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Abstract 
 
This paper clarifies and extends the model of anticipated regret and endogenous beliefs based on the Savage 
(1951) Minmax Regret Criterion developped in Suryanarayanan (2006a). A decision maker chooses an action 
with state contingent consequences but cannot precisely assess the true probability distribution of the state. She 
distrusts her prior about the true distribution and surrounds it with a set of alternative but plausible probability 
distributions. The decision maker minimizes the worst expected regret over all plausible probability 
distributions and alternative actions, where regret is the loss experienced when the decision maker compares an 
action to a counterfactual feasible alternative for a given realization of the state. Preliminary theoretical results 
provide a systematic algorithm to find the solution to the decision problem and show how models of Minmax 
Regret differs from models of ambiguity aversion and expected utility. In particular, the solution to the decision 
problem can always be represented as a saddle point solution to an equivalent zerosum game problem. This 
new problem jointly produces the solution to the Anticipated Regret problem and the endogenous belief. We 
then use the endogenous belief to define the implicit certainty equivalent and to build an infinite horizon and 
time consistent problem for a decision maker minimizing her lifetime worst expected regrets. 
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1 Introduction
Modern Macroeconomics assumes market structures in which the competitive
equilibrium price of any tradeable commodity is equal to the expected value of
its discounted payoffs. Commodity payoffs are contingent upon the realization
of an exogenous state of nature and expectations are measured with respect
to the probability distribution of the state. Economically plausible discount
factors are interpreted as the outcome of interactions between infinitely lived
agents in the market. Assumptions about agents’ preferences, constraints and
beliefs about the probability distribution of the state of nature are then crucial
in characterizing efficient allocations of macroeconomic risks and equilibrium
prices.
The Rational Expectations hypothesis (Muth (1964)) is commonly used to

model agents’ anticipations of the future state and assumes that agents know
the true probability distribution of the state. In this working paper, we are
interested in departures from rational expectations in situations where agents
cannot precisely assess the true probability distribution of the state of nature
and we develop instead a model of endogenous beliefs based on a version of the
Savage (1951) Minmax Regret criterion.
We build upon the framework of Sections 2 and 3 in Suryanarayanan (2006a)

and extend the theoretical results. Consider the problem of a decision maker
choosing an action with state contingent consequences when she cannot precisely
assess the true probability distribution of the state. In the spirit of Hansen’s and
Sargent’s applications of Robust Control theory, we assume that she distrusts
her prior about the true distribution and surrounds it with a set of alternative
but plausible probability distributions. One possible rationale to doubt about
the prior is a concern for misspecifications (see Hansen and Sargent (2006)) and
more generally a concern with the fact that a prior is an approximation. For
each realization of the state and feasible action, the decision maker may feel
regret for not choosing an alternative plan from which she may derive greater
utility for that particular realization. We define regret as the loss experienced
when the decision maker compares an action to a counterfactual feasible alter-
native for a given realization of the state. The decision maker anticipates her
future regrets and minimizes the worst expected regret over all plausible proba-
bility distributions and alternative actions. Unlike Maxmin models of ambiguity
aversion or Robust Control models, the decision maker anticipating her future
regrets cares about the worst expected regret payoff, not the worst expected
payoff. Thus, the decision maker is less pessimistic compared to an ambigu-
ity averse decision maker since she also focuses on optimistic scenarios, and yet
more cautious than a standard expected utility maximizer who would only favor
one particular scenario.
We provide a theorem which gives general conditions that garantee the exis-

tence of a unique solution to the decision problem and show how general minmax
regret models fundamentally differ from minmax and expected utility. Indeed,
we show that the solution is also the unique saddle point solution of an equiv-
alent zero-sum game problem. The saddle point property is what distinguishes
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anticipated regret from expected utility and is only satisfied in some cases for
general minmax models, depending on the choice of the probability set or the
constraint set. This property is also the one which delivers the most interesting
implications of models of ambiguity aversion for asset allocation problems and
equilibrium asset prices. For such applications, the theorem advocates the use
of Minmax Regret type models instead.
The new zero-sum game problem also delivers the expost probability distrib-

ution, i.e. the distribution with respect to which an expected utility maximizer
would also choose the solution to the ancitipated regret problem. We interpret it
as the decision maker’s implicit belief. Since it is jointly obtained with optimal
decision, we say that the implicit belief is endogenous to the decision prob-
lem. The expost probability interpretation of the regret problem then allows
us to define a notion of certainty equivalent which will be useful in formulating
a recursive and time consistent problem for an infinitely lived decision maker
anticipating her future regrets.
The next Sections are organized as follows. Section 2 defines and studies

the one-period Anticipated Regret problem, shows how to derive the expost
distribution interpreted as the endogenous belief and compares Anticipated Re-
gret with the standard Expected Utility and the Ambiguity Aversion (Minmax)
problems. Section 3 develops a recursive formulation of the decision problem
for an infinitely lived decision maker anticipating her future regrets, compares
the infinite horizon model with Epstein-Zin recursive utility, and suggests alter-
native formulations. Section 4 concludes.

2 The static model
In this Section, we define the choice environment and the one-period decision
problem of Anticipated Regret (R), a version of the Savage Minmax Regret
criterion. We recall and extend the equivalent zero-sum representation of the
decision problem (R) and construct the expost probability distribution consis-
tent with the decision problem which we interpret as the endogenous implicit
belief of the decision maker. Indeed, an expected utility maximizer with a prior
equal to the expost distribution would also choose the optimal solution to the
anticipated regret problem.

2.1 The decision problem

2.1.1 The choice environment

Let Z be the set of states, a compact metric space with a Borel σ−algebra B(Z).
We identify Z with the set of all the possible realizations of an exogenous state
of nature. We denote by Π(Z) the set of all Borel probability measures on Z.
Under the weak-convergence topology, Π(Z) is also a compact metric space.
We denote by Γ(Z) the set of all continuous and B(Z)−measurable functions

mapping Z to the real line <, and Γ+(Z) the set of consumption plans, the cone
of all positive functions in Γ(Z).
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2.1.2 The experience of anticipated counterfactual thinking

Consider a decision maker who faces the problem of choosing a consumption
plan (c(z))z∈Z within a set of constraints summarized by C, a subset of Γ

+(Z)
which does not separate consumption plans across states. An example would
be a typical budget constraint. Thus, the decision maker cannot choose to al-
locate her consumption independently for each state. Unless she has a perfect
forecast upon the realization of the state of nature or unless she turns out to
have chosen the expost optimal action, the decision maker is likely to feel re-
gret for having made the inappropriate choice. Regret is commonly defined to
be the nagging feeling of having made the wrong choice compared to a better
alternative (Olson and Roese, 1995) and is the prominent form of counterfac-
tual thinking, the comparison between the “what might have been” alternative
choice, the counterfactual, and the “what has effectively been” choice.
Since the decision maker knows she will eventually learn about the true

realization of the state of nature, she may anticipate her future regrets. The an-
ticipation of counterfactual thoughts is shown to be innate and to arise naturally
(Sirigu et al. (2004)1 and Mandel et al. (2005)) in situations when the decision
maker knows that there will be a direct and observable feedback subsequent to
her decision.
We assume that the decision maker evaluates her experience of anticipated

counterfactual thinking in state z for having chosen c instead of the counterfac-
tual c∗ through the function ψ :

<+ ×<+ × Z → <
(c(z), c∗(z), z) → ψ(c(z), c∗(z), z)

where the quantity −ψ(c(z), c∗(z), z) will measure anticipated regret. We make
the following assumptions on ψ :

• Assumption A1 : for all z ∈ Z, ψ (·, ·, z) is continuous on <+ × <+,
strictly increasing, strictly concave and differentiable in its first argument.

