X

for any y ∈ Y and the function G(x, ·) is strongly concave on Y for any x ∈ X (see, e.g., [7, Corollary

11.16]).

The next de�nition introduces an operator which will play a key role in all the paper.

De�nition 2.1 Let Γ = {2, X, Y, F,G} be a game satisfying (H1) and let δ > 1. The δ-inverse convex

combinator of Γ is the function gδ : X → X de�ned by

gδ(x) := δx− (δ − 1)ρ(x), (2)

where ρ is de�ned in (1).

Such a function, employed in [12, Section 3, p. 1213] in order to prove the existence of a unique Nash

equilibrium in weighted potential games, is called δ-inverse convex combinator of Γ since x is a convex

combination of gδ(x) and ρ(x) for any x ∈ X. Indeed, rearranging (2) we get x = αgδ(x) + (1− α)ρ(x),

with α = 1/δ ∈]0, 1[.

In particular, Figure 1 provides some graphical representations of gδ. In Figure 1a, for a given function

ρ we depict gδ for some values of δ. In Figure 1b, we represent the composition ρ of the best response

functions of the game Γ = {2,R,R, F,G} where F (x, y) = −x2 + 4xy, G(x, y) = −y2 + 6xy and we

compute gδ for δ = 23/20.

Note that in Figure 1a gδ and ρ have the same three �xed points and in Figure 1b they have the same

unique �xed point. In fact, the next lemma, whose proof is straightforward and is omitted, summarizes

the connections among the �xed points of gδ, the �xed points of ρ and the Nash equilibria of Γ.

Lemma 2.1. Let δ > 1 and assume that Γ = {2, X, Y, F,G} satis�es (H1). Then, the following state-

ments are equivalent:

(i) x̄ is a �xed point of gδ.

(ii) x̄ is a �xed point of gτ , for any τ > 1.

(iii) x̄ is a �xed point of ρ.

(iv) (x̄, r2(x̄)) is a Nash equilibrium of Γ.
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The introduction of the δ-inverse convex combinator of Γ will allow to prove, in this section, the

existence of a unique Nash equilibrium of Γ when ρ is not a contraction, by means of the equivalences

stated in Lemma 2.1. Afterward, such a combinator will play a crucial role in the de�nition of our

theoretical iterative method for the approximation of the unique Nash equilibrium: the leading idea will

be to replace the best response function of one player with a function (the δ-inverse convex combinator

gδ) whose properties allow to transform a divergent procedure into a convergent one. More detailed

intuition and motivations underlying the latter issue will be explained at the beginning of Section 3 and

they will be put in evidence in Figure 2.

Now, recall some usual notations. Let S and T be normed vector spaces equipped with the norms

‖·‖S and ‖·‖T respectively, and let L(S, T ) be the normed vector space of all continuous linear operators

from S to T , with the usual norm ‖Λ‖L(S,T ) := sup{‖Λ(s)‖T : ‖s‖S = 1}. The space of all continuous

linear operators from S to R is denoted by S∗, and the duality operation between S∗ and S by 〈·, ·〉S∗×S .

Let f be a function from S to T . If f is twice di�erentiable on S, then Df : S → L(S, T ) and D2f : S →
L(S,L(S, T )) denote, respectively, the Fréchet derivative of f and the second Fréchet derivative of f ,

and by Df(s) ∈ L(S, T ) and D2f(s) ∈ L(S,L(S, T )) we mean, respectively, the derivative of f at s ∈ S
and the second derivative of f at s ∈ S. Moreover, dGf : S → L(S, T ) and dGf(s) ∈ L(S, T ) denote,

respectively, the Gâteaux derivative of f and the Gâteaux derivative of f at s ∈ S. When S = S1 ×
· · · ×Sn, Dsif : S → L(Si, T ) denotes the partial derivative of f with respect to si, and Dsj (Dsif) : S →
L(Sj ,L(Si, T )) and D2

sif : S → L(Si,L(Si, T )), respectively, the second partial derivative of f with

respect to si and sj and the second partial derivative of f with respect to si, for any i, j ∈ {1, . . . , n}
(clearly, Dsi(Dsif) ≡ D2

sif for any i ∈ {1, . . . , n}).
Finally, let GL(S, T ) ⊆ L(S, T ) be the set of all bijective continuous linear operators from S to T with

continuous (and linear) inverse. If f ∈ GL(S, T ), then f−1 : T → S denotes the inverse operator of f

and f−1 ∈ L(T, S).

Hence, if F and G are twice di�erentiable we have D2
xF (x, y) ∈ L(X,X∗), D2

yG(x, y) ∈ L(Y, Y ∗),

Dy(DxF )(x, y) ∈ L(Y,X∗), Dx(DyG)(x, y) ∈ L(X,Y ∗), for any (x, y) ∈ X × Y , and we can de�ne

λ1 := sup
(x,y)∈X×Y

‖[D2
xF (x, y)]−1 ◦Dy(DxF )(x, y)‖L(Y,X), (3a)

λ2 := sup
(x,y)∈X×Y

‖[D2
yG(x, y)]−1 ◦Dx(DyG)(x, y)‖L(X,Y ), (3b)

λ := λ1 · λ2, (3c)

provided that D2
xF (x, y) ∈ GL(X,X∗) and D2

yG(x, y) ∈ GL(Y, Y ∗) for any (x, y) ∈ X × Y . Throughout
the paper, we deal with the class of games described in the next de�nition.

De�nition 2.2 HHH is the set of games Γ = {2, X, Y, F,G} which satisfy the following assumptions:

• X and Y are real Hilbert spaces;

• F is twice continuously di�erentiable on X × Y , D2
xF (x, y) ∈ GL(X,X∗) for any (x, y) ∈ X × Y ,

and λ1 de�ned in (3a) is a real number;

• G is twice continuously di�erentiable on X × Y , D2
yG(x, y) ∈ GL(Y, Y ∗) for any (x, y) ∈ X × Y ,

and λ2 de�ned in (3b) is a real number.

The next lemma states some regularity properties of the best response functions r1 and r2, and of their

composition ρ. The proof is obtained by extending to the class of games HHH the proofs of Propositions 3
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and 4 in [12] given for weighted potential games.

Lemma 2.2. Assume Γ ∈ HHH and satis�es (H1). Then

(i) r1 is continuously di�erentiable on Y and Lipschitz continuous with Lipschitz constant no greater

than λ1;

(ii) r2 is continuously di�erentiable on X and Lipschitz continuous with Lipschitz constant no greater

than λ2;

(iii) ρ is continuously di�erentiable on X and Lipschitz continuous with Lipschitz constant no greater

than λ = λ1 · λ2.

Proof. Let y ∈ Y . Since F is di�erentiable onX×Y , the pair (r1(y), y) satis�es the equationDxF (r1(y), y) =

0. Therefore, by applying the Implicit Function Theorem, r1 is continuously di�erentiable on Y and

Dr1(y) = [D2
xF (r1(y), y)]−1 ◦ [Dy(DxF )(r1(y), y)] ∈ L(Y,X). (4)

Moreover, by the Mean Value Inequality and the de�nition of λ1

‖r1(y1)− r1(y2)‖X ≤ sup
t∈[0,1]

‖Dr1(ty1 + (1− t)y2)‖L(Y,X)‖y1 − y2‖Y ≤ λ1‖y1 − y2‖Y

for any y1, y2 ∈ Y . Hence, r1 is Lipschitz continuous with Lipschitz constant no greater than λ1.

Analogously, r2 is continuously di�erentiable on X,

Dr2(x) = [D2
yG(x, r2(x))]−1 ◦ [Dx(DyG)(x, r2(x))] ∈ L(X,Y ) (5)

for any x ∈ X, and r2 is Lipschitz continuous with Lipschitz constant no greater than λ2. Finally, by

the chain rule and (4) and (5), ρ is continuously di�erentiable on X and

Dρ(x) =Dr1(r2(x)) ◦Dr2(x)

=[D2
xF (ρ(x), r2(x))]−1 ◦ [Dy(DxF )(ρ(x), r2(x))]

◦ [D2
yG(x, r2(x))]−1 ◦ [Dx(DyG)(x, r2(x))] ∈ L(X,X)

(6)

for any x ∈ X. Furthermore, in light of (6) and the de�nition of λ,

sup
x∈X
‖Dρ(x)‖L(X,X) ≤ λ1 · λ2 = λ. (7)

Hence, ρ is Lipschitz continuous with Lipschitz constant no greater than λ.

In order to introduce a further assumption, we state the following notion of monotonicity, used in

[55] for solving functional equations (see also [33]), together with preliminary results.

De�nition 2.3 An operator Λ: X → X is said to be super monotone with constant γ i� Λ is strongly

monotone with constant γ, that is

(Λx1 − Λx2, x1 − x2)X ≥ γ‖x1 − x2‖2X for any x1, x2 ∈ X,

and, moreover, γ > 1.

Proposition 2.1. Let Λ: X → X. Then

(i) if Λ is super monotone with constant γ, then Λ is strictly monotone (and, hence, monotone);

6



(ii) if Λ is super monotone with constant γ, then Λ is expansive, i.e. there exists σ > 1 such that

‖Λ(x1)− Λ(x2)‖X ≥ σ‖x1 − x2‖X for any x1, x2 ∈ X,

and, moreover, the expansive constant σ is equal to γ;

(iii) if Λ is di�erentiable and super monotone with constant γ, then

sup
x∈X
‖DΛ(x)‖L(X,X) ≥ γ > 1;

(iv) if Λ is di�erentiable and there exists γ > 1 such that, for any x ∈ X

(DΛ(x)ϕ,ϕ)X ≥ γ‖ϕ‖2X for any ϕ ∈ X, (8)

then Λ is super monotone with constant γ.

Proof. (i) It follows immediately from De�nition 2.3 and the de�nitions of monotone and strictly mono-

tone operators.

(ii) Let Λ be super monotone with constant γ and let x1, x2 ∈ X. The Cauchy-Schwarz inequality implies

that

‖Λ(x1)− Λ(x2)‖X‖x1 − x2‖X ≥ (Λ(x1)− Λ(x2), x1 − x2)X ≥ γ‖x1 − x2‖2X

with γ > 1. Then

‖Λ(x1)− Λ(x2)‖X ≥ γ‖x1 − x2‖X .

As γ > 1 we have that Λ is expansive with expansive constant γ.

(iii) Let Λ be di�erentiable and super monotone with constant γ and let x1, x2 ∈ X. In light of Propo-

sition 2.1(ii) and the Mean Value Inequality, we have

γ‖x1 − x2‖X ≤‖Λ(x1)− Λ(x2)‖X

≤ sup
t∈[0,1]

‖DΛ(tx1 + (1− t)x2)‖L(X,X)‖x1 − x2‖X ,

with γ > 1. Hence, supx∈X‖DΛ(x)‖L(X,X) ≥ γ > 1.

(iv) Let γ > 1 such that (8) holds and let x1, x2 ∈ X. Thus, by applying the Mean Value Theorem to

the real-valued function f de�ned by

f(s) := (Λ(sx1 + (1− s)x2), x1 − x2)X , for any s ∈ [0, 1],

there exists t ∈]0, 1[ such that

(Λ(x1)− Λ(x2), x1 − x2)X =(DΛ(tx1 + (1− t)x2)(x1 − x2), x1 − x2)X

≥γ‖x1 − x2‖2X .

