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Abstract 
 
We analyse the relationship between socio-economic variables and health outcomes for adult participants in 
three waves of the British Household Panel Survey from 1999 to 2001. We adopt Sen’s capability approach and 
compute a capability index ranking individuals on the basis of their ability to transform health and economic 
resources into health functionings. The results show that, even when controlling for access to health resources, 
socio-economic variables affect significantly the health functionings in the UK. This suggests the need for more 
equalitarian access policies to health care facilities. 
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1. Introduction 

 

The health economics literature suggests that there exists a positive association 

between socio-economic status (usually measured by variables like income and 

education) and a variety of health outcomes indicators (like mortality and self-

reported health status). Indeed, it has long been recognised that variations in income 

can explain a substantial part of the observed health differences (Shorrocks, 1975; 

Smith, 1999). Despite this, the precise mechanisms that create this positive 

relationship are less clear. A traditional explanation focuses on the access to health 

care and argues that, because of their financial resources, high-income individuals 

have access to more and/or better health facilities than their low-income counterparts 

(Menchik, 1993; Wilkinson, 1996; Benzeval and Judge, 2001). An alternative 

explanation considers the role that genetic or lifestyle factors can have in explaining 

the positive association between health outcomes and socio-economic status: high-

income individuals may be healthier either for genetic reasons (being more proficient 

in transforming health resources into health outcomes) or because they have a 

healthier lifestyle. Being able to distinguish between these explanations is of 

paramount importance from the standpoint of health policy. Social arrangements (as 

opposite to a personal decision not to worry about health in particular) that prevent a 

curable illness from being treated are a particularly bad type of social injustice, calling 

for changes in those institutions that may (perversely) allow only rich people to have 

access to health-care services of a given standard (Smith, 1999).  

 

In this paper, we try to assess the relative importance of these two hypotheses by 

using the capability approach developed by Sen (1985, 1987). This approach focuses 

on an individual’s opportunities for conducting a life that can be valued. These 

opportunities are reflected in the capability set that is formed through a process where 

commodities (resources and income) are converted by personal, social, and 

environmental factors into potential functionings (or living conditions). Among the 

different capabilities, the capability of achieving health (or health capability) is 

central. Indeed, when given a choice, individuals tend to give priority to good health 

over the other capabilities. Therefore, Sen’s notions of commodities, capabilities and 

functionings are extremely relevant within a health care context, where resources refer 

to both socio-economic variables (like income, education, wealth) and health 
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resources (like number of visits to the general practitioner - GP - or days spent in 

hospital) giving the individual the capability of getting (and eventually enjoying) good 

health outcomes. The main contribution of this paper is to show how it is possible to 

compute an index of health capabilities that measures the proficiency by which 

individuals transform resources into health outcomes (or functionings) while at the 

same time, controlling for socio-economic arrangements that can influence the 

individual set of capabilities.  

 

We compute the capability index for a sample of adult participants in three waves of 

the British Household Panel Survey (BHPS) for the period 1999-2001. For this 

purpose, we interpret both socio-economic and health resources as inputs of a 

production process where health functionings are the outputs. We assume that there is 

a maximum amount of functionings that can be produced by given resources; this can 

be interpreted as the functionings production frontier. Obviously, each individual 

differs in his capability of transforming resources into functionings. This means that 

individuals can hold different positions with respect to the functionings production 

frontier: their distance from the frontier allows us to measure (and rank) the 

individuals’ efficiency in transforming resources into capabilities. In order to compute 

the capability index, it is necessary to estimate the production frontier. This can be 

done by adopting appropriate techniques from the field of frontier analysis (Fried et 

al., 1993). Generally speaking, a production frontier can be estimated either by using 

parametric methods (based on econometric analysis) or by using non-parametric 

methods (based on linear programming methods). We adopt the parametric approach 

for several reasons. First, as we have a panel data-set, we can use econometric 

techniques to control for both unobservable heterogeneity and the presence of 

survivor bias in the estimates. Second, in an econometric set-up it is possible to test 

the significance of the impact of resources on health functionings allowing for non-

linear and interaction effects. 

 

The results from the empirical work can be summarised as follows: socio-economic 

variables affect health functionings, even controlling for the utilised amount of health 

resources. High-income and highly educated individuals enjoy better health 

functionings, the results suggesting that this depends on their more intensive use of 

health facilities. In contrast, individuals with low educational attainment and income 
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are more likely to have poor health functionings. The existence of significant 

interaction terms between income and health resources suggests that the positive 

association found in the UK between income and health outcomes cannot be simply 

ascribed to different genetic factors or lifestyles. Finally, the distribution of the 

capability index has a very low standard deviation implying that the unobservable 

factors (ranging from genetic factors to lifestyle) hindering best performance are not 

widely spread among individuals.  

 

The paper has the following structure. Section 2 shows how to model analytically the 

functionings production process, while Section 3 describes the main features of the 

BHPS data-set along with the variables used in the empirical analysis. The results are 

presented in Section 4, while Section 5 offers some concluding remarks. 