• Assumption A2 : for all z ∈ Z, ψ (·, ·, z) is antisymmetric on <+ ×<+

ψ (c(z), c∗(z), z) = −ψ (c∗(z), c(z), z)
for all (c, c∗) ∈ C × C

Assumption A1 is analogous to usual assumptions that are made for utility
functions and decision problems in economics. The strict concavity property
will be important for the main results that will follow.
Assumption A2 states that regret is antisymmetric. Regretting x for x∗ is

experienced as rejoycing x∗ for x. This property was first mentioned in Fishburn
(1982, 1984) who studied utility representations without the transitivity axiom

1Sirigu et. al (Science, May (2004)) identify the orbito prefrontal cortex, which is active in
reward evaluation and comparison, as a fundamental human cerebral structure in mediating
the experience of regret and the anticipation of counterfactual thoughts.
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and derived a representation where the decision maker compares each possible
pair of alternatives using the functional ψ. Experiments in Loomes and Sugden
(1982, 1986) showed that A2 was an important property to capture the expe-
rience of regret. Note that by assumption A2, ψ (·, ·, z) is strictly convex and
differentiable in its second argument.

2.1.3 Minimizing the worst regret

We assume that the decision maker cannot precisely assess the true probability
distribution of the state. In the spirit of Hansen’s and Sargent’s application
of Robust Control theory, she distrusts2 her prior distribution p∗ which she
acknowledges to be an approximation to the true probability distribution and
surrounds p∗ with a set of alternative but plausible distributions P, a subset of
Π(Z). The following Section gives examples of specifications for P.
We define the decision function v with which the decision maker ranks con-

sumption plans:

v : Γ+(Z)→ <
v(c) = min

π∈P
min
c∗∈C

Eπψ(c(z), c
∗(z), z)

and the associated decision problem:

(R) : max
c∈C

v(c)

where we make the following assumptions on the probability set P and the
constraint set C :

• Assumption A3 : P is a non-empty, convex, compact subset of Π(Z)
• Assumption A4 : C is a non-empty, convex, compact subset of Γ+(Z)
The interpretation is the following. The decision maker solves (R) to choose

consumption plans that minimize the worst expected regret3. The quantity
−v(c)measures the worst expected regret that the decision maker could possibly
experience if she decides to choose the consumption plan c. Indeed, first she
selects for each possible probability measure π the best counterfactual plan she
could choose if she did not doubt about π. In other words, given π this best
counterfactual plan would give her the worst expected regret :

max
c∗∈C

Eπ (−ψ(c(z), c∗(z), z))
2Although the theoretical resutls in this paper do not depend on the particular interpre-

tation of the multiple priors set P, we favor Hansen’s and Sargent’s interpretation in terms of
model uncertainty when we want to study the observable implications for dynamic economies,
and in particular for the application to asset pricing in Section 4.

3 In Sirigu et. al (2004), patients without lesions in their orbito prefrontal cortex are shown
to make decisions in anticipation of their counterfactual thoughts that try to avoid future
regrets.
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She then computes the maximum regret she could experience across all plausible
probabilities:

max
π∈P

max
c∗∈C

Eπ (−ψ(c(z), c∗(z), z))
which can be rewritten as:

−min
π∈P

min
c∗∈C

Eπψ(c(z), c
∗(z), z)

= −v(c)
Switching the sign of−ψ(c(z), c∗(z), z) to+ψ(c(z), c∗(z), z) changes themax

π∈P
max
c∗∈C

operators into −min
π∈P

min
c∗∈C

and we see that −v(c) measures the decision maker’s
worst expected regret.

2.1.4 Examples

• The function ψ

In applications, we will use the additive specification for ψ :

ψ(c(z), c∗(z), z) = u(c(z))− u(c∗(z))
where u is a standard VNM utility function. The decision maker compares the
utility derived from plan c to that derived from a counterfactual alternative plan
c∗.
This enables to better compare our model with the expected utility model.

Indeed, we see that when the probability set P is reduced to a singleton {π∗} ,
the anticipated regret model reduces to expected utility with prior π∗.
However, when P is not reduced to a singleton, i.e when ambiguity prevails,

the anticipation of counterfactual alternatives affects the choice of the decision
maker through the minimization over alternative plausible probabilities in P .

• The constraint set C
In most applications, C will be a typical budget constraint. For a standard

consumer problem, where the exogenous state takes only two values, L and H,
we may define C as

C =
©
(cL, cH) ∈ <+ ×<+ | 0 ≤ pLcL + pHcH ≤ y

ª
where y is the consumer’s income and pL and pH are the spot prices in states
L and H.
Alternatively, we could also adapt C for a one-period investment problem:

C =

½
c ∈ <+ ×<+ and θ ∈ <+ ×<+ |

cz = θRz + (y − θ)Rf , z ∈ {L,H} and 0 ≤ θ ≤ y
¾

where θ is the amount invested in the asset which pays Rz units of consumption
in state z and (y − θ) is the amount invested in the risk-free asset which pays
always Rf units of consumption.
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Note that the convexity assumption rules out fixed costs. In particular,
in asset pricing models that assume a participation constraint in the form of
fixed costs, the results presented in this Section will not apply. However, this
assumption can handle most other types of constraints used in asset pricing and
macroeconomics such as short-selling constraints and solvency constraints.

• The probability set P

Specifications of sets of probability measures abound in the statistics lit-
erature. We refer to Epstein and Wang (1994) and references therein for a
few insightful examples. In particular, the choice of ε−contamination sets is
particularly appealing:

P = {p | p = εm+ (1− ε)p∗, m ∈M}

where ε is random variable on Z with values in [0, 1], p∗ is the prior of the
decision maker about which she expresses doubts and M is a closed and convex
subset of Π(Z). When ε is constant and equal to 0, we have that P = {p∗} and
there is no ambiguity. In general, the set P then “contaminates” the measure
p∗ with a set of alternative measures εm+ (1− ε)p∗.
Hansen and Sargent use the Kullback-Leibler distance to specify the proba-

bility set P as a neighborhood of absolutely continuous measures around p∗ for
Robust Control problems:

P = {p ∈ Π(Z) | dKL(p, p∗) ≤ ε}
dKL(p, p

∗) =

Z
z∈Z

dp

dp∗
log

µ
dp

dp∗

¶
dp∗(z)

where dp
dp∗ is the Radon-Nikodym derivative of p with respect to p∗. In this

case, the decision maker is concerned with small deviations from p∗ that are
absolutely continuous with respect to p∗ which she is not able to detect.
Alternatively, one could use a neighborhood induced by the Prohorov metric

(as in Bergemann and Schlag4 (2005) who study another version of the Savage
Minmax Regret criterion within the context of monopoly pricing) to define P :

P = {p ∈ Π(Z) | d(p, p∗) ≤ ε}
d(p, p∗) = inf

A∈B(Z)
{η | p(A) ≤ p∗(Aη) + η}

Aη = {x ∈ Z | dZ(x,A) ≤ η}
4They define the anticipated regret problem by:

max
c∈C

min
π∈P

Eπ

µ
min

a∈C∗(z)
ψ(c(z), a, z)

¶
the best counterfactual is chosen state by state in the innermost minimization problem and
C∗(z) is the state z section of the constraint C. This problem is equivalent to the one studied
in this paper in special cases (Z = {L,H} , P = [0, 1]), but not in general when P is not the
set of all possible measures on Z.
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where dZ is a given metric on Z. The Prohorov metric or metric of the weak
convergence (convergence in distribution for probabilities) allows for both large
deviations in probabilities within small neighborhoods and large neighborhoods
with small deviations in probabilities. This could be particularly useful in equi-
librium asset pricing where large deviations in prices from fundamentals and
state dependent volatility in asset returns are hard to explain with existing
models.
We conclude this paragraph with the two-state case Z = {L,H}. Any

convex and compact subset of Π(Z) is then identified with a closed and bounded
interval

£
πinf ,πsup

¤
included in [0, 1] giving the range of plausible values for the

probability of state L.

