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Bidders who receive both “common-value” and “private-value” signals about the value of an auction prize 
cannot fully infer their opponents’ information from the bidding, so may overestimate the value of the prize and, 
subsequently, regret winning. With multiple objects, prices in later auctions provide information relevant to 
earlier ones, and sequential auctions appear more vulnerable to overpayment and inefficiency than simultaneous 
auctions. However, aggregating across all auctions in a simple model, winners still earn positive profit ex-post. 
With information inequality among bidders, the seller’s revenue is influenced by two competing effects. On the 
one hand, simultaneous auctions reduce the winner’s curse of less informed bidders and allow them to bid more 
aggressively. On the other hand, sequential auctions induce less informed bidders to bid more aggressively in 
early auctions to acquire information. 
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1. Introduction

During the years 2000-2001, many European countries sold 3G mobile-phone li-
censes by sequential (ascending) auctions. Prices were generally higher in earlier
auctions, and much lower in later ones. For example, in terms of euros per capita,
prices were 650 and 615 in the UK (March 2000) and Germany (July 2000) re-
spectively, but were less than 100 in all the year-2001 auctions.1 Based in part on
the evidence provided by the lower prices in later auctions, winners of the earlier
ones complained they overpaid and successfully lobbied governments for improved
licenses’ conditions. Following the results of later auctions, in Germany and the
UK winning firms were allowed to share infrastructure building costs (with the
approval of the European Commission),2 in Italy licences were lengthened from
15 to 20 years, and in France (where licenses were sold by a beauty contest at
prices higher than in auctions run later) firms were allowed to share costs, licenses
were lengthened and prices reduced.3

But standard auction theory does not make clear how rational players can
overbid during an auction. We argue that, before an auction, bidders generally
receive both common-value and private-value signals about the value of the ob-
ject on sale.4 A common-value signal affects the valuation of all bidders alike
(e.g., the future demand estimate for mobile-phones) while a private-value signal
only affects the valuation of the bidder who receives it (e.g., a firm’s production
efficiency and cost). When different types of information influence the value of
the prize, bidding behaviour depends on all of them but it does not fully reveal
any of them. Then even a perfectly rational bidder may overestimate the prize
value, if he faces a rival with a large private signal, and hence overbid and regret
winning the auction.

1The complete sequence of prices in the European 3G auction is: 650 (UK—March 2000), 170
(Netherlands—July 2000), 615 (Germany—July 2000), 240 (Italy—October 2000), 100 (Austria—
November 2000), 20 (Switzerland—November 2000), 45 (Belgium—March 2001), 45 (Greece—July
2001) and 95 (Denmark—September 2001). For an analysis of the European 3G auctions and an
evaluation of how differences in the auctions’ design affected prices, see Klemperer (2002).

2 It is commonly argued that infrastructure sharing not only reduces costs but also makes
collusion among firms easier.

3 In Germany, winners are also lobbying the government to be allowed to merge keeping all
the spectrum blocks acquired in the auction, even if for competition policy this was explicitly
forbidden by the auction rules.

4Milgrom and Weber (1982) first analyzed auctions where players’ payoffs depend on their
personal preferences as well as the intrinsic qualities of the prize. Maskin (1992), Jehiel and
Moldovanu (2000) and Goeree and Offerman (2003) prove that, with multidimensional signals,
auctions can be ex-post inefficient because, for example, a bidder with a high common signal
can win against an opponent who has a higher private valuation and, hence, is more efficient.
Goeree and Offerman (2002) provide experimental evidence. Similarly, Compte and Jehiel (2002)
argue that in ascending auctions more competition does not necessarily promote efficiency. But
Pesendorfer and Swinkels (2000) prove that, in multi-object auctions in which bidders receive
two-dimensional signals, efficiency is restored as the number of bidders and the number of objects
go to infinity. De Frutos and Pechlivanos (1999) and Pagnozzi (2004) analyze the effects of the
presence of advantaged bidders in auctions with private and common signals.
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In real auctions, we sometimes observe winners unwilling to pay a price they
were willing to bid during the auction. For example, soon after winning the 1996
C-Block spectrum auction in the US, NextWave Telecom and General Wireless
filed for bankruptcy to avoid paying their bids (Board, 1999). Clearly, winners
may obtain additional information from exogenous sources that make them re-
duce the value estimate of the prize. For instance, a new technical analysis with
pessimistic views about the possible use of a mobile-phone license may become
available after the end of the auction. But winners may also obtain information
from their opponents’ bid in other auctions, as the type of information that is
revealed by bidders’ strategies varies from market to market.

When multiple objects with dependent values are auctioned, the order of sale
becomes crucial for information revelation: prices in later auctions are a source of
information about the prize value in earlier ones and, hence, may provide bidders
with proof of overpayment. In particular, winning a second auction “soon after”
winning a first one conveys bad news since it reveals that opponents’ estimate of
the prize value is lower than a player expected when winning the first auction. In
sequential auctions, it is low prices in auctions which are run later that conveys
bad news; in simultaneous auctions, it is similar (even if high) prices in auctions
which terminate later that conveys bad news. However, in simultaneous auctions
bidders obtain more information while they can still modify bidding strategies,
and the type of information necessary to induce winners’ regret is less likely.5 So
simultaneous auctions reduce the risk of winners’ regret. For the same reasons,
simultaneous auctions also increase expected efficiency since they allow bidding
to depend on more information about the object’s value.

But in a simple model, even if with sequential sales winners may learn they
are losing money in one auction, aggregating across all auctions they may still
earn positive expected profit ex-post. A lower price in a later auction conveys bad
news about the profitability of an earlier auction but, at the same time, allows
winners to obtain the prize relatively cheaply. So sellers should be cautious when
evaluating bidders’ complaints of overpayment, if these are based on lower prices
than expected in some auctions.

The order of sale is also relevant because it affects the seller’s revenue.6 When
information is unequally distributed among bidders, there are two contrasting ef-
fects. On the one hand, simultaneous auctions, by revealing more information
during the bidding, reduce information asymmetries between bidders and hence

5But the kind of bad news a winner obtains in simultaneous auctions can be “worse” on
aggregate than the kind of bad news a winner obtains in sequential auctions. The reason is
that, in simultaneous auctions, winning a second auction at a similar price after winning a first
auction at a high price, can convey negative information about both auctions’ profit. On the
other hand, in sequential auctions, winning a second auction at a low price after winning a first
auction at a high price conveys negative information about the first auction’s profit, but it also
implies high profit in the second auction.

6With multiple objects and private and common signals, the revenue equivalence theorem
does not hold since the allocation of prizes among bidders depends on the auction format.
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their potential winner’s curse, so that less informed bidders can bid more aggres-
sively. On the other hand, sequential auctions give less informed bidders incentive
to bid more aggressively in early auctions in order to obtain information which
could be valuable in later ones. When the second effect is absent, simultaneous
auctions yield a higher expected revenue for the seller than sequential auctions.

Summing up, when selling multiple objects, the auctioneer may prefer a simul-
taneous auction to a sequential one since a simultaneous auction reduces the risk
of winners’ regret and increases efficiency. However, which auction type should
be chosen to maximize seller’s revenue is ambiguous and depends on the specific
context.

So our analysis suggests that the European Union could have done better by
organizing a simultaneous sale of mobile-phone licenses in all European countries,
instead of letting each of them sell sequentially: it would have then been more
difficult for winning firms to argue they overpaid and lobby to alter licenses’
conditions and reduce the competitiveness of the industry, and efficiency would
have been higher.

The effect on governments’ revenue of running simultaneous instead of sequen-
tial auctions is ambiguous in our analysis.7 But given the choice of independent
sales, to maximize revenue each government had an incentive to run its auction
first since uninformed bidders tend to bid more aggressively in earlier auctions.
However, with sequential sales, the risk of winners’ regret is maximal in the first
auction, when less information is available and, hence, auctioning first implies a
higher risk of bidders’ complaint and litigations.

The paper is organized in two parts. Section 2 starts by considering a single-
object auction with both private- and common-value signals and shows how a
rational bidder may overpay for an auction prize. We then present two different
multi-object auction models that allow us to obtain different insights on the effects
of the sale’s order on bidders’ and sellers’ profit. Part I analyzes the first and
more symmetric model. Section 3 analyzes sequential auctions and argues bidders
may be sorry winners. Section 4 analyzes simultaneous auctions and compares
them to sequential ones in terms of possible winners’ regret. Part II considers
the second simplified model. This is the simplest tractable model that allows
us to explicitly solve for equilibrium bidding strategies in both simultaneous and
sequential auctions, hence allowing us to compare them in terms of revenue and
efficiency, which we do in Section 7. Before that, in Sections 5 and 6 we discuss
how winners’ regret may (or may not) arise in this different setting. The last

7There are other reasons, which are not considered here, why a simultaneous auction may
have raised less revenue. For example, signalling among firms is easier during a simultaneous
auction and firms can use it to sustain collusion by agreeing on a division of the pie (Brusco and
Lopomo, 2002). And punishing deviations from a collusive agreement can also be easier. On the
other hand, a simultaneous auction may have eliminated the sharp reduction in the number of
bidders after the first European auction. Moreover, it would have been more difficult for firms
to “learn to play the game” and develop collusive strategies or mergers on the base of preceding
auctions (Klemperer, 2002).
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section concludes. Omitted proofs are collected in Appendix A, while the other
appendixes discuss two variants of our models and compare static to dynamic
auctions.