Therefore, Λ is super monotone with constant γ.

For additional discussion on notions stronger than monotonicity see, for example, [7, Chapter 22].

For connections between expansiveness and existence of �xed points see, for example, [54].

We are now ready to introduce a further crucial hypothesis on games in the class HHH satisfying (H1).

(H2)(H2)(H2) The function ρ = r1 ◦ r2 is super monotone with constant γ.
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In the following remarks a su�cient condition for (H2) and a straightforward consideration on ρ are

provided.

Remark 2.2 Let H(x1, x2, y) : X → X be the operator de�ned by

H(x1, x2, y) :=[D2
xF (x1, y)]−1 ◦Dy(DxF )(x1, y)

◦ [D2
yG(x2, y)]−1 ◦Dx(DyG)(x2, y),

where x1, x2 ∈ X and y ∈ Y . Equality (6) implies that Dρ(x) = H(ρ(x), x, r2(x)) for any x ∈ X.

Hence, in light of Proposition 2.1(iv) assumption (H2) is satis�ed if there exists γ > 1 such that, for any

x1, x2 ∈ X and y ∈ Y
(H(x1, x2, y)ϕ,ϕ)X ≥ γ‖ϕ‖2X for any ϕ ∈ X.

Remark 2.3 When Γ ∈ HHH and (H1)�(H2) are satis�ed, then the composition ρ of the best response

functions cannot be a contraction and λ ≥ γ > 1, as a straightforward consequence of Proposition 2.1

and inequality (7).

2.2 Uniqueness theorem

Before proving the existence of one and only one Nash equilibrium, let us associate to any game Γ ∈ HHH
satisfying (H1)�(H2) the following interval

Iλ,γ :=

]
1,

λ2 − 1

λ2 − 2γ + 1

[
. (9)

It is worth to note that Iλ,γ 6= ∅ since λ2 − 2γ + 1 > 0 and λ2−1
λ2−2γ+1 > 1 by Remark 2.3.

The proof of the uniqueness result is obtained arguing similarly to the proof of Theorem 1 in [12].

Theorem 2.1. Assume Γ ∈ HHH and satis�es (H1)�(H2). Then

(i) the function gδ as de�ned in (2) is a contraction, for any δ ∈ Iλ,γ ;
(ii) the contraction constant of gδ is minimal for δ = λ2−γ

λ2−2γ+1 ;

(iii) the game Γ has a unique Nash equilibrium (x̄, r2(x̄)), where x̄ is the unique �xed point of gδ.

Proof. Let δ > 1 and x1, x2 ∈ X, then

‖gδ(x1)− gδ(x2)‖2X =‖δ[x1 − x2]− (δ − 1)[ρ(x1)− ρ(x2)]‖2X
=δ2‖x1 − x2‖2X + (δ − 1)2‖ρ(x1)− ρ(x2)‖2X (10)

− 2δ(δ − 1)(ρ(x1)− ρ(x2), x1 − x2)X .

In light of Lemma 2.2(iii) and hypothesis (H2), from (10) it follows

‖gδ(x1)− gδ(x2)‖2X ≤
[
δ2 + (δ − 1)2λ2 − 2δ(δ − 1)γ

]
‖x1 − x2‖2X .

Let K :]1,+∞[→ R be the function de�ned by

K(δ) := δ2 + (δ − 1)2λ2 − 2δ(δ − 1)γ. (11)

Being λ ≥ γ > 1 (by Remark 2.3), K is a convex quadratic function of δ with minimum at λ2−γ
λ2−2γ+1 > 1

and, since K( λ2−γ
λ2−2γ+1 ) = λ2−γ2

λ2−2γ+1 ≥ 0, then K(δ) ≥ 0 for any δ > 1. Furthermore, K(δ) < 1 if and only

if δ+ 1 + (δ−1)λ2−2δγ < 0, that is if and only if δ ∈ Iλ,γ . Therefore gδ is a contraction for any δ ∈ Iλ,γ
and the contraction constant of gδ is minimal for δ = λ2−γ

λ2−2γ+1 . Finally, let x̄ ∈ X be the unique �xed

point of gδ. Then, in light of Lemma 2.1, (x̄, r2(x̄)) is the unique Nash equilibrium of Γ.
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In the following remark we investigate how the assumptions of Theorem 2.1 can be reformulated in

a more compact way in the case where the game belongs to the class of weighted potential games and,

consequently, how Theorem 2.1 extends the uniqueness result proved in [12, Theorem 1].

Remark 2.4 For the sake of completeness, we recall that Γ is said to be a weighted potential game ([39]

and also, for example, [25, 10]) if there exist w1 > 0, w2 > 0, called weights, and a real-valued function

P de�ned on X × Y , called weighted potential of Γ, such that

F (x, y)− F (x′, y) = w1(P (x, y)− P (x′, y)),

G(x, y)−G(x, y′) = w2(P (x, y)− P (x, y′)),

for any x, x′ ∈ X and any y, y′ ∈ Y . When w1 = w2 = 1, Γ is said to be a potential game and we refer

to P as potential of Γ.

In light of the characterization of weighted potential games given in [25, Theorem 2.1], the set of Nash

equilibria of a weighted potential game Γ = {2, X, Y, F,G} is equal to the set of Nash equilibria of the

game ΓP = {2, X, Y, P, P}. Hence, in this framework, we can require that assumptions of Theorem 2.1

hold for the �simpli�ed� game ΓP , and this can be employed by making assumptions directly on function

P.

In fact, ΓP belongs to HHH if P is twice continuously di�erentiable on X ×Y , D2
xP (x, y) ∈ GL(X,X∗) and

D2
yP (x, y) ∈ GL(Y, Y ∗) for any (x, y) ∈ X × Y , and

sup(x,y)∈X×Y ‖D2
xP (x, y)−1 ◦Dy(DxP )(x, y)‖L(Y,X) ∈ R,

sup(x,y)∈X×Y ‖D2
yP (x, y)−1 ◦Dx(DyP )(x, y)‖L(X,Y ) ∈ R.

Moreover, (H1) holds if P is strongly concave in each argument (in light of Remark 2.1) whereas (H2)

holds if there exists γ > 1 such that, for any x1, x2 ∈ X and y ∈ Y

([D2
xP (x1, y)−1 ◦Dy(DxP )(x1, y) ◦D2

yP (x2, y)−1 ◦Dx(DyP )(x2, y)]ϕ,ϕ)X ≥ γ‖ϕ‖2X ,

for any ϕ ∈ X (in light of Remark 2.2).

In [12, Theorem 1 and Proposition 6] we proved that the conditions stated above guarantee the existence

of a unique Nash equilibrium regardless of either the strict concavity of P over X×Y or the existence of

a maximizer of P , whereas the literature on uniqueness of Nash equilibrium in weighted potential games

is essentially based on the strict concavity of P over X×Y and on the existence of a maximizer of P (see

[47, Corollary of Theorem 1]). Moreover, recall that, when Γ is a potential game and the potential P

is a di�erentiable function, the operator −(DxF,DyG) equals the operator −(DxP,DyP ), so the strict

(resp. strong) monotonicity of −(DxF,DyG) is equivalent to the strict (resp. strong) concavity of P

over X × Y (see, e.g., [32, Theorems 2.1 and 2.4]). Therefore, given all the above, the uniqueness result

in Theorem 2.1 neither implies nor it is implied by the results on uniqueness of Nash equilibria based on

the properties of monotonicity of −(DxF,DyG), like for example [51, Theorem 2] or [32, Theorem 5.1].

In the next example, we illustrate a class of weighted potential games whose weighted potential

function P satis�es the conditions stated in Remark 2.4. Such a class is similar to the one considered in

[12, Subsection 4.2] and is exhibited for the sake of completeness.

Example 2.1 Let Γ = {2, X, Y, F,G} be the game with X = Y = R and

F (x, y) =hF (x) + kF (y)± βFxy

G(x, y) =hG(y) + kG(x)± βGxy,
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where hF : R → R and hG : R → R are twice continuously di�erentiable functions,1 kF : R → R,
kG : R→ R, βF > 0 and βG > 0.

Assume that

MF := − infx∈RD
2hF (x) ∈ R, mF := − supx∈RD

2hF (x) > 0,

MG := − infy∈RD
2hG(y) ∈ R, mG := − supy∈RD

2hG(y) > 0, (12)

MFMG < βFβG.

Then, Γ is a weighted potential game with weights βF , βG and weighted potential

P (x, y) =
hF (x)

βF
+
hG(y)

βG
± xy,

and, for any (x, y) ∈ R2

D2
xP (x, y) =

D2hF (x)

βF
≤ −mF

βF
< 0, D2

yP (x, y) =
D2hG(y)

βG
≤ −mG

βG
< 0. (13)

Moreover,

sup
(x,y)∈R2

∣∣∣∣Dy(DxP )(x, y)

D2
xP (x, y)

∣∣∣∣ =
βF
mF

, sup
(x,y)∈R2

∣∣∣∣Dx(DyP )(x, y)

D2
yP (x, y)

∣∣∣∣ =
βG
mG

, (14)

and for any x1, x2, y ∈ R

Dy(DxP )(x1, y) ·Dx(DyP )(x2, y)

D2
xP (x1, y) ·D2

yP (x2, y)
≥ βFβG
MFMG

> 1. (15)

Then, by (13) to (15), the weighted potential P ful�lls the conditions of Remark 2.4.

Assumptions in (12) hold when, for example

hF (x) =
1

1 + x2
− 4x2 + x, hG(y) =

1

1 + y2
− 4y2 + y, βF = βG = 12, (16)

since, in this case, MF = MG = 10 and mF = mG = 15/2.

2.3 A �tting class of games

In this subsection, we propose a class of games satisfying the hypotheses of Theorem 2.1 and which

involves games with in�nite dimensional strategy spaces and quadratic payo� functions. Such a class

includes the class of weighted potential games considered in [12, Subsection 4.1].

Let Γ = {2, X, Y, F,G} be the game with

F (x, y) =− aF (x, x) + LF (x) + cF + f(y) + bF (y, x)

G(x, y) =− aG(y, y) + LG(y) + cG + g(x) + bG(x, y),
(17)

where aF : X ×X → R, bF : Y ×X → R, aG : Y × Y → R and bG : X × Y → R are bilinear continuous

operators, f : Y → R, g : X → R are twice continuously di�erentiable, LF ∈ X∗, LG ∈ Y ∗, and

cF , cG ∈ R.
Assume that there exist αF > 0, αG > 0 such that for any x ∈ X and any y ∈ Y

aF (x, x) ≥ αF ‖x‖2X , aG(y, y) ≥ αG‖y‖2Y , (18)

1It is worth to remind that in this case the derivatives D2
xF and Dy(DxF ) can be identi�ed with the usual derivatives of

real-valued functions de�ned on R2,
[
D2
xF (x, y)

]−1
exists provided that D2

xF (x, y) 6= 0, and
[
D2
xF (x, y)

]−1
= 1/D2

xF (x, y).