 

 

2. The Functionings Production Function and the Capability Index 

 

The purpose of this section is twofold: first, we show how the relationship between 

resources and functionings can be modelled using concepts drawn from production 

analysis and second, we illustrate formally how the capability index can be derived. 

Consider a production process where y∈ℜ+
M  denotes the functionings and 

x∈ℜ+
N indicates the resources. For each vector of x, the output set has a production 

possibility frontier showing the maximum combination of functionings which can be 

produced for given resources. An example of a production possibility frontier is 

represented in Figure 1. 

[Insert Figure 1 here] 

Suppose now that we have two different individuals A and B: we assume they use the 

same vector of resources but the vector of functionings corresponding to the 

individual A, Ay , is different from the vector of functionings of the individual B, By . 

This difference means that the two individuals differ in their capability of 

transforming resources into functionings. Assume now that we want to rank the two 

individuals’ capabilities. We can do this by comparing each individual vector of 

functionings to the standard given by the production possibility frontier. More 

specifically, if Ay  is radially more distant from the frontier than By  and needs to be 
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expanded more than By  in order to hit the frontier, then the capability of A to 

transform resources into functionings is lower than B. So a capability index can be 

defined as one minus the equiproportionate expansion of all outputs for given inputs. 

By construction, the index varies between 0 and 1. If it is equal to 1, then no 

expansion is possible and the individual is on the production frontier. Values smaller 

than 1 measure how much the individual can improve on his health capability, for 

given inputs.  

 

To compute the capability index, it is necessary to model and compute the production 

frontier with respect to which the capability index is measured. As mentioned in the 

Introduction, we use the parametric frontier techniques developed within the 

economic analysis of production (Fried et al., 1993) to estimate the functionings 

production frontier. For this purpose, it is necessary to make some assumptions on the 

functional form that models the relationship between resources and functionings. In 

doing this, it is important to recall that health functionings can be affected not only by 

the access to health resources, but also by both observable and unobservable factors 

varying from educational attainment, individual income, attitude towards health risks, 

lifestyle and genetic factors. So, in the specification of the functionings production 

set, it is necessary to control for this additional set of influences. Therefore, we 

assume a functionings production function of the following type: 

 

itiititiititit euRYxYRHF ++++++= δγχβα     (2.1) 

 

where i=1,…,N indexes groups and t=1,…,T indexes periods. itHF  represents the 

health functionings, itR  the health resources and itY  personal income. The vector ix  

includes variables, like sex, age, attitude towards health risks, marital status, location, 

education and so on, introduced to control for various, observable, individual 

characteristics. By including itY  in (2.1) alongside with itR , we can capture not only 

the extent to which high-income individuals may have easier access to health 

resources, but also whether their use of these resources is more effective. In addition, 

we allow for potential interactions and non-linearities in the relationship between 

health functionings, health resources and income. In particular, a set of interaction 

terms between personal income and health resources is introduced in (2.1). If these 
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variables affect positively the probability of enjoying good health, then we can infer 

that high income enhances the impact of health resources on health outcomes, even 

once these resources have already been secured. 

 

The residual ite , representing idiosyncratic shocks to the frontier, is distributed as 

N[0,1], while the individual-specific term iu  is time-invariant and is distributed as 

N[0, ]2σ . The latter captures all those unobservable characteristics (such as genetic 

factors and lifestyle factors) that may influence the distribution of health functionings 

across the sample. The choice of controlling for unobserved individual heterogeneity 

through a set of random effects (as opposite to fixed effects) has been made for the 

following reasons. First, the random effects specification is common when using 

samples from large populations (Baltagi, 2001). Second, given the short length of the 

panel data-set, fixed effects estimators do not produce consistent estimates of the 

individual effects that would then used to compute the capability index (Baltagi, 

2001). A further advantage of this specification is that it allows us to introduce among 

the regressors time-invariant individual variables, like location, sex and so on. 

 

Once (2.1) has been estimated, the capability index can be computed from the 

estimated random effects as follows (Greene, 2003): 

 

)exp( *
ii uCI −=         (2.2) 

 
where iii uuu −= )max(* . By construction, the index is bounded between 0 and 1. As 

mentioned above, the capability index reflects the proficiency with which the 

individual transforms income and health resources into health functionings. As we 

control for both health and socio-economic resources as well as for a host of 

individual characteristics in the production set, the inability of an individual to reach 

the frontier reflects the existence of unobservable factors, ranging from genetic 

characteristics to lifestyle factors not in the set of control variables, but still having the 

potential of affecting individuals’ capabilities.  

 

 



 12

3. The Empirical Analysis: the Data and the Variables 

 

The data for our empirical work have been extracted from the BHPS. This survey was 

started in 1991 and so far eleven waves of data have been collected. The initial sample 

was designed as a nationally representative sample of the population living in a 

private household and covered approximately 5,000 households and 10,000 adults. 