2. Single-Object Auction

We start by analyzing a single-object auction in order to illustrate that a winner
may overestimate the value of the object on sale when observing his competitors
bidding aggressively, and end up paying more than the object is actually worth.

An object, for example a mobile-phone license, is sold by an ascending auction
with two potential buyers, called E and I1, whose valuations are:8

VE = θ + tE,
V1 = θ + t1.

We call θ the common-value signal (or simply common signal) and ti the private-
value signal of bidder i (or simply private signal). Bidders’ valuations are partly
private and partly common: the signal θ affects all valuations alike while the
signal ti only affects the valuation of bidder i. It is assumed that each bidder
is privately informed about his private signal ti but only bidder I1 knows the
common signal θ.9 Signals are independently and identically distributed.

We can interpret ti as expressing bidder i’s production cost (or efficiency
level); or the financial cost that bidder i has to pay in order to raise money to
bid, which depends on the particular credit condition he can obtain from financial
institution. And θ can be interpreted as an intrinsic characteristic of the object;
for example the future level of demand for mobile-phone services, which affects
the profitability of the licenses for all bidders.

The next lemma describes equilibrium bidding strategies.

Lemma 1. In the unique equilibrium of the single-object auction, bidder I1 bids
up to θ + t1 and bidder E bids up to 2tE.

Proof. First note that it is a dominant strategy for I1 to bid up to his valuation.
If I1 drops out of the auction at price p, then E expects the common signal to be
equal to

E [θ| θ + t1 = p] = p

2
,

because signals are i.i.d.10 Therefore E expects his valuation to be equal to

E [VE|E wins at price p] = tE + p
2
.

8We use an additive value-function as in the “wallet game” of Klemperer (1998) and Bulow
and Klemperer (2002), and as in Compte and Jehiel (2002).

9Results analogous to those presented in this section would be obtained by assuming that
both bidders receive a signal about θ, but no bidder knows θ.
10Here and throughout the paper, to save notation we denote by E [θ| I] the expectation of

the random variable whose realization is θ computed by bidder E given the information I.
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In an ascending auction, a player bids up to the expected value of the prize,
conditional on winning. Hence, E bids up to p∗ such that

p∗ = E [VE|E wins at price p∗] ,

which implies p∗ = 2tE.
We then have the following result:

Proposition 1. Bidder E wins the auction but obtains negative profit if and
only if t1 > tE > 1

2 (θ + t1).

Proof. Bidder E wins the auction if and only if 2tE > θ + t1. His profit is
negative if and only if t1 > tE. Rearranging yields the statement.

Bidder E’s profit can be negative if bidder I1’s private signal is sufficiently
higher than the common signal, because then I1 bids aggressively and E rationally
expects a high common signal. Knowing his opponent’s bid does not tell bidder
E all relevant information since I1’s bid is not a sufficient statistic for his private
information (as it is the case when private information has only one dimension).
Whenever bidder E overpays, the outcome of auction A is also inefficient since E
has a lower valuation than I1 but obtains the prize.11

Definition 1. A sorry winner is a bidder who realizes after winning an auction
that the value of the prize is lower than the price he paid.

So a sorry winner regrets winning at a price he was willing to bid during the
auction. In the single-object auction, however, bidder E is not aware he overpaid
(until the profit is actually realized). But after an auction ends, the winner
may learn additional negative information about the common signal or about his
rival’s private signal (even before the profit is actually realized). We are going to
argue that, when multiple objects are on sale, other auctions become a source of
information and the sequence of sale is crucial for the revelation of information.
Moreover, when multiple objects are on sale, a bidder may find it convenient to
bid more than the expected value of the prize in some auctions, and so willingly
overpay (even before any additional information is revealed).

Part I: Model I

Consider an ascending auction for two objects (A and B) — e.g. two mobile
phone licenses — with three bidders (E, I1 and I2). Bidders’ valuations for the

11The possibility of inefficiency in auctions with multiple signals is discussed by Maskin (1992),
Jehiel and Moldovanu (2001) and Goeree and Offerman (2003).
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two objects are:

Bidder
E I1 I2

Auction A VE= θ + tE V A1 = θ + t1

B VE= θ + tE V B2 = θ + t2

As in the single-object case, θ is the common signal affecting all valuations alike
while ti is the private signal that only affects the valuation of bidder i.

All bidders’ signals (θ, tE, t1 and t2) are independently drawn from a uniform
distribution on [0, 1]. We assume each bidder is privately informed about his
private signal and, in addition, bidders I1 and I2 also know θ. We will think of
bidders I1 and I2 as incumbent firms in market A and B respectively who are
better informed about their own market’s characteristics (e.g., they are able to
better estimate future demand) and are only interested in bidding in their home
market. Bidder E is a potential new entrant who competes in both auctions.

We assume E faces different incumbents in the two auctions, so that we do
not have to take into account a possible signalling strategy by a single informed
incumbent. For example, a single incumbent may want to strategically manipu-
late his bid in one auction in order to signal misleading information about θ to
the entrant and affect his bidding strategy in the other auction. We deliberately
neglect these issues in order to focus on the effects of interest.

Bidders I1 and I2 know their valuation for the objects on sale. Therefore, in
ascending auctions, it is a dominant strategy for them to bid up to their valuation
for the objects.

Lemma 2. It is a dominant strategy for bidder I1 to bid up to θ+ t1 in auction
A and for bidder I2 to bid up to θ + t2 in auction B.

So the bidding strategy of I1 and I2 does not depend on the order of sale. On
the contrary, the strategy of bidder E may be affected by the order of sale. In each
auction, E’s bidding behaviour depends on two factors: (i) his expected valuation
for the auction’s prize, conditional on winning and on all the information available
about the common signal; (ii) the information that the bidding process reveals,
that could be valuable in the other auction. Both of these factors may be affected
by the order of sale. In the following sections, we describe the different bidding
strategies of bidder E, depending on the order of sale, and discuss how bidders’
profits are affected.

3. Sequential Auction I

Assume the two objects are sold by sequential ascending auctions; without loss
of generality, the auction for object A is run first. Then bidder E’s strategy in
auction B depends on the outcome of auction A.

7



If E wins auction A at price pA, then he learns that θ + t1 = pA. Therefore,
conditional on also winning B at price pB, he expects the common signal to be
equal to:

E [θ |θ + t1 = pA, θ + t2 = pB ]

=

⎧⎨⎩
1
2 min {pA; pB} if max {pA; pB} ≤ 1
1
2 (pA + pB − 1) if min {pA; pB} < 1 < max {pA; pB}
1
2 max {pA; pB} if 1 ≤ min {pA; pB} .

Bidder E bids up to the expected value of the prize in auction B, conditional on
all the information acquired. Hence, we have the following result.

Lemma 3. In sequential auctions: (i) if bidder E wins auction A at price pA <
2tE, then in auction B he bids up to

β1 (tE, pA) =

⎧⎨⎩
tE +

1
2pA if pA ≤ 2 (1− tE)

2tE + pA − 1 if 2 (1− tE) < pA ≤ 1
2tE if 1 < pA;

(ii) if bidder E wins auction A at price pA ≥ 2tE, then in auction B he bids up
to

β1 (tE, pA) =

⎧⎨⎩
2tE if pA ≤ 1
2tE + pA − 1 if 1 < pA ≤ 2 (1− tE)
tE +

1
2pA if 2 (1− tE) < pA.

Figure 3.1 represents E’s bidding strategy in auction B, conditional on win-
ning auction A at price pA; in the two cases: tE < 1

2 and tE >
1
2 . Note that, for

pA ≤ 2tE, β1 (tE, pA) ≤ 2tE : winning auction A at a low price is bad news about
θ and leads E to bid less aggressively in auction B (compared to a single—object
auction).

Consider now the first auction. Raising the price in auction A provides bidder
E with valuable information about the common signal. Moreover, after winning
at a price lower than 2tE (when the expected value of the object conditional on
winning is equal to the auction price), bidder E earns positive expected profit in
auction A. Hence, we have the following result.

Lemma 4. In sequential auctions, bidder E does not drop out of auction A at a
price lower than 2tE.

However, we cannot conclude that bidder E drops out at price 2tE in auction
A, since he may have an incentive to bid even higher in order to obtain more
information about θ and have a better bid in auction B.

Lemma 5. In sequential auctions, bidder E does not drop out of auction A when
the price reaches his expected valuation conditional on winning.