Analogous considerations apply to D2
yG and Dx(DyG).
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and, moreover, let AF ∈ L(X,X∗), AG ∈ L(Y, Y ∗), BF ∈ L(Y,X∗) and BG ∈ L(X,Y ∗) such that for

any x, x1, x2 ∈ X and any y, y1, y2 ∈ Y

aF (x1, x2) = 〈AFx1, x2〉X∗×X , bF (y, x) = 〈BF y, x〉X∗×X , (19a)

aG(y1, y2) = 〈AGy1, y2〉Y ∗×Y , bG(x, y) = 〈BGx, y〉Y ∗×Y . (19b)

Then, F and G are twice continuously di�erentiable on X × Y and for any (x, y) ∈ X × Y

D2
xF (x, y) = −2AF , Dy(DxF )(x, y) = BF ,

D2
yG(x, y) = −2AG, Dx(DyG)(x, y) = BG.

(20)

In light of (18), (19a) and (19b), the Lax-Milgram Theorem (see, e.g., [35]) guarantees that D2
xF (x, y) ∈

GL(X,X∗) andD2
yG(x, y) ∈ GL(Y, Y ∗) for any (x, y) ∈ X×Y and, by de�nition of λ1 and λ2 in (3a)�(3b)

and by (20), we get

λ1 =
1

2
‖A−1

F ◦BF ‖L(Y,X) ∈ R, λ2 =
1

2
‖A−1

G ◦BG‖L(X,Y ) ∈ R.

Therefore, Γ belongs to HHH. Furthermore, Γ satis�es (H1) in light of (20) and Remark 2.1, and (H2)

holds if there exists γ > 1 such that

([A−1
F ◦BF ◦A

−1
G ◦BG]ϕ,ϕ)X ≥ 4γ‖ϕ‖2X for any ϕ ∈ X, (21)

in light of Remark 2.2.

In the following proposition, su�cient conditions for inequality (21) are provided.

Proposition 2.2. Let Γ be a game whose payo� functions are de�ned as in (17) and satisfy (18), (19a)

and (19b). Assume that X and Y coincide with the same Hilbert space Z := X = Y , and let (·, ·)Z and

((·, ·))Z be two inner products on Z. If there exist βF , βG ∈ R such that for any z1, z2 ∈ Z

aF (z1, z2) = αF · (z1, z2)Z , bF (z2, z1) = βF · (z2, z1)Z , (22a)

aG(z1, z2) = αG · ((z1, z2))Z , bG(z1, z2) = βG · ((z1, z2))Z , (22b)

and βFβG > 4αFαG, then there exists γ > 1 whereby inequality (21) holds.

Proof. Let ϕ ∈ Z; then in light of (19b) and (22b)

〈BGϕ, z2〉Z∗×Z = βG · ((ϕ, z2))Z , for any z2 ∈ Z. (23)

SinceAG ∈ GL(Z,Z∗), thenA−1
G (BGϕ) is the unique z2 ∈ Z such thatAGz2 = BGϕ, that is 〈AGz2, k〉Z∗×Z =

〈BGϕ, k〉Z∗×Z for any k ∈ Z. By (19b), (22b) and (23)

αG · ((z2, k))Z = βG · ((ϕ, k))Z , for any k ∈ Z;

so A−1
G (BGϕ) = z2 = βG

αG
ϕ.

Hence, in light of (19a) and (22a) the operator BF (A−1
G (BGϕ)) ∈ Z∗ is de�ned by

〈BF (A−1
G (BGϕ)), h〉Z∗×Z =

βFβG
αG

· (ϕ, h)Z , for any h ∈ Z. (24)

SinceAF ∈ GL(Z,Z∗), thenA−1
F (BF (A−1

G (BGϕ))) is the unique z1 ∈ Z such thatAF z1 = BF (A−1
G (BGϕ)),

that is 〈AF z1, h〉Z∗×Z = 〈BF (A−1
G (BGϕ)), h〉Z∗×Z for any h ∈ Z. Therefore, by (19a), (22a) and (24)

αF · (z1, h)Z =
βFβG
αG

(ϕ, h)Z , for any h ∈ Z;
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so

A−1
F (BF (A−1

G (BGϕ))) = z1 =
βFβG
αFαG

ϕ.

Being ϕ arbitrary in Z, it follows that

([A−1
F ◦BF ◦A

−1
G ◦BG]ϕ,ϕ)Z =

βFβG
αFαG

‖ϕ‖2Z , for any ϕ ∈ Z,

where ‖·‖Z is the norm associated with the inner product (·, ·)Z . Hence, since βFβG > 4αFαG, inequality

(21) holds for γ = βF βG
4αFαG

.

We highlight that also some di�erential games (for de�nitions see, e.g., [6, 20]) can be included in

the class of games just presented. We illustrate an example below.

Example 2.2 Let us consider a two-player in�nite horizon di�erential game where the control variables

uF , uG belong to U := L2([0,+∞[), the state variable x : [0,+∞[→ R evolves according to the equation

ẋ(t) = uF (t) + uG(t)−mx(t), (25)

with x(0) = x0 > 0 and m > 0, and the instantaneous pro�ts of players at time t are

πF (x(t), uF (t), uG(t)) := x(t)− αF [uF (t)]2 + βFuF (t)uG(t),

πG(x(t), uF (t), uG(t)) := x(t)− αG[uG(t)]2 + βGuF (t)uG(t),

with αF > 0, αG > 0, βF ∈ R and βG ∈ R. So, players' objective functional are

JF (x, uF , uG) =

∫ ∞
0

e−iF tπF (x(t), uF (t), uG(t)) dt,

JG(x, uF , uG) =

∫ ∞
0

e−iGtπG(x(t), uF (t), uG(t)) dt,

(26)

where iF ≥ 0 and iG ≥ 0 are the discount rates of the �rst and second player, respectively. The di�erential

game described above has a structure similar to the one often employed in knowledge accumulation models

(see, for example, [20, Example 7.1 and Section 9.5]) and also in advertising models (see, for example,

[20, Section 11.3]).

Substituting the solution of the �rst-order di�erential equation (25) in (26), we can rewrite the players'

objective functionals as functions of the control variables only.2 Denoted such functions by F and G, we

obtain

F (uF , uG) =
∫∞

0
e−iF t

{
x0e
−mt− αF [uF (t)]2 + βFuF (t)uG(t) + e−mt

∫ t
0
[uF (s) + uG(s)]ems ds

}
dt

G(uF , uG) =
∫∞

0
e−iGt

{
x0e
−mt− αG[uG(t)]2 + βGuF (t)uG(t) + e−mt

∫ t
0
[uF (s) + uG(s)]ems ds

}
dt

for any (uF , uG) ∈ U × U . Then, the game Γ = {2, U, U, F,G} belongs to the class of games considered

2The solution of di�erential equation (25) is x(t) = x0e−mt + e−mt
∫ t
0 [uF (s) + uG(s)]e

ms ds.
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in this subsection and characterized by (17), where

aF (u′F , u
′′
F ) = αF

∫∞
0
e−iF tu′F (t)u′′F (t) dt, for any u′F , u

′′
F ∈ U ; (27a)

aG(u′G, u
′′
G) = αG

∫∞
0
e−iGtu′G(t)u′′G(t) dt, for any u′G, u

′′
G ∈ U ; (27b)

bF (uG, uF ) = βF
∫∞

0
e−iF tuF (t)uG(t) dt, for any uF , uG ∈ U ; (27c)

bG(uF , uG) = βG
∫∞

0
e−iGtuF (t)uG(t) dt, for any uF , uG ∈ U ; (27d)

LF (uF ) =
∫∞

0
e−(iF+m)t

[∫ t
0
emsuF (s) ds

]
dt, for any uF ∈ U ;

LG(uG) =
∫∞

0
e−(iG+m)t

[∫ t
0
emsuG(s) ds

]
dt, for any uG ∈ U ;

f(uG) =
∫∞

0
e−(iF+m)t

[∫ t
0
emsuG(s) ds

]
dt, for any uG ∈ U ;

g(uF ) =
∫∞

0
e−(iG+m)t

[∫ t
0
emsuF (s) ds

]
dt, for any uF ∈ U ;

cF =
∫∞

0
x0e
−(iF+m)t dt, cG =

∫∞
0
x0e
−(iG+m)t dt.

In particular, the operators aF , aG, bF , bG in (27a)�(27d) are of the same type of the operators described

in (22a) and (22b) where Z = U and the two inner products on U are de�ned by

(uF , uG)U :=

∫ ∞
0

e−iF tuF (t)uG(t) dt, for any uF , uG ∈ U,

((uF , uG))U :=

∫ ∞
0

e−iGtuF (t)uG(t) dt, for any uF , uG ∈ U.

Finally, we point out that Γ = {2, U, U, F,G} is not, in general, a weighted potential game.

3 Theoretical approximation of the Nash equilibrium

The classical best response algorithm (where the player's strategy at the current step is the best response

to the previous strategy of the other player) is well-known to converge both in zero-sum and in non zero-

sum games if the composition ρ of the best response functions is a contraction, as shown in [17] and in

[37]. Moreover, in zero-sum games, convex relaxations of such an algorithm (where the player's strategy

at the current step is a convex combination of his previous strategy and of the best response to the

current strategy of the other player) have been proved to converge for special choices of the convex

combinations' coe�cients even when ρ is not a contraction, as shown in [42]. Nevertheless, the classical

best response algorithm as well as each of its convex relaxations may fail to converge in non zero-sum

games when ρ is not a contraction. So, our motivating reason concerns how modifying a best response

algorithm in order to ensure the convergence in non zero-sum games when ρ is not a contraction. The

idea is to adjust �reversely� the best response of one player: we de�ne an a�ne non-convex combination

(instead of a convex combination) whereby the previous strategy is in-between the current strategy and

the best response to the current strategy of the other player.

Relying on the just mentioned considerations, we formalize now an iterative method that allows to

approach the Nash equilibrium of Γ (whose uniqueness is ensured by Theorem 2.1).

Hence, assume Γ belongs toHHH and satis�es (H1)�(H2); we remind that under such assumptions ρ is not

a contraction (see Remark 2.3). Let δ ∈ Iλ,γ , where Iλ,γ is de�ned in (9).
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Inverse-Adjusted Best Response Algorithm (Aδ)

(Step 0 ) Choose an initial point y0 ∈ Y and compute x0 = r1(y0).

(Step 1 ) Compute

 y1 = r2(x0)

x1 = δx0 − (δ − 1)r1(y1) = gδ(x0).

...

(Step n) Compute

 yn = r2(xn−1)

xn = δxn−1 − (δ − 1)r1(yn) = gδ(xn−1).

...

Remark 3.1 In the special case where the strategy sets are R and the best response functions are

assumed to be linear, (Aδ) corresponds to a relaxation algorithm described in [5, equations (3.4) p. 536].

At step n, the algorithm (Aδ) �rstly selects the best response of the second player, i.e., yn = r2(xn−1);

then, it selects a non-convex combination of the strategy of the �rst player coming from step n− 1 and

of his best response to yn, i.e. xn = δxn−1− (δ− 1)r1(yn) with δ ∈ Iλ,γ ⊆]1,+∞[ (note that (Aδ) would
coincide with the classical best response algorithm when δ = 0 and with its convex relaxations when

varying δ ∈]0, 1[). Intuitively, it is as if the algorithm computes r1(yn) in an imaginary intermediate step

and then it adjusts such an r1(yn) inversely with respect to xn−1. Such an inversion is carried out by

the δ-inverse convex combinator of Γ, that is the function gδ de�ned in (2).

