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Abstract 
 
In finance, getting an accurate estimation of the term structure of interest rates is essential because this 
information is often used as input by other pricing financial models. In this paper, we point out the importance of 
selecting a suitable estimation of the term structure of interest rates. 
To show this fact, we use the Spanish Bond Market to estimate the initial interest rate and forward curves for one 
day, by using both McCulloch (1975) cubic polynomial splines, and Legendre’s polynomials (Morini, 1998). We 
use these curves as input for pricing pure discount bonds with the Ho and Lee (1986) and Hull and White (1990) 
models. Then, we find the important result that using an inadequate interest rate curve affects dramatically the 
behaviour of the dynamic term structure models and, consequently, the estimation of the asset pricing models. 
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1. Introduction 

The estimation of the term structure of interest rates (TSIR) is an important subject in 
finance. In fact, spot interest rates are the data inputs of many other models, particularly for 
dynamic interest rates models and asset pricing models. So, any improvement in the term 
structure estimation models makes better the results obtained by those models. In sum, a good 
estimation of the term structure of interest rates is the mandatory starting point to analyze 
adequately dynamic models. Furthermore, it is essential in order to price assets correctly. 

McCulloch (1971) was first in applying a direct estimation methodology. It consists in 
extracting the interest rates from bond prices by using approximation functions. Later on, in 
1975, he slightly modified his former technique and he proposes to use cubic polynomial 
splines instead of quadratic ones. Since then, several authors have proposed similar models, 
but McCulloch’s (1975) model is still one of the most applied. So, in the second section of 
this paper we introduce the term structure estimation problem and analyze the drawbacks of 
McCulloch’s model. We also propose the use of Legendre’s polynomials (Morini, 1998) in 
the approximation of the discount function. 

In the third section, we introduce the Ho and Lee (1986) and Hull and White (1990) 
dynamic term structure consistent models. These are very important in order to determinate 
the evolution of the interest rate curve. They can match the initial interest rate curve, using 
therefore the term structure of interest rates as input. 

At last, in the fourth section, we use data for one day of the Spanish Bond Market and 
bring up the results of using the estimation models introduced at second section into the 
dynamic models of the third section. 

 

2. Estimating the term structure of interest rates 

There are three different ways to characterize the yield curve at initial time t. The first 
representation is by the prices of pure discount bonds ),( stP where ts ≥  is the time to the 
maturity. Pure discount bonds are bonds that give the holder a single unit cashflow at maturity 
with no intermediate cashflows. The second is by the spot interest rates ),( stR . It is 
calculated as a continuous compoundly interest rates to obtain the discount bond prices: 

 ))(,(),( tsstRestP −−=  (1.) 

We will refer to ),( stR as the curve of spot interest rates, term structure of interest rates or 
curve yield. ),( stP and ),( stR are the most usual forms to representation of the different 
interest rates that exist at a moment t, typically 0=t .  

The third formulation is by the forward rate curve. The forward rate ),( stf  at time t is the 
interest rate that we see for an instantaneous period starting at time s and finishing at time 

hs+ , with 0>h . We can obtain an analytical expression for the forward rates, consistently 
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with the actual spot rates, as a continuous rate of return between two bonds ),( hstP + and 
),( stP when 0→h : 
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The forward as a function of the spot rates, replacing (1.) in (2.), is: 
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where we can see that forward rates can be calculated as the spot rate plus the slope of the 
curve yield amplified with the maturity time. 

These three different ways to define the term structure are equivalents and can be used 
alternatively. 

The determination of the term structure of interest rates is not an easy task because does 
not exist pure discount bonds for every time. The majority of government and corporate 
bonds pay an annual, or semi-annual, coupon. So, the term structure must be estimated from 
prices of coupon bonds in a way that any maturity time could be calculated. To accomplish 
this matter, the bond market price Pi is supposed equal to the sum of the current value of all 
the payments Qij of the bond: 

 ∑
=

=
iT

j
jiji tDQP

1

)(  (4.) 

where the continuous time function )( jtD  is the usual notation for the theoretical discount 

function for pure bonds of maturity jt , then ),0()( jj tPtD = . 