The sample was based on a two-stage stratified clustered design1. In the first stage, 

250 postcode sectors were selected from the Small User Postcode Address File and 

stratified by region and socio-demographic data relying on the 1981 census. In the 

second stage, addresses were sampled from the postcode sectors using an analogous 

systematic procedure. Up to three households were selected to participate in the 

sample and all adults in the household were interviewed. The main effort in designing 

the following waves has been to follow all of the initial members of the panel over 

time. In this study, we focus only the three last waves (9, 10 and 11, related 

respectively to years 1999, 2000 and 2001). Each wave of data has been cleaned so to 

eliminate inconsistencies and reporting mistakes in the data. Finally, we have trimmed 

1% of the data at both ends of the distributions to cut out eventual outliers. The final 

data set is a panel data made up of 25,402 observations across the three waves.  

 

In order to specify (2.1) empirically, we draw upon the burgeoning literature showing 

that health outcomes (like mortality, incidence of diseases and self-reported health 

status) are associated with socio-economic variables (like income and wealth, among 

the others). Shorrocks (1975) first presented some estimate of the magnitude of the 

relationship between socio-economic status and health outcomes. Most subsequent 

studies (Menchik, 1993; Wilkinson, 1996; Benzeval and Judge, 2001) have 

concentrated on several measures of health outcomes (psychological and physical 

well-being, mortality and subjective self-assessment of health), assessing their relation 

with various measures of income (like current income, long-term income, individual 

income, family income, income change and poverty experience), while controlling at 

the same time for other variables (demographic characteristics, education, attitude 

towards health risks, living arrangements, and location). It is an established result 

from this literature that low income is typically associated to poor health. However, 

                                                 
1 For more details on the BHPS sampling strategy, see the BHPS user manual (Taylor, 1998).  
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the literature does not clarify the precise channel through which this correlation is 

established (access to less and/or worse health facilities, genetic factors, lifestyle). A 

distinctive feature of our paper is that we try to shed light on this point, controlling for 

the utilised amount of health resources and assessing whether income impacts on 

quality and efficient use of these resources. 

 

We decide to use the self-reported health status (SRHS) as a measure of the health 

functionings. This variable is constructed by asking each individual to assess his or 

her health status on a scale ranging from 1 (excellent) to 5 (very poor). The variable 

provides an ordinal ranking of perceived health status and should be interpreted as the 

perceived health status relative to the individuals’ concept of the norm for their age 

group (Jones et al., 2004). SHRS has been widely used in previous studies of the 

relationship between health and socio-economic status and in spite of its subjective 

nature, is considered to be a reliable measure of individual health conditions. It has 

been shown to be a good predictor of either mortality or subsequent use of medical 

care (see Contoyannis et al., 2004, and quoted literature therein). The fact that SRHS 

is ordinal has a direct bearing on the estimation procedure as we have to use a random 

effects ordered probit estimator.  

 

The resource vector contains both measures of socio-economic background and 

measures of health care utilisation. Among the socio-economic variables, we include 

a) the individual’s educational attainment measured by the highest degree attained by 

the end of the sample period in descending order of attainment (EDUCn), from 1 

(higher education degree) to 12 (no qualification) and b) the income measured as the 

1999 (or initial-period) value of the RPI-deflated annual household income 

(INCOME). Consistently with the relevant literature, we expect income and education 

to have a positive impact on the probability of reporting good (or excellent) health. 

We have decided to use the personal income of an individual measured at the 

beginning of the sample period because contemporaneous personal income may be 

endogenous. It is possible that poor health affects labour market outcomes and 

therefore available income (Marmot et al., 1991; Marmot, 1999). Hence, relying on 

initial-period income allows us to specify a causal link from income to health 

functionings, something which is not feasible with cross-section data (Benzeval and 

Judge, 2001). It may seem as that we are assuming a too restrictive specification for 
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the income-health nexus. However, most epidemiology studies find that the main 

direction of causation runs from income to health, after controlling in different ways 

for health selection2. 

 

Among the measures of health-care resources, we include the number of inpatients 

days spent in hospital (either public or private) in the year before the survey 

(INPATIENT DAYS), the number of outpatients days in the year before the survey 

(OUTPATIENT DAYS) and the number of visits to the family GP (VISITS TO GP) 

in the year before the survey. While INPATIENT DAYS is a continuous variable, 

both OUTPATIENT DAYS and VISITS TO GP are categorical variables. 

OUTPATIENT DAYS ranges from 0 (no outpatient visit) to 4 (more than 10 

outpatient visits), while VISITS TO GP starts from 1 (no GP visit) to 5 (more than 10 

GP visits). In principle we expect that a higher use of health resources produces a 

better health status. However, a negative correlation can show up if individuals in 

poor health status, which use more health resources, are not precisely characterised by 

other control variables. Distinctive features of our estimates are (a) that we include 

these variables alongside with income and education, and (b) that each of them is 

interacted with income and education to control for potential differences in quality 

and use of health resources across socio-economic groups.  