Figure 2 provides some graphical insights related to the algorithm (Aδ) applied to the game Γ =

{2,R,R, F,G}, where F (x, y) = −x2 + 4xy, G(x, y) = −y2 + 6xy, choosing δ = 23/20 (such a game

belongs to HHH and satis�es (H1)�(H2), the unique Nash equilibrium is (0, 0)). In particular, Figures 2a

and 2b display the �rst two iterations of (Aδ): we note that x0 is in-between x1 and r1(y1), x1 is in-

between x2 and r1(y2), and that the approximations x1, x2 and y1, y2 approach the Nash equilibrium

strategies. In Figure 2c we mainly focus on the restriction to gδ of the �rst two iterations of (Aδ): x1, x2

approach the unique �xed point of gδ, which coincides with the unique �xed point of ρ (according to

Lemma 2.1). Figure 2d depicts the �rst two iterations of the classical best response algorithm applied to

Γ: such an algorithm clearly diverges (as ρ is not a contraction), as well as any convex relaxed variant.

In the next theorem the convergence of the algorithm is stated.

Theorem 3.1. Assume Γ ∈ HHH and satis�es (H1)�(H2). Let (x̄, ȳ) be the unique Nash equilibrium of

Γ. Equipped the product space X × Y with the norm de�ned by

‖(x, y)‖X×Y := ‖x‖X + ‖y‖Y , for any (x, y) ∈ X × Y, (28)

then the sequence (xn, yn)n generated by the algorithm (Aδ) is strongly convergent to (x̄, ȳ) in X × Y ,
for any δ ∈ Iλ,γ . Furthermore

lim
n→+∞

F (xn, yn) = F (x̄, ȳ), lim
n→+∞

G(xn, yn) = G(x̄, ȳ). (29)

Proof. The existence of a unique Nash equilibrium of Γ is guaranteed by Theorem 2.1(iii). Let δ ∈ Iλ,γ .
Since ȳ = r2(x̄), then x̄ is the unique �xed point of gδ by Lemma 2.1. In light of Theorem 2.1(i), gδ is a

contraction with related (estimated) contraction constant κ(δ) where

κ(δ) := [K(δ)]1/2 (30)
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Figure 2: Some graphical representations related to the algorithm (Aδ).

with K(δ) de�ned in (11). Moreover,

‖xn − x̄‖X = ‖gδ(xn−1)− gδ(x̄)‖X ≤ κ(δ)‖xn−1 − x̄‖X ≤ · · · ≤ κ(δ)n−1‖x1 − x̄‖,

for any n ∈ N. As κ(δ) < 1, then limn→+∞‖xn − x̄‖X = 0. Therefore, the sequence (xn)n is strongly

convergent to x̄. Furthermore, by Lemma 2.2(ii)

‖yn − ȳ‖Y = ‖r2(xn−1)− r2(x̄)‖Y ≤ λ2‖xn−1 − x̄‖X , for any n ∈ N.

Since limn→+∞ ‖xn−1 − x̄‖X = 0, the sequence (yn)n is strongly convergent to ȳ. So, the sequence

(xn, yn)n strongly converges to (x̄, ȳ) in light of (28).

Finally, equalities in (29) follow from the continuity of F and G.

In the next proposition the error estimations of the sequences generated by the algorithm (Aδ) are
computed.

Proposition 3.1. Assume Γ ∈ HHH and satis�es (H1)�(H2). Let (x̄, ȳ) be the unique Nash equilibrium

of Γ. Then, for any δ ∈ Iλ,γ , the following estimations hold

‖xn − x̄‖X ≤
κ(δ)n

1− κ(δ)
‖x1 − x0‖X for any n ∈ N, (31a)

‖yn+1 − ȳ‖Y ≤
κ(δ)nλ2

1− κ(δ)
‖x1 − x0‖X for any n ∈ N, (31b)

where κ is de�ned in (30).
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Proof. Let δ ∈ Iλ,γ . In light of Theorem 2.1(i), gδ is a contraction and the relative (estimated) contraction

constant is κ(δ), so

‖xn+1 − xn‖X ≤ κ(δ)‖xn − xn−1‖X ≤ . . . ≤ κ(δ)n‖x1 − x0‖X for any n ∈ N.

Consequently, for any p ∈ N we get

‖xn+p − xn‖X ≤
p∑
j=1

‖xn+j − xn+j−1‖X

≤
p∑
j=1

κ(δ)n+j−1‖x1 − x0‖X =
κ(δ)n(1− κ(δ)p)

1− κ(δ)
‖x1 − x0‖X .

(32)

Hence, inequality (31a) follows from (32) taking the limit as p→ +∞ since κ(δ) < 1.

Finally, by Lemma 2.2(ii) and (31a) we get

‖yn+1 − ȳ‖Y = ‖r2(xn)− r2(x̄)‖Y ≤ λ2‖xn − x̄‖X ≤
κ(δ)nλ2

1− κ(δ)
‖x1 − x0‖X ,

so inequality (31b) is proved.

It is worth to note that the convergence of the theoretical algorithm (Aδ) grounds on the fact that

gδ is a contraction, for any δ ∈ Iλ,γ . As the estimation of the contraction constant of gδ is given by κ(δ)

de�ned in (30), a natural choice of the parameter in Iλ,γ could be the one associated with the inverse

convex combinator whose contraction constant is minimal. We call ν such a value, that is

ν :=
λ2 − γ

λ2 − 2γ + 1
(33)

in light of Theorem 2.1(ii), and we denote by k the associated contraction constant, that is

k := κ(ν) =

(
λ2 − γ2

λ2 − 2γ + 1

)1/2

. (34)

Therefore, in the next section we deal only with the algorithm (Aδ) when δ takes the value ν. For

notational convenience we will refer to it as the algorithm (A), illustrated below.

Inverse-Adjusted Best Response Algorithm (A)

(Step 0 ) Choose an initial point y0 ∈ Y and compute x0 = r1(y0).

(Step 1 ) Compute

 y1 = r2(x0)

x1 = νx0 − (ν − 1)r1(y1) = gν(x0).

...

(Step n) Compute

 yn = r2(xn−1)

xn = νxn−1 − (ν − 1)r1(yn) = gν(xn−1).

...
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4 Numerical approximation of the Nash equilibrium

Inverse-Adjusted Best Response Algorithm (A) illustrated in Section 3 involves the best response func-

tions of the game Γ. In this section we propose a numerical method which can be fruitfully used when

the analytic expressions of the best response functions are not available. For the sake of brevity, we con-

sider from now on only games whose strategy sets are �nite dimensional spaces and we defer to future

research the case of in�nite dimensional strategy spaces together with the application of the numerical

approximation to classes of di�erential games.

So, let Γp,q = {2, Xp, Yq, F,G} where Xp is a p-dimensional space and Yq is a q-dimensional space, and

F and G now are real-valued functions de�ned on Xp × Yq. Firstly, we recall the local variation method,

a derivative-free continuous optimization technique introduced in [15] for �nding solutions of variational

problems and used, in particular, in [16] for functional minimization problems and in [42, 19] for zero-sum

games. Then, we approximate the Nash equilibrium of the game by combining the algorithm (A) with
the local variation method.

In order to achieve this goal, in this section we consider the following assumptions on Γp,q.

(A1)(A1)(A1) the function F is strongly concave on Xp uniformly on Yq and the function G is strongly concave

on Yq uniformly on Xp, i.e. there exist two constants mF > 0 and mG > 0 such that, for any

x, x′, x′′ ∈ Xp, any y, y
′, y′′ ∈ Yq and any t ∈ [0, 1]:

F (tx′ + (1− t)x′′, y) ≥ tF (x′, y) + (1− t)F (x′′, y) +mF t(1− t)‖x′ − x′′‖2Xp ;

G(x, ty′ + (1− t)y′′) ≥ tG(x, y′) + (1− t)G(x, y′′) +mGt(1− t)‖y′ − y′′‖2Yq ;

(A2)(A2)(A2) there exists γ > 1 such that, for any x1, x2 ∈ Xp and y ∈ Yq

(H(x1, x2, y)ϕ,ϕ)Xp ≥ γ‖ϕ‖2Xp for any ϕ ∈ Xp,

where H(x1, x2, y) : Xp → Xp is the operator de�ned by

H(x1, x2, y) :=[D2
xF (x1, y)]−1 ◦Dy(DxF )(x1, y)

◦ [D2
yG(x2, y)]−1 ◦Dx(DyG)(x2, y).

Remark 4.1 If F is strongly concave on Xp uniformly on Yq, then the function F (·, y) is strongly

concave for any y ∈ Yq. The converse is not true in general (this is the case, for example, if F is de�ned

on R2 by F (x, y) = −x2ey). Clearly, a function can be strongly concave on Xp uniformly on Yq and

can be not concave on Xp × Yq (take, for example, F de�ned on R2 by F (x, y) = −x2(ey + 1)). Similar

arguments hold also when G is strongly concave on Yq uniformly on Xp.

Remark 4.2 Conditions (A1)�(A2) are more restrictive than (H1)�(H2). In fact, (A1) implies (H1) in

light of Remarks 2.1 and 4.1, whereas (A2) implies (H2) in light of Remark 2.2. Therefore, all the results

obtained in Sections 2 and 3 for Γ = {2, X, Y, F,G} apply when we replace Γ with Γp,q = {2, Xp, Yq, F,G}
and (H1)�(H2) with (A1)�(A2).

We emphasize that, although (A1)�(A2) are more restrictive, they will allow to handle situations where

the best response functions are not explicit. In fact, the following examples illustrate two games which

belong to the class HHH, satisfy assumptions (A1)�(A2), and where the best response functions of both

players cannot be computed explicitly.
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Example 4.1 Let Γp,q = {2, Xp, Yq, F,G} be the game where Xp = Yq = R and the payo� functions

are de�ned by

F (x, y) = −x2 − cosx sin y − 5xy,

G(x, y) =
1

1 + y2
− 4y2 + y − 12xy.

The function F is strongly concave on Xp = R uniformly on Yq = R since D2
xF (x, y) = −2+cosx sin y ≤

−1 for any (x, y) ∈ R2, and the function G is strongly concave on Yq = R uniformly on Xp = R since

D2
yG(x, y) = [(6y2 − 2)/(1 + y2)3]− 8 ≤ −15/2 for any (x, y) ∈ R2. So (A1) holds. Moreover

4

3
≤ λ1 = sup

(x,y)∈R2

∣∣∣∣Dy(DxF )(x, y)

D2
xF (x, y)

∣∣∣∣ = sup
(x,y)∈R2

5− sinx cos y

2− cosx sin y
≤ 6,

λ2 = sup
(x,y)∈R2

∣∣∣∣Dx(DyG)(x, y)

D2
yG(x, y)

∣∣∣∣ = sup
(x,y)∈R2

6(y2 + 1)3

4y6 + 12y4 + 9y2 + 5
=

8

5
.

Therefore Γp,q ∈ HHH. Furthermore

H(x1, x2, y) =
(5− sinx1 cos y)[6(y2 + 1)3]

(2− cosx1 sin y)(4y6 + 12y4 + 9y2 + 5)

≥ inf
(x,y)∈R2

5− sinx cos y

2− cosx sin y
· inf
(x,y)∈R2

6(y2 + 1)3

4y6 + 12y4 + 9y2 + 5
≥ 4

3
· 6

5
=

8

5
> 1,

for any x1, x2 ∈ R and y ∈ R. Hence (A2) is satis�ed by taking γ = 8/5.

