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Abstract

We introduce a refinement concept for Nash equilibria (slightly altruistic equilib-
rium) defined by a limit process and which captures the idea of reciprocal altruism
as presented in Binmore (2003). Existence is guaranteed for every finite game and
for a large class of games with a continuum of strategies. Results and examples
emphasize the (lack of) connections with classical refinement concepts. Finally, it
is shown that under a pseudo-monotonicity assumption on a particular operator
associated to the game it is possible, by selecting slightly altruistic equilibria, to
eliminate those equilibria in which a player can switch to a strategy that is better
for the others without leaving the set of equilibria.

1 Introduction

It is well known that, in case of multiplicity, Nash equilibria may suffer from severe
drawbacks. For example, in extensive form games, a Nash equilibrium may describe
irrational behavior off the equilibrium path, and, even in normal form games, it may be
unstable with respect to perturbations on the strategies or on the payoffs, moreover, it
could be possible for coalitions of players to arrange mutually beneficial deviations from
a Nash equilibrium (see Chapters 1 and 2 in van Damme (1989) or Chapters 8 and 12 in
Fudenberg and Tirole (1991)).

According to this point of view and associated to further (implicit) requirements for
self-enforcingness, refinement concepts have been introduced which “rule out” unappeal-
ing equilibria of a game (see also van Damme (2002)): the recommendation given by
the theory should be stable with respect to deviations caused by some further criterion
besides the classical utility maximization. Most of the refinement concepts introduced
are based in one way or another on some kind of perturbations or distortions of play-
ers’ rationality. Following Aumann (1997): “You must be super-rational in order to deal
with my irrationalities. Since this applies to all players, taking account of possible ir-
rationalities leads to a kind of super-rationality for all”. In particular, in normal form
games, refinements based on “trembles” (small departures from classical rationality) can
be obtained by using (upper semicontinuity-like or lower-semicontinuity-like) stability
properties in the definition (see, for example, perfect equilibria (Selten (1975), proper
equilibria (Myerson (1978)), strictly perfect equilibria (Okada (1981)), regular equilibria
(Harsanyi (1973) and Ritzberger (1994)) and essential equilibria (Wu and Jiang (1962)).

In this paper we introduce a new refinement concept for normal form games, called
slightly altruistic equilibrium, which is based on a simple upper semicontinuity-like stabil-
ity property with respect to a particular class of payoff perturbations (namely based on
altruism) and captures, in a static environment, the following idea of reciprocal altruism
of D. Hume, as reported in Binmore (2003): “I learn to do service to another, without
bearing him any real kindness, because I foresee, that he will return my service in expec-
tation of another of the same kind, and in order to maintain the same correspondence
of good offices with me and others. And accordingly, after I have serv’d him and he is
in possession of the advantage arising from my action, he is induced to perform his part,
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as foreseeing the consequence of his refusal.” We use the above idea of reciprocal altru-
ism in an endogenous way in order to define a mechanism that leads to particular Nash
equilibria: each agent cares only about himself but his choice corresponds to the limit
of choices he would have done in equilibrium if he had slightly cared about the others,
provided the others had done the same. In other words, slightly altruistic equilibria are
self-enforcing in terms of stability with respect to trembles of players’ payoffs towards a
kind of altruistic behavior. In fact, in an equilibrium s∗ that is not slightly altruistic,
there exists at least a player i whose equilibrium strategy is not “rational” whenever he
assumes his opponents’ behavior might be perturbed in an altruistic way, whatever is the
perturbation.

In the definition of slightly altruistic equilibrium, trembles on each player payoff
are proportional to the sum of his opponents’ payoffs. The idea of modelling altruistic
behavior of a player by using the sum (or the weighted sum) of opponents’ payoffs has been
often considered in game theory and in particular in normal form games. For example,
in Fehr and Schmidt (1999) (and in some references therein) it has been shown that this
approach is consistent with some experimental evidence whenever altruistic behavior
emerges. Moreover, the use of psychological game theory (Geanakoplos, Pearce, and
Stacchetti (1989)) allows the characterization of reciprocal altruism in a normal form
game by using concepts of equilibrium in particular games derived from the original
one (see Rabin (1993) or Falk and Fischbacher (2003) and references therein) where the
coefficients of the weighted sum of opponents’ payoffs depend explicitly on the beliefs
of players about others’ intentions. Similar payoff functions have also been used to
describe altruistic behavior in dynamic games (for example in Levine (1998), Sethi and
Somarathan (2001) or Dufwenberg and Kirchsteiger (2004)). However, we emphasize
that all the models quoted above are not suitable for equilibrium selection since neither,
in the static models, the prescribed predictions are Nash equilibria of the original game,
nor, in the dynamic models, strategies necessarily converge to a Nash equilibrium.

We show that slightly altruistic equilibria exist in all finite games in mixed strategies
and in a large class of continuous ones. Moreover, we investigate the connections with
other refinement concepts in the context of finite games in mixed strategies. Whenever es-
sential equilibria exist, they are slightly altruistic equilibria; so, perfectness together with
“slightly altruism” are necessary conditions for essentiality (and hence for regularity) of
equilibria. However, counterexamples show that slightly altruistic and perfect equilibria
are not related. The same kind of lack of connections is obtained looking at refinement
concepts based on properties of robustness with respect to joint mutually beneficial de-
viations of coalitions of players (for example strong Nash equilibria (Aumann (1959)) or
coalition proof equilibria (Bernheim, Peleg and Whinston (1987)), which, by the way, do
not satisfy any general existence theorem even in finite games (see also Ichiishi (1981).