 

In addition to the resource variables, we also introduce a set of control variables that 

are deemed to be important in affecting the health outcomes. These are the 

individual’s age (AGE), sex (SEX) and the number of accidents the individual had in 

the year before the survey (NACC). We expect a better reported health status among 

younger people and women. In addition, the presence of multiple accidents is 

obviously important in affecting the individual’s health status and therefore his self-

assessment. AGE is a continuous variable, while SEX is a binary variable taking the 

value of 1 if the respondent is male and 0 otherwise. Next, we control for the 

respondents’ attitude to taking health risks by distinguishing between smokers and 

non-smokers. More specifically, we introduce the binary variable SMOKER taking 

                                                 
2 See Benzeval and Judge (2001) and the literature quoted there for more information.  
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the value of 1 when the respondent smokes and 0 otherwise3. Finally, we control for 

geographical location by introducing the binary variable REGIOn, (n ranging from the 

value 1 - Inner London - to 18 - Scotland). 

 

Table 1 reports the distribution (in percentage terms) of the respondents across all the 

variables used in our empirical analysis, across the three waves. Generally speaking, 

the distribution of SRHS shows that most respondents assess their health to be either 

excellent or good. This proportion increases across the three waves, suggesting a 

potential problem with survivor bias, as less healthy respondents drop out of the 

survey. Consistently, the majority of respondents had either up to two or no visit to 

their GP and spent up to two days as an outpatient. Interestingly, these proportions 

remain rather stable across the three waves. Also, the vast majority of the respondents 

had no accident in the previous year and only a third of the respondents smokes. As 

for the demographics of our sample, the mean age is around 49 years old and this 

value is rather stable across the waves; the sample is more or less evenly distributed 

between males and females. As for the educational attainment, more than a third of 

the respondents have either a first or a higher degree, while the rest of the respondents 

have either a high school qualification or no qualification at all. Average personal 

income is increasing over the three waves. Finally, the regional distribution of the 

respondents shows that most respondents are concentrated in the Southern part of the 

country, consistently with the distribution of the whole population across Britain. 

Table 1 also shows how the sample size evolves across the three waves of the BHPS, 

with the number of respondents varying from 8,273 in the first wave to 9,739 in the 

last wave. This variation in the sample size may indicate a potential attrition (or 

rather, survivor) bias problem in our data. For this reason, before we proceed to the 

estimation of the functionings production frontier, we test for the existence of the 

survivor bias and eventually correct the estimators accordingly. In the next section, 

we present the results of these tests and the resulting adjustments to the estimators, 

along with the estimates of the functionings production frontier and of the capability 

index.  

                                                 
3 We have decided not to introduce additional variables controlling for the respondents’ lifestyle as it is 
a well-known result from the epidemiology literature that only smoking habits, among the several 
lifestyle factors, significantly affect the relationship between socio-economic status and health 
outcomes (see Power et al., 1998; Contoyannis and Jones, 2002).  
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4. The Results 

 

4.1 Testing and correcting for survivor bias 

As mentioned above, the (negative) attrition found in each wave of our panel can be 

directly related to health problems, as individuals may die, suffer from serious 

illnesses and therefore drop from the survey. Long-term survivors who remain in the 

panel are likely to be healthier than average. More generally, the health and the socio-

economic status of survivors may not be representative of the original population. 

Thus, failing to account for attrition may result in misleading estimates of the 

relationship between health functionings and socio-economic status. Veerbeck and 

Nijman (1992) provide a simple “variable addition” test for attrition. This consists in 

testing the significance in the original model of each of the following variables: 

1) an indicator of whether the individual responds in the next wave 

(NEXTWAVE); 

2) an indicator of whether the individual responds in all the three waves 

(ALLWAVES). 

The intuition behind these tests is quite simple: if attrition is random, then indicators 

of the individual’s pattern of responses are not associated with the SHRS, after 

controlling for its other determinants. Table 2 shows the results of the attrition bias 

test in the model where SHRS appear as the dependent variables and both the socio-

economic variables and the control variables are included as independent variables. 

The test statistics show evidence of attrition bias as the t-ratios are significant. The 

signs of the marginal effects of both NEXTWAVE and ALLWAVES are consistent 

with the hypothesis that the probability of being in good or excellent health is higher 

both for respondents in the next wave and in all the three waves. 

 

The attrition bias can be addressed by correcting the estimates with the so-called 

Inverse Probability Weights (IPWs), the inverse of the probability of an individual 

responding in the survey (after controlling for all those observable factors that can 

affect the response pattern)4. The purpose of this procedure is to give more weight to 

                                                 
4 In presence of an attrition bias, the traditional probit estimators are not consistent. However, 
consistent estimators can be obtained by weighting the observed data by the so-called Inverse 
Probability Weights (Wooldridge, 2002a, 2002b). To compute the IPW estimator, we first estimate a 
probit model where the probability of response and non-response at each wave is determined by a set of 
observable characteristics that are not included in the original probit model (typically lagged values of 
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groups of individuals who have a high probability of attrition, as they are under-

represented in the sample. 