2.1.5 Savage’s Minmax Regret

The decision problem (R) is an extension of Savage’s (1951) Minmax Regret
Criterion which can be expressed as follows. A decision maker derives utility
u(c(z), z) in state z from choosing the plan c and does not know the true re-
alization of the state at the time of decision. Savage suggested to apply the
worst case scenario criterion to a modified reward, which he terms the “loss”,
defined, for each plan c and state z, as the difference between the maximum
utility obtainable for state z and the utility derived from plan c:

min
c∈C

max
z∈Z

max
c∗∈C

(u(c∗(z), z)− u(c(z), z))

The minimization over c∗ takes place for each state of the world z and defines
the best action that can be taken if the decision maker knew that state z were
the true state. Thus, the term maxc∗∈C (u(c∗(z), z)− u(c(z), z)) expresses the
decision maker’s regret in utility loss for taking action c in state z instead of the
best action c∗ in state z. The decision maker then minimizes the worst regret
over all actions and states.
Savage’s formulation of the problem is equivalent to problem (R) when the

set of alternative distributions P is equal to the set of all possible measures Π(Z).
The first extension to Savage’s criterion is thus to allow the decision maker to
bound the plausible probabilities she considers with a set P which would not
necessarily equal the set of all possible measures over Z. The second extension
is to allow for a more general form of loss function ψ to measure anticipated
regret.
In order to understand how introducing probability bounds changes the na-

ture of the problem, consider the case when Z = {L,H} and L represents the
event of a serious stock market crash while H represents the event of a good per-
formance of the stock market. Let us suppose that the utility payoffs (u(c, z))
of an investor who must choose between a risky stock R and a riskless asset Rf

are given by:
L H

Rf 1 1
R −10 5
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that is, in the event of a serious stock market crash, the regret loss of investing
in the risky stock R is very high (11) compared to the regret loss of investing
in the safe asset Rf (4) in the good state H. When applying Savage’s criterion
to this decision problem, we see that the worst regret occurs when choosing the
stock in the event of a crash. Thus, the investor would always choose the safe
asset Rf . However, such a decision is not satisfactory. In reality, the event of a
serious stock market crash is an extreme event and is very unlikely. A decision
maker with this intuition in mind may, for example, bound the probability π of
the market crash to be no more than 0.25 and solve the problem:

min
c∈{Rf,R}

max
π∈[0,0.25]

max
c∗∈{Rf,R}

{Eπ(u(c∗, z)− u(c, z))}

where

Eπ(u(R
f , z)) = 1

Eπ(u(R, z)) = −15π + 5
In this case the worst expected regrets are respectively

−v(R) = max
π∈[0,0.25]

max
c∗∈{Rf,R}

{Eπ(u(c∗, z)− u(R, z))}
= 15/4− 4

−v(Rf ) = max
π∈[0,0.25]

max
c∗∈{Rf,R}

©
Eπ(u(c

∗, z)− u(Rf , z))ª
= 4

so that the investor minimizing the worst expected regret chooses to invest in
the stock (v(R) > v(Rf )).

2.2 Equivalent zero-sum game formulation and main re-
sults

The following Section characterizes the solution of the decision problem (R)
with Theorem 1 and shows with Theorem 3 that the decision problem (R)
has an equivalent Minmax representation (B). Theorem 3 is an extension to
Theorem 3 in Suryanarayanan (2006a). In particular the solution to (R) can be
represented as the saddle point solution of the equivalent zero-sum game (B) . In
turn this delivers the “expost bayesian” interpretation of anticipated regret and
allows us to define the implicit endogenous belief for a decision maker solving
problem (R) .We then provide a geometrical illustration of the results adapting
Ferguson’s (1967) representations of Bayesian and Minmax problems, which will
also allow us to further compare Anticipated Regret with Expected Utility and
Maxmin Expected Utility. In particular, interesting implications of Ambiguity
Aversion models in Economics hinge upon the fact that the equivalent zero-sum
game representation has a saddle-point solution. While this property is not
always satisfied for general Maxmin problems, Theorem 1 and Theorem 3 show
that it is always true for general Maxmin Regret models like (R) . As we will see,
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the results presented in this Section will carry crucial implications for defining
the infinite horizon extension of the decision problem and for characterizing
shadow equilibrium asset prices.

2.2.1 Unique solution but multiple minimizing probabilities

Recall the decision problem (R) :

(R) : max
c∈C

v(c)

= max
c∈C

min
π∈P

min
c∗∈C

Eπψ(c(z), c
∗(z), z)

For each alternative c in C and for each probability measure π in P, define
c∗(π, c) the solution to the innermost minimization problem in (R) :

c∗(π, c) = arg min
c∗∈C

Eπψ(c(z), c
∗(z), z)

and denote with M(c) the subset of P containing the minimizing probabilities
in the decision problem (R) :

M(c) =


π ∈ P such that

Eπψ(c(z), c
∗(c,π)(z), z) = min

π∈P
Eπψ(c(z), c

∗(c,π)(z), z)


The following theorem states that under A1−A4, there exists a unique so-

lution to the decision problem but there are multiple minimizing probability
distributions whenever there is ambiguity, i.e whenever the set of plausible dis-
tributions P is not a singleton. As a consequence, the decision function v is
not Gateaux-diffentiable5 at the optimum. The theorem then characterizes the
set of minimizing probability measures as well as the optimal solution which
equalizes expected regrets across all minimizing measures.

Theorem 1 Assume that assumptions A1−A4 hold. Then,
(i) c∗(π, c) and v are well defined, and (R) has a unique solution in c,

denoted by copt

(ii) If P is not a singleton, then M(copt) is not a singleton either, i.e (R)
has multiple solutions in π. Moreover M(copt) is contained in P e, the set of
extremal points6 of P
(iii) At the optimum the worst regrets Eπψ(copt(z), c∗ (π, copt) (z), z) are

equalized across all minimizing probabilities π ∈M(copt)
5A function f : C → < is Gateaux-differentiable at c if the limit lim

α→0

f(c+αh)−f(c)
α

exists

for all h ∈ C and is a linear function of h.
6π is an extremal point of P if P\ {π} is convex. The Krein-Millman Theorem (see Aubin,

p. 101) states that a convex and compact set P has at least one extremal point and is equal
to the convex hull of the set P e of all its extremal points.
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The proof is given in Suryanarayanan (2006a).
A Corollary of point (ii) of the theorem is that the decision function v is not

Gateaux-differentiable at the optimum when P is not a singleton. Because it is
continuous and concave however, v has well defined right and left directional7

derivatives.

Corollary 2 If P is not a singleton, the decision function v is not Gateaux-
differentiable at the optimum but admits right and left directional derivatives
given by:

dv+(copt) · h = min
π∈M(copt)

Eπ

³³
ψ
0
c(c

opt(z), c∗(π, copt)(z), z)
´
h(z)

´
dv−(copt) · h = max

π∈M(copt)
Eπ
¡¡
ψ0c(c

opt(z), c∗(π, copt)(z), z)
¢
h(z)

¢
for all h ∈ C, where ψ0

c(·, ·, z) denotes the derivative of ψ(·, ·, z) with respect to
its first argument.

The proof is given in Suryanarayanan (2006 a).
Before further discussing Theorem 1, we formulate the equivalent zero-sum

game representation of the decision problem (R) which helps to interpret and
to better understand point (iii) .