8



0 1 2

1

Ap
2 Et( )2 1 Et−

Et

2 Et

1β

1 Et+

2

0 1 2

1

Ap
2 Et ( )2 1 Et−

Et

2 Et

1β

1 Et+

( )
1
2Ei t >

( )
1
2Eii t  <
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The proof of the lemma, which is contained in Appendix A, proceeds as fol-
lows. We argue that bidder E is always better off bidding up to 2tE+ε, for ε small
enough, rather than dropping out at 2tE, regardless of whether, as a consequence,
he wins auction A or not. Firstly, if bidder E loses auction A at price 2tE + ε
anyway, he only learns valuable additional information about the common signal,
and can bid more accurately in auction B. Secondly, if bidder E wins auction A
at price 2tE+ ε, then he loses, in expectation, an amount of order ε in auction A.
But we prove that, given the additional information about the common signal,
bidder E also reduces his bid in auction B by an amount of order higher than ε.
And this can prevent bidder E form winning auction B at a price higher than his
valuation, and losing an amount of order higher than ε.

So bidder E prefers to bid slightly more than his expected valuation condi-
tional on winning in auction A because, even when this leads him to win and
overpay in auction A, he avoids the risk of overpaying much larger amounts in
auction B.12 However, bidder E’s equilibrium bidding functions are intractable.
(See Appendix A for the extremely complex bidding function in auction B, when
bidder E follows even a very simple strategy of dropping out at price 2tE in
auction A.)

Summing up, in sequential auctions: (i) bidder E bids more aggressively (com-
pared to a single-object auction) in the first auction in order to learn information
about the common signal which he can use in the second auction; (ii) if he wins
the first auction at a price lower than 2tE, then bidder E bids less aggressively
in the second auction (compared to a single-object auction); (iii) if he wins the
first auction at a price higher than 2tE or if he loses the first auction, then bid-
der E bids more aggressively in the second auction (compared to a single-object
auction).

3.1. Sorry Winners

As in a single-object auction, bidder E may win auction A but pay more than the
object is worth; and, when this happens, the auction is also inefficient ex-post.13

Proposition 2. In sequential auctions, if t1 > tE >
1
2 (θ + t1) , then bidder E

overpays for object A.

In addition, since E has an incentive to bid more than his expected valuation
conditional on winning, when he does so and wins he overpays and is aware of it
as soon as the bidding in auction A terminates.

However, with sequential auctions, E also learns additional information about
the common signal from bidder I2’s bidding in auction B, and hence he may also
become a sorry winner only after auction B terminates. Indeed, suppose E wins

12 In Appendix B we provide other examples of this strategic behaviour.
13Auction A is also inefficient ex-post whenever I1 wins but has a lower valuation than E, i.e.

if t1 < tE < 1
2
(θ + t1) .
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auction A at price pA, and then wins auction B at price pB < pA. This is generally
bad news about the common signal and, hence, about his valuation for object A.

Proposition 3 (Sorry Winner in Expectation). In sequential auctions, bid-
der E regrets winning A at price pA after winning B at price pB if and only if

tE + E [θ |θ + t1 = pA, θ + t2 = pB ] < pA.

Example 1. Assume t1 = 3
4 , θ = t2 =

1
4 and tE =

1
2 + ε, where ε is small. Then

E wins A at price pA = 1 and B at price pB = 1
2 . However, after auction B, E

expects his value for object A to be tE+E θ pA = 1, pB =
1
2 = 1

2+ε+
1
4 < pA.

14

Hence, bidder E may expect to have paid more than the prize value in the first
auction if, conditional on the information obtained in both auctions, his expected
valuation for A is less than the price he paid.15 Moreover, after winning auction
B, bidder E also learns that θ is at most equal to min {pB, 1}. Therefore, the
price in auction B can be so low that bidder E learns to have overpaid for sure
in auction A.16

Proposition 4 (Sorry Winner with Certainty). In sequential auctions, af-
ter winning both objects bidder E is certain he lost money from object A if and
only if tE +min {pB, 1} < pA.

Example 2. Assume t1 = 1, θ = t2 = 0 and tE = 1
2 + ε, where ε is small. Then

E wins A at price pA = 1 but, after auction B, he learns that θ = 0 and hence
that he lost 12 − ε in auction A.

The possibility that the auction’s winner overpays, and can prove it with
certainty given the result of a later auction, is relevant from a political point of
view since it can create serious embarrassment, for instance, to a government
selling an asset.

The auction sequence provides additional information about the common sig-
nal and therefore about bidder E’s value for A. E may discover that his valuation
is lower than he expected based on the bidding behaviour of bidder I2 and, there-
fore, he may be a sorry winner. Of course, bidder E may also discover that he
lost money in auction A if some information about θ is exogenously revealed after
the auction. But our model suggests that, with sequential auctions, the order of
sale endogenously reveals relevant information and can induce bidders’ regret.

Moreover, the auction sequence affects E’s bidding behaviour and may lead
him to willingly pay more than his expected valuation in the first auction, in

14With signals uniformly distributed on [0, 1], for pA, pB ≤ 1, E [θ |θ + t1 = pA, θ + t2 = pB ] =
E [θ |θ + t1 = min {pA, pB} ] = 1

2
min {pA, pB} since the highest price is uninformative about θ.

15Note that bidder E can be a sorry winner in expectation even if he does not actually overpay
for object A.
16This result is independent of the distribution of signals.
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order to improve his bid in the second one. In this case, bidder E may also
earn negative expected profit on aggregate (i.e. considering both auctions) if, for
instance, he overpays in auction A and then just breaks even in auction B.

4. Simultaneous Auction I

Consider now a sale by a simultaneous auction, in which the prices for the two
objects rise simultaneously and continuously. Each auction terminates when one
of the bidders drops out. In this context, player E’s bidding in each auction
depends on whether the other auction is still running or not.

If E wins one auction, say auction A, at price p while the other auction is still
running, he knows that θ+ t2 is higher than p and hence he expects the common
signal to be equal to:17

E [θ |θ + t1 = p, θ + t2 > p ] =
⎧⎨⎩

3p−p2
6−3p if p < 1

4−3p2+p3
3(2−p)2 if p ≥ 1. (4.1)

Bidder E bids up to the expected value of the object in auction A, conditional
on the information conveyed by winning.18 Hence, we have the following result.

Lemma 6. In simultaneous auctions, if bidders I1 and I2 are still active, bidder
E drops out of both auction simultaneously at price

β2 (tE) =
3
4 1 + tE − 1− 10

3 tE + t
2
E if tE <

1
3 ,

1
2 +

3
2 tE if tE ≥ 1

3 .

Figure 4.1 represents player E’s bidding strategy in simultaneous auctions as
a function of his signal, conditional on both his opponents being still active. Note
that β2 (tE) > 2tE: compared to a single-object auction, simultaneous auctions

17Let X,Y,W U [0, 1]. Equation (4.1) follows from:

E [X |X + Y = p, X +W > p ]

= xPr (X ∈ [x, x+ dx] |X + Y = p, X +W > p )

= x
Pr (X + Y = p, X +W > p |X ∈ [x, x+ dx] ) Pr (X ∈ [x, x+ dx])

Pr (X + Y = p, X +W > p)

=
xfY (p− x)FW (p− x) f (x) dx
fY (p− x)FW (p− x) f (x) dx .

For example, for p < 1, the above expression is equal to
p
0 x(1−p+x)dx
p
0 (1−p+x)dx

= 3p−p2
6−3p . All other

conditional expectations are computed in a similar way.
18 If prices do not rise simultaneously in all auctions, then in simultaneous auctions, like in

sequential auctions, bidder E may have an incentive to raise the price in one of the auctions
first, and bid more than his expected valuation conditional on winning, in order to obtain more
precise information about θ. See also note 24.
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Figure 4.1: E’s bid in simultaneous auctions if he wins no object.

allow bidder E to bid more aggressively because, by observing both his opponents’
bidding simultaneously, E learns additional information about θ and this reduces
his potential winner’s curse.

Now suppose E wins one auction, say auction A, at price pA, and hence learns
that θ+ t1 = pA. Conditional on also winning B at price pB ≥ pA, he expects the
common signal to be equal to E [θ |θ + t1 = pA, θ + t2 = pB ] . Bidder E bids up
to the expected value of the prize in auction B, conditional on all the information
acquired. However, if E’s expected value is less than the current price, then he
drops out immediately of auction B. Hence, we have the following result.

Lemma 7. In simultaneous auctions: (i) if bidder E wins one auction at price
p < 2tE, then in the other auction he bids up to

β3 (tE, p) =

⎧⎨⎩
tE +

1
2p if p ≤ 2 (1− tE) ,

2tE + p− 1 if 2 (1− tE) < p < 1,
2tE if 1 ≤ p;

(ii) if bidder E wins one auction at price p ≥ 2tE, then he drops out of the other
auction immediately.

Figure 4.2 represents playerE’s bidding strategy in one auction, conditional on
E winning the other auction at price p. Note that, for p < 2tE, β3 (tE , p) ≤ 2tE:
as in sequential auctions, winning one auction at a price lower than 2tE is bad
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Figure 4.2: E’s bid in the remaining simultaneous auction, after winning one
auction at price p.
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news about θ and results in E bidding less aggressively in the other auction
(compared to a single-object auction).