 

4.2 The functionings production function 

The results from the IPW ordered probit estimator are presented in Table 3. As the 

estimated model is non-linear, t-ratios cannot be used to assess the statistical 

significance of the independent variables. To this purpose, it is necessary to carry out 

Likelihood Ratio (LR) tests on each variable or sub-sets of variables. The LR tests 

(reported in Table 4) confirm that most variables are significant. Income and health 

resources have a significant impact on individuals’ health functionings, consistently 

with our expectations. In this sense, the results support the general findings in the 

health economics literature, according to which the main direction of causation runs 

from income to health. What is distinctive of our results is that income affects health 

status even if allowance is made for the utilised amount of health resources. Besides, 

although two of the three interaction terms (namely the interaction between income 

and outpatient days and between income and visits to the GP) are not significant5, the 

interaction between income and inpatient days is highly significant, indicating that the 

impact of inpatient days on health status differs across income levels.  

 

To provide an indication of the direction of the relationship between SHRS and each 

regressor, we have computed for each regressor the marginal effect evaluated at its 

mean value. Table 5 shows these marginal effects. As we can see, the probability of 

being in a poor health status increases with the number of inpatient and outpatient 

days, as individuals in poor health status use a larger amount of these resources. 

However, this does not apply to visits to the GP: in this case, using more health 

resources is positively related with the probability of being in good health. Higher 

income and educational attainment are accompanied by a lower probability of 

                                                                                                                                            
the original independent variables). Afterwards, the inverse of the fitted probabilities from this model 
are used to weight the observations for the ML estimation of the ordered probit model. Wooldridge 
(2002b) shows that the IPW estimator is n consistent and asymptotically normal. 
 
5 Different types of non-linearities have been tried: more specifically, we have introduced among the 
regressors the squared income and the interaction between the health resources and the education 
dummies. None of these variables was significant.  
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reporting poor health status6. It so appears confirmed that better-educated individuals 

pay more attention to health conditions and have less unhealthy jobs. More 

interestingly, the probability of being in good health is increasing in the interaction 

term between income and inpatient days, suggesting that at least a part of the health-

income nexus must be ascribed to the institutional features of the UK’s National 

Health System (NHS). In the NHS, access to inpatient days is strictly related to the 

referral pattern of GPs, and the incentives of the latter are to economise the referrals. 

No such strong incentives exist to economise the referrals for outpatient days. 

Therefore, wealthier individuals who may need inpatient treatment prefer to leave the 

NHS and use their financial resources to access the private health sector, while people 

in the NHS are likely to get inpatient treatment only in fairly serious cases.  

 

To compute the capability index, we use (2.2). Table 6 shows the main descriptive 

statistics for the index: the mean value of the distribution is 0.6075 with a standard 

deviation equal to 0.0440, while the median is 0.6080. How can these results be 

interpreted? In Sen’s terms, the capability index is an indicator of the “freedom” an 

individual has to achieve the combination of functionings he values. Freedom, 

however, must be broadly interpreted in this context: it does not only refer to the set 

of opportunities offered by the society to each member, but also to the individual 

characteristics that allow each person to enjoy the set of chosen functionings. In the 

health-care context, a low capability index may indicate the existence of behaviours or 

individual characteristics (like genetic illnesses) that prevent an individual from 

getting the most out of his resources. For instance, an individual with some 

unobservable illness that nevertheless lets him have a regular job may be unable to 

use his economic resources to enhance his health functionings. In this respect, the 

results we get are quite encouraging: the relatively high median implies that, for more 

than half of the individuals in our sample, the available health and economic resources 

are transformed into health functionings in a relatively successful way or (in other 

words) that our respondents are reasonably “free” to take advantage of the offered 

opportunities. In addition the low standard deviation indicates that most individuals in 

                                                 
6 This result is consistent with the findings from Contoyannis and Jones (2004). Using the BHPS, they 
report that those who belong to the highest social class are significantly more likely to report excellent 
(or good) health, while those who are in the two lowest social classes are significantly more likely to 
report bad health. Equally they find that individuals with no qualification have a low probability of 
reporting excellent or good health. 
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the sample have more or less the same capability (as the average individual) to 

transform resources into health functionings. This means either that the unobservable 

factors (ranging from genetic factors to lifestyles) hindering best performance are not 

widely spread among individuals, or that individuals who have genetic problems may 

opt for a healthier lifestyle attaining a health capability closer to that of individuals 

without genetic illnesses. 

 

Our results indicate that the positive relationship between health outcomes and socio-

economic variables crucially depends on the fact that better off individuals can enjoy 

a more intensive use of health resources, presumably because health care access 

policies tend to favour them. While genetic factors cannot be altered, there is scope 

for policy-makers to introduce measures that can favourably affect the capability 

index. To this purpose, policies are needed that severe the positive link between 

income and effective use of inpatient days that has been put in evidence by the 

econometric results.  

 

 

5. Concluding remarks 

 

In this paper, we have suggested a way to make Sen’s capability approach operational 

within a health-care context. For this purpose, we have computed a health capability 

index that measures the proficiency with which individuals transform various kinds of 

resources into health functionings. We have assumed that the relationship between 

health functionings and resources can be described as a production function 

describing the maximum amount of health functionings (the output) that can be 

produced with the existing health and socio-economic resources (the inputs). The 

distance of an individual from the frontier measures the capability of an individual to 

transform resources into functionings. 