2.2.2 An equivalent zero-sum game problem

Recall the decision problem (R) :

(R) : max
c∈C

min
π∈P

min
c∗∈C

Eπψ(c(z), c
∗(z), z)

and recall that the set of minimizing probabilities at the optimum isM(copt) and
is included in the set of extremal probability measures P e. Note that M(copt) is
a compact and metric subset of Π(Z) (Aubin, Proposition 11, p. 82) but non-
convex. We then consider B(M(copt)) the Borel σ− algebra for the induced
metric of Π(Z) onM(copt) and Λ(copt) the set of all Borel-probability measures
on M(copt).
Define the modified regret function ψ∗(c,π) associated with ψ which gives

the expected regret for an alternative c in C and an extremal probability measure
π in M(copt) as

C ×M(copt) → <
(c,π) → ψ∗(c,π) = Eπψ(c(z), c∗(π, c), z)

where c∗(π, c) = arg min
c∗∈C

Eπψ(c(z), c
∗(z), z)

7A function f : C → < admits right (resp. left) directional derivatives at c if the limit

lim
α↓0

f(c+αh)−f(c)
α

(resp. lim
α↑0

f(c+αh)−f(c)
α

) exists for all h ∈ C.
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and consider the following zero-sum game problem:

(B) : min
λ∈Λ

max
c∈C

Z
π∈M(copt)

ψ∗(c,π)dλ(π)

Theorem 3 below states that under the assumptions A1 − A4, (B) has a
unique saddle point solution (λexp, copt) where copt is the solution to the original
problem (R) and that problems (B) and (R) have the same value:

Theorem 3 Under assumptions A1−A5,
(i) (B) has a unique saddle point solution (λexp, copt)
(ii) copt is the solution to the problem (R)
(iii) Problems (B) and (R) have the same value:Z

π∈Pe

ψ∗(copt,π)dλexp(π) = min
π∈M(copt)

Eπψ(c
opt(z), c∗(π, c), z)

The proof is an extension to the one given in Suryanarayanan (2006a) gen-
eralizing to the case where the set of minimizing probabilities is not necessarily
the set of all extremal measures.
The new problem (B) has the flavor of a game against a malevolent nature

as in the Robust Control problem studied by Hansen and Sargent. The deci-
sion maker computes her worst expected regret for all the extremal probability
measures in M(copt), and for a given distribution λ over M(copt), she wants to
minimize her worst regrets. A malevolent nature then picks the distribution λexp

forcing the decision maker to choose the alternative that equalizes her expected
regrets across all extremal probability measures as in point (iii) of Theorem 1.
Bergemann and Schlag (2005) also consider a zero-sum game formulation

for their version of the Savage Minmax Regret. Because the innermost min-
imization to find the best counterfactual plan c∗ involves solving an expected
utility problem for each probability distribution π, problem (R) introduces strict

concavity in the function
µ
π → min

c∗∈C
Eπψ(c(z), c

∗(z), z)
¶
and makes the set of

minimizing measures M(copt) non-convex. Thus, we cannot simply invert the
outermost “max ” and “min ” operators as in Bergemann and Schlag or in
standard Minmax problems and we need to define a more subtle zero-sum game
problem (B) consistent with the initial problem (R) . Theorem 3 then states
that it is possible to invert provided we consider the equivalent problem (B)
instead and probabilities over M(copt).
We now provide a geometrical interpretation to illustrate the results of The-

orem 1 and Theorem 3.

2.2.3 The geometrical interpretation

It will be helpful in this paragraph to relate to Fig. 1 through Fig. 4.
Let us consider the case of a finite state space with two elements {H,L} .

The set of probability measures can be identified with a real interval of the type
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[πl,πh] contained in [0, 1] . Each π in [πl,πh] defines the probability of state
L and (1− π) the probability of state H. The set of feasible plans C will be
identified with a convex and compact subset of the positive orthant <2+ of <2.
We specialize to the case where the function ψ is of the form:

ψ(c(z), c∗(z), z) = u(c(z))− u(c∗(z))

where u is continuous, strictly increasing and strictly concave. The decision-
maker solves the problem:

max
c∈C

min
π∈[πl,πh]

min
c∗∈C

Eπ(u(c(z), z)− u(c∗(z), z))

We now show how to geometrically represent the decision problem following
Ferguson (1967).

• The risk-set

In the state-space, let us define the risk-set W :

W = {(wH , wL) | there exists c ∈ C such that wz = −u(c(z), z)}

The risk-set W is represented on Fig. 1 as a convex subset of the state space.
It fully embeds the properties of the objective function ψ and the constraint
C in the decision problem and we can readily reformulate the original decision
problem of finding an optimal plan c as the problem of finding an optimal point
in the risk-set W by solving:

min
w∈W

max
π∈[πl,πh]

max
w∗∈W

{π · (w − w∗)}

where π ·w = πwL + (1− π)wH denotes the expected risk of w with respect to
probability π.

• The geometrical construction of the solution

This problem is actually equivalent to a standard minmax problem asso-
ciated with a distorted risk-set that we call the regret-risk set. To find the
solution, we follow the following steps:

1. For the risk setW, compute the two Bayesian solutions w∗(πl) and w∗(πh)
with respect to the two extreme measures πl and πh, that is solve the prob-
lems of minimizing the expected risk in W with respect to probabilities
πl and πh (see Fig 1.):

min
w∗∈W

{πl · w∗}
min
w∗∈W

{πh · w∗}
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2. Construct the regret-risk set R on the space of “extreme probabilities”
{πl,πh} (see Fig. 2 and Fig.3)

R =

 r = (rπl , rπh) such that there exists w ∈W such that
rπl = πl · (w − w∗(πl))
rπh = πh · (w − w∗(πh))


In our case, since we only have two extreme probabilities, we identify the
extreme probabilities space with the state space (see Fig. 3).

3. The solution to the decision problem is given by the minmax solution for
the regret-risk set R

max
λ∈[0,1]

min
r∈R

{λrπl + (1− λ)rπh}

Note that we may define an “expost” optimal probability measure πexp sup-
porting the solution of the anticipated regret problem in the Bayesian sense
by

πexp = λexpπl + (1− λexp)πh

where λexp solves the inverted Minmax problem for the regret-risk set:

max
λ∈[0,1]

min
r∈R

{λrπl + (1− λ)rπh}

We interpret πexp as an expost bayesian probability measure in the sense that the
Bayesian solution to the risk-set W associated with πexp, w∗(πexp), is actually
equal to the solution to the original problem (see Fig. 4). It will also play a
central role in the recursive formulation of a dynamic extension of the decision
problem.

2.2.4 Discussion

• Minmax Regret versus Minmax
Theorem 3 and the geometrical illustration show that there is always a

saddle-point representation of the solution for general Minmax Regret prob-
lems like (R). In the two-state case of the geometrical illustration, this implies
that the solution always lies on the 45 degree line of the Ferguson (1967) repre-
sentation. This result only holds in some cases in general Minmax problems. In
particular, when Z contains only two states, this will depend on the constraint
C. For more complex state spaces, the choice of the probability set P will also
be crucial.
The most interesting applications of ambiguity aversion require this prop-

erty of the optimal solution. For example Dow and Werlang (1992) apply the
result for portfolio choice inertia, Epstein and Wang (1994) for equilibrium as-
set pricing, Wen-Fang (1998) for risk-sharing in heterogeneous economies and
Routledge and Zin (2000) for liquidity crisis. For these applications, Theorem 3
then advocates the use of Minmax Regret models instead of models of ambiguity
aversion.
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• Attitude towards risk and uncertainty

Although the decision criterion v(c) does not define a preference relation in
the sense of standard utility decision theory because it implicitly depends on the
constraint set C, we may define indifference level curves for v. Fig. 5 represents
the indifference curves in the state space when Z = {L,H} and illustrates
Corollary 2 and Theorem 3. Indeed, the indifference curves are always kinked
at the optimum copt since v is never Gateaux-differentiable at copt.
In turn, this result shows that the decision maker displays an attitude to-

wards risk similar to first-order risk-aversion8 around the optimum. That is,
the decision maker is highly sensitive to departures from the optimum. This
property is only true for Maxmin preferences when the optimum is a saddle-
point solution of the equivalent zero-sum game representation. As stated in the
previous paragraph, this only happens in some cases.
First-order risk aversion has useful implications regarding the equity pre-

mium (see Epstein and Zin (1990)) as it makes departures from certain invest-
ments more costly and an investor would require a higher premium for holding
risky assets. The implied risk-premium for small risky holdings can be shown
to be proportional to the standard deviation of returns instead of the variance
as it is the case for an expected utility investor. As pointed by Routledge and
Zin (2004) however, in equilibrium asset pricing models, what would be needed
are first-order risk aversion effects away from certainty since consumption and
equity dividends are risky. This in turn would enable to lower the implied cer-
tainty equivalent and maintain a low risk-free rate. In this sense, as shown in
Suryanarayanan (2006a), Anticipated Regret may have useful implications for
equilibrium asset pricing, not only to deliver higher equity premium but also
higher volatility.