Summing up, in a simultaneous auction: (i) bidder E bids more aggressively
(compared to a single-object auction) in both auction as long as both his competi-
tors remain active; (ii) after winning one auction at a relatively low price, bidder
E bids less aggressively in the remaining one; (iii) after winning one auction at
a relatively high price, bidder E drops out immediately in the remaining one.

With sequential auctions the information obtained in later auctions may make
winners realize they overpaid in earlier ones. In a simultaneous auction, on the
other hand, E’s bidding strategy depends on all information revealed by his com-
petitors’ bidding, and E learns whether any of them has low signals while the
auctions are still running and he can still modify his bidding strategy.

Proposition 5. In simultaneous auctions, bidder E is never a sorry winner.

Proof. In a simultaneous auction, bidder E keeps bidding in each auction if and
only if his expected valuation, conditional on all the information revealed in both
auctions, is higher than the current price. Hence, E is never a sorry winner at the
time he wins an auction. However, additional information may be revealed in the
other auction, which make him revise his valuation. But if E wins one auction at
a price lower than 2tE, then any outcome of the other auction leads him to expect
a valuation strictly higher than 2tE. If, on the other hand, he wins one auction
at a price higher than 2tE, then he drops out of the other auction immediately, so
he has no chance to acquire additional information. Therefore, with simultaneous
auctions the outcome of a second auction can never reveal bidder E’s valuation
to be lower than he price he paid in a first auction.

Note that bidders may overpay in a simultaneous auction too, since they can
still only estimate the value of the common signal; but a simultaneous auction
design does not allow them to realize it during the auction process, and does not
endogenously provide evidence of overpayment.

But which of the two multi-object auction format (simultaneous or sequential)
raises more revenue for the seller? To answer this question we need to compute
E’s bidding strategy in sequential auctions. We therefore turn to a different model
which eliminates the incentive for E to bid more than his expected valuation in
the first of two sequential auctions.

Part II: Model II

In this second part of the paper we analyze a simplified version of Model I,
that allows us to compute closed-form equilibrium bidding strategy in sequential
auctions and hence compare simultaneous and sequential auctions in terms of
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seller’s revenue and potential inefficiency. Consider an ascending auction for two
objects (A and B) with three bidders (E, I1 and I2). Bidders’ valuations are:

Bidder
E I1 I2

Auction A V AE = θ + tE V A1 = θ + t1

B V BE = 1 + tE V B2 = θ + t2

As in our first model, θ represents the common signal and ti the private signal of
bidder i; bidder I1’s and bidder I2’s valuations and bidder E’s valuation in auction
A are partly private and partly common. Now, however, bidder E’s valuation in
auction B only depends on his private signal.

We still assume that all bidders’ signals (θ, tE, t1 and t2) are independently
drawn from a uniform distribution on [0, 1], that each bidder is privately informed
about his private signal and that bidders I1 and I2 also know θ.

We analyze this “asymmetric” model, in which bidderE’s valuation is different
in the two auctions, in order to be able to solve for equilibrium bidding strategies
and focus on the effects of interest, without having to take into account more
complex strategic bidding. When, as in Model I, bidder E’s valuation in auction
B depends on θ too, additional strategic effects arise. For example, as proved
in Lemma 5, in sequential auction E may want to bid more than his expected
valuation in auction A, and lose money in that auction if he happens to win, in
order to obtain more precise information about θ and be able to make a better
bid in auction B. With the value functions of Model II there is no such incentive
because, during auction A, bidder E can learn no information relevant for auction
B.

Our results, however, do not depend on E’s valuation in auction B being
higher than his valuation in auction A. In Appendix C we show that the result
of Proposition 6 still holds in a different simplified model in which E’s valuation
is the same in both auctions.

Bidders I1 and I2 and bidder E in auction B all know their valuations for
the objects on sale. Moreover, E’s valuation for B is always higher than his
valuation for A and hence, even with simultaneous sales (as long as prices rise
simultaneously), E always drops out of auction A at a price lower than 1 + tE.
So E has no incentive to bid over his valuation in auction B.19 Therefore neither
player I1’s and player I2’s bidding strategies nor player E’s bidding strategy in
auction B are affected by the order of sale.

19 If E can affect the pace of the auctions in simultaneous sales, or if the objects are sold in
the sequence B-A, this is not true anymore since E may want to bid over 1+ tE in auction B in
order to learn additional information about θ + t2 and hence have a more precise estimate of θ
and a better bid in auction A.
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Lemma 8. It is a dominant strategy for bidder I1 to bid up to θ+ t1 in auction
A, for bidder I2 to bid up to θ + t2 in auction B, and for bidder E to bid up to
1 + tE in auction B.

In the following sections, we describe the different bidding strategies of bidder
E in auction A, depending on the order of sale, and discuss how bidders’ and
seller’s profits are affected.

5. Sequential Auction II: A—B

Consider a sale by sequential ascending auctions, and assume the auction for
object A is run first. In this model, as we discuss later, the auction sequence
matters.

Lemma 9. In sequential auctions, bidder E bids up to price 2tE for object A.

Basically, as far as the bidding is concerned, the two sequential auctions are
like two separate single-object auctions, because in the first auction bidder E can
obtain no useful information for the second auction. Exactly as in a single-object
auction, and as in Model I, with sequential auctions bidder E wins auction A
but pay more than the object is worth if and only if t1 > tE > 1

2 (θ + t1). (See
Propositions 1 and 2.)

With sequential auctions, E learns additional information about the common
signal from bidder I2’s bidding in auction B, and hence he may become a sorry
winner. Indeed, winning auction B at a low price after winning auction A at a
higher price is bad news about the common signal and, hence, about E’s valuation
for object A. Moreover, after winning auction B, bidder E also learns that θ is
at most equal to min {pB, 1}. Proposition 3 and Proposition 4 still hold: bidder
E expects to have overpaid in the first auction if, conditional on the information
obtained in both auctions, the expected value of A is less than the price he paid;20

and the price in auction B can even be so low that bidder E is certain to have
overpaid in the first auction.

5.1. Sorry Winners?

We argued that, with sequential auctions, bidder E may obtain negative profit in
auction A. But can bidder E obtain negative aggregate profit (i.e., considering
both objects)?

Proposition 6 (No Sorry Winner on Aggregate). Aggregating across both
auctions, bidder E always earns non-negative expected profit ex-post.

20But, in this model, because bidder E has no incentive to overbid in auction A, he can never
expect to have overpaid before auction B starts.
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Proof. If E wins only one auction, or if he wins both auctions at increasing
prices (i.e., pA < pB), then he expects positive profit in each auction. Assume
therefore that E wins both auctions and pA ≥ pB. His total expected profit is:

E [πE] = E V AE |θ + t1 = pA, θ + t2 = pB + V BE − pA − pB
= E [θ |θ + t1 = pA, θ + t2 = pB ] + 1 + 2tE − pA − pB.

For pA ≥ pB, E [θ |θ + t1 = pA, θ + t2 = pB ] ≥ E [θ |θ + t1 = pB, θ + t2 = pB ] =
pB
2 .
21 Then:

E [πE] ≥ 1 + 2tE − pA − pB
2
≥ 0,

since 2tE ≥ pA and 2 ≥ pB.
Therefore, our model suggests that, although in a sequential auction a bidder

may overpay for the first object on sale and discover this when winning the
second one at a low price, his expected total profits after the auctions are still
positive. The bad news about the common signal conveyed by a low price in the
second auction is also itself a good news about profit in the second auction. For
example, in the European 3G spectrum auctions, telecom firms may have regret
winning in the UK and Germany at relatively high prices given the outcome of
later auction;22 but they were mainly the same firms that won all auctions and the
price they paid in later auctions was so low that, on aggregate, they were arguably
still earning positive profit. Governments should be suspicious of winning firms
complaining they overpaid, and should not accept lobbying based on lower prices
in later auctions with the same winners.

In our model bidder E’s value for object B is higher than his value for object
A. It may seem that the “no sorry winner” result rests on this assumption.
In Appendix C we obtain an analogous result for a more symmetric model, in
which E’s valuation is the same in both auctions. Of course, it is still possible to
construct a model in which E obtains negative expected profit on aggregate, for
example if he does not participate to the second auction at all, but only observes
its outcome.

6. Simultaneous Auction II

Consider now a sale by a simultaneous auction, in which the prices for the two
objects rise simultaneously and continuously. In this case, player E’s bidding in
auction A depends on whether he wins auction B or not. In particular, auction A
is analogous to a single-object auction in which E learns when the current price
is equal to θ + t2.

21Here we are using the fact that, with uniform distribution, E [θ |θ + t1 = θ + t2 = p ] =
p
2

and E [θ |θ + t1 = p1, θ + t2 = p2 ] is increasing in p1 and p2.
22 In terms of euros per capita, auction prices in Italy, for instance, where less than half (about

2/5) auction prices in Germany.
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Figure 6.1: E’s bid in simultaneous auction A if auction B is still running.