If )(tG  is a generic approximation function for the discount function, the estimation 
problem is to solve: 

 ij

T

j
iji tGQP

i

ε+= ∑
=

)(
1

 (5.) 

where iε  is a disturbance term which must be added because the price-current value 

equality is not exact (there are transactions costs, taxes and other factors) and an 
approximation function is used. 

However, not all functions are suitable to approximate the term structure of interest rates. 
The proposed functions must fulfil at least three requirements related to the properties of the 
discount function: 

1)0( =D . One monetary unit today has one monetary unit value. 

0)( =
∞→

tDlim
t

. An infinitely distant payment has no current value. 
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)(...)()( 21 ntDtDtD >>>  for nttt <<< ...21 . The more distant the payment is, the less 

current value it has. 

To sum up, the discount function is a non-increasing monotone1 positive function which 
maximum value is one. And attending the equations (1.) and (2.), all the interest rates which 
can be deduced of discount function, spot or forward rates, must be always positives. 

McCulloch (1971, 1975) was the first to try to solve the estimation problem (5.) in order to 
deduce the term structure of interest rates. He proposed to approximate the discount function 
using a linear combination of m cubic polynomial splines2: 

 ∑
=

+=
m

j
jj tgtG

1

)(1)( β  (6.) 

The used splines )(tg j  are: 
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 gm(t)=t  0 ≤  t ≤ Tn 

where jjj ddh −= +1  and jd  are the spline nodes. 

Indeed observe that for McCulloch’s model we have the following properties: 

 

1 Its first derivative is always negative. 

2 The number of splines m and the nodes location depend on the sample size. See McCulloch (1971). 
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This means that the model cannot ensure that the discount function decreases 
monotonically or that it has always a positive value. The consequences of this 
misspecification on the forward rates are obvious: the forward rates can take negative values. 

 

M cCulloh's Term Structure Estimation 
Data of 31/12/96
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Figure 1 McCulloch’s Term Structure Estimation on 1996, December 31th 

 

This problem is shown in figure 1, where we plot the estimated spot curve, the yield to 
maturity (YTM) and the resulting forward curve for a random selected sample of Spanish 
Treasury Bonds. The slope of the forward curve for maturities beyond 15 years is very steep, 
making forward rates at their longest maturities taking negative values, so we must reject this 
estimation. 

Therefore, we propose an alternative way for overall adjustment. We look for a collection 
of functions that can accomplish the basic properties of the discount function. This family of 
functions can be the Legendre’s polynomials. It has been tested on the Spanish Treasury 
Bonds Market, during 6 years, on daily samples, with better results than McCulloch’s model 
(Morini, 1998). Then, we can estimate the discount function as a linear combination of 
Legendre’s polynomials, usually, a polynomial of degree 3: 
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These polynomials are defined for ]1,1[−∈x , so we must do the change tex α−−= 21  where 
t is the maturity time, ],0[ +∞∈t , and α  is the yield of the longest maturity bond. 

This functional form is better than the former because 0)( =
∞→

tDlim
t

, even though it is less 

flexible than the McCulloch’s model, mainly in the short term. We can see this in figure 2. 

 

Legendre's Term Structure Estimation 
Data of 31/12/96

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Years

Yield(31/12/96)
Spot Rates
Forward Rates

 

Figure 2 Legendre’s Term Structure Estimation on 1996, December 31th 

 

 

3. Movements of the term structure of interest rates: consistent models 

The term structure of interest rates varies each day and these oscillations change the price 
of financial assets, which also varies continuously. The more affected assets are the 
derivatives whose pay-off depend on the future value of the interest rates or on the future 
price of the bonds. So, in order to price accurately these assets, we must model the 
movements of the term structure of interest rates. The dynamic of the interest rates’ term 
structure can be approached with a different number of continuous models. All of them come 
from stochastic differential continuous-time equations. 