Note that Γp,q does not belong either to the class of weighted potential games illustrated in Remark 2.4

or to the class of games described in Section 2.3.

Example 4.2 Let Γp,q = {2, Xp, Yq, F,G} be a weighted potential game belonging to the class considered

in Example 2.1 with hF , hG, βF , βG speci�ed in (16) and kF ≡ kG ≡ 0. Since D2
xF (x, y) = D2

yG(x, y) ≤
−15/2 for any (x, y) ∈ R2, then F is strongly concave on Xp = R uniformly on Yq = R and G is strongly

concave on Yq = R uniformly on Xp = R, so (A1) holds. Moreover, in light of Remark 2.4, Γp,q ∈ HHH and

(A2) is satis�ed by taking γ = 36/25.

4.1 The local variation method

Now, let us describe the local variation method (introduced in [15]) that allows, by using only the values

of the function, both to �nd an approximation of the unique maximizer of a strongly concave real-valued

function de�ned on a �nite dimensional space and to obtain an estimation of the distance between the

approximation calculated and the (exact) maximizer. Such a method will be employed in our numerical

method to approximate the best responses of the players acting in Γp,q.

It is worth to highlight that such a method belongs to the class of coordinate descent methods, widely

used in constrained and unconstrained optimization (see, e.g., [3, Chapter 6], [8, Chapters 1 and 2] or

[48, Chapter 3]).

We �rst illustrate the local variation method to �nd an approximation of the unique maximizer of a

real-valued function f de�ned on RN (following the scheme proposed in [16]), then we generalize such a

method to a real-valued function J de�ned on a general �nite dimensional space VN . So, let us denote

by (·, ·)RN the usual inner product on RN and by ‖·‖RN the Euclidean norm, and consider f : RN → R.
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Local variation method

(Step 0 ) Fix an initial point (z0
1 , z

0
2 , . . . , z

0
N ) ∈ RN and a range ε > 0.

(Step 1 ) De�ne:

Θ1 := f(z0
1 , z

0
2 , z

0
3 , . . . , z

0
N ),

Θ+
1 := f(z0

1 + ε, z0
2 , z

0
3 , . . . , z

0
N ),

Θ−1 := f(z0
1 − ε, z0

2 , z
0
3 , . . . , z

0
N ).

Find the point in the set {z0
1 , z

0
1 + ε, z0

1 − ε} which corresponds to the maximum of the set

{Θ1,Θ
+
1 ,Θ

−
1 } and denote it by zε1,1.

(Step 2 ) De�ne:

Θ2 := f(zε1,1, z
0
2 , z

0
3 , . . . , z

0
N ),

Θ+
2 := f(zε1,1, z

0
2 + ε, z0

3 , . . . , z
0
N ),

Θ−2 := f(zε1,1, z
0
2 − ε, z0

3 , . . . , z
0
N ).

Find the point in the set {z0
2 , z

0
2 + ε, z0

2 − ε} which corresponds to the maximum of the set

{Θ2,Θ
+
2 ,Θ

−
2 } and denote it by zε1,2.

...

(Step i) De�ne:

Θi := f(zε1,1, z
ε
1,2, . . . , z

ε
1,i−1, z

0
i , z

0
i+1, . . . , z

0
N ),

Θ+
i := f(zε1,1, z

ε
1,2, . . . , z

ε
1,i−1, z

0
i + ε, z0

i+1, . . . , z
0
N ),

Θ−i := f(zε1,1, z
ε
1,2, . . . , z

ε
1,i−1, z

0
i − ε, z0

i+1, . . . , z
0
N ).

Find the point in the set {z0
i , z

0
i + ε, z0

i − ε} which corresponds to the maximum of the set

{Θi,Θ
+
i ,Θ

−
i } and denote it by zε1,i.

...

(Step N ) De�ne:

ΘN := f(zε1,1, z
ε
1,2, . . . , z

ε
1,N−1, z

0
N ),

Θ+
N := f(zε1,1, z

ε
1,2, . . . , z

ε
1,N−1, z

0
N + ε),

Θ−N := f(zε1,1, z
ε
1,2, . . . , z

ε
1,N−1, z

0
N − ε).

Find the point in the set {z0
N , z

0
N + ε, z0

N − ε} which corresponds to the maximum of the

set {ΘN ,Θ
+
N ,Θ

−
N} and denote it by zε1,N . Hence, the vector zε1 := (zε1,1, z

ε
1,2, . . . , z

ε
1,N ) is

constructed.

(Step R) Repeat the steps from 1 to N choosing zε1 as initial point and the same range ε, and get

zε2 := (zε2,1, z
ε
2,2, . . . , z

ε
2,N ).

...

19



(Step S ) Continue until obtaining a stationary vector z̄ε := (z̄ε1, z̄
ε
2, . . . , z̄

ε
N ), i.e. a vector which satis�es

the following inequalities

Θ+
1 ≤ Θ1

Θ−1 ≤ Θ1

...Θ+
N ≤ ΘN

Θ−N ≤ ΘN .

⇐⇒


f(z̄ε1 ± ε, z̄ε2, . . . , z̄εN ) ≤ f(z̄ε1, z̄

ε
2, . . . , z̄

ε
N )

...

f(z̄ε1, z̄
ε
2, . . . , z̄

ε
N ± ε) ≤ f(z̄ε1, z̄

ε
2, . . . , z̄

ε
N ).

(35)

The existence of a vector verifying (35) is shown in [16]. For the sake of completeness we give below

the statement and the proof of such a result.

Lemma 4.1 (Lemme 1.1 in [16]). Let f : RN → R be a strongly concave function and let ε > 0. Then,

there exists a vector z̄ε satisfying (35), which is obtained by repeating a �nite number of times the steps

from 1 to N of the local variation method.

Proof. Firstly, it is worth to note that the strong concavity of f implies

lim
‖z‖RN→+∞

f(z) = −∞. (36)

Let (zεk)k be the sequence where z
ε
k := (zεk,1, z

ε
k,2, . . . , z

ε
k,N ) is the vector obtained after repeating k times

the steps from 1 to N . Then, the sequence (zεk)k is necessarily bounded. In fact, by contradiction, if

limk→+∞‖zεk‖RN = +∞ then limk→+∞ f(zεk) = −∞, in light of (36). This is not possible since (f(zεk))k

is an increasing sequence, by construction. Therefore (zεk)k is bounded and, consequently, there exists

a constant C > 0 such that |zεk,i| ≤ C for any i ∈ {1, . . . , N} and k ∈ N. Given the above and since

zεk,i = z0
i +mk,iε for some mk,i ∈ Z, there exists k̄ ∈ N such that zεk = zε

k̄
for any k > k̄ and zε

k̄
necessarily

satis�es (35), so the result is proved.

We emphasize that the convergence of the local variation method has been shown in [16] for functions

de�ned on a �nite dimensional space, whereas, in [42] an error estimation in the case of functions de�ned

on RN has been claimed in order to obtain error bounds in zero-sum games. In this paper, having in

mind to obtain error estimations for non zero-sum games de�ned in �nite dimensional spaces, we need

to prove, preliminarily, error bounds and convergence of the local variation method for functions de�ned

on RN . So, in the next lemma we address this issue, by exploiting the proof of Théorème 3.1 in [16].

Before proving the result, we recall that, when f : RN → R is a di�erentiable function and x ∈ RN , the
Taylor's theorem guarantees

∃ Ix ⊆ RN s.t. f(x+ h)− f(x) = (∇f(x), h)RN + r(x, h) ∀h ∈ Ix, (37)

where Ix is a neighbourhood of 0 depending on x, ∇f(x) ∈ RN is the gradient of f at x, and the

remainder r(x, h) satis�es limh→0 r(x, h)/‖h‖RN = 0. Moreover, if a di�erentiable function f : RN → R
is strongly concave then there exists m > 0 such that

f(x′′)− f(x′) ≤ (∇f(x′), x′′ − x′)RN −m‖x′′ − x′‖2RN ; (38)

for any x′, x′′ ∈ RN .
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Lemma 4.2. Let f : RN → R be a di�erentiable and strongly concave function on RN . Assume that

there exist C1 > 0, C0 ≥ 0 and τ > 1 such that

|r(x, h)| ≤ C1‖h‖τRN + C0‖h‖τ+1
RN for any x ∈ RN and h ∈ Ix, (39)

where r and Ix are de�ned in (37).

Let ε > 0 and let zε ∈ RN be the stationary vector obtained at step S of the local variation method applied

to f , i.e. the vector satisfying the inequalities in (35). Then

‖zε − zmax‖RN ≤
√
N(C1 + εC0)

m
ετ−1, (40)

where zmax is the unique maximizer of f over RN and m is the constant related to the strong concavity of

f , de�ned in (38). Moreover, if (εn)n≥0 ⊆]0,+∞[ is a sequence decreasing to zero, the sequence (zεn)n≥0

converges to zmax.

Proof. Let us note that zε is well-de�ned in light of Lemma 4.1, and that the last part of the statement

follows immediately from (40), as limn→+∞ εn = 0 and τ > 1. Therefore, we prove only inequality (40).

Let {e1, . . . , eN} be the standard basis of RN and let us �x i ∈ {1, . . . , N}. Since zε veri�es (35), by (37)

we have

0 ≥ f(zε − εei)− f(zε) = −ε(∇f(zε), ei)RN + r(zε,−εei),

0 ≥ f(zε + εei)− f(zε) = ε(∇f(zε), ei)RN + r(zε, εei).
(41)

So, in light of (41) and (39)

(∇f(zε), ei)RN ≥
r(zε,−εei)

ε
≥ −

C1‖−εei‖τRN + C0‖−εei‖τ+1
RN

ε
,

(∇f(zε), ei)RN ≤ −
r(zε, εei)

ε
≤
C1‖εei‖τRN + C0‖εei‖τ+1

RN

ε
.

(42)

Hence, by (42) and since ‖ei‖RN = 1 we get

|(∇f(zε), ei)RN | ≤ ετ−1(C1 + εC0). (43)

As zmax is the maximizer of f and in light of (38) and (43), then

m‖zε − zmax‖2RN ≤ −[f(zmax)− f(zε)] + (∇f(zε), zmax − zε)RN

≤ |(∇f(zε), zmax − zε)RN |

=

∣∣∣∣∣(∇f(zε),

N∑
i=1

(zmax − zε)iei)RN

∣∣∣∣∣
≤

N∑
i=1

|(zmax − zε)i| · |(∇f(zε), ei)RN |

≤ ετ−1(C1 + εC0)‖zmax − zε‖1

≤
√
N(C1 + εC0)ετ−1‖zmax − zε‖RN ,

where ‖·‖1 is the 1-norm of RN and the last inequality follows from the equivalence of norms in RN ,
more precisely from the inequality ‖z‖p ≤ N (1/p−1/q)‖z‖q holding for any z ∈ RN and p, q ∈ [1,+∞[.

Therefore (40) is proved and the proof is complete.