If E wins auction A at price pA while auction B is still running, he knows
that θ+ t2 is higher than pA and hence he expects the common signal to be equal
to:

E [θ |θ + t1 = pA, θ + t2 > pA ] =
⎧⎨⎩

3pA−p2A
6−3pA if pA < 1

4−3p2A+p3A
3(2−pA)2 if pA ≥ 1.

Bidder E bids up to the expected value of the object in auction A, conditional
on the information conveyed by winning. Hence, we have the following result.

Lemma 10. In simultaneous auctions, if bidder I2 is still active in auction B,
then bidder E drops out of auction A at price

β4 (tE) =
3
4 1 + tE − 1− 10

3 tE + t
2
E if tE <

1
3

1
2 +

3
2 tE if tE ≥ 1

3 .

Figure 6.1 represents player E’s bidding strategy in auction A, conditional on
I2 being still active in auction B.23 Note that β4 (tE) ≥ 2tE: not winning auction
B is good news about θ, and allows E to bid more aggressively in auction A
(compared to a sequential auction). Simultaneous auctions reduce E’s potential
winner’s curse by revealing additional information about θ, so that he may be
happy of winning auction A at price higher than 2tE .
23This figure is identical to Figure 4.1.
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If, on the other hand, E wins B at price pB, then he learns that θ + t2 = pB
and, conditional on also winning A at price pA, he expects the common signal
to be equal to E [θ |θ + t1 = pA, θ + t2 = pB ] . Then in auction A, bidder E bids
up to the expected value of the prize, conditional on the information acquired. If
the expected value is lower than the current price, E drops out immediately of
auction A. Hence, we have the following result.

Lemma 11. In simultaneous auctions: (i) if bidder E wins object B at price
pB < 2tE , then for object A he bids up to

β5 (tE, pB) =

⎧⎨⎩
tE +

1
2pB if pB ≤ 2 (1− tE) ,

2tE + pB − 1 if 2 (1− tE) < pB < 1,
2tE if 1 ≤ pB;

(ii) if bidder E wins object B at price pB ≥ 2tE, then he drops out of auction A
immediately.

Summing up, with simultaneous auctions, in auction A bidder E: (i) bids
more aggressively (compared to sequential auctions) if auction B is still running,
(ii) bids less aggressively after winning auction B at a relatively low price, (iii)
drops out immediately after winning B at a relatively high price.24

In this model, even if bidder E learns more information during the bidding
process (and precisely because of this), he can still be a sorry winner in simultane-
ous auctions. Bidder E may be happy of winning auction A because auction B is
still running, but then discover that his opponent’s signals in auction B were not
so high after all. Winning auction A at a relatively high price, and immediately
after winning auction B, conveys bad news about the common signal and may
lead E to regret winning auction A.

Proposition 7 (Sorry Winner in Simultaneous Auctions). In simultaneous
auctions, bidder E regrets winning auction A after winning auction B if and only
if

E V AE |θ + t1 = pA, θ + t2 = pB < pA.

24 If bidder E could control the pace of the auctions (for instance, in the simultaneous ascending
auction often used to sell spectrum licenses, by bidding only on one object – but this is often
forbidden by the “activity rule” which is designed precisely to prevent strategic delaying of the
end of some auctions and to speed up the pace of the auctions), he would complete auction
B first, in order to learn as much information as possible about θ (and, in particular, whether
(θ + t2) ∈ [β5, 1 + tE ]) and hence have a better bid in auction A. The same would happen if
auctions are run in the sequence B-A. However, in both these cases E would also have an
incentive to bid over 1 + tE in auction B in order to learn more information about θ (exactly
as in Model I, with sequential sales, E has incentive to bid more than his expected valuation in
the first auction), and this prevents us from explicitly solving for equilibrium bidding strategies
in these cases.
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Example 3. Assume that tE = 1
3 , θ = t2 =

1
2 and t1 =

1
2 − ε, where ε is small.

Then E is willing to bid up to β4
1
3 = 1 in auction A, and so he wins A at price

pA = 1− ε and B at price pB = 1. However, after winning B, E expects his value
for object A to be tE + E [θ |pA = 1− ε, pB = 1] =

1
3 +

1−ε
2 = 5

6 − ε
2 < pA.

To be a sorry winner in simultaneous auctions, it is necessary that bidder E
wins auction B after winning A at a price higher than 2tE, which is his expected
valuation conditional only on the fact of winning auction A. This is because, if
E loses auction B after winning A, then his expected valuation for object A is
no lower than right after winning the first auction, and hence he cannot regret
winning A. And, for pB > pA, the condition of Proposition 7 yields:

pA > E V AE |θ + t1 = pA, θ + t2 = pB

⇔
⎧⎨⎩
pA > tE +

1
2pA if pB ≤ 1

pA > tE +
1
2 (pA + pB − 1) if pA < 1 < pB

pA > tE +
1
2pB if 1 ≤ pA

⇔
⎧⎨⎩
pA > 2tE if pB ≤ 1
(pA − pB + 1) > 2tE if pA < 1 < pB
2pA − pB > 2tE if 1 ≤ pA

⇒ pA > 2tE.

So, in both simultaneous and sequential auctions, bidder E can be a sorry
winner if he wins a second auction soon after winning a first one. In sequential
auctions, a bad news about the common signal consists in winning auction B at
a low price, after winning A at a high price; in simultaneous auctions, a bad news
consists in winning auction B soon after winning A at a high price. Intuitively,
the kind of bad news necessary to make E a sorry winner in simultaneous auction
is less likely than that in sequential auctions, and this is confirmed by numerical
simulations.25

Moreover, in simultaneous auction bidder E cannot be a sorry winner with
certainty. In fact, E regrets winning auction A in expectation only if pB > pA
but, in order for E to be sure he overpaid, pA must be higher than bidder E’s
highest possible valuation, given the information he obtains from the auctions’
outcome, i.e. it is necessary that pA > t1+max {pA, pB}⇒ pA > pB. Also, bidder
E cannot be sorry on aggregate. However, in Appendix D we analyze a different
version of Model II where bidder E can expect to lose money on aggregate in
simultaneous auctions.
25The probability of E being a sorry winner in sequential auctions is approximately equal to

0.042, while the probability of E being sorry in simultaneous auctions is approximately equal to
0.016.
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7. Revenue and Efficiency Comparison

How does the order of sale in Model II affect the expected revenue of the seller
and the efficiency of the final allocation? Players’ bidding behaviour in auction
B is not affected by whether the seller uses simultaneous auctions or sells the
objects sequentially, in the order A-B. But compared to a sequential auction,
with simultaneous auctions bidder E bids less aggressively in auction A after
winning auction B at a low price, while he bids more aggressively if his opponent
does not drop out of auction B. What is the net effect on the seller’s revenue?

The expected revenue of the seller from auction B is approximately 0.958;
while the expected revenue from auction A is 0.7 in a sequential auction (like
in a single object auction), and approximately 0.73 in a simultaneous auction.26

Therefore:

Proposition 8. The expected revenue of the seller is higher in simultaneous
auctions than in sequential auctions.

In both types of auctions each bidder wins with probability 1
2 ; player I1’s

bidding behaviour is the same and bidder E’s expected payment conditional on
winning the auction is the same. However, in a simultaneous auction bidder I1’s
expected payment is higher since E on average bids more aggressively whenever he
loses the auction.27 Hence, the seller should prefer a simultaneous auction, while
the better informed bidders should prefer a sequential one. And, for example,
in a sale of mobile-phone licenses we expect the incumbent and better informed
firms to lobby governments to sell through sequential, rather than simultaneous,
auctions.

The intuition for this result is that in auction A bidders are unequally in-
formed about their valuations and hence the less informed bidder has to bid more
cautiously in auction A to avoid the winner’s curse (since E does not θ but he bids
against an opponent who does). So inequality of information reduces the seller’s
revenue. But then any additional information revealed about θ reduces the in-
equality of information among bidders and raises revenue. And a simultaneous
auction reveals more information than a sequential one.

When bidders receive both private and common value signals about the value
of the object on sale, it is possible that the final allocation is inefficient, in the
sense that the winner is not the bidder with the highest valuation for the prize.
This cannot happen in auction B, since each bidder knows his valuation and bids
up to it. On the contrary, the outcome of auction A is inefficient whenever the

26With sequential auctions, the expected revenue in auction A is:

E [2tE |θ + t1 > 2tE ] Pr (θ + t1 > 2tE) + E [θ + t1 |2tE > θ + t1 ] Pr (2tE > θ + t1) = 0.7.