However, we point out that the implicit assumption behind slightly altruistic equi-
libria (namely the possibility of trembles in the direction of altruism) is a-priori not
incompatible with other implicit assumptions associated to the other refinement con-
cepts previously quoted (for example the possibility of other perturbation of rationality
or of joint deviations of coalitions). Therefore, it could be possible to restrict the set of
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outcomes prescribed by a “classical” refinement concept by asking also for “slightly al-
truism” and this could lead to a sharper selection mechanism, as shown in some examples
in Section 3.

Finally, since an essential equilibrium can be Pareto dominated by another Nash
equilibrium (even in weakly dominated strategies) as shown in the Example 1.5.2 in van
Damme (1989), the degree of “efficiency” embodied in the slightly altruistic equilibrium
concept does not necessarily result in collective preferable outcomes, which means that
we cannot hope to achieve efficiency in a very strong sense. However, we prove that
under suitable assumptions and by selecting slightly altruistic equilibria, it is possible
to eliminate equilibria in which a player can switch to a strategy that is better for the
others without leaving the set of equilibria. More precisely, we show that the “pseudo-
monotonicity” of a particular operator associated to the game (the same used in Rosen
(1965) to obtain uniqueness of Nash equilibria, under the stronger assumption of strict
monotonicity) guarantees that the slightly altruistic equilibrium concept satisfies the
following property for a refinement concept in normal form games:

Friendliness Property : For every player i and for every selected Nash equilibrium
s = (si, s−i), the strategy si maximizes the sum of player i opponents’ payoffs on the set
of the strategies s′i of player i such that (s′i, s−i) is a Nash equilibrium of the game.

This property means that, for every element in the set of solutions, every player has
friendly behavior as defined in Rusinowska (2002) and therein applied to equilibrium
selection in 2-player bargaining models. This definition is based on a lexicographic-like
optimality in which the sum of opponents’ payoffs gets involved only when a player
has reached his maximum level of self-utility and only on the set of Nash equilibria.
That is, it is an unconditional kind of altruistic behavior since it does not require any
additional beliefs on opponents’ behavior other than utility maximization and it is of
minimal character.

The assumption of pseudo-monotonicity is crucial; in fact, an example in finite games
shows that it cannot be dispensed with entirely. Such assumption is widely used in other
fields and then considered quite weak, so that our result has a sufficient level of generality
even if does not apply to every finite game in mixed strategies.

Summarizing, familiarity with the underlying mathematics of the refinement litera-
tures makes it quite clear that there is the possibility of defining refinements by perturb-
ing agents’ preferences in the direction of altruism: this paper explores this idea. So in
Section 2, we introduce the concept of slightly altruistic equilibrium and we present an
existence result together with some illustrative examples. Section 3 is to establish con-
nections to related refinement concepts, in particular with essential, perfect and strong
Nash equilibria; examples are given showing also that the slightly altruistic equilibrium
concept may refine the Nash equilibrium concept even when all the other refinement con-
cepts previously quoted do not. Finally, in Section 4, sufficient conditions on the data of
the game are given to guarantee that the slightly altruistic equilibrium concept satisfies
the Friendliness Property.
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2 Definition and existence of slightly altruistic equi-

libria

In this section we give the definition of slightly altruistic equilibrium and an existence
theorem. We also show, with some examples, the interesting level of effectiveness of this
concept in finite and continuous games. Finally we discuss possible modifications of the
concept which seem to be inappropriate, at least in general, because of the following
drawbacks: stronger implicit assumptions, lower effectiveness and lack of existence.

2.1 Definition

Let Γ = {I;S1, . . . , SN ; f1, . . . , fN} be a N -player game where I = {1, . . . , N} is the
set of players, the strategy set Si of player i is a subset of Rk(i) and fi : S → R is
the payoff function of player i, with S =

∏
i∈I Si. Let E be the set of Nash equilibria

(see Nash (1950, 1951) of the game Γ; that is a point s∗ ∈ S belongs to E if, for
every player i, fi(s

∗
i , s
∗
−i) ≥ fi(si, s

∗
−i) for all si ∈ Si, where (si, s

∗
−i) denotes the vector

(s∗1, . . . , s
∗
i−1, si, s

∗
i+1, . . . , s

∗
N).

Definition 2.1: For every n ∈ N, let εn be a positive real number and, for each player
i, let hi,n : S → R be the function, called εn-altruistic payoff, defined by:

hi,n(s) = fi(s) + εn

 ∑
j∈I\{i}

fj(s)

 for all s ∈ S. (1)

For every n ∈ N, the game

Γn = {I;S1, . . . , SN ;h1,n, . . . , hN,n}

is called the εn-altruistic game associated to Γ.

Each hi,n represents the utility function of player i supposed to take into account the
sum of the payoffs of the opponents with weight εn.
Now we can then introduce the following new concept of refinement:

Definition 2.2: (De Marco and Morgan (2004)). A Nash equilibrium s∗ of the game
Γ is said to be a slightly altruistic equilibrium if there exist a sequence of positive real
numbers (εn)n decreasing to 0 and a sequence of strategy profiles (sn)n ⊆ S, such that

i) sn is a Nash equilibrium of Γn for every n ∈ N.

ii) sn converges to s∗ as n→∞.