Remark 4.3 Let us note that the convergence of the local variation method is guaranteed by assuming

only (36), i.e. the coercivity of −f , as shown in [16, Théorème 2.1]. In Lemma 4.2 we added further

assumptions related to the di�erentiability of f to obtain also an error estimation result (inequality (40)

in the statement of Lemma 4.2).
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Now, let J : VN → R where VN is an N -dimensional real vector space endowed with the inner product

(·, ·)VN and related norm ‖·‖VN . Moreover, let B = {b1, b2, . . . , bN} ⊆ VN be the basis of VN such that

the matrix of (·, ·)VN relative to B is the identity matrix IN of size N , i.e. B is the basis whereby for

any u, v ∈ VN we have (u, v)VN = xT INy where x = (x1, . . . , xN ) ∈ RN and y = (y1, . . . , yN ) ∈ RN are

the (unique) N -dimensional vectors such that
∑N
i=1 xibi = u and

∑N
i=1 yibi = v, and where xT is the

transpose of the vector x. The vector x = (x1, . . . , xN ) ∈ RN such that u =
∑N
i=1 xibi ∈ VN is called

coordinate vector of u relative to B and we denote by cB : VN → RN the linear function which associates

with each u ∈ VN the coordinate vector of u relative to B. By means of B, the inner product (·, ·)VN of

VN can be represented via the usual inner product (·, ·)RN of RN . In fact, for any u, v ∈ VN

(u, v)VN = xT INy = x1y1 + · · ·+ xNyN = (x, y)RN , (44)

where x = (x1, . . . , xN ) = cB(u) ∈ RN and y = (y1, . . . , yN ) = cB(v) ∈ RN . Consequently, the norm

‖·‖VN of VN can be represented via the the Euclidean norm ‖·‖RN of RN . In fact, in light of (44), for

any u ∈ VN
‖u‖VN =

√
(u, u)VN =

√
x2

1 + · · ·+ x2
N = ‖x‖RN , (45)

where x = cB(u).

Let J : VN → R be a strongly concave function. Maximizing J over VN is equivalent to maximize the

function f : RN → R de�ned by

f(z1, . . . , zN ) := J(z1b1 + · · ·+ zNbN ), (46)

in the sense that even f is strongly concave (on RN ) and

{z̄1b1 + . . . z̄NbN} = Arg max
v∈VN

J(v)⇔ {(z̄1, . . . , z̄N )} = Arg max
(z1,...,zN )∈RN

f(z1, . . . , zN )(
or, equivalently, {w} = Arg max

v∈VN
J(v)⇔ {cB(w)} = Arg max

x∈RN
f(x)

)
,

max
v∈VN

J(v) = max
(z1,...,zN )∈RN

f(z1, . . . , zN ).

Before showing the error estimation and the convergence results, it is worth to recall that, when J is

di�erentiable on VN and given u ∈ VN , the Taylor's theorem ensures

∃Vu ⊆ VN s.t. J(u+ v)− J(u) = 〈DJ(u), v〉V ∗
N×VN +R(u, v) ∀v ∈ Vu, (47)

where Vu is a neighbourhood of 0 depending on u and R(u, v) is the remainder, and furthermore that if

a di�erentiable function J : VN → R is strongly concave then there exists m > 0 such that

J(u′′)− J(u′) ≤ 〈DJ(u′), u′′ − u′〉V ∗
N×VN −m‖u

′′ − u′‖2VN (48)

for any u′, u′′ ∈ VN . Finally, we say that wε ∈ VN is the point generated by applying the local variation

method to J if cB(wε) is the stationary vector obtained at step S of the local variation method applied

to the function f de�ned in (46).

Theorem 4.1. Let J : VN → R be a di�erentiable and strongly concave function on VN . Assume that

there exist C1 > 0, C0 ≥ 0 and τ > 1 such that

|R(u, v)| ≤ C1‖v‖τVN + C0‖v‖τ+1
VN

for any u ∈ VN and v ∈ Vu, (49)

where R and Vu are de�ned in (47).

Let ε > 0 and let wε ∈ VN be the point generated by applying the local variation method to J . Then

‖wε − wmax‖VN ≤
√
N(C1 + εC0)

m
ετ−1, (50)
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where wmax is the unique maximizer of J over VN , and m is the constant related to the strong concavity

of J , de�ned in (48). Moreover, if (εn)n≥0 ⊆]0,+∞[ is a sequence decreasing to zero, the sequence

(wεn)n≥0 converges to wmax.

Proof. Let u, v ∈ VN be two points verifying (47), whose coordinate vectors relative to B are, respectively,

x := cB(u) ∈ RN and h := cB(v) ∈ RN , and let f : RN → R be the function de�ned in (46). Since J

is di�erentiable and strongly concave over VN , then f is di�erentiable and strongly concave over RN .
Moreover, by de�nition of Gâteaux derivative, the linearity of cB, and (46) we have

〈DJ(u), v〉V ∗
N×VN = 〈dGJ(u), v〉V ∗

N×VN

= lim
t→0

J(u+ tv)− J(u)

t

= lim
t→0

f(x+ th)− f(x)

t

= 〈dGf(x), h〉RN∗×RN

= 〈Df(x), h〉RN∗×RN = (∇f(x), h)RN .

(51)

Hence, in light of (46), (47), (49) and (45) we get

|f(x+ h)− f(x)− (∇f(x), h)RN | = |J(u+ v)− J(u)− 〈DJ(u), v〉V ∗
N×VN |

= |R(u, v)|

≤ C1‖v‖τVN + C0‖v‖τ+1
VN

= C1‖h‖τRN + C0‖h‖τ+1
RN .

Furthermore, the constant related to the strong concavity of f is equal to the constant related to strong

concavity of J . In fact, for any x′, x′′ ∈ RN , from (46), (48) and (51) it follows

f(x′′)− f(x′) = J(u′′)− J(u′)

≤ 〈DJ(u′), u′′ − u′〉V ∗
N×VN −m‖u

′′ − u′‖2VN
= (∇f(x′), x′′ − x′)RN −m‖x′′ − x′‖2RN ,

where u′ ∈ VN and u′′ ∈ VN are equal to c−1
B (x′) and c−1

B (x′′), respectively. Therefore f satis�es the

assumptions of Lemma 4.2, and so

‖zε − zmax‖RN ≤
√
N(C1 + εC0)

m
ετ−1, (52)

where zε ∈ RN is the stationary vector obtained at step S of the local variation method applied to f ,

i.e. zε veri�es (35), and zmax ∈ RN is the unique maximizer of f over RN . Thus, zε = cB(wε) and

zmax = cB(wmax). In light of (45) and (52),

‖wε − wmax‖VN = ‖zε − zmax‖RN ≤
√
N(C1 + εC0)

m
ετ−1,

so (50) holds.

The last part of the result follows from (50), since limn→+∞ εn = 0 and τ > 1.

4.2 The Numerical Inverse-Adjusted Best Response Algorithm

We introduce now a numerical method to approximate the unique Nash equilibrium (x̄p,q, ȳp,q) of Γp,q,

referred as Numerical Inverse-Adjusted Best Response Algorithm via local variation method and denoted

by (NA), which combines the local variation method described in the previous subsection and the

algorithm (A) de�ned in Section 3.
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Numerical Inverse-Adjusted Best Response Algorithm (NA)

(Step 0 ) Let y0 be an arbitrary point in Yq. Having chosen an initial point x̃0 ∈ Xp and a range ε0 > 0,

apply the local variation method to the function F (·, y0) and get the stationary vector x∗0 ∈ Xp.

(Step 1 ) Choosing ε1 < ε0, apply the local variation method to the function G(x∗0, ·) with initial point

y0 and range ε1, and get the stationary vector y∗1 ∈ Yq.

Apply the local variation method to the function F (·, y∗1) with initial point x∗0 and range ε1,

and get the stationary vector x̃∗1 ∈ Xp.

Compute x∗1 := νx∗0 − (ν − 1)x̃∗1 ∈ Xp, where ν is de�ned in (33).

(Step 2 ) Choosing ε2 < ε1, apply the local variation method to the function G(x∗1, ·) with initial point

y∗1 and range ε2, and get y∗2 .

Apply the local variation method to the function F (·, y∗2) with initial point x∗1 and range ε2,

and get x̃∗2.

Compute x∗2 := νx∗1 − (ν − 1)x̃∗2.
...

At the generic step n, with n > 2, given x∗n−1 ∈ Xp, y
∗
n−1 ∈ Yq and εn−1, we come to

(Step n) Choosing εn < εn−1, apply the local variation method to the function G(x∗n−1, ·) with initial

point y∗n−1 and range εn, and get y∗n ∈ Yq.
Apply the local variation method to the function F (·, y∗n) with initial point x∗n−1 and range εn,

and get x̃∗n ∈ Xp.

Compute x∗n := νx∗n−1 − (ν − 1)x̃∗n ∈ Xp.
...

Figures 3 and 4 provide a schematization of (Step 0 )-(Step 2 ) and a schematization of (Step n),

respectively.

(x̃0, y0)

x∗0

L.V.M.
[F (·,y0),x̃0,ε0]

y∗
1

L.V.M.
[G(x∗

0 ,·),y0,ε1]

x̃∗1

L.V.M.
[F (·,y∗1 ),x∗

0 ,ε1]

x∗
1

νx∗
0 − (ν − 1)x̃∗

1

y∗
2

L.V.M.
[G(x∗

1 ,·),y
∗
1 ,ε2]

x̃∗2

L.V.M.
[F (·,y∗2 ),x∗

1 ,ε2]

x∗
2

νx∗
1 − (ν − 1)x̃∗

2

Figure 3: (Step 0)-(Step 2) of (NA).
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x∗n−1

y∗
n

L.V.M.
[G(x∗

n−1,·),y
∗
n−1,εn]

x̃∗n

L.V.M.
[F (·,y∗n),x∗

n−1,εn]

x∗
n

νx∗
n−1 − (ν − 1)x̃∗

n

Figure 4: (Step n) of (NA).

The convergence of the numerical algorithm (NA) is shown in the next theorem, whereas the imple-

mentation of the algorithm will be the subject of a future research.

Preliminarily, let us remind that the Taylor's theorem applied to F (·, y) at x ∈ Xp and to G(x, ·) at

y ∈ Yq, respectively, guarantees ∃ Ix,y ⊆ Xp neighborhood of 0 depending on x and y such that

F (x+ h, y)− F (x, y) = 〈DxF (x, y), h〉X∗
p×Xp +RF (x, h, y) ∀h ∈ Ix,y,

(53a)

 ∃Jy,x ⊆ Yq neighborhood of 0 depending on y and x such that

G(x, y + k)−G(x, y) = 〈DyG(x, y), k〉Y ∗
q ×Yq +RG(y, k, x) ∀k ∈ Jy,x,

(53b)

where RF (x, h, y) and RG(y, k, x) are the remainders.

Theorem 4.2. Assume Γp,q = {2, Xp, Yq, F,G} ∈ HHH satis�es (A1)�(A2) and

(i) there exist A1 > 0, A0 ≥ 0 and α > 1 such that

|RF (x, h, y)| ≤ A1‖h‖αXp +A0‖h‖α+1
Xp

, (54)

for any x ∈ Xp, y ∈ Yq and h ∈ Ix,y, where RF and Ix,y are de�ned in (53a);

(ii) there exist B1 > 0, B0 ≥ 0 and β > 1 such that

|RG(y, k, x)| ≤ B1‖h‖βYq +B0‖h‖β+1
Yq

, (55)

for any y ∈ Yq, x ∈ Xp and k ∈ Jy,x, where RG and Jy,x are de�ned in (53b).