• Strict concavity in the regret loss function ψ

The strict concavity property ψ was important to garanty the unicity of the
optimal solution in c in Theorem 1 but also to garanty that problem (B) always
has a unique saddle point solution in Theorem 3. However, when ψ is linear,
these results could still hold depending on the constraints C and P.
For example consider the two-state portfolio problem of choosing the fraction

α to be invested in a risky asset with uncertain returns {RL, RH} (RL < RH),
the fraction (1− α) being allocated to a risk-free asset with return Rf (RL <
Rf < RH):

max
α∈[0,1]

min
π∈[πl,πh]

min
α∗∈[0,1]

Eπ(R−Rf )(α− α∗)

where the possible probability distributions over the states {L,H} can be iden-
tified with the interval [πl,πh] , the range of possible values for the probability
of state L.

8The formal definition of first-order risk aversion in Segal and Spivak (1990) requires that
the certainty equivalent be well defined, which is not the case for the decision criterion v(c)
which does not satisfy the Chew and Dekkel Betweenness property.
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When EπR > Rf for all probabilities (or when EπR < Rf for all probabili-
ties) in [πl,πh], the optimal choice of the counterfactual portfolio α∗ is always
equal to 1 (or 0) regardless of the probabilities. The minimizing probability will
be unique and be equal to one of the extreme points πl or πh.
The bigger the range [πl,πh] , the more difficult it will be to rank the expected

returns relative to the risky return unambiguously for all probabilities. For some
probabilities π, it will be greater (EπR > Rf ) and it will be lower for others
(EπR < Rf ). This is in particular the case for the range [0, 1] . In that case
the minimizing counterfactual portfolio α∗ is probability dependent (equal to 1
when EπR > Rf , to 0 when EπR < Rf ) and introduces strict concavity in the
function π → min

α∗∈[0,1]
Eπ(R−Rf )(α− α∗). In such case Theorem 1 applies and

the minimizing probability will be non-determined and the optimal solution
α will be such that the expected regrets are equalized across the minimizing
probabilities:

(RL −Rf )α = (RH −Rf )(α− 1)
which yields the strictly interior solution α = (RH −Rf )/(RH −RL).

• Endogenous reference point

Last we relate the model of Anticipated Regret to Bewley’s Inertia Pref-
erences. Bewley (1986) consider incomplete preferences with the inertia as-
sumption. Incomplete preferences can be represented with a set of probability
measures P and a V NM utility function such that c ∈ C is preferred to c0 ∈ C
if and only if for every π in P :Z

u(c(z))dπ(z) ≥
Z
u(c0(z))dπ(z)

The inertia assumption states that any consumption point c can be made com-
parable to the inertia or reference point ω ∈ C:

Either choose ω or choose c if

for all π ∈ P,

Z
u(c(z))dπ(z) ≥

Z
u(ω(z))dπ(z)

This assumption makes the choice criterion revealed preferred.
Bewley’s preferences can be shown to be observationally equivalent to the fol-

lowing type of preferences (Reference Point Utility) discussed in Suryanarayanan
(2004) defined by:

Uω(c) = min
π∈P

Z
(u(c(z))− u(ω(z)))dπ(z)

Indeed, a decision maker with preferences defined by Uω only chooses c 6= ω if
and only if she derives greater expected utility for all probability measures in P.
Otherwise the decision maker chooses to stay with the reference consumption ω.
In Bewley’s preferences and the Reference Point Utility, the reference point ω is

16



given, interpreted as the default consumption as discussed in Rabin and Kosegi
(2005), the consumption one would choose with the least cognitive effort. Of
course, this interpretation of the reference point is rather vague, and it is hard
to give insightful justifications to it. Introducing asymmetry between gains and
losses relative to the reference point would be possibility and would lead back to
Loss Aversion utility9. Alternatively, one could interpret it as a form of regret.
Here the reference point is a counterfactual target with respect to which the
decision maker measures her regret and chooses the consumption to avoid the
worst regret.
We then can see the Anticipated Regret model as endogenizing the reference

point ω. At the optimum, the decision maker is in fact at her reference point
which is defined as the unique consumption point which equalizes the decision
maker’s expected regret across the minimizing probabilities. The reference point
interpretation will prove particularly useful to develop evolutionary psychology
foundations for the Anticipated Regret model in the sense of Rayo and Becker
(2006).

2.2.5 The implicit and endogenous belief

Theorem 3 and the geometrical illustration deliver the expost bayesian inter-
pretation of the decision problem (R) . We define the expost distribution as

πexp =

Z
π∈P e

πdλexp(π)

We interpret πexp as the implicit belief of the decision maker. This interpretation
becomes more clear when we consider the case where ψ takes the additive form:

ψ(c(z), c∗(z), z) = u(c(z), z)− u(c∗(z), z)
In this case, we can show that an expected utility maximizer solving:

max
c∈C

Eπexpu(c(z), z)

would choose the worst expected regret minimizing solution copt. An interest-
ing feature of the expost bayesian interpretation is that we may characterize
the optimal solution copt by the familiar first-order conditions obtained for an
expected utility maximizer:

Eπexpu
0(c(z), z) = 0

except that we measure expectations with respect to the expost distribution
πexp.
It is important and crucial to keep in mind however that πexp will depend on

the characteristics of the constraint set C as it reflects the counterfactual deci-
sions and will change as C changes. This is not in general true for a subjective

9Kahneman and Tversky first used the term “Theory of Regret” to name their first sketches
of Prospect Theory.
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expected utility maximizer, her subjective probability distribution is fixed. To
make this point more precise, recall that (λexp, copt) is a saddle point solution
of (B) . This means that we cannot solve for copt independently from solving
λexp. Therefore, λexp is implicitly a function of the optimal solution copt and
assigns strictly positive weights to all the extreme probability distributions in
P e. This implies that πexp is interior to P and that there is also an implicit
dependence of πexp on the optimal solution copt. In this sense, we say that πexp

is endogenous to the decision problem.
We focus on the expost Bayesian interpretation of the anticipated regret

problem (R) for two main reasons. First, in applications to equilibrium asset-
pricing, the fact that there are always multiple minimizing probabilities to
problem (R) in equilibrium implies that asset prices are always indetermined
in equilibrium. This is a fundamental departure from a rational expectations
equilibrium. We may assess this departure by using the expost probability dis-
tribution to define a shadow asset price, a particular candidate price among the
multiple prices, as well as a shadow market price of ambiguity. Moreover, the
constraint set C will be a typical budget constraint, therefore the expost distri-
bution πexp will always depend on prices. Even though we will show that the
shadow equilibrium asset prices will satisfy a modified Euler pricing equation
where expectations are measured with respect to πexp instead of an exogenous
probability distribution in standard expected utility, we need to keep in mind
that πexp itself will depend on the equilibrium prices. We immediately see that
the anticipated regret model may have potentially and radically different impli-
cations for asset prices compared to standard expected utility preferences, even
in the most simplest set-up. In particular, shadow asset returns may explain
observed returns because they both embed a premium for risk as well as an
additional premium for ambiguity.
Secondly, the implicit and endogenous belief enables to define a notion of a

certainty equivalent for a decision maker minimizing her worst expected regrets.
For simplicity, assume that the utility function u is not state dependent. For
an expected utility maximizer with prior q, the certainty equivalent of the risky
consumption plan (c(z))z∈Z is the certain consumption µ which would yield her
the same utility:

u(µ) = Equ(c(z))

For the worst expected regret minimizer who distrusts the prior q, we may define
a similar notion of certainty equivalence at the optimum copt, replacing q by the
expost distribution πexp:

u(µopt) = Eπexpu(c
opt(z))

Assume now that Z is discrete. We may then rewrite the implied certainty
equivalent in the spirit of Hansen and Sargent as:

µopt = u−1
µ
Eq

µ
πexp(z)

q(z)

¶
u(copt(z))

¶
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In particular, assuming that u is strictly increasing, we see how distortions in
the probabilities relative to the prior q measured by the ratio10 πexp

q may lower
the implied certainty equivalent of the risky optimum copt compared to the
expected utility case. The certainty equivalent plays a crucial role in formulating
time consistent and recursive versions of infinite horizon decision problems, as
in Epstein and Zin (1989) . As we will see, the expost distribution πexp will play
a similar role in formulating the problem of an infinitely lived decision maker
minimizing his worst expected regrets over her entire lifetime.