We point out that every equilibrium in the εn-altruistic games translates the idea of
reciprocal altruism reported in the Introduction since in every εn-altruistic game each
player maximizes his payoffs perturbed by a little amount of the sum of his opponents’
payoffs, provided the others do the same.
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Before to investigate the properties of the slightly altruistic equilibrium concept, we
give two illustrative examples, one for finite games and one for continuous ones.

Example 2.3: Consider the following game Γ:

Player 2
Player 1

L R

T
0

2
0

1

M
0

0
3

1

B
0

3
-1

0

Γ has three Nash equilibria in pure strategy (T,R), (M,R) and (B,L). Consider the εn-
altruistic game associated to Γ:

Player 2
Player 1

L R

T
2εn

2
εn

1

M
0

0
3+εn

1+3εn

B
3εn

3
-1

- εn

For all n ∈ N, the pure strategy equilibria of the εn-altruistic game Γn are (B,L) and
(M,R). Hence, (B,L) and (M,R) are the two slightly altruistic equilibria in pure strategies
for the game Γ.

The previous example shows an easy interpretation of the slightly altruistic equilib-
rium concept in terms of stability with respect to trembles, but, in this case trembles
concern preference relations of the players towards a slightly altruistic behavior rather
than strategies. In fact, it turns out that, for an equilibrium that is not slightly altru-
istic, an equilibrium strategy for a player i might be unstable if player i assumes his
opponents’ preference relation trembles in an arbitrary way “towards altruism”. This is
the case for Player 1 in the equilibrium (T,R) in the example above: if Player 1 assumes
that Player 2 preference relation may “tremble in the direction of altruism”, whatever is
the perturbation εn of Player 2, he cannot assume that Player 2 will play strategy R as
a best reply to his strategy T, since L is the unique best reply to T. Therefore, (T,R) is
unstable.

Example 2.4: Consider the following game Γ = {{1, 2}; [0, 1] , [0, 1] ; f1, f2}, where

f1(s1, s2) = −s2
1 and f2(s1, s2) = s1s2.
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The set E of Nash equilibria of Γ is:

E = {0} × [0, 1] .

Given εn > 0, the εn-altruistic payoffs are

h1,n(s1, s2) = −s2
1 + εns1s2 and h2,n(s1, s2) = s1s2 − εns2

1.

For every n, the set of Nash equilibria of the εn-altruistic game Γn is

En = {(0, 0), (εn/2, 1)}

Then, the set ESA of the slightly altruistic equilibria of Γ is given by:

ESA = Lim supn→∞En = {(0, 0), (0, 1)} ⊂ E

where y ∈ Lim supn→∞En if and only if there exists a sequence (yk)k converging to y
such that yk ∈ Enk

for a sequence of integers (nk)k and for each k ∈ N, (see, for example,
Aubin and Frankowska (1990)).

2.2 Existence

Theorem 2.5: Assume that, for every player i, Si is a compact and convex subset of
Rk(i), fi is continuous on S and concave with respect to every variable sj on Sj. Then,
the game Γ has at least a slightly altruistic equilibrium.

Proof. For every player i and m ∈ N, let hi,m be the real valued function defined in S by
hi,m(s) = fi(s)+ 1

2m

∑
j∈I\{i} fj(s) for all s ∈ S. Since hi,m is continuous on S and concave

with respect to the i-th component, the game Γm = {I;S1, . . . , SN ;h1,m, . . . , hN,m} has
at least a Nash equilibrium for every m ∈ N. Let sm be a Nash equilibrium of the 1

2m -
altruistic game Γm, S is compact, so there exists a subsequence (smn)n of the sequence
(sm)mconverging to s∗ as n→∞. For all i and all s′i ∈ Si

hi,mn(si,mn , s−i,mn) = fi(si,mn , s−i,mn) +
1

2mn

∑
j∈I\{i}

fj(si,mn , s−i,mn) ≥

fi(s
′
i, s−i,mn) +

1

2mn

∑
j∈I\{i}

fj(s
′
i, s−i,mn) = hi,mn(s′i, s−i,mn)

Then, for all i and all s′i ∈ Si, it results that:

fi(s
∗
i , s
∗
−i) = lim

n→∞
hi,mn(si,mn , s−i,mn) ≥ lim

n→∞
hi,mn(s′i, s−i,mn) = fi(s

′
i, s
∗
−i)

Therefore s∗ is a Nash equilibrium of Γ and is a limit of a sequence of Nash equilibria of
the εn-altruistic games Γn, with εn = 1/2mn .

Obviously, we have:

Corollary 2.6: Every finite game has at least a slightly altruistic equilibrium in mixed
strategies.
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2.3 Alternative stability properties based on altruism

In the definition of slightly altruistic equilibria, each player doesn’t have a-priori on the
relative importance of his opponents, that is, he treats the others fairly in the perturbed
games and therefore maximizes the unweighted average of opponents’ payoffs. This im-
plicitly means that any two agents, say i1 and i2, agree on the relative importance for any
two other players, say i3 and i4. However, it could happen that players have exogenous
“a-priori” on others’ payoffs. In this case, let α = (αi)i∈I ∈ RN(N−1)

+ be the system of
a-priori of the game where each αi = (αi,j)j 6=i represents the a-priori of each player i and
where αi,j is the relative importance to player i of player j’s utility with∑

j 6=i

αi,j = 1 and αi,j ≥ 0 for all j 6= i.