Many authors have proposed different models, which can be classified in many ways. The 
simplest consist in assembling them as single factor models or as multiple factor models 
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(usually two factors). The features of the models with one factor are derived fron the no - 
arbitrage assumption of the short term interest rate define completely the yield curve 
(Strickland, 1996). The short interest rate (typically one-month spot) encloses all the 
information needed to know the evolution of the interest rate term structure. This is a strong 
hypothesis and makes that the model does not fit the initial term structure, only the short 
interest rates. They are named non-consistent models. 

So, we can distinguish between non-consistent and consistent models. In this paper, we are 
interested in analyzing consistent models. The main characteristic of the term structure 
consistent models is that they can reproduce, at least, the actual value of the spot interest rates 
and the initial volatility rates. This sort of models takes explicitly into account the initial term 
structure interest rates. In this sense the models that we use to estimate the initial term 
structure are very important. 

In order to verify the importance of the initial curve yield estimation, we analyze the 
behavior of two classical consistent models: Ho and Lee (1986) and Hull and White (1990). 
Both of them are often used by the practitioners and have close form solution for bond prices3. 

 

3.1. Ho and Lee (1986) 

The Ho and Lee (1986) model sets the continuous time limit of the short rate as: 

 dzdttdr σθ += )(  (8.) 

where dz represents an increment in a Wiener process during a small increment of time 
dt . )(tθ  is a time-dependent drift reflecting the slope of the initial forward rate curve and σ  
the volatility parameter of the short-rate process: 

 t
t

tf
t 2)(
)( σθ +

∂
∂=  (9.) 

It is this time-dependent function that allows the model to return the observed bond prices, 
where the partial derivative denotes the slope of the initial forward curve at maturity t. The 
model is single factor and presents a drawback: the interest rates can become negative with a 
positive probability. 

The analytical expression of the bond price at future time tT ≥  as a function of the 
parameters of the process and the short rate at time T, )(Tr , is: 

 )(),(),(),( TrsTBesTAsTP −=  (10.) 

where )(),( TssTB −=  and: 

 

3 A survey about different dynamic models could be found in Vetzal (1994) or Stricklan (1996). 
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Using the relations (1.) and (2.) we can rewrite (11.) as: 

 22 ),()(
2

1
),(),(),()(),()(),(ln sTBtTTtfsTBstRtsTtRtTsTA −−+−−−= σ   (12.) 

This model fits the dynamics of the whole term structure in a way that is automatically 
consistent with the initial (observed) term structure of interest rates. Effectively, the shape of 
the initial curve yield can be obtained choosing 0== Tt : 

 )0(),0()0,0(),0(),0(ln rssRsfssRssA +−=+−=  (13.) 

where we have used that )()0,()0,( trtRtf == . 

Replacing (13.) in (10.), we obtain: 

 ssRsrsrssRrsBsA eeeesP ),0()0()0(),0()0(),0(),0(),0( −−+− ===  (14.) 

as expected. 

Therefore, this model is consistent with the initial spot rates. And the input data are the 
spot interest and the forward interest rate functions (equation 12.). So, it is very important to 
get a fine determination of the initial curve yield. 

 

3.2. Hull and White (1990) 

Later in 1990, Hull and White proposed to fit the initial yield curve, a new model that is an 
extension of the mean-reversion Vasicek (1977) model. The short rate process becomes: 

 [ ] dzdtrtdr σαθ +−= )(  (15.) 

where α  is the rate of the mean reversion of the short rate and )(tθ  is a necessary time 
dependent function to match the initial forward curve: 

 )1(
2

)(
)(

)( 2
2

tetf
t

tf
t α

α
σαθ −−++

∂
∂=  (16.) 

In this model, the bond price at future time T is a function of the short rate )(Tr  and the 
parameters of the process α  and σ : 

 )(),(),(),( TrsTBesTAsTP −=  (17.) 

where )1(
1

),( )( TsesTB −−−= α

α
 and: 
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or: 
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 (19.) 