3 Minimizing lifetime expected regrets
In this Section, we develop an infinite horizon extension of the anticipated regret
problem seen in the previous Section. In particular, we show how to use the
expost probability distribution to formulate a recursive and time consistent
decision problem.

3.1 The infinite horizon decision problem

3.1.1 The choice environment

• States, plans and controls

We build upon the notation of the previous Sections and borrow from Ep-
stein and Wang (1994) to describe the choice environment. In the infinite hori-
zon economy, the driver of uncertainty is a time homogeneous and Markovian
exogenous state process (zt) which takes its values in Z, a compact metric space
with Borel σ−algebra B(Z).We denote by Π(Z) the set of all Borel probability
measures on Z. Under the weak-convergence topology, Π(Z) is also a compact
metric space.

We extend the state space Z to Z∞ the product space
³Q+∞

t=1 (Z)
´
with

associated Borel σ−algebra B(Z∞). Let zt be the vector of histories of the
realizations of the exogenous state in period t, an element of the product set Zt

with Borel σ−algebra B (Zt) , induced by B(Z∞) on Zt. A consumption plan is
a real-valued process (c(zt))t which is positive, B (Z

t)−adapted and continuous.
Likewise, an investment plan is an <m valued process (a (zt))t , B (Zt)−adapted
and continous. We combine both the consumption (c(zt))t and the investment
plans (a (zt))t into a single control variable (d(z

t))t = (c(z
t), a (zt))t .We assume

that the control d (zt) always lies in a convex subset D̄ of <m+1.
We now also add an endogenous state space X, a convex subset of the real

line < and define an endogenous state xt evolving according to the law of motion:

xt+1 = F (xt, d(z
t), zt, zt+1)

10When Z is continuous, if we assume that πexp is B(Z)−absolutely continuous with respect
to q, we may measure the distortions in the probabilities by the Radon-Nikodym derivative
dπexp

dq
of πexp with respect to q.
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where F is the state transition function, mapping X × D̄ × Z × Z into the
real line. We assume that F is linear (not necessarily jointly) in xt, c(zt) and
a(zt) and increasing in xt. In each period, xt together with the realization of
the exogenous state zt will fully summarize the economic environment. Thus,
the control variable d will then only be a function of the pair (xt, zt). We will
interchangeably use the notation d(xt, zt) and d(zt).
Last, we define the constraint set D for the controls as a continuous corre-

spondence which maps the endogenous and exogenous states to a convex and
compact subset of <m+1:

X × Z → 2D̄

(x, z) → D(x, z)

• Ambiguity

The decision maker cannot precisely assess the true probability distribution
of the state (zt). She doubts about her prior π∗ about the Markovian exoge-
nous state (zt) and surrounds her one period ahead probability distribution π∗z
conditional on state z with the set P (z) , where P is a convex, compact valued
and continuous correspondence mapping the exogenous state z into a subset of
Π(Z) :

Z → 2Π(Z)

z → P (z)

P is the belief correspondence used in Epstein and Wang (1994) . In the asset
pricing application where the exogenous state can only take two values L and
H, respectively representing the event of a recession and a boom, we will as-
sume that the decision maker perceives more ambiguity in recessions relative to
booms, differentiating P (L) from P (H).
For given realizations of the exogenous state until period t, (z0, z1, ...zt),

plausible values for the probability pt(zt) of history zt can be expressed in the
form of a product of conditional probabilities

pt(zt) = pt−1(zt)× pt−2(zt−1)...× p0(z1)

where ps (·) (for s = 0, ..., t− 1) lies in P (zs).We will therefore identify a plausi-
ble probability pt distribution over Zt given zt−1 by the t−dimensional vector of
conditionals (p0, ...pt−2, pt−1). As in Section 2, we define for any compact subset
M of P (z) with the induced metric, the associated Borel σ-algebra B(M) and
ΛM (z) the set of all possible Borel probability measures on M.

3.1.2 The decision problem

We adopt a different approach from Suryanarayanan (2006a) to define the in-
finite horizon decision problem for a decision maker who wish to minimize her
worst expected lifetime regrets. We start by defining the current period utility
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u, a continuous, strictly increasing and strictly concave mapping from <+ to <
with which the decision maker ranks current consumption in each period. We
then define the intertemporal decision function recursively as follows.
Let us consider the sequence of functions vt, continuous on the space of

consumption plans and B(Zt)-measurable, and each recursively defined for a
consumption plan c and a history of states zt as:

(RV ) vt(c, z
t) = u(ct) + βEπtvt+1(c, (z

t, zt+1))

where

β < 1 and πt =

Z
π∈Mt

πdλt(π)

Mt =

½
π ∈ P (zt) | ψt(c,π) = arg min

π∈P (zt)
ψt(c,π)

¾
ψt(c,π) = u(ct)− u(c∗πt ) + βEπ(vt+1(c, z

t+1)− vt+1(c∗π, zt+1))
d∗π = arg min

(d∗t )t
d∗t∈D(xt,zt), d∗s∈D(x∗s ,zs) for s>t, x∗s=F (x∗s−1,d∗s−1,zs−1,zs) and x∗t=xt

{u(ct)− u(c∗πt ) + βEπ(vt+1(c, z
t+1)− vt+1(c∗π, zt+1))}

λt = arg min
λ∈ΛMt(zt)

max
(dt)t

dt∈D(xt,zt)

Z
π∈Mt

ψt(c,π)dλ(π)

vt will be interpreted as the time t decision criterion with which the decision
maker ranks the stream of future consumption tc = (ct, ct+1, ...) conditional on
the past history zt−1.
The following proposition shows that there exists a unique sequence (vt)t

satisfying the above recursion.

Proposition 4 (i) There exists a unique sequence (vt(c, zt))t of B(Zt)-measurable
and continuous functions satisfying the recursion (RV )
(ii) In particular, v(c, z0) = v0(c, z0) satisfies

vt(c, z
t) = v(tc, zt)

v(tc, zt) = u(ct) + βEπtv(
t+1c, zt+1)

(iii) v(c, z0) is continuous, strictly increasing and concave in c

The proof is an extension of that given in Suryanarayanan (2006a) (Appendix
to Section 4.2) for the case when the set of minimizing measures is not always
equal to the set of extremal measures.
We name vt the recursive decision function and v the intertemporal decision

function. The associated intertemporal decision problem is then:

(DR) : max
(d)

dt∈D(xt,zt)
v(c, z0)
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3.2 Time consistency

The formulation of the decision problem we consider is one way to define a time
consistent problem for a decision maker who wishes to minimize her lifetime
expected regrets. The intertemporal decision function v(c, z0) is the shadow
discounted future utility flows in state z0 and likewise v(tc, zt) measures the
discounted future utility flows at date t and state zt conditional on the past
history zt−1.
The interpretation to the decision problem (DR) is then the following. In

each period t and for each possible one-period ahead conditional probability
measure π in P (zt), the decision maker compares the discounted future utility
flows derived from plan c and that derived from the counterfactual plan c∗ and
forms the intertemporal regret ψt(c,π) for the best possible counterfactual alter-
native given the probability measure π. The decision maker then minimizes her
worst regret over all possible plans and conditional measures in P (zt). Thanks
to the recursive definition of v, such a decision protocol is time consistent in
the sense that choosing the optimal plan at each time t by maximizing v(tc, zt)
conditional on history zt−1 is equivalent to choosing the lifetime plan c at time
0 by solving (DR) .
We further discuss the time consistency of the decision problem by charac-

terizing the decision problem (DR) in an alternative way. For each period t and
for each possible probability distribution pt for the future realizations of the
exogenous state, we define the intertemporal regret of the decision maker as the
loss experienced when the decision maker compares the expected present value
of utility flows derived from a consumption plan (cs(zs))s≥t to that derived from
an alternative counterfactual plan (c∗s(zs))s≥t:

wptt ((cs(z
s))s≥t, (c∗s(z

s))s≥t, zt)