The expected revenue in the other two cases is computed by numerical simulations.
27Numerical simulations show that the expected bid by player E conditional on him losing

the auction is higher in a simultaneous auction than in a sequential auction.
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winner has a lower private signal then the loser and, since bidder E does not know
θ, he only bids based on his expectation of it, conditional on all the information
acquired. Therefore, both with simultaneous and sequential sales, E can win even
if his private signal is lower than his opponent’s one, and he can lose even if his
private signal is higher than his opponent’s one.28

In simultaneous auctions, however, more information about the common sig-
nal is revealed and bidder E bids based on a more precise estimate of θ, reducing
therefore inefficiency. Numerical simulations show that in sequential auctions the
probability of inefficiency is 0.167 and the expected difference between the loser’s
and the winner’s valuation in an inefficient allocation is 0.125; while in simulta-
neous auctions the probability of inefficiency is 0.135 and the expected difference
between the loser’s and the winner’s valuation in an inefficient allocation is 0.106.
Therefore:

Proposition 9. In simultaneous auctions, both the probability and the expected
size of an inefficient allocation of the prize are lower than in sequential auctions.

With sequential auctions, player E bids for license A like in a single-object
auction in which he does not know θ; while in a simultaneous auction, player
E bids for license A like in a single-object auction in which he learns when the
price equals θ+ t2. In order to further explore the effect of information inequality
among bidders on revenue, we compare four single-object auctions, with different
information structures and different degrees of information inequality. In each
auction, bidders’ valuations are the same as in auction A of our multiple-object
model. We assume bidder I1 always knows θ; while bidder E has the following
different levels of information:

− Case (i): E does not know θ;

− Case (ii): E learns when the current price equals θ + t2;

− Case (iii): E learns when the current price equals 2θ;

− Case (iv): E knows θ.

We think of these as four natural cases: in each one bidder E learns more
during the auction and the inequality of information with respect to I1 is reduced.
Case (i) corresponds to auction A in a the sequential sale, and E is completely

28Both in sequential and in simultaneous auctions, there is inefficiency if and only if one of
the following conditions are satisfied:

1. tE + E [θ |E wins auction A ] > t1 + θ and t1 > tE ,

2. t1 + θ > tE + E [θ |E wins auction A ] and tE > t1.

And whenever the first condition is satisfied, bidder E also pays object A more than it is
worth to him.
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uninformed; case (ii) corresponds to auction A in a simultaneous sale; and in case
(iv) both bidders are perfectly (and symmetrically) informed. We think of case
(iii) as a natural intermediate case: bidder E learn more than in case (ii) but is
not perfectly informed. In appendix C we discuss case (iii) in more details and
show how it can arise in a multi-object auction too.

Seller’s expected revenue and bidders’ expected profits in the four cases are:29

(i) (ii) (iii) (iv)

Seller’s revenue 0.7 0.73 0.78 0.83

E’s profit 0.146 0.152 0.164 1.6

I1’s profit 0.292 0.27 0.214 1.6

Hence, information inequality harms the seller and the less informed bidder: as
inequality raises, the potential winner’s curse of the less informed bidder increases
and the seller’s revenue is reduced. A reduction in the inequality improves the
seller’s revenue because it allows the less informed bidder to bid more aggressively
and reduces the informed bidder’s profit (since it reduces his information rent).

8. Conclusions

When players receive both private- and common-value signals about the value of
the object on sale, rational bidders can regret winning an auction and be sorry
winners. For multiple-object sales, with sequential auctions lower prices in later
auctions can provide proof of overpayment in earlier auctions (as they supposedly
did in the European 3G auctions), but winners can still expect positive profit on
aggregate as lower prices also imply higher profit in later auctions. So govern-
ments should be cautious when evaluating winners’ complaints of overpayment in
sequential auctions. Nonetheless, sellers may prefer simultaneous auctions since
they reduce the risk of sorry winners and lobbying, and increase efficiency.

The revenue comparison between simultaneous and sequential auctions with
information inequality among bidders is not univocal. As we have argued in
our second model, simultaneous auctions reduce the information inequality by
revealing more information during the bidding process and so reduce the potential
winner’s curse of poorly informed bidders and allow them to bid more aggressively.
On the other hand, in sequential auctions the less informed bidder may have an
incentive to bid more aggressively in the first auction, in order to learn useful
information for later auctions. This effect is present in our first model. It is
therefore controversial which auction sequence should be chosen by the seller
to maximize revenue. To the extent that the first effect predominates, as it

29 In case (iv), E [Revenue] = E [θ] + E [ti |ti < tj ] = 1
2
+ 1

3
= 5

6
, while expected firms’ profit

is E [ti − tj |ti > tj ] Pr (ti > tj) = 1
3

1
2
= 1

6
. The other numbers are obtained by numerical

simulations.
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does in our simple second model, with inequality of information, incumbent and
better informed firms may lobby governments to prevent the use of simultaneous
auctions.

Given the choice of sequential sales, when different sellers are involved, our
analysis suggests that each seller prefers to run its auction first to maximize
revenue, since less informed bidders have an incentive to bid more aggressively in
earlier auctions to acquire information. In the European 3G auctions, it appears
that the UK government tried hard to avoid postponing its sale, expecting to
obtain higher revenue by auctioning before other countries did (see Binmore and
Klemperer, 2002).30

30Running the first auction also maximizes entry since weak bidders have an incentive to not
participate to later ones after learning that they have no chance of winning.
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Appendix A: Additional Proofs

Proof of Lemma 3. Assume that E wins auction A at price pA. Then in
auction B he bids up to

p∗ = tE + E [θ |θ + t1 = pA, θ + t2 = p∗ ] .

For pA ≤ 2tE,31

p∗ = tE +

⎧⎨⎩
1
2pA if pA < p

∗ ≤ 1
1
2 (p

∗ + pA − 1) if pA < 1 < p
∗

1
2p
∗ if 1 ≤ pA < p∗.

(A.1)

If 2 (1− tE) < 1 < 2tE, i.e. if tE > 1
2 , (A.1) implies

p∗ =

⎧⎨⎩
tE +

1
2pA if pA ≤ 2 (1− tE)

2tE + pA − 1 if 2 (1− tE) < pA < 1
2tE if 1 ≤ pA ≤ 2tE.

If, on the other hand, 2tE < 1 < 2 (1− tE), (A.1) implies p∗ = tE + 1
2pA.

For pA > 2tE ,

p∗ = tE +

⎧⎨⎩
1
2p
∗ if p∗ < pA ≤ 1

1
2 (p

∗ + pA − 1) if p∗ < 1 < pA
1
2pA if 1 ≤ p∗ < pA

(A.2)

If 2tE < 1 < 2 (1− tE), (A.2) implies

p∗ =

⎧⎨⎩
2tE if pA ≤ 1
2tE + pA − 1 if 1 < pA < 2 (1− tE)
tE +

1
2pA if 2 (1− tE) ≤ pA.

If, on the other and 2 (1− tE) < 1 < 2tE, (A.2) implies p∗ = tE + 1
2pA.

Proof of Lemma 4. Notice that:

p ≤ E [VE |E wins A at price p] = tE + E [θ| θ + t1 = p] ⇔ p ≤ 2tE.

Therefore, by winning at any price up to 2tE, bidder E expects to earn positive
profit in auction A since he pays less than his expected valuation, conditional on
winning. Moreover, dropping out earlier would only damage him in auction B,
31Here we use the fact that, for X,Y,W U [0, 1] and 0 ≤ a < b ≤ 2,

E [X |X + Y = a, X +W = b ] =

⎧⎨⎩
1
2
a if a < b ≤ 1

1
2
(a+ b− 1) if a < 1 < b

1
2b if 1 ≤ a < b.
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since it would prevent him from learning valuable information about θ. So E has
no incentive to drop out of auction A before the price reaches 2tE.

Proof of Lemma 5. Bidder E’s expected valuation conditional on winning
auction A is equal to 2tE. Assume the price has reached 2tE and E bids up to
p = 2tE + ε, for ε small. If E loses the auction anyway, then he learns valuable
additional information about θ (i.e., that θ > 2tE + ε) and he can bid more
accurately in auction B. Therefore, given that he loses auction A anyway, bidder
E prefers not to drop out at price 2tE.

However, by bidding up to p = 2tE + ε, bidder E runs the risk of winning
auction A and lose, in expectation,

p− E [VE| θ + t1 = 2tE + ε] = 2tE + ε− tE +
2tE + ε

2
=

ε

2
.

But, also in this case, given the additional information about θ, E is able to bid
more accurately in auction B.

If he drops out at price 2tE , then conditional on winning auction B at price
p, he expects the common signal to be equal to:32

E [θ |θ + t1 > 2tE, θ + t2 = p ] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3p2−8t3E
6p−12t2E

if 2tE < p ≤ 1
3−8t3E−3(1−2tE)(p−1)2−2(p−1)3

9−3(p−2tE)2−12tE if 2tE < 1 < p
4+3p2+6p2tE−12ptE−2p3
3[(2−2tE)2−(a−2tE)2] if 1 ≤ 2tE < p.

Hence, in auction B he bids up to:

p = E VE θ + t1 > 2tE , θ + t2 = p

= tE + E θ θ + t1 > 2tE, θ + t2 = p

⇒
⎧⎨⎩
3p 2 − 12t2E + 6tE p + 20t3E = 0 if 2tE < p ≤ 1
p 3 + (3− 9tE) p 2 + 24t2E − 9 p − 20t3E − 12t2E + 15tE + 2 = 0 if 2tE < 1 < p
p 3 − 3 (3tE − 1) p 2 − 12 1− tE − t2E p − 24t2E + 12tE + 4 = 0 if 1 ≤ 2tE < p .