 

On a panel of British individuals from the BHPS from 1999 to 2001, we find that 

socio-economic variables matter in determining individual health functionings, even 

when allowance is made for access to health resources. Indeed, higher income and 

educational attainment imply a lower probability of being in a poor health status and 

higher income interacted with access to inpatient days has a positive impact on the 
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probability of being in good health. This significant interaction term suggests that the 

positive association found in the UK between income and health outcomes cannot be 

simply ascribed to different genetic factors or lifestyles. Hence there is some scope for 

policy-makers to expand the individual opportunity sets by devising measures that 

facilitate access to health care independently of income. Furthermore, the distribution 

of the capability index has relatively high mean (and median) and low standard error. 

This implies that the available health and economic resources are transformed into 

health functionings in a relatively successful way in our sample, with most individuals 

showing more or less the same capability. 
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LIST OF VARIABLES 

 
 
Variables 
 

Label 

Number of visits to the family GP VISITS TO GP 
Number of inpatient days in the year before the survey INPATIENT DAYS 
Number of outpatient days in the year before the survey OUTPATIENT DAYS 
Number of accidents NACC 
Personal income in initial period INCOME 
Age of the respondent AGE 
Binary variable indicating the sex of the respondent SEX 
Binary variable indicating whether the respondent smokes or not SMOKER 
  
REGION  
Inner London REGIO1 
Outer London REGIO2 
South East  REGIO3 
South West REGIO4 
East Anglia REGIO5 
East Midlands REGIO6 
West Midlands Con. REGIO7 
West Midlands REGIO8 
Greater Manchester REGIO9 
Merseyside REGIO10 
North West REGIO11 
South Yorkshire REGIO12 
West Yorkshire REGIO13 
York and Humberside REGIO14 
Tyne and Wear REGIO15 
North of England REGIO16 
Wales REGIO17 
Scotland REGIO18 
  
EDUC (Highest Educational Attainment)  
Higher Degree EDUC1 
First Degree EDUC2 
Teaching Qualification EDUC3 
Other Higher Qualification EDUC4 
Nursing Qualification EDUC5 
GCE A Levels EDUC6 
GCE O Levels EDUC7 
Commercial Qualification EDUC8 
CSE Grade 2-5 EDUC9 
Apprenticeship EDUC10 
Other Qualification EDUC11 
No Qualification EDUC12 
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Table 1. Percentage Distribution of Respondents across Waves 
 
Variable Wave 9 Wave 10 Wave 11 

SRHS 
Excellent 
Good 
Fair 
Poor 
Very Poor 

 
14.6% 
30.1% 
31.8% 
17.5% 

6% 

 
20.8% 
44.1% 
23.1% 
8.9% 
3.2% 

 
22.5% 
42.8% 
22.9% 
9.1% 
2.7% 

Number of visits to GP 
None 
One or two visits 
From 3 to 5 visits 
From 6 to 10 visits 
More than 10 visits 

 
24.6% 
33.7% 
20.2% 
10.4% 
11.2% 

 
22.9% 
34.3% 
21.6% 
11% 

10.2% 

 
23.1% 
34.4% 
20.4% 
11.1% 
10.9% 

Number of Outpatient Days 
None 
One or two days 
From 3 to 5 days 
From 6 to 10 days 
More than 10 days 

 
59.1% 
22.5% 
10.3% 
4.3% 
3.8% 

 
58.2% 
24.5% 
9.7% 
4.2% 
3.3% 

 
58.1% 
24.2% 
9.8% 
4.1% 
3.8% 

Number of Accidents 
None 
One  
Two 
Three 
Four or more 

 
89.2% 
9.3% 
1% 

0.3% 
0.2% 

 
90% 
8.8% 
0.9% 
0.2% 
0.1% 

 
90.3% 
8.6% 
0.7% 
0.2% 
0.1% 

Smoker 
Yes 
No 

 
30.4% 
38.7% 

 
29% 
71% 

 
29.1% 
70.9% 

Marital Status 
Married or Living as a couple 
Single 

 
59.2% 
40.8% 

 
59.3% 
40.7% 

 
58.8% 
41.2% 

Sex 
Male  
Female 

 
53.2% 
46.8% 

 
52.9% 
47.1% 

 
53.9% 
46.1% 

Education 
Higher Deg. 
First Deg. 
Teaching Q. 
Other Higher Q. 
Nursing Q. 
GCE A Levels 
GCE O Levels 
Commercial Q.CSE Grade 2-5 
Apprenticeship 
Other Qualification 
No Qualification 

 
2.3% 
9.1% 
2.7% 

18.8% 
1.6% 

10.1% 
16.6% 
2.3% 
2.7% 
3.0% 
0.7% 

29.2% 

 
2.5% 
9.5% 
2.6% 

20.8% 
1.5% 

10.1% 
16.3% 
2.1% 
2.8% 
2.8% 
0.6% 

27.5% 

 
2.6% 
9.4% 
2.4% 

19.8% 
1.4% 
10% 

15.7% 
2.3% 
2.7% 
3.1% 
0.7% 

28.7% 
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Regions 
Inner London  
Outer London  
South East  
South West  
East Anglia 
East Midlands 
West Midlands Conurbation  
West Midlands 
Greater Manchester 
Merseyside 
North West 
South Yorkshire 
West Yorkshire  
York and Humberside 
Tyne and Wear 
North of England  
Wales 
Scotland 