This model, as the previous one, also fits the initial values of the term structure of interest 
rates. In fact, when setting 0== Tt  at (19.), we obtain the expected result: 

 )0(),0(),0()0,0(),0(),0(),0(ln rsBsRsfsBsRssA +−=+−=   (20.) 

Replacing (20.) in (13.): 

 ssRrsBrsBssR eeesP ),0()0(),0()0(),0(),0(),0( −−+− ==  (21.) 

as expected. 

As before, we see that the input data are also the spot rates function and the forward rates 
function (equation 19.), so the accuracy of the input function is very important to the quality 
of the final results. 

 

4. Testing different input estimations into consistent models 

It was shown in the previous section that the results of the term structure estimation models 
are the inputs of consistent dynamic models. In this section we are going to evaluate the 
importance of selecting a good estimation model in order to get consistent results about 
interest rates movements and bond pricing. In this sense, Hull (1997) found that an 1% error 
in the pricing of a bond could generate an option pricing error up to 25%. 

To illustrate the problem, we use the Spanish Bond Market Prices for 1996, 31th December 
and estimate the term structure of interest rates using the McCulloch’s model and Legendre’s 
polynomials. We take these estimations as the inputs for Ho and Lee and Hull and White 
models to calculate the future value (1 year ahead) of different pure discount bonds whose 
maturity date is within 1, 2, .., 30 years. That is: t=0, T=1 year and s=1, 2, ..., 30 years. 
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P(T,s) HoLee Estimation: M cCulloh vs Legendre
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Figure 3. Future pure discount bond prices using Ho and Lee model 
and different initial term structure estimations. 

 

We assume that the short rate in one year, )1(r , is 5 per cent. Also, we need set the 
parameters of the models. Typical values of the consulted references are short rate volatility 

01.0=σ , and mean reversion parameter 10.0=α . 

We estimate two models, Ho and Lee and Hull and White, in order of generalize the 
conclusions of this work. The results are presented in figures 3 and 4. In figure 3 we calculate 
the future value (1 year ahead) of pure discount bonds ),( sTP  with Ho and Lee model. We 
can clearly see that, when McCulloch’s estimation is used, the price of pure discount bonds is 
not decreasing in time, so is erroneous. On the other hand, when the term structure is 
estimated by Legendre’s polynomials, it presents the right behaviour. Indeed, we can measure 
a relative difference of 2.8% between future pure discount bonds prices at s=15 years, 
depending on the initial curve yield estimations, McCulloh or Legendre’s ones. 

The same result has been found for the Hull and White future values of pure discount 
bonds, presented on figure 4. When McCulloch’s estimation is used, the price of pure 
discount bonds is erroneous at longest maturities, but not Legendre’s estimation. And, it exists 
a relative difference of 2.4% between future pure discount bonds prices at s=15 years, 
depending on the initial curve yield estimations, that it’s an important difference. 
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P(T,s) - Hull & W hite Estimation: M cCulloh vs Legendre
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Figure 4. Future pure discount bond prices using Hull and White model 

and different initial term structure estimations. 

 

5. Conclusions 

In this paper we compared McCulloch’s estimation model with a linear combination of 
Legendre’s polynomials in the framework of the consistent dynamic models. The results show 
that the researchers must pay special attention to the quality of the term structure estimation 
models because their results are used as input in the consistent dynamic models. 

An accuracy determination of initial curve yield is very important. A little deviation or bad 
specification in spot rates can produce an enormous error in the valuation of bonds, 
derivatives or whatever financial instrument linked with interest rates. Moreover, the forward 
rates are necessary in most of the term structure consistent models, and these values are very 
sensible to little differences between the spot rates. 

This study does not invalidate the McCulloch’s model but it just reveals the problems of 
applying this model in the long term where it yiels negative forward rates. In other hand, 
Legendre’s polynomials are not the final solution because they could have estimation 
problems in the short term due to their low flexibility. 
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