Then, the perturbed εn-altruistic payoffs would look as follows:

βαi,n = fi + εn

 ∑
j∈I\{i}

αi,jfj

 (2)

and the corresponding perturbed εn-altruistic games as:

Γ
α

n = {I;S1, . . . , SN ; βα1,n, . . . , β
α
N,n} (3)

Therefore, it would be possible to select equilibria of the game Γ which are limits of
equilibria of games Γ

α

n for a sequence εn converging to 0 (slightly altruistic equilibria with
a-priori α). Of course, this could change predictions (only in games with more than 2
players) but would still guarantee the existence result (simply consider βαi,n instead of
hi,n in the proof of Theorem 2.5) and the interpretation in terms of stability with respect
to trembles. Moreover, in the next sections (Remarks 3.6, 4.4) we show that for this
solution concept the same connection with other refinements and a modified version of
the Friendliness Property would hold true. However, this solution concept would imply
the existence of a system of a-priori α which should be exogenous and common knowledge
and therefore would require more exogenous information.

More generally, it would be possible to modify the definition and require different
stability properties. Let εin = (εi,jn )j 6=i, εn = (εin)i∈I ∈ RN(N−1)

+ and consider the game

Γ̃εn =

I;S1, . . . , SN ; f1 +
∑

j∈I\{1}

ε1,j
n fj, . . . , fN +

∑
j∈I\{N}

εN,jn fj


So:

1) If one would require an equilibrium s∗ to be the limit of equilibria of games Γ̃εn

for at least one sequence (εn)n∈N ⊂ RN(N−1)
+ converging to 0, then we would obtain a set

of equilibria which includes slightly altruistic equilibria. In fact, simply considering, for
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every player i, εi,jn = εn for every j 6= i we get slightly altruistic equilibria. Therefore we
obtain a selection mechanism having a lower level of effectiveness.

2) If one would require an equilibrium s∗ to be the limit of equilibria of games Γ̃εn for

every sequence (εn)n∈N ⊂ RN(N−1)
+ converging to 0, then we could not obtain an existence

result, as shown in the following example:

Example 2.7: Consider the following three player game.

L R
T 1,1,2 0,-1,1
B 1,2,1 0,-1,1

M

L R
T 0,0,0 0,-1,0
B 0,0,0 0,-1,0

D

where the first player selects a row, the second a column and the third a matrix. Since
L is a dominant strategy for Player 2 and M is a dominant strategy for Player 3 then,
denoting with s1(T ) a mixed strategies of Player 1, the set of Nash equilibria of this game
is

E = {(s1(T ), L,M) | s1(T ) ∈ [0, 1]}.
If one considers a sequence (εn)n∈N ⊂ R6

+ converging to 0, where

εn = (ε1,2
n , ε1,3

n , ε2,1
n , ε2,3

n , ε3,1
n , ε3,2

n )

and the corresponding game Γ̃εn , then, for n sufficiently large L is a dominant strategy
for Player 2 and M is a dominant strategy for Player 3. So we take into account only the
payoff function of Player 1 in the perturbed game Γ̃εn , given his opponents’ strategies L
and M :

L
T 1 + ε1,2

n + 2ε1,3
n

B 1 + 2ε1,2
n + ε1,3

n

M

If one considers a sequence (εn)n∈N ⊂ R6
+ converging to 0 with ε1,2

n < ε1,3
n then the unique

equilibrium of Γ̃εn , for n sufficiently large, is (T, L,M). Otherwise, if one considers a
sequence (εn)n∈N ⊂ R6

+ converging to 0 with ε1,2
n > ε1,3

n then the unique equilibrium of

Γ̃εn , for n sufficiently large, is (B,L,M).

3 Connections with other refinement concepts

Aim of this section is to embody the slightly altruistic equilibrium concept in the wide
literature of refinements of Nash equilibria. A great part of this literature focuses on
refinements based on stability with respect to trembles. Some of these concepts are
based on an upper-semicontinuity-like stability property which furnish constructive meth-
ods of calculus and the existence (under classical assumptions) of the corresponding
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solutions (for example perfect equilibria and proper equilibria). Nevertheless, using a
lower semicontinuity-like stability property in the definition, on one hand guarantees a
“stronger” stability, on the other hand, may cause a lack of existence of the correspond-
ing solutions (even in mixed extensions of finite games) and gives more difficulties in the
computation; this is the case, for example, of strictly perfect equilibria, regular equilibria
and essential equilibria. In all the concepts above, trembles are usually intended to repre-
sent the possibility of mistakes in the equilibrium play or disturbances in the observation
of the payoffs and therefore, stability with respect to such trembles has a specific game
theoretic interpretation.