 
2.2% 
3.9% 

11.7% 
6% 

2.7% 
5.7% 
2.4% 
3.5% 
2.8% 
1.3% 
3% 

1.7% 
2.3% 
2.3% 
1.6% 
2.6% 
20% 

23.1% 
1.2% 

 

 
2.1% 
3.7% 

11.9% 
6.0% 
2.8% 
5.7% 
2.5% 
3.5% 
2.8% 
1.3% 
3.1% 
1.6% 
2.3% 
2.2% 
1.7% 
2.7% 

19.2% 
23.4% 
1.1% 

 
1.6% 
3.1% 
9.9% 
4.9% 
2.3% 
4.6% 
2% 

2.9% 
2.3% 
1.1% 
2.5% 
1.4% 
2% 

1.9% 
1.3% 
2.1% 

15.7% 
18.8% 

1% 

Age (mean)  
49 

 
49 

 
50 

 
Income (mean)  

12663.91 
 

13314.02 
 

13964.77 
 

Number of Respondents 
 

 
8273 

 
8159 

 
9739 

 
 
 
 
 
 
 
Table 2. Veerbeck and Nijman Tests for Attrition 
 
Variable Coefficient T-ratio    
NEXTWAVE -0.081 -4.942    
ALLWAVE -0.137 -6.165    
 
Marginal Effects Probability 

of reporting 
excellent 
health 
status 

Probability 
of reporting 
very good 
health 
status 

Probability 
of reporting 
good health 
status  

Probability 
of reporting 
poor health 
status 

Probability of 
reporting 
very poor 
health status 

NEXTWAVE 0.0164 0.0083 -0.0093 -0.0085 -0.0069 
ALLWAVE 0.0271 0.0147 -0.0152 -0.0145 -0.0121 
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Table 3. ML Ordered Probit Estimates with Inverse Probability Weights 
   
Regressors Coefficients T-ratios 
   
Constant -0.250  -0.605 
VISITS TO GP  0.311  11.394 
INPATIENT DAYS -1.099  -4.739 
OUTPATIENT DAYS  0.312   8.991 
NACC  0.083   7.009 
INCOME  0.007   1.419 
VISITS TO GP*INCOME -0.002  -1.247 
INPATIENT DAYS*INCOME  0.073   5.044 
OUTPATIENT DAYS*INCOME -0.002  -0.839 
AGE  0.002   4.739 
SEX -0.277 -26.152 
SMOKER -1.033 -10.167 
EDUC1 -0.081  -3.131 
EDUC2  0.119   1.895 
EDUC3  0.188   4.906 
EDUC4  0.163   2.778 
EDUC5  0.087   3.024 
EDUC6  0.114   1.509 
EDUC7  0.051   1.444 
EDUC8  0.069   2.364 
EDUC9  0.153   2.424 
EDUC10  0.082   1.420 
EDUC11 -0.049  -0.885 
 
Note: Regional variables are included among the regressors, but are not reported in the table.  
 
 
 
 
Table 4. Likelihood Ratio Tests 
 
 LR Critical Value 
Ho: Income is not significant.  

5.8* 
 

χ2(1)=3.84 
Ho: Education variables are not jointly significant.  

46.94* 
 

χ2(12)=21.3 
Ho: Interaction variables between income and 
medical resources are not jointly significant. 14.38* χ2(3)=7.82 
Ho: Interaction variable between income and 
number of visits to the GP is not significant. 1.18 χ2(1)=3.84 
Ho: Interaction variable between income and 
number of inpatient days is not significant. 13.04* χ2(1)=3.84 
Ho: Interaction variable between income and 
number of outpatient days is not significant. 0.5 χ2(1)=3.84 
Ho: Regional variables are not significant. 
 63.3* χ2(17)=27.59 
 
Note: * means the variable(s) is(are) significant at 5%. 
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Table 5. Marginal Effects from the IPW Ordered Probit 
      