⇒ p (tE) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2t2E + tE 1 + 1

3 36t2E − 24tE + 9 if tE < 0.3934

3tE − 1 + t2E − 6tE + 4
√
3 sin π

3 + φ
− cos π

3 + φ
if 0.3934 ≤ tE ≤ 0.5

1
2

√
33− 5 + 9−√33 tE if tE > 0.5

32 It can be proven that, for X,Y,W U [0, 1] and 0 ≤ a < b ≤ 2,

E [X |X + Y = a, X +W > b ] =

⎧⎪⎪⎨⎪⎪⎩
3a2−b3
6a−3b2 if b < a ≤ 1
3−b3−3(1−b)(a−1)2−2(a−1)3

9−3(a−b)2−6b if b < 1 < a
4+3a2+3a2b−6ab−2a3
3[(2−b)2−(a−b)2] if 1 ≤ b < a.
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Figure 8.1: E’s bid in auction B after losing A at price 2tE.

where φ = 1
3 arctan

√
36t4E−308t3E+552t2E−372tE+87

2t3E−18t2E+30tE−13
. Figure 8.1 represents E’s bid

in auction B, conditional him on losing auction A at price 2tE. The figure shows
that, apart for tE = 0 and tE = 1, p (tE) > 2tE .

On the other hand, after winning auction A at price 2tE + ε, in auction B
bidder E only bids up to:

p = E VE θ + t1 = 2tE + ε, θ + t2 = p

= tE + E θ θ + t1 = 2tE + ε, θ + t2 = p
∼= tE + E θ θ + t1 = 2tE, θ + t2 = p

⇒ p (tE) = 2tE.

So given the additional information about θ, E is able to reduce his bid in auction
B by (p − p ). This reduction is almost always (i.e. apart for tE = 0 and tE = 1)
of finite order (i.e. of order higher than ε); for example, for tE = 1

2 , p
1
2 = 1.186,

p 1
2 = 1 and hence p 1

2 − p 1
2 = 0.186.

So, whenever I2’s bid in auctionB, i.e. θ+t2, lies in the interval [2tE , p ] (which
happens with a probability of order higher than ε), bidder E avoids overpaying
by the difference between I2’s bid and his expected valuation, conditional on I1’s
signals being equal to 2tE + ε and on I2’s bid, that is by:

E [Overpayment] = (θ + t2)− E [VE |θ + t1 = 2tE + ε, (θ + t2) ]
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∼= (θ + t2)− tE − E [θ |θ + t1 = 2tE, (θ + t2) ]

= (θ + t2)− tE −
⎧⎨⎩
tE if 2tE < (θ + t2) ≤ 1
2tE+θ+t2−1

2 if 2tE < 1 < (θ + t2)
θ+t2
2 if 1 ≤ 2tE < (θ + t2)

=

⎧⎨⎩
(θ + t2)− 2tE if 2tE < (θ + t2) ≤ 1
1 + 1

2 (θ + t2)− 2tE if 2tE < 1 < (θ + t2)
1
2 (θ + t2)− tE if 1 ≤ 2tE < (θ + t2)

and this is also of order higher than ε. Therefore, bidder E also prefers to win
auction A at price 2tE + ε instead of dropping out at price 2tE since he only
suffers a loss of order ε but his expected gain, in terms of expected reduction in
overpayment, is of order higher than ε.

Concluding, in auction A bidder E prefers both to win and to lose at price
2tE + ε, for ε small enough, instead of dropping out at price 2tE and hence he
bids more than 2tE.

Proof of Lemma 6. Given that one auction is still running, in the other
auction bidder E bids up to p∗ such that

p∗ = E [VE |θ + ti = p∗, θ + tj > p∗ ]
= tE + E [θ |θ + ti = p∗, θ + tj > p∗ ] , i, j = 1, 2, i = j;

⇒ p∗ = tE +

⎧⎨⎩
3p∗−(p∗)2
6−3p∗ if p∗ < 1

4−3(p∗)2+(p∗)3
3(2−p∗)2 if p∗ ≥ 1.

(A.3)

For p∗ < 1, (A.3) yields p∗ = 3
4 1 + tE − 1− 10

3 tE + t
2
E which is the only root

lower than 1, for tE < 1
3 . For p

∗ ≥ 1, (A.3) yields p∗ = 1
2 +

3
2tE which is the only

root such that 1 ≤ p∗ ≤ 1 + tE,33 for tE ≥ 1
3 .

Moreover, once bidder E quits one auction at price p∗, he prefers to quit the
other auction too. In fact, assume by contradiction that he does not. Then it
must be that, for p > p∗,

E VE θ + ti = p , θ + tj > p
∗ > p , i, j = 1, 2, i = j.

But since E [VE |θ + ti = p , θ + tj > p ] is increasing in p, this implies that

E VE θ + ti = p , θ + tj > p > p ,

which is a contradiction to the fact that E chooses to quit one auction at a price
lower than p .

33Bidder E never wants to bid more than the highest possible value of the prize.
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Proof of Lemma 7. The proof is analogous to the proof of Lemma 3 for
sequential auctions. Note only that if bidder E wins one auction at a price
p ≥ 2tE, then his expected value of the price, conditional on winning the other
auction too at any prize p > p, is lower than p. Hence, E prefers to lose the other
auction and drops out immediately.34

Proof of Lemma 8. Since E has a pure private value in auction B, he has
no incentive to bid over his expected valuation, conditional on winning, for object
A. Hence, in auction A he bids up to p∗A s.t. p

∗
A = tE+E [θ| θ + t1 = p∗A]⇔ p∗A =

2tE.

Proof of Lemma 10. The proof is analogous to the first part of the proof
of Lemma 6.

Proof of Lemma 11. The proof is analogous to the first part of the proof
of Lemma 7.
34From Lemma 3, in sequential auctions, E’s bid in the second auction, after winning the

first one at a price p ≥ 2tE , is strictly lower than p. But since prices rise simultaneously in
simultaneous auctions, when E wins one auction at a price p ≥ 2tE , the price in the other
auction is also equal to p. Hence, E prefers to drop out at a price strictly lower than the current
one, and so he abandons the auction.
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Appendix B: “Overbidding” to Discover Signals

Example B1. With sequential auctions, bidder E may want to bid more
than the expected value of the prize in an early auction in order to discover
additional information about the common signal and hence bid more accurately
in later auctions.

We analyze a simplified version of Model I, that allows us to further investi-
gate the “learning effect” of bidder E’s bid. Consider a sequential auction with
valuations:

Bidder
E I1 I2

Auction A VE= θ + tE V A1 = θ + t1

B VE= θ + tE V B2 = 2t2

All signals are uniformly distributed on [0, 1], and only bidder I1 knows θ. As
in Model I, players’ bidding behaviour in auction A reveals information about θ
which is used by bidder E to determine his bid in auction B. Here however, to
simplify we assume that bidding in auction B does not reveal any information
about θ.35

Assume that tE = 1
2 and consider whether E has an incentive in auction A to

bid more than 2tE = 1, i.e. his expected valuation, conditional on winning. If E
drops out of auction A at price 1, then in auction B he bids up to36

E [VE |θ + t1 > 1] = tE + E [θ |θ + t1 > 1]
=

1

2
+
2

3
=
7

6
.

If instead in auction A bidder E bids up to 1+ ε, for ε small, he runs the risk
of overpaying for the prize but he also learn valuable information. If he loses the
auction, then he has a better bid in auction B (since he learns that θ+ t1 > 1+ε)
at no cost. If, on the other hand, he wins auction A, then he pays more than his
expected valuation and so he expects to lose

1 + ε− E [VE |θ + t1 = 1 + ε ] = 1 + ε− tE − E [θ |θ + t1 = 1 + ε ]

= 1 + ε− 1

2
+
1 + ε

2
=

ε

2
.

35 In this model, unlike in Model I, bidder E cannot learn to have overpaid in auction A during
auction B, since no information about θ is revealed after auction A. However, as we are going to
argue, like in Model I he may bid more than the expected prize’s value in auction A and hence
he may regret winning even before auction B starts.
36For X,Y ∼ U [0, 1],

E [X |X + Y > p ] =
1

2
E [X + Y |X + Y > p ] =

1

2

⎧⎨⎩
2(3−p3)
3(2−p2) if p < 1
2(1−p)

3
if p ≥ 1.
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However, now bidder E reduces his bid in auction B to

E [VE |θ + t1 = 1 + ε ] = 1 +
ε

2
,

and so he avoids overpaying and losing money in auction B when 2tE ∈ 1 + ε
2 ,
7
6 .

Therefore, he avoids an expected loss of:

7
12

1
2
+ ε
4

2x− 1 +
ε

2
dx =

1

144
− 1

24
ε+

1

16
ε2 >

ε

2
.

So bidder E is happy of winning A at price 1 + ε, since the expected loss he
avoids in auction B is higher than his expected loss in auction A. He prefers to
bid up to 1 + ε, for ε small, instead of quitting when the price is equal to his
expected valuation conditional on winning.