In this section, firstly, we prove that every essential equilibrium is slightly altruistic;
this means that perfectness and slightly altruism are necessary conditions for essentiality
and regularity of equilibria. However, they are not sufficient conditions because essential
equilibria may not exist (see also Example 3.4 below). Moreover, the examples presented
below show that slightly altruism is not related to perfectness: neither perfect equilibria
are a subset of slightly altruistic equilibria nor slightly altruistic equilibria are a subset
of perfect equilibria. The same result is obtained for other refinement concepts based on
properties of robustness of the equilibria with respect to joint deviation of coalitions of
players. However, by combining ex-post slightly altruism with other refinement concepts,
it is possible to obtain a sharper selection procedure which leads, in some examples, to
collective preferable outcomes.

Before to investigate the connections between essential equilibria and slightly altruistic
equilibria, we recall some definitions.

Let Ω = {I; Φ1, . . . ,ΦN ; v1, . . . , vN} denote a finite game, where Φi = {ϕ1
i , . . . , ϕ

k(i)
i }

is the (finite) pure strategy set of player i, Φ =
∏

i∈I Φi and vi : Φ → R is the payoff
function of player i. In this case, we denote with Γ = {I;S1, . . . , SN ; f1, . . . , fN} its mixed

extension where each mixed strategy si ∈ Si is a vector si = (si(ϕi))ϕi∈Φi
∈ R|Φi|

+ such
that

∑
ϕi∈Φi

si(ϕi) = 1 and the expected payoff function fi : S → R is defined by:

fi(s) =
∑
ϕ∈Φ

[∏
i∈I

si(ϕi)

]
vi(ϕ) for all s ∈ S.

Then, let |Φ| = K denote the cardinality of the set of all pure strategy profiles then
every payoff function vi : Φ → R has finite range, in particular yi = (vi(ϕ))ϕ∈Φ is a K-
dimensional vector for every player i. Then it is possible to identify the mixed extension
Γ of the game Ω with the point y = (y1, . . . , yn) ∈ RNK . Therefore, denoting with
G(S1, . . . , SN) the set of N-player finite games with mixed strategy sets (S1, . . . , SN),
there is a one to one correspondence between RNK and G(S1, . . . , SN). Then, one can
define a distance, denoted by d(Γ′,Γ′′), between the games Γ′ and Γ′′ using the classical
Euclidean distance between the corresponding vectors in RNK .

Therefore:

Definition 3.1: (Wu and Jiang (1962)). An equilibrium s∗ of Γ is said to be essential
if for every η > 0 there exists δ > 0 such that for every game Γ′ with d(Γ,Γ′) < δ there
exists an equilibrium s′ with d(s∗, s′) < η.
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Proposition 3.2: Every essential equilibrium of a finite game in mixed strategies is a
slightly altruistic equilibrium.

Proof. Since s∗ is an essential equilibrium for Γ, for every m ∈ N there exists δm > 0 such
that any game Γ′ satisfying d(Γ,Γ′) < δm has an equilibrium s′ such that d(s∗, s′) < 1/m.
Let εm be a positive real number such that the corresponding εm-altruistic game Γm
satisfies d(Γ,Γm) < δm. Hence, for every m ∈ N there exists an equilibrium sm of Γm,
which satisfies d(s∗, sm) < 1/m. Consider a converging subsequence (smn)n∈N of the
sequence (sm)m∈N. Then, limn→∞ smn = s∗ and s∗ is a slightly altruistic equilibrium of
Γ.

Therefore, in light of Proposition 2.4.3 in van Damme (1989), every essential equi-
librium of a finite game in mixed strategies is perfect and slightly altruistic at the same
time. Note also that every regular equilibrium (see Harsanyi (1973), Ritzberger (1994))
is essential.

Before to present some examples showing the (lack of) connections between perfect,
weak-Pareto dominant and slightly altruistic equilibria we recall some definitions.

Definition 3.3: A point y ∈ Y ⊂ Rh is a Pareto point in Y if it does not exist z ∈ Y that
weakly Pareto dominates y, that is if it does not exist z ∈ Y such that z − y ∈ Rh

+ \ {0}.
A point y ∈ Y ⊂ Rh is a weak-Pareto point if it does not exist z ∈ Y that strongly Pareto
dominates y, that is if it does not exist z ∈ Y such that z − y ∈ intRh

+, where intRh
+

denotes the interior of Rh
+. Finally, y ∈ Y ⊂ Rh is an ideal point if y − z ∈ Rh

+ for all
z ∈ Y .
Given a vector-valued function H : X → Rh, a point x ∈ X is a Pareto (resp.weak-Pareto
or ideal) solution for H if H(x) is a Pareto (resp. weak-Pareto or ideal) point in H(X).
Then, we say that a strategy profile s′ ∈ S of the game Γ is said to be a Pareto (resp.
weak-Pareto or ideal) profile in S ′ ⊆ S if it is a Pareto (resp. weak-Pareto or ideal)
solution for the function F defined by F (s) = (f1(s), . . . , fN(s)), for all s ∈ S, on the set
S ′. These definitions will be useful when we will investigate dominance in the set E of
Nash equilibria of the game Γ.

Example 3.4: Let us consider the following 2× 2-game:

Player 2
Player 1

L R

T
0

3
0

1

B
3

1
3

1

The expected payoffs are f1(s1, s2) = 2s1s2 + 1 and f2(s1, s2) = 3 − 3s1, hence, the
set of Nash equilibria E is given by:

E = ([0, 1]× {0}) ∪ ({1} × [0, 1])
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Note that, for the first player, the strategy s1 = 1 weakly dominates all the others
mixed strategies which means that the set of perfect equilibria is P = {1} × [0, 1].
However, the unique perfect equilibrium which is a Pareto profile in the set of Nash
equilibria is (1, 1), while (0, 0) is a Pareto profile in the set of Nash equilibria which is
not a perfect equilibrium. Note also that all Nash equilibria are weak Pareto profiles in
the set of all strategy profiles and hence they are all strong Nash equilibria.