=
+∞X
s=t

βs−t
Z
zs∈Zs

(u(c∗s(z
s))− u(cs(zs)))dpst (zs)

where pst = pss−1(zs)× pss−2(zs−1)...× pst (zt+1) and dptt(zt) = 1

Let (DRt) be the associated decision problem, given (xt, zt):

(DRt) : min
(ds)s≥t

max
p

max
(d∗s)s≥t

wptt ((cs(z
s))s≥t, (c∗s(z

s))s≥t, zt)

Subject to:

1. ds ∈ D(xs, zs) and d∗s ∈ D(x∗s , zs) for s ≥ t
2. xs = F (xs−1,ds−1, zs−1, zs), for all s ≥ t and xt is a given state in X
3. x∗t = xt and x∗s = F (x∗s−1,d∗s−1, zs−1, zs), for all s ≥ t
4. pss−k ∈ P (zs−k) for all s ≥ t and k ∈ {0, ..., s− t}
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In the above decision problem, note that the decision maker considers all
possible future paths for the counterfactual endogenous state x∗s given that the
choice environment in the current period is characterized by (xt, zt) . In order to
relate the sequence of problems (DRt) to the original decision problem (DR) ,
we need to define the notion of time consistency within our context:

Definition 5 Let d
t
be the solution of problem (DRt) . We say that d

t
is time

consistent if
³
d
t

l

´
l≥s
, the continuation of d

t
from period s is solution to the

problem (DRs) for all s greater than t.

The problem (DR) is then equivalent to the following problem (see the Ap-
pendix in Suryanarayanan (2006 a)):

(DR0) : min
(ds)s≥0

max
p0

max
(d∗s)s≥0

wp00 ((cs(z
s))s≥0, (c∗s(z

s))s≥0, z0)

Subject to:

1. ds ∈ D(xs, zs) and d∗s ∈ D(x∗s , zs) for s ≥ 0
2. xs = F (xs−1,ds−1, zs−1, zs), for all s ≥ 0 and x0 is a given state in X
3. x∗0 = x0 and x

∗
s = F (x

∗
s−1,d

∗
s−1, zs−1, zs), for all s ≥ 0

4. pss−k ∈ P (zs−k) for all s ≥ 0 and k ∈ {0, ..., s}
5. Time consistency: (ds)s≥t solves (DRt) for all t

With the time consistency requirement 5, we see that the intertemporal de-
cision problem will only involve the endogenous state variable xs besides the
exogenous state zs. This is not the case when we take each problem (DRt)
separately, where both xs and the counterfactual endogenous state x∗s are in-
volved. The decision maker keeps no memories of the past realizations of the
counterfactual endogenous state and only takes into account the realization of
the actual endogenous state xt in each period t to form future counterfactuals
for the subsequent periods.
We show how to formulate the decision problem (DR) recursively and how to

construct a shadow present value of future utility flows V (x, z) consistent with
the decision problem. While in Suyanarayanan (2006a), we make the assumption
that the set of minimizing one-period ahead conditional probabilities in each
period t in (DR) is the set of all extremal measures P e(zt) of P (zt), we develop
the recursive formulation without this restriction.

3.3 The recursive formulation

Let Γ(X,Z) be the set of all continuous and B(< × Z)−measurable functions
mapping X ×Z to the real line <. For any function J in Γ(X,Z), consider the
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problems (R1) and (R2)

(R1) : max
d∈D(x,z)

min
p∈P (z)

min
d∗∈D(x,z)

{u(c)− u(c∗) + βEp (J(x
0, z0)− J(x∗0, z0))}

where x0 = F (x, d, z, z0), x∗0 = F (x, d∗, z, z0)

(R2) : min
λ∈ΛM (z)

max
d∈D(x,z)

Z
π∈M

R∗(π, d, x, z)dλ(π)

R∗(π, d, x, z) = u(c)− u(c∗π) + βEπ (J(x
0, z0)− J(x∗0π , z0))

M =

½
π ∈ P (z) | R∗(π, d, x, z) = arg min

p∈P (z)
R∗(p, d, x, z)

¾
where x0 = F (x, d, z, z0) and x∗0π = F (x, d∗π, z, z0), and for each π in M, d∗π =
(c∗π, a

∗
π) solves:

max
d∗∈D(x,z)

{u(c∗) + βEπJ(x
∗0, z0)}

Problem (R1) is a special case of the one-period anticipated regret problem and
(R2) is the associated zero-sum game problem seen in Section 2. The function
J will refer to a measure of present value of future utility flows for the decision
maker. When solving (R1) , the decision maker minimizes her worst intertempo-
ral regrets in state (x, z). These two problems are the building blocs for defining
the recursive formulation of the decision problem (DR).
We define Ψ the largest subset of functions J in Γ(X,Z) for which (R1) is

well defined and has a unique solution in d, (R2) is equally well defined, has
a unique saddle point solution (d,λexp) where d is also the solution to (R1) ,
and yields the unique expost probability distribution πexp(x, z) associated with
(R1) :

πexp(x, z) =

Z
π∈P e(z)

πdλexp(π)

According to Section 2, the set Ψ includes the set of functions J that are strictly
increasing and concave in their first argument. For functions J in Ψ, denote with
d the common solution to (R1) and (R2) and define G(J) such that:

G(J)(x, z) = u(c(x, z)) + βEπexp(x,z)J (x
0, z0)

where x0 = F (x,d(x, z), z, z
0)

We name G the “intertemporal regret regulator” operator.
The following proposition states that G has a unique fixed point V and

that solving problem (R1) for V gives the solution to the intertemporal regret
problem (DR) .

Proposition 6 (i) Any solution to the intertemporal regret problem (DR) is a
fixed point of the operator G.
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(ii) G has a unique fixed point V . Solving (R1) for V gives the value and
policy functions to the infinite horizon regret problem (DR) :

V (x, z) = max
(d)

x0=x, z0=z, dt∈D(xt,zt)
v(c, z)

The proof of this proposition uses standard results for discounted dynamic
programming and is an extension of the Proposition 4 in Suryanarayanan (2006a).
The operator G enables to compute the solution to problem (DR) recursively

as follows:

1. Start with an initial guess V (x, z)

2. Solve (R2) which yields
¡
d,πexp

¢
3. Replace V with: G(V )(x, z) = u(c(x, z))+βEπexp(x,z)V (x

0, z0) where x0 =
F (x, d, z, z0)

4. Iterate the procedure until convergence

We may then summarize the recursive decision problem as:

R(x, z) = − max
d∈D(x,z)

min
p∈P (z)

min
d∗∈D(x,z)

{u(c)− u(c∗) + βEp (V (x
0, z0)− V (x∗0, z0))}

where x0 = F (x, d, z, z0), x∗0 = F (x, d∗, z, z0)

V (x, z) = u(c(x, z)) + βEπexp(x,z)V (x
0, z0)

where x0 = F (x,d(x, z), z, z
0)

where R(x, z) is the intertemporal regret value and V (x, z) is a measure of
present value of future utility flows for the decision maker.