Regressors Probability 

of reporting 
excellent 

heath status 

Probability 
of reporting 
very good 

health status 

Probability 
of reporting 
good health 

status  

Probability 
of reporting 
poor health 

status 

Probability of 
reporting 
very poor 

health status 
      
Constant -0.0628 -0.0319  0.0357  0.0327  0.0263 
VISITS TO GP  0.2216  0.1125 -0.1260 -0.1155 -0.0927 
INPATIENT DAYS -0.0629 -0.0320  0.0358  0.0328  0.0263 
OUTPATIENT DAYS -0.0167 -0.0085  0.0095  0.0087  0.0070 
NACC -0.0015 -0.0008  0.0009  0.0008  0.0006 
INCOME  0.0004  0.0002 -0.0002 -0.0002 -0.0002 
INPATIENT DAYS*INCOME  0.0003  0.0002 -0.0002 -0.0002 -0.0001 
AGE  0.0558  0.0283 -0.0317 -0.0291 -0.0233 
SEX  0.2083  0.1058 -0.1184 -0.1086 -0.0871 
SMOKER  0.0160  0.0086 -0.0091 -0.0086 -0.0070 
EDUC1 -0.0249 -0.0108  0.0142  0.0122  0.0093 
EDUC2 -0.0401 -0.0164  0.0229  0.0191  0.0144 
EDUC3 -0.0347 -0.0141  0.0198  0.0166  0.0125 
EDUC4 -0.0180 -0.0085  0.0102  0.0091  0.0071 
EDUC5 -0.0238 -0.0104  0.0136  0.0117  0.0089 
EDUC6 -0.0104 -0.0050  0.0059  0.0053  0.0042 
EDUC7 -0.0141 -0.0067  0.0081  0.0072  0.0057 
EDUC8 -0.0324 -0.0134  0.0185  0.0156  0.0118 
EDUC9 -0.0171 -0.0078  0.0097  0.0085  0.0066 
EDUC10  0.0096  0.0052 -0.0055 -0.0051 -0.0042 
EDUC11  0.0205  0.0118 -0.0115 -0.0113 -0.0095 
 
Note: The marginal effects have been computed only for significant variables. 
 
 
 
 
 
 
 
Table 6. Descriptive Statistics of the Capability Index 
  
Mean 0.6075 
Mode 0.5440 
Median 0.6080 
Standard Deviation 0.0440 
Skewness 1.7436 
Minimum 0.5083 
Maximum 1.0000 

 



 26

 

y2

y1

yA

yB

.
.

 
 

FIGURE 1 

The Production Possibility Frontier 

 



 27

REFERENCES 

 
Baltagi, B.H. (2001), Econometric Analysis of Panel Data, John Wiley and Sons Ltd, 
Chichester, UK.  
 
Benzeval, M. and Judge, K. (2001), Income and Health: the Time Dimension, Social 
Science and Medicine, 52, 1371-90. 
 
Contoyannis, P. and Jones, A.M. (2004), Socio-economic Status, Health and 
Lifestyle, Journal of Health Economics, 23, 965-995; 
 
Contoyannis, P, Jones, A.M. and Rice, N. (2004), The Dynamics of Health in the 
British Household Panel Survey, Journal of Applied Econometrics, 19(4), 473-503. 
 
Fried, H.O., Lovell, C.A.K., Schmidt, S., eds. (1993), The measurement of productive 
efficiency: techniques and applications, Oxford University Press, New York.  
 
Greene, W. (2003), Fixed and Random Effects in Stochastic Frontier Models, mimeo, 
Stern School of Business, NYU, New York, USA. 
 
Jones, A. M., Koolman, X. and Rice, N., (2004), Health-related Attrition in the BHPS 
and ECHP: using Inverse Probability Weighted Estimators in Nonlinear Models, 
mimeo. 
 
Marmot, M. (1999), Multilevel Approaches to Understanding Social Determinants, in 
Social Epidemology, L. Berkman and I. Kawachi (eds), Oxford University Press, 
Oxford. 
 
Marmot, M., G. Smith, S. Stanfield, C. Patel, F. North, J. Head, I. White, E. Bruneer 
and A. Feeny (1991), Health Inequalities among British Civil Servants: the Whitehall 
II Study, Lancet, 8, 1387-1393. 
 
Menchik, P.L. (1993), Economic Status as a Determinant of Mortality among black 
and white older men: Does Poverty Kill?, Population Studies, 47, 427-36. 
 
Power, C., Matthews, S. and Manor, O. (1998), Inequalities in Self-rated Health: 
Explanations from Different Stages of Life, The Lancet, 351, 1009-1014. 
 
Sen, A. (1985), Commodities and Capabilities, North Holland, Amsterdam. 
 
Sen, A. (1987), The Standard of Living, Cambridge University Press, Cambridge. 
 
Shorrocks, A.F. (1975), The Age-Wealth Relationship: a Cross-Section and Cohort 
Analysis, Review of Economics and Statistics, 57, 155-63. 
 
Smith, J.P. (1999), Healthy bodies and thick wallets: the dual relation between health 
and economic status, Journal of Economic Perspectives 13, n.2, 145-66. 
 
Taylor, M. F. (ed.) (1998), British Household Panel Survey User Manual. 
Introduction, Technical report and Appendices, University of Essex, Colchester, UK.  



 28

 
Verbeek, M. and Nijman, T.E. (1992), Testing for Selectivity Bias in Panel Data 
Models, International Economic Review, 33, 681-703.  
 
Wilkinson, R. G. (1996), Unhealthy Societies: the Afflictions of Inequality, Routledge, 
London. 
 
Wooldridge, J., (2002a), Econometric Analysis of Cross-section and Panel Data, MIT 
Press. 
 
Wooldridge, J., (2002b), Inverse Probability Weighted M-estimators for Sample 
Stratification, Attrition and Stratification, Portuguese Economic Journal, 1, 117-139. 
 
 
 