Let h1,n(s1, s2) = 2s1s2 + 1 + εn(3− 3s1) and h2,n(s1, s2) = 3− 3s1 + εn(2s1s2 + 1), as
defined in (1). If εn < 2/3, the set En of Nash equilibria of the game Γn is given by:

En = {(1, 1)} ∪
(
{0} ×

[
0,

3εn
2

])
.

The set ESA of slightly altruistic equilibria is

ESA = Lim supn→∞En = {(1, 1), (0, 0)}

Note that the two slightly altruistic equilibria are the two Pareto profiles in the set of
Nash equilibria. Moreover, (1, 1) is the unique equilibrium which is perfect and slightly
altruistic. However, it is not essential. In fact, for ρ > 0, consider the following perturbed
game Γρ:

Player 2
Player 1

L R

T
0

3
ρ

1

B
3

1
3

1

The set Eρ of Nash equilibria of Γρ is Eρ = [0, 1] × {0}. Clearly, d(Γ,Γρ) → 0 as
ρ → 0. However, there does not exist a sequence (sρ)ρ of Nash equilibria of the games
Γρ converging to (1, 1) as ρ→ 0. Hence, (1, 1) is not an essential equilibrium and Γ does
not have any essential equilibrium.

Every perfect equilibrium of this game is strictly perfect (Okada (1981)). In fact
consider a generic perturbation on the strategy profile set, that is a couple of functions
η = (η1, η2), where η1 : {T,B} →]0, 1[ and η2 : {L,R} →]0, 1[ such that:

η1(T ) + η1(B) < 1 η2(L) + η2(R) < 1.

Let (Γ, η) be the corresponding perturbed game: (Γ, η) = {2;Sη1 , S
η
2 ; f1, f2} where Sη1 =

{s1 ∈ S1 | η1(T ) ≤ s1 ≤ 1 − η1(T )}, Sη2 = {s2 ∈ S2 | η2(L) ≤ s2 ≤ 1 − η2(L)} and
where the payoff functions f1(s1, s2) = 2s1s2 + 1 and f2(s1, s2) = 3 − 3s1 are restricted
to Sη1 × S

η
2 . Then, the set Eη of Nash equilibria of (Γ, η) is:

Eη = {1− η1(T )} × [η2(L), 1− η2(L)] .

12



For every sequence of perturbations (ηn)n converging to zero the corresponding se-
quence (Eηn) of sets of equilibria of the perturbed games converges in the sense of
Painvelé-Kuratowski (see Aubin and Frankowska (1990)) to the set P of the perfect
equilibria of the game Γ. Therefore a strictly perfect equilibrium is not always a slightly
altruistic equilibrium.

Example 3.5: Consider the following game:

Player 2
Player 1

L R

T
0

3
0

1

B
2

1
3

1

Let (s1, s2) denotes a mixed strategy profile. The expected payoffs are f1(s1, s2) =
2s1s2 + 1 and f2(s1, s2) = s2 [s1 − 1]− 3s1 + 3. The set of Nash equilibria E is given by:

E = ([0, 1]× {0}) ∪ ({1} × [0, 1])

Again, all the equilibria are strong Nash equilibria but the unique perfect equilibrium
is (1, 0), which is weakly Pareto dominated by every other equilibria. Observe that (1, 0)
is also strictly perfect since for every perturbation on the strategy sets the corresponding
perturbed game has a unique Nash equilibrium which gives the maximum probability to
the pure strategies T and R.

Let h1,n(s1, s2) = 2s1s2 + 1 + εn(s2 [s1 − 1]− 3s1 + 3) and h2,n(s1, s2) = s2 [s1 − 1]−
3s1 + 3 + εn(2s1s2 + 1) be the altruistic payoffs, defined as in (1), with εn in ]0, 1[. The
set En of Nash equilibria of the game Γn is given by:

En =

{
(1, 1),

(
1

1 + 2εn
,

3εn
2 + εn

)
, (0, 0)

}
and the set ESA of slightly altruistic equilibria is:

ESA = Lim supn→∞En = {(1, 1), (0, 0), (1, 0)} .

We observe that in this case the slightly altruistic equilibrium (1, 0) is weakly Pareto
dominated.

As already observed, Proposition 3.2 shows that requiring to be an essential equilib-
rium (lower semicontinuity-like stability) is sufficient to guarantee slightly altruism and
perfectness. However, the previous examples show that perfectness and slightly altruism
are properties of different nature and can give different results. In fact, in Example 3.4,
in the set of all perfect equilibria (which is not countable) there is a unique slightly al-
truistic equilibrium and the other slightly altruistic equilibrium is in weakly dominated
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strategies. On the other hand, in Example 3.5, the unique perfect equilibrium is slightly
altruistic.