Example B2. In the previous example we argued that winning at a price
higher than his expected valuation in the first auction can help the less informed
bidder to bid more cautiously in the second auction. But also losing at a price
higher than his expected valuation reveals information about the common signal
and allows the less informed bidder to bid more aggressively in the second auction.
Overbidding to obtain such a result is not generally profitable with continuously
distributed signals; but may be profitable for the uninformed bidder if signals are
distributed over a discrete support.

Consider a sequential auction with valuations:

Bidder
E I1 I2

Auction A VE= θ + tE V A1 = θ + t1

B VE= θ + tE V B2 = θ + t2

and assume tE = 0.5 while all the other signals (θ, t1 and t2) are equal to 0 with
probability 1

2 , and 1 with probability
1
2 . Then:

(θ + t1) and (θ + t2) =

⎧⎨⎩
0 with probability 1

4 ,
1 with probability 1

2 ,
2 with probability 1

4 .

As in the main model, we assume each bidder knows his private signal t but only
bidders I1 and I2 know θ.

We ask whether bidder E should drop out of auction A when the price equals
to the expected value of the prize, conditional on winning, i.e. at price 2tE = 1.
(Note that E VE|E wins at pA = 1 = 1.)

If bidder E bids up to 1+ε and I1 does not drop out, then he learns θ = 1. In
this case, E is better off since he can increase his bid for B from 1 to 1.5. Indeed

32



if t2 = 0 (i.e. with probability 1
2), the I2 drops out of auction B at price 1 and

E wins the auction earning a profit of 0.5. Moreover, bidding up to 1 + ε is not
risky since bidder I1 never drops out of auction A at any price in the interval
(1, 1 + ε]. Therefore, bidder E prefers bidding higher than 2tE in auction A, in
order to discover value of θ.

As argued in these examples, with sequential auctions, overbidding in the
first auction to discover information about the common signal can lead the less
informed bidder in the second auction to either bid less aggressively and avoid
potential losses or to bid more aggressively and obtain additional potential profits.
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Appendix C: No Sorry Winners

In this appendix we show that our “No Sorry Winner” result of Model II
does not depend on E having a higher valuation in the second auction (but it
depends on E not having an incentive to overbid in the first auction to discover
information about the common signal). We analyze a modified version of Model
I which allow us to solve for E’s bidding strategy in sequential auctions.

Consider a sequential auction with two objects and three bidders, whose val-
uations are:

Bidder
E I1 I2

Auction A VE= θ + tE V A1 = θ + t1

B VE= θ + tE V B2 = 2θ

As usual, we assume that only bidders I1 and I2 know θ. Bidder E has the same
valuation for both objects on sale and we prove that, even in this case, he may
be a sorry winners in auction A, but always obtains positive expected profit on
aggregate.

Note that whenever bidder E wins the second auction, he learns the value
of θ. Therefore, he has no incentive to overbid in the first auction to acquire
information. The next lemmas describes equilibrium bidding strategies. The
proofs are analogous to those of our main models.

Lemma 12. It is a dominant strategy for bidder I1 to bid up to θ+ t1 in auction
A, and for bidder I2 to bid up to 2θ in auction B.

Lemma 13. Bidder E bids up to 2tE in both auctions.

Since E always learns the value of θ when he wins the second auction, we
have the following result.

Proposition 10. Bidder E is a sorry winner in auction A if and only if

t1 > tE >
1

2
(θ + t1) . (C.1)

Proof. Whenever condition (C.1) is satisfied, bidder E wins auction A but pays
more than his valuation. But (C.1) also implies that 2tE > 2θ, so E wins auction
B too, learns θ and discovers he has overpaid.

However, in order for E to be sorry in auction A, θ must be relatively small
and so E pays a low price in auction B.

Proposition 11. Aggregating across both auctions, bidder E cannot be a sorry
winner.
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Proof. E can only be sorry if he wins both auctions and condition (C.1) is
satisfied. In this case E’s total expected profit is

E [πE] = 2 (θ + tE)− pA − pB
= 2 (θ + tE)− (θ + t1)− 2θ
= 2tE − (θ + t1) ,

which is non-negative because of (C.1) itself.
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Appendix D: Sorry Winner on Aggregate
in Simultaneous Auctions

In Model II we have argued that bidder E cannot expect to lose money on
aggregate. However, in this appendix, we show by an example that this can
happen in a similar model in which E’s valuation in auction B is lower than his
valuation in auction A.

Consider a simultaneous auction with two objects and three bidders, whose
valuations are:

Bidder
E I1 I2

Auction A V AE = θ + tE V A1 = θ + t1

B V BE = 1 + ε V B2 = θ + t2

Basically, these are the same valuations as in Model II, apart from V BE which,
instead of 1+ tE, is equal to 1+ ε, where ε is small. We assume all variables take
the same values as in Example 3, i.e. that tE = 1

3 , θ = t2 =
1
2 and t1 =

1
2 − ε.

Bidder E bids up to his known value 1 + ε in auction B, while he bids up
to β4

1
3 = 1

2 +
3
2

1
3 = 1 in auction A.37 Therefore bidder E wins A at price

pA = 1−ε and, immediately after, he also wins B at price pB = 1. This represents
bad news about the common signal for E: after winning auction B, bidder E
expects his aggregate profit to be equal to

E [πE] = E V AE |pA = 1− ε, pB = 1 + V BE − pA − pB
= tE + E [θ |θ + t1 = 1− ε, θ + t2 = 1] + 1 + ε− (1− ε)− 1
=

1

3
+
1− ε

2
+ 2ε− 1

=
3

2
ε− 1

6
< 0.

In this example, bidder E is a sorry winner in auction A because he wins
auction B immediately after winning A, at a price close to his reserve price.
Moreover, E also loses money on aggregate since his valuations for the two object
are similar and, therefore, his profit in auction B are not sufficient to compensate
his losses in auction A.
37The function β4 (tE), which is derived in Lemma 10, represents E’s bid in auction A when,

with simultaneous sales, auction B is still running and hence he knows that the sum of his
opponent’s signal in auction B is higher than the current price in auction A.
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Appendix E: Dynamic vs Static Auctions

In this appendix we reconsider Model I and analyze the use of second-price
auctions for simultaneous sales. We compare, in terms of expected seller’s revenue,
simultaneous second-price auctions to simultaneous ascending auctions; that is a
“static format” (a second-price auction) to a “dynamic format” (an ascending
auction).

Consider an auction for two objects with three bidders and assume bidders’
valuations are as in Model I. Bidder I1’s and bidder I2’s strategy is not affected
by the auction format: both bidders bid up to their known valuation. On the
contrary, bidder E’s strategy depends on the auction format. With second-price
auctions, no information about θ is revealed to E before the auctions terminate
and, conditional on winning one auction, E only learns that the sum of his op-
ponent’s signals in that auction is equal to the price he pays, exactly as he does
in a single-object auction.38 Therefore, as with a single-object, in each auction
bidder E bids up to his expected valuation, conditional on winning that auction,
i.e. 2tE.

On the other hand, with ascending auctions, in each auction bidder E also
learns about his opponent’s signal in the other auction while the price is rising
and, as we have seen in Section 4, his bidding strategy depends on whether he
wins or not the other auction. In particular, if the sum of his opponents’ signals
in one auction is lower than 2tE, then, compared to a single-object auction, E
bids less aggressively in the other auction; if, on the other hand, the sum of
his opponents’ signals in one auction is higher than 2tE, then, compared to a
single-object auction, E bids more aggressively in the other auction.

Numerical simulations show that the expected seller’s revenue in simultaneous
ascending auctions is approximately equal to 0.146. While the expected seller’s
revenue in simultaneous second-price auctions is equal to twice the expect revenue
in a single-object second-price auction, that is:

E Revenue in 2nd-price = 2
E [2tE |θ + ti > 2tE ] Pr (θ + ti > 2tE)+
E [θ + ti |2tE > θ + ti ] Pr (2tE > θ + t1)

= 2 (0.7) = 1.4.

So, with information inequality, the dynamic format performs better in terms
of revenue since more information is revealed during the bidding process and this
reduces the potential winner’s curse of the less informed bidder, allowing him
to bid more aggressively. With no inequality of information, i.e. if both bidders
have full information about θ, revenue is even higher (and does not depend on the
auction format since in both second-price and ascending auctions it is a dominant

38This is not necessarily true if combinatorial bids are allowed since then, conditional on
winning both auctions, bidder E learns information about both of his opponents’ signals. Hence,
static auctions with combinatorial bids are more similar to dynamic auctions.

37



strategy for each bidder to bid up to his known valuation):

E [Revenue with θ known] = 2 (E [θ] + E [ti |ti < tj ]) = 5

3
= 1.6.

These results reinforce the conclusion emerged from our analysis that information
inequality among bidders hurts the seller, and a reduction of the inequality by
the use of auction mechanisms that reveals more information during the bidding
process yields higher revenue.
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