Let ε0 > 0 and εn = ε0/2
n for any n ∈ N, and let (x̃0, y0) ∈ Xp×Yq. Then, the sequence (x∗n, y

∗
n)n ⊆ Xp×

Yq generated by the numerical algorithm (NA) is convergent to the unique Nash equilibrium (x̄p,q, ȳp,q)

of Γp,q.

Proof. The uniqueness of the Nash equilibrium of Γp,q is guaranteed by the assumptions, Theorem 2.1(iii)

and Remark 4.2. Moreover, the sequence (x∗n, y
∗
n)n ⊆ Xp × Yq is well-de�ned.

In order to show the result, let us de�ne the following points, associated to (x∗n, y
∗
n)n

zn := r2(x∗n−1) ∈ Yq (56a)

s̃n := r1(zn) ∈ Xp (56b)

sn := νx∗n−1 − (ν − 1)s̃n = gν(x∗n−1) ∈ Xp (56c)

t̃n := r1(y∗n) ∈ Xp (56d)

tn := νx∗n−1 − (ν − 1)t̃n ∈ Xp, (56e)
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for any n ∈ N, where x∗0 is de�ned in (Step 0 ) of the numerical algorithm (NA). Figures 5 and 6

represent the connections among the sequence (x∗n, y
∗
n)n, the points de�ned in (56a)�(56e), and the

sequence (xn, yn)n generated by the algorithm (A) applied to Γp,q. In particular, Figure 5 schematizes

such connections for (Step 0 ), (Step 1 ) and (Step 2 ) of the numerical algorithm (NA), whereas, Figure 6
schematizes such connections for (Step n), with n > 2.

(x̃0, y0) x0
r1 y1

r2 x1
νx0 − (ν − 1)r1(y1)

y2
r2 x2 = gν(x1)

νx1 − (ν − 1)r1(y2)

x∗0

L.V.M.

z1
r2

s̃1
r1 s1

νx∗
0 − (ν − 1)s̃1

y∗
1

L.V.M.

t̃1
r1

t1
νx∗

0 − (ν − 1)t̃1

x̃∗1

L.V.M.

x∗
1

νx∗
0 − (ν − 1)x̃∗

1 z2
r2

s̃2
r1 s2 = gν(x∗1)

νx∗
1 − (ν − 1)s̃2

y∗
2

L.V.M.

t̃2
r1

t2
νx∗

1 − (ν − 1)t̃2

x̃∗2

L.V.M.

x∗
2

νx∗
1 − (ν − 1)x̃∗

2

Figure 5: Representation of zn, s̃n, sn, t̃n, tn, for n = 1, 2.

We start by proving that limn→+∞‖x∗n − x̄p,q‖Xp = 0.

For any n ∈ N
‖x∗n − x̄p,q‖Xp ≤ ‖x∗n − xn‖Xp + ‖xn − x̄p,q‖Xp , (57)

where xn is the �rst player's strategy generated at (Step n) of the algorithm (A) applied to Γp,q. Since

Γp,q satis�es the assumptions of Theorem 3.1 (in light of Remark 4.2), then

lim
n→+∞

‖xn − x̄p,q‖Xp = 0. (58)

So, focusing only on the �rst term in the right-hand side of (57), we have

‖x∗n − xn‖Xp ≤ ‖x∗n − tn‖Xp + ‖tn − sn‖Xp + ‖sn − xn‖Xp . (59)

xn−1 yn
r2 xn= gν(xn−1)

νxn−1 − (ν − 1)r1(yn)

sn−1

tn−1

x∗n−1 zn
r2

s̃n
r1 sn= gν(x∗n−1)

νx∗
n−1 − (ν − 1)s̃n

y∗
n t̃n

r1
tn

νx∗
n−1 − (ν − 1)t̃n

L.V.M.
[G(x∗

n−1,·),y
∗
n−1,εn]

x̃∗n

L.V.M.
[F (·,y∗n),x∗

n−1,εn]

x∗
n

νx∗
n−1 − (ν − 1)x̃∗

n

Figure 6: Representation of zn, s̃n, sn, t̃n, tn, for n > 2.
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Let us analyze the three terms in the right-hand side of (59).

1. By de�nition of x∗n in (Step n) and by (56e), we get

‖x∗n − tn‖Xp = (ν − 1)‖x̃∗n − t̃n‖Xp . (60)

Let us note that x̃∗n is the approximation of the maximizer of F (·, y∗n) over Xp generated by applying

the local variation method to F (·, y∗n) with initial point x∗n−1 and range εn (as represented in Figure 6),

whereas t̃n is actually such a maximizer, by (56d). In light of assumption (i), from Theorem 4.1 we get

‖x̃∗n − t̃n‖Xp ≤
√
p(A1 + εnA0)

mF
εα−1
n , (61)

where mF is the constant related to the concavity3 of F on Xp.

2. In light of (56b)�(56e) and Lemma 2.2(i), we have

‖tn − sn‖Xp = (ν − 1)‖t̃n − s̃n‖Xp
= (ν − 1)‖r1(y∗n)− r1(zn)‖Xp ≤ λ1(ν − 1)‖y∗n − zn‖Yq .

(62)

Similarly to the previous case, y∗n is the approximation of the maximizer of G(x∗n−1, ·) over Yq come up

by applying the local variation method to G(x∗n−1, ·) with initial point y∗n−1 and range εn (as represented

in Figure 6), whereas zn is e�ectively such a maximizer, by (56a). In light of assumption (ii), from

Theorem 4.1 it follows

‖y∗n − zn‖Yq ≤
√
q(B1 + εnB0)

mG
εβ−1
n , (63)

where mG is the constant related to the concavity4 of G on Yq.

3. By de�nition of xn, by (56c) and by Theorem 2.1(i) we get

‖sn − xn‖Xp = ‖gν(x∗n−1)− gν(xn−1)‖Xp ≤ k‖x∗n−1 − xn−1‖Xp , (64)

where k is de�ned in (34).

Hence, using (60) to (64) into (59) and since εn ≤ ε0, we have

‖x∗n − xn‖Xp ≤ k‖x∗n−1 − xn−1‖Xp + λ1(ν − 1)Dεβ−1
n + (ν − 1)Cεα−1

n , (65)

where D =
√
q(B1 + ε0B0)/mG and C =

√
p(A1 + ε0A0)/mF . Let dn = ‖x∗n−xn‖Xp for any n ∈ N, and

3Since F (·, y) is di�erentiable for any y ∈ Yq , then F is strongly concave onXp uniformly on Yq if and only if there exists a

constant mF > 0 such that F (x′′, y)−F (x′, y)+mF ‖x′′−x′‖2Xp ≤ 〈DxF (x′, y), x′′−x′〉X∗
p×Xp , for any x′, x′′ ∈ Xp, y ∈ Yq .

4Since G(x, ·) is di�erentiable for any x ∈ Xp, then G is strongly concave on Yq uniformly on Xp if and only if there exists

a constantmG > 0 such that G(x, y′′)−G(x, y′)+mG‖y′′−y′‖2Yq ≤ 〈DyG(x, y′), y′′−y′〉Y ∗
q ×Yq , for any y′, y′′ ∈ Yq , x ∈ Xp.
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d0 = ‖x∗0 − x0‖Xp . Then by (65) it follows

dn ≤ kdn−1 + λ1(ν − 1)Dεβ−1
n + (ν − 1)Cεα−1

n

≤ k[kdn−2 + λ1(ν − 1)Dεβ−1
n−1 + (ν − 1)Cεα−1

n−1]

+ λ1(ν − 1)Dεβ−1
n + (ν − 1)Cεα−1

n

...

≤ λ1(ν − 1)D[εβ−1
n + kεβ−1

n−1 + · · ·+ kn−1εβ−1
1 ]

+ (ν − 1)C[εα−1
n + kεα−1

n−1 + · · ·+ kn−1εα−1
1 ] + d0k

n

= λ1(ν − 1)D

n−1∑
m=0

εβ−1
n−mk

m + (ν − 1)C

n−1∑
m=0

εα−1
n−mk

m + d0k
n.

(66)

The summation
∑n
m=0 ε

β−1
n−mk

m is the n-th term of the Cauchy product of the two series
∑+∞
i=0 k

i and∑+∞
j=0 ε

β−1
j , that is (

+∞∑
i=0

ki

)
·c

+∞∑
j=0

εβ−1
j

 =

+∞∑
n=0

n∑
m=0

εβ−1
n−mk

m, (67)

where ·c denotes the Cauchy product. The two series in the left-hand side of (67) are convergent: in

fact,
∑+∞
i=0 k

i < +∞ since it is a geometric series with ratio k < 1, and
∑+∞
j=0 ε

β−1
j < +∞ as εj = ε0/2

j

with ε0 > 0, and β > 1. Therefore, in light of the Cauchy theorem (see, for example, [30, Theorem 160]),

the series in the right-hand side of (67) is convergent, so limn→+∞
∑n
m=0 ε

β−1
n−mk

m = 0. Analogously,

limn→+∞
∑n
m=0 ε

α−1
n−mk

m = 0. Given the above and since limn→+∞ kn = 0, by (66) we have

lim
n→+∞

‖x∗n − xn‖Xp = lim
n→+∞

dn = 0, (68)

hence, in light of (57) and (58), the sequence (x∗n)n is convergent to x̄p,q.

Now, let us prove that limn→+∞‖y∗n − ȳp,q‖Yq = 0.

For any n ∈ N
‖y∗n − ȳp,q‖Yq ≤ ‖y∗n − zn‖Yq + ‖zn − yn‖Yq + ‖yn − ȳp,q‖Yq , (69)

where yn is the second player's strategy generated at (Step n) of the algorithm (A) applied to Γp,q. Since

Γp,q satis�es the assumptions of Theorem 3.1 (in light of Remark 4.2), then

lim
n→+∞

‖yn − ȳp,q‖Yq = 0. (70)

Hence, let us consider the �rst and the second term in the right-hand side of (69).

1. Since limn→+∞ εn = 0 and β > 1, then, by (63) we get

lim
n→+∞

‖y∗n − zn‖Yq ≤ lim
n→+∞

√
q(B1 + εnB0)

mG
εβ−1
n = 0. (71)

2. In light of (56a), the de�nition of yn, Lemma 2.2(ii) and (68), we have

lim
n→+∞

‖zn − yn‖Yq = lim
n→+∞

‖r2(x∗n−1)− r2(xn−1)‖Yq

≤ λ2 lim
n→+∞

‖x∗n−1 − xn−1‖Xp = 0.
(72)

So, limn→+∞‖y∗n − ȳp,q‖Yq = 0 by (69) to (72), i.e., the sequence (y∗n)n is convergent to ȳp,q.

Thus, the sequence (x∗n, y
∗
n)n converges to (x̄p,q, ȳp,q) and the proof is complete.
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Remark 4.4 In the statement of Theorem 4.2, instead of setting εn = ε0/2
n for any n ∈ N, we could

choose any sequence (εn)n such that the series
∑+∞
j=0 ε

β−1
j and

∑+∞
j=0 ε

α−1
j are convergent.