Note also that, even if in finite games in mixed strategies the perfect equilibrium
concept satisfies the Admissibility Property that is, every equilibrium strategy is weakly
undominated (see Chapter 2 in van Damme (1989)), this is not the case for continuous
games as shown in Example 2.1 in Simon and Stinchombe (1995). In fact, there exist
infinite games such that all Nash equilibria are in weakly dominated strategies so that
it is no longer possible to ask for a refinement concept that satisfies both the existence
and the Admissibility Property, when not finite games are considered. Moreover, the
previous examples show that perfect equilibria are not always Pareto profiles in the set
of Nash equilibria while slightly altruistic equilibria may refine the set of strong Nash
equilibria, restricting them to those which are also Pareto profiles in the set of Nash
equilibria (Example 3.4).

Remark 3.6: The results previously obtained for slightly altruistic equilibria can be
obtained also for slightly altruistic equilibria with a-priori α. Firstly, every essential
equilibrium is a slightly altruistic equilibrium with a-priori α; in fact, this result follows
by replacing in the proof of Theorem 3.2 the following “given δm > 0, let εm > 0 be
such that the corresponding εm-altruistic game Γm satisfies d(Γ,Γm) < δm” with “given
δm > 0, let εm > 0 be such that the corresponding game Γ

α

m satisfies d(Γ,Γ
α

m) < δm”.
Moreover, since in 2-player games the a-priori α do not affect the predictions of the

slightly altruistic equilibrium concept, then the same considerations about the lack of
connections between slightly altruistic equilibria with a-priori and perfect or strong Nash
equilibria hold true.

The next example shows that the slightly altruistic equilibrium concept may refine
the Nash equilibrium concept even when all the other refinement concepts previously
quoted do not.

Example 3.7: Consider the following three player game.

L R
T 2,0,-1 2,-1,8
B 0,0,0 2,3,0

M

L R
T 2,3,0 3,0,4
B 2,0,0 4,4,-1

D

where the first player selects a row, the second a column and the third a matrix.
We restrict our attention to the pure strategies. (B,R,M) and (T,L,D) are the two Nash
equilibria in pure strategies. None of them is a strong Nash equilibrium or an essential
equilibrium. None of them is in weakly dominated strategies but they both give the same
outcome (2,3,0). However, the unique slightly altruistic equilibrium is (T,L,D).

We did not investigate connections with the requirements and the concepts of Strategic
Stability (see the seminal paper of Kohlberg and Mertens (1986) or, for example, Hillas
et al. (2001) for recent results) in light of two reasons. The first is that the requirements
of Strategic Stability imply that the solution concept has to be set-valued while slightly
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altruistic equilibrium concept deals with classical single-valued solution concepts. The
second reason is that the definitions of stable sets also concern some kind of perturbations
on the strategy sets. It turns out that stable sets are subsets of the set of trembling hand
perfect equilibria, while the set of slightly altruistic equilibria is not of this kind (see the
examples above).

4 Friendliness Property

Aim of this section is to investigate sufficient conditions on the data of the game which
allow, by playing a slightly altruistic equilibrium, to eliminate equilibria in which a player
can switch to a strategy that is better for others without leaving the set of equilibria. That
is, we investigate when the slightly altruistic equilibrium concept satisfies the Friendliness
Property as defined in the Introduction.

We first illustrate the Friendliness Property by an example:

Example 4.1: Consider the game in Example 3.4. The set of Nash equilibria is

E = ([0, 1]× {0}) ∪ ({1} × [0, 1])

and the slightly altruistic equilibria are (1, 1), (0, 0).
When, for example, Player 1 assumes that Player 2 chooses the strategy s2 = 0, he is
indifferent between all the strategies s1 ∈ [0, 1], that is Player 1 is indifferent between
all the equilibria [0, 1]× {0}. However, consider the slightly altruistic equilibrium (0, 0),
for s1 = 0 Player 1 maximizes the payoff of Player 2. Analogously, the same situation
arises for Player 2 when the equilibrium (1, 1) is played. In other words, in every slightly
altruistic equilibrium of this game, given the strategy of his opponent s−i, each player i
maximizes the payoff of the opponent over the set of all strategy si such that (si, s−i) is
a Nash equilibrium of the game. This is equivalent to say that in this game the slightly
altruistic equilibrium concept satisfies the Friendliness Property.

We have the following:

Theorem 4.2: Assume that, for every player i ∈ I, Si is a compact and convex subset
of Rk(i), the payoff function fi is concave with respect to every variable sj on Sj and
continuously differentiable in S. Let ∇si

fi(s) denote the gradient of fi with respect to si
in s and assume that the operator A : S → R =

∏
i∈I Rk(i) defined by

A(s) = (∇s1f1(s),∇s2f2(s), . . . ,∇sN
fN(s)) (4)

is pseudo-monotone on S, i.e. 〈A(s), s− t〉 ≥ 0⇒ 〈A(t), s− t〉 ≥ 0, s ∈ S, t ∈ S, where

〈A(s), t〉 =
∑
i∈I

〈∇si
fi(s), ti〉i for all s, t ∈ S (5)

and 〈·, ·〉 (resp. 〈·, ·〉i) denotes the scalar product in R (resp. in Rk(i)).
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Then, for every player i and for every slightly altruistic equilibrium s∗ = (s∗i , s
∗
−i), the

strategy s∗i maximizes
∑

j∈I\{i} fj(·, s∗−i) on the set

Ei(s
∗
−i) = {si ∈ Si | (si, s∗−i) ∈ E}.