3.4 Discussion

3.4.1 The shadow value function V (x, z)

We define the shadow value function V (x, z) as:

V (x, z) = u(c(x, z)) + βEπexp(x,z)V (x
0, z0)

where x0 = F (x,d(x, z), z, z
0)

where d is the optimal solution to the intertemporal regret problem (DR). It-
erating on the above recursive relation, we interpret V (x, z) as a measure of
present value of future utility flows for the decision maker. Note how the expost
probability distribution πexp(x, z) plays the central role in defining V (x, z) as
it enables to bridge the current period utility with the subsequent period util-
ities, like the certainty equivalent operator in standard dynamic programming

25



with time additive expected utility, or more generally as in Epstein and Zin
(1989). This in turn enables the optimal policy d to satisfy the time consistency
requirement in problem (DR) .
Thus, V (xt, zt) embeds all current and subsequent decisions from period

t onwards when the current state is (xt, zt). In order to be consistent with
her future decisions, the decision maker evaluates her expected present value
of future utility flows for plausible one-period ahead conditional probabilities
p ∈ P (zt) and current period choice d(xt, zt) as:

u(c(xt, zt)) + βEpV (xt+1, zt+1)

where xt+1 = F (xt, d(xt, zt), zt, zt+1), and her intertemporal regret for choosing
d(xt.zt) instead of the counterfactual alternative d∗ as:

u(c∗)− u(c(xt, zt)) + βEp
¡
V (x∗t+1, zt+1)− V (xt+1, zt+1)

¢
where x∗t+1 = F (xt, d

∗, zt, zt+1). As in the three-period example, x∗t+1 is the
counterfactual future endogenous state in period t+1 if d∗ were chosen instead
of d and zt+1 is realized. The decision maker then minimizes her worst intertem-
poral regrets over all plausible one-period ahead conditional distributions p in
P (zt) and counterfactual alternatives d∗ in each period t and each state (xt, zt).

3.4.2 The endogenous belief πexp(x, z)

As in the static problem in Section 2, we interpret the expost one-period ahead
conditional distribution πexp(x, z) as the implicit endogenous and conditional
belief of the decision maker in state (x, z). The expost distribution is endogenous
in the sense that it will depend implicitly on the current policy functions and it
embeds the shadow value function V (x, z). In turn, this means that the implied
certainty equivalent of a risky stream of consumption is sensitive to the present
value of future utilities derived from the stream. As we will see, this property
will be crucial in applications to equilibrium asset pricing.

3.4.3 Alternative dynamic extensions

In a finite horizon 3 period setting, we discuss two possible alternative dynamic
extensions of the one-period Anticipated Regret problem studied in Section 2.
A first alternative formulation would be to consider only the problem (DR0).

The decision maker evaluates her worst expected regrets at time 0 considering
all possible consequences of choosing alternative plans d∗0 in D(x0, z0) and d∗1
in D(x∗1, z1) where x

∗
1 is the would-be endogenous state if d

∗
0 is chosen. Prob-

lem (DR) adds the additional time consistency requirement to problem (DR0).
The decision maker has then no memory of consequences of past counterfactual
alternatives and only cares about the future consequences of future alternatives
and counterfactuals given the choice environment characterized by the endoge-
nous and exogenous state in each period. This feature differentiates (DR) from
(DR0) . In particular, a recursive formulation of problem (DR0) would involve
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the two endogenous states xt and x∗t whereas we only need one endogenous state
xt to define the recursive version of (DR).
The second alternative dynamic extension would have the decision maker

only consider future counterfactuals for the actual realizations of the endogenous
state and may be expressed as:

(D): max
(dt)

min
p∈P3

min
(d∗t )t

2X
t=0

βt
X
zt∈Zt

p(zt)(u(ct(z
t))− u(c∗t (zt)))

Subject to:

1. dt ∈ D(xt, zt) and d∗t ∈ D(xt, zt) for t = 0, 1
2. c2 = F (x1,d1, z1, z2), c∗2 = F (x1,d∗1, z1, z2) and a2 = a∗2 = 0

3. xt = F (xt−1,dt−1, zt−1, zt), for all t ≥ 1 and x0 is a given state in X

Problem (D) is closer in spirit to our recursive formulation as only one
endogenous state xt is involved in the decision problem. However, problem
(DR) requires intertemporal regrets to be equalized across extreme probability
distributions in both periods 0 and 1 whereas this will be only the case in period
0 for (D). In particular, the expost distribution associated with problem (D)
will in general differ from the product of one-period ahead expost conditional
distributions πexp0 (x0, z0)× πexp1 (x1, z1) associated with problem (DR) .
An interesting feature in the two alternative dynamic extensions (DR0) and

(D) is that one can define a time zero objective function for the decision maker
independently of the constraints as a dynamic extension of the utility function
in Fishburn (1982) and define a worst regret intertemporal decision function by
solving the two inner minimization problems like the decision function v in the
static problem. Instead, we formulate problem (DR) via the (indirect) value
function V (x0, z0) and the recursive decision criterion v.

4 Concluding remarks
This paper develops a solid framework for applying the model of Anticipated
Regret and Endogenous Beliefs by further clarifying and generalizing the results
in Suryanarayanan (2006a).
Preliminary theoretical results provide a systematic algorithm to find the

solution to the decision problem and show how models of Minmax Regret dif-
fers from models of ambiguity aversion and expected utility. In particular, the
solution to the decision problem can always be represented as a saddle point
solution to an equivalent zero-sum game problem. This new problem jointly
produces the solution to the Anticipated Regret problem and the endogenous
belief. We then use the endogenous belief to define the implicit certainty equiv-
alent and to build an infinite horizon and time consistent problem for a decision
maker minimizing her lifetime worst expected regrets.
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The model of Anticipated Regret carries important implications both from
a positive and normative viewpoint. Positive investigations include Surya-
narayanan (2006a) which shows how endogenous distortions beliefs helps to
generate higher and time-varying market prices of risk and volatility, as well as
to match the pricing kernel implied by observing the historical mean and volatil-
ity of aggregate stock market indices and treasury bills. Further research should
focus on the judicious choice of probability sets that would preserve tractability
in continuous state spaces in applications to asset pricing in order to better
assess the performance of the model. An interesting line of research would be to
investigate the potential of the model to generate lower Euler equations pricing
errors. As the Anticipated Regret directly lowers the implied certainty equiv-
alent and dampens the sensitivity of policy rules to returns to investment, the
model also carries important implications for the investment and savings deci-
sion problems, both for households (see Chamberlain and Wilson (1984)) and
for firms. Other positive investigations include Bergemann and Schlag (2005)
and more recently Gallice (2006) who conducts lab experiments of one-shot two-
player games where players cannot forecast their opponent’s move. She shows
that a typical player’s strategy is best approximated by the one implied by the
version of Savage’s minmax regret used in Bergemann and Schlag (2005). She
further notes that the Nash equilibrium strategy is not a relevant approximation
of players’ behavior.
From a normative viewpoint, Regret theory has been used by econometri-

cians (see Sawa and Hiromatsu (1973) to compute endogenous critical points
defining test regions in regression analysis. The use of the Savage Minmax Re-
gret criterion in this context improves the performance of the test in terms of
square error loss, crucial for model selection. Droge (1998) relates Regret theory
to Stein’s shrinkage estimator. OLS estimators are the best linear unbiased es-
timators (BLUE) but they are not the estimators which minimize squared error
losses. In many problems, especially in large scale estimations of asset returns
and associated asset allocation problems (see Brandt (2004)), a significant gain
in improving efficiency of estimators is worth a minor loss in their unbiased-
ness. Droge shows within a simple example that efficient estimators in the sense
of minimizing the quadratic regret loss improves significantly the efficiency of
the estimator with only a minor loss in unbiasedness. The theoretical results
presented in this paper pertaining to Statistical Decision Theory will help to
give solid foundations to model selection problems and large scale estimation
problems as in Droge (1984).
Manski (2004) focuses on policy problems and considers an utilitarian so-

cial planner who must select an optimal treatment rule using the sample data
generated by a classical randomized experiment. When only sample data on
treatment response are available, Manski investigates the use of a version of
the Minmax Regret Criterion as the objective function of the social planner.
He shows in particular that the use of available covariate information is only
optimal if the sample size is sufficiently large enough. More generally, a policy
maker may wish to look for robust policy rules in situations when, as stated
by Manski (2005), full information on the future effect of a policy on popula-
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tion behavior is not available. By generalizing Manski (2004) for intertemporal
problems, the Anticipated Regret model may be one way to provide such rules.
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Fig. 1 Risk-set and construction of reference points 
 

 
 
 
Fig. 2 Construction of the regret-risk set  
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Fig. 3 Construction of the solution  

 
 
 
 
Fig. 4 Expost Bayesian interpretation 
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