Remark 4.5 Let us provide a su�cient condition for hypotheses (i) and (ii) in Theorem 4.2. Assumption

(i) is satis�ed if there exists a constant A > 0 such that ‖D2
xF (x, y)‖L(Xp,X∗

p ) ≤ A for any (x, y) ∈ Xp×Yq.
In fact, since F is twice continuously di�erentiable, by applying the Taylor's theorem with Lagrange's

form of remainder (see, e.g., [4, Formule de Taylor 3.5]), we get

|RF (x, h, y)| = |F (x+ h, y)− F (x, y)− 〈DxF (x, y), h〉X∗
p×Xp | ≤

A

2
‖h‖2Xp ,

for any x ∈ Xp, y ∈ Yq and h ∈ Ix,y, where RF and Ix,y are de�ned in (53a). Hence, assumption (i)

holds setting A1 = A/2, A0 = 0, and α = 2. Analogously, assumption (ii) is satis�ed if there exists a

constant B > 0 such that ‖D2
yG(x, y)‖L(Yq,Y ∗

q ) ≤ B for any (x, y) ∈ Xp × Yq.

Remark 4.6 In light of Remark 4.5, the games illustrated in Examples 4.1 and 4.2 satisfy the as-

sumptions of Theorem 4.2. Moreover, we emphasize that the unique Nash equilibrium of the weighted

potential game in Example 4.2 cannot be approximated through the methods based on the potential

function (i.e., the ones exploiting the property that any maximizer of the potential function is a Nash

equilibrium of the potential game), since such equilibrium is not a maximizer of the potential function

(see [12, Proposition 6]). See, for example, [24, 52] and reference therein for further discussion regarding

methods based on the potential function.

4.3 Error bounds and rates of convergence

In this subsection we provide the error estimations for the sequences (x∗n)n and (y∗n)n generated by the

numerical algorithm (NA) introduced in Section 4.2. Let us remind that (x̄p,q, ȳp,q) denotes the Nash

equilibrium of Γp,q = {2, Xp, Yq, F,G}.

Proposition 4.1. Suppose that the assumptions of Theorem 4.2 hold. Then, there exist L,M ∈ R such

that

‖x∗n − x̄p,q‖Xp ≤ Lkn +
M

(2α−1)n
for any n ∈ N, (73)

where k and α are de�ned, respectively, in (34) and (54).

Proof. Let n ∈ N, then
‖x∗n − x̄p,q‖Xp ≤ ‖x∗n − xn‖Xp + ‖xn − x̄p,q‖Xp , (74)

where xn is the �rst player's strategy generated at (Step n) of the algorithm (A) applied to Γp,q. Let us

analyze the two terms in the right-hand side of (74).

1. In light of (66) we know that

‖x∗n − xn‖Xp ≤ λ1(ν − 1)D

n−1∑
m=0

εβ−1
n−mk

m

+ (ν − 1)C

n−1∑
m=0

εα−1
n−mk

m + kn‖x∗0 − x0‖Xp ,

(75)

where D =
√
q(B1 + ε0B0)/mG and C =

√
p(A1 + ε0A0)/mF . Since x∗0 is the approximation of the

maximizer of F (·, y0) over Xp obtained by applying the local variation method to F (·, y0) with initial
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point x̃0 and range ε0 (as represented in Figure 3), and x0 is e�ectively such a maximizer (as de�ned at

(Step 0 ) of the algorithm (A) applied to Γp,q), then ‖x∗0 − x0‖Xp ≤ Cεα−1
0 by Theorem 4.1. Given the

above and since εn = ε0/2
n, by (75) we have

‖x∗n − xn‖Xp ≤ λ1(ν − 1)Dεβ−1
0

n−1∑
m=0

km

(2β−1)n−m

+ (ν − 1)Cεα−1
0

n−1∑
m=0

km

(2α−1)n−m
+ Cεα−1

0 kn

=
λ1(ν − 1)Dεβ−1

0

(2β−1)n

[
1− (k2β−1)n

1− k2β−1

]
+

(ν − 1)Cεα−1
0

(2α−1)n

[
1− (k2α−1)n

1− k2α−1

]
+ Cεα−1

0 kn,

(76)

where the equality is obtained by exploiting the sum of the �rst n terms of geometric series of ratio

k2β−1 and k2α−1.

2. In light of Proposition 3.1, recalling that x1 = νx0 − (ν − 1)r1(y1) and x0 = r1(y0), and that r1 is

Lipschitz continuous by Lemma 2.2(i), we get

‖xn − x̄p,q‖Xp ≤
kn

1− k
‖x1 − x0‖Xp

=
kn

1− k
‖(ν − 1)(x0 − r1(y1))‖Xp

=
(ν − 1)kn

1− k
‖r1(y0)− r1(y1)‖Xp

≤ λ1(ν − 1)kn

1− k
‖y1 − y0‖Yq

≤ λ1(ν − 1)kn

1− k
[‖y1 − z1‖Yq + ‖z1 − y∗1‖Yq + ‖y∗1 − y0‖Yq ].

(77)

Since y∗1 is the approximation of the maximizer of G(x∗0, ·) over Yq generated by applying the local

variation method to G(x∗0, ·) with initial point y0 and range ε1 (as represented in Figure 3), and z1 is

actually such a maximizer (in light of (56a)), then ‖z1 − y∗1‖Yq ≤ Dεβ−1
1 by Theorem 4.1. Given the

above, by de�nition of y1 in (Step 1 ) of the algorithm (A) applied to Γp,q and the de�nition of z1 in

(56a), it follows

‖y1 − z1‖Yq + ‖z1 − y∗1‖Yq ≤ ‖r2(x0)− r2(x∗0)‖Yq +Dεβ−1
1

≤ λ2Cε
α−1
0 +D

εβ−1
0

2β−1
,

(78)

where the last inequality holds in light of Lemma 2.2(ii), inequality ‖x∗0 − x0‖Xp ≤ Cεα−1
0 proved in the

previous point, and the de�nition of ε1. Hence, (77)�(78) imply

‖xn − x̄p,q‖Xp ≤
λ1(ν − 1)kn

1− k

[
λ2Cε

α−1
0 +D

εβ−1
0

2β−1
+ ‖y∗1 − y0‖Yq

]
. (79)

Finally, by using (76) and (79), from (74) we get

‖x∗n − x̄p,q‖Xp ≤
(ν − 1)Cεα−1

0

(2α−1)n

[
1− (k2α−1)n

1− k2α−1

]
+ Cεα−1

0 kn

+
λ1(ν − 1)kn

1− k

[
λ2Cε

α−1
0 +D

εβ−1
0

2β−1
+ ‖y∗1 − y0‖Yq

]

= Lkn +
M

(2α−1)n
,
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where

L = Cεα−1
0

[
2−ν−k2α−1

1−k2α−1

]
+ λ1(ν−1)

1−k

[
λ2Cε

α−1
0 +D

εβ−1
0

2β−1 + ‖y∗1 − y0‖Yq
]
,

M =
(ν−1)Cεα−1

0

1−k2α−1 ,
(80)

therefore the result is proved.

Proposition 4.2. Suppose that the assumptions of Theorem 4.2 hold. Then, there exist L′,M ′ ∈ R and

W > 0 such that

‖y∗n − ȳp,q‖Yq ≤ L′kn−1 +
M ′

(2α−1)n−1
+

W

(2β−1)n
for any n ∈ N, (81)

where k, α and β are de�ned, respectively, in (34), (54) and (55).

Proof. Let n ∈ N, then
‖y∗n − ȳp,q‖Yq ≤ ‖y∗n − zn‖Yq + ‖zn − ȳp,q‖Yq , (82)

where zn is de�ned in (56a).

Recall that ȳp,q = r2(x̄p,q), by de�nition of Nash equilibrium. Then, in light of (63), (56a) and

Lemma 2.2(ii) we have

‖y∗n − zn‖Yq + ‖zn − ȳp,q‖Yq ≤ Dεβ−1
n + ‖r2(x∗n−1)− r2(x̄p,q)‖Yq

≤ Dεβ−1
n + λ2‖x∗n−1 − x̄p,q‖Xp ,

(83)

where D =
√
q(B1 + ε0B0)/mG.

Since εn = ε0/2
n ≤ ε0 and by applying Proposition 4.1, from (82)�(83) we get

‖y∗n − ȳp,q‖Yq ≤ D
εβ−1
0

(2β−1)n
+ λ2

[
Lkn−1 +

M

(2α−1)n−1

]
= L′kn−1 +

M ′

(2α−1)n−1
+

W

(2β−1)n
,

where L′ = λ2L, M
′ = λ2M with L and M explicitly stated in (80), and W = Dεβ−1

0 > 0.

Error estimations proved in Propositions 4.1 and 4.2 allow also to derive the rate and the order of

convergence of the sequences (x∗n)n and (y∗n)n. Before stating the results, we remind that a sequence

(zn)n converges R-linerarly to z̄ in a �nite dimensional space Z (see, e.g., [48, pp. 28�30]) if the sequence

(‖zn − z̄‖Z)n is dominated by a sequence converging linearly to 0, that is if there exists a sequence of

nonnegative real numbers (ζn)n converging to 0 and a constant t ∈]0, 1[ such that

‖zn − z̄‖Z ≤ ζn and ζn+1 ≤ t · ζn, for any n su�ciently large.

Proposition 4.3. Suppose that the assumptions of Theorem 4.2 hold and let T = min{k−1, 2α−1} and
Q = min{k−1, 2α−1, 2β−1}. Then

(i) the sequence (x∗n)n exhibits O(T−n)-rate of convergence;

(ii) the sequence (y∗n)n exhibits O(Q−n)-rate of convergence;

(iii) the sequence (x∗n)n converges R-linearly to x̄p,q;

(iv) the sequence (y∗n)n converges R-linearly to ȳp,q.

Proof. First we note that T ≥ Q > 1 since k ∈]0, 1[, α > 1 and β > 1.

From (73) it follows that ‖x∗n − x̄p,q‖Xp ≤ ξn for any n ∈ N, where ξn := (|L| + |M |)T−n. Hence, (i)

holds. Moreover, (ξn)n converges to 0 and

lim
n→∞

ξn+1

ξn
=

1

T
∈]0, 1[,
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therefore (iii) is proved.

Analogously, from (81) it follows that ‖y∗n − ȳp,q‖yp ≤ χn for any n ∈ N, where χn := (|L′|k−1 +

|M ′|2α−1 +W )Q−n. Hence, (ii) holds. Moreover, (χn)n converges to 0 and

lim
n→∞

χn+1

χn
=

1

Q
∈]0, 1[,

therefore (iv) is proved.

Remark 4.7 The same arguments used in Proposition 4.3 ensure that the sequence of strategy pro�les

(x∗n, y
∗
n)n exhibits O(Q−n)-rate of convergence and it converges R-linearly to (x̄p,q, ȳp,q) in Xp × Yq.

To conclude, we highlight that the error bounds proved in Propositions 4.1 and 4.2 and the rates of

convergence derived in Proposition 4.3 crucially depend on the fact that, in order to make the discussion

easier to follow, we chose in the statement of Theorem 4.2 the sequence of ranges (εn)n with εn = ε0/2
n.

However, improvements in the error estimations and in the rates of convergence could be achieved by

choosing other suitable sequences of ranges satisfying the requirements in Remark 4.4.
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