That is, the slightly altruistic equilibrium concept satisfies the Friendliness Property.

Proof. Let s∗ be a slightly altruistic equilibrium. Then there exist a sequence (εn)n ⊂
R+ \ {0} decreasing to 0 and a sequence of Nash equilibria, (sn)n ⊆ S, of Γn such that
sn → s∗ as n→∞.
Since each sn is a Nash equilibrium of Γn, for every player i, hi,n(si,n, s−i,n) ≥ hi,n(s′i, s−i,n)
for all s′i ∈ Si. Si is convex then, for every s′i ∈ Si, si,λ = (1−λ)si,n+λs′i = si,n+λ(s′i−si,n)
belongs to Si and hi,n(si,n, s−i,n) ≥ hi,n(si,λ, s−i,n) for all λ ∈]0, 1[. Therefore:

lim
λ→0+

hi,n(si,λ, s−i,n)− hi,n(si,n, s−i,n)

λ
= 〈∇si

hi,n(sn), s′i − si,n〉i ≤ 0

Hence 〈∇si
hi,n(sn), si,n − s′i〉i ≥ 0 which means that〈
∇si

fi(sn) + εn

 ∑
j∈I\{i}

∇si
fj(sn)

 , si,n − s′i
〉
i

≥ 0 for all s′i ∈ Si.

Since this inequality holds for every player i

∑
i∈I

〈
∇si

fi(sn) + εn

 ∑
j∈I\{i}

∇si
fj(sn)

 , si,n − s′i
〉
i

≥ 0 for all s′ ∈ S. (6)

Let B : S → R the operator defined by:

B(s) =

 ∑
j∈I\{1}

∇s1fj(s),
∑

j∈I\{2}

∇s2fj(s), . . . ,
∑

j∈I\{N}

∇sN
fj(s)

 (7)

then

〈B(s), t〉 =
∑
i∈I

〈 ∑
j∈I\{i}

∇si
fj(s), ti

〉
i

and therefore equation (6) can be written as

〈(A+ εnB)(sn), sn − s′〉 ≥ 0 for all s′ ∈ S. (8)

Let s′′ be a Nash equilibrium of Γ then, as before, it follows that

〈∇si
fi(s

′′), s′′i − si,n〉i ≥ 0 for every player i
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therefore 〈A(s′′), s′′ − sn〉 ≥ 0. In light of the pseudo-monotonicity of the operator A,

〈A(sn), s′′ − sn〉 ≥ 0

then, from (8),

εn〈B(sn), sn − s′′〉 ≥ 〈A(sn), s′′ − sn〉 ≥ 0 for all s′′ ∈ E (9)

where E is the set of Nash equilibria of Γ. Hence (9) implies that

〈B(sn), sn − s′′〉 ≥ 0 for all s′′ ∈ E.

Passing to the limit for n→∞ we have

〈B(s∗), s∗ − s′′〉 ≥ 0 for all s′′ ∈ E. (10)

For every player i, let gi : S → R be the function defined by:

gi(s) =
∑

j∈I\{i}

fj(s) for all s ∈ S.

From the assumptions, gi is concave with respect to every variable so, for every s′i in Si,

gi(s
′
i, s
∗
−i)− gi(s∗i , s∗−i) ≤ 〈∇si

gi(s
∗), s′i − s∗i 〉i .

For every s′′i ∈ Ei(s∗−i) = {si ∈ Si | (si, s∗−i) ∈ E} and in light of (10),

〈B(s∗), s∗ − s′′〉 =
∑
j∈I

〈
∇sj

gj(s
∗), s∗j − s′′j

〉
j

= 〈∇si
gi(s

∗), s∗i − s′′i 〉i ≥ 0

therefore gi(s
′′
i , s
∗
−i)− gi(s∗i , s∗−i) ≤ 0.

Since this inequality holds for every slightly altruistic equilibrium then the slightly
altruistic equilibrium concept satisfies the Friendliness Property.

Example 4.3: Consider the game in Example 3.4. The payoff functions are f1(s1, s2) =
2s1s2 + 1 and f2(s1, s2) = 3− 3s1.
Since

∂f1

∂s1

(s) = 2s2 and
∂f2

∂s2

(s) = 0

we have that:

〈A(σ), σ − τ〉 =
∂f1

∂s1

(σ) [σ1 − τ1] = 2σ2(σ1 − τ1) ≥ 0 ⇒ σ1 − τ1 ≥ 0 ⇒

⇒ 〈A(τ), σ − τ〉 =
∂f1

∂s1

(τ) [σ1 − τ1] = 2τ2(σ1 − τ1) ≥ 0
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Then the operator A is pseudo-monotone and the assumptions of Theorem 4.2 are
satisfied. Note that, in this example, the operator A is not monotone, where A is said to
be monotone if 〈A(σ)− A(τ), σ − τ〉 ≤ 0 for all σ, τ in S, in fact:

〈A(σ)− A(τ), σ − τ〉 =
∂f1

∂s1

(σ) [σ1 − τ1]− ∂f1

∂s1

(τ) [σ1 − τ1] = 2 [σ2 − τ2] [σ1 − τ1]

Given (σ1, σ2) = (1, 1) and (τ1, τ2) = (0, 0), we have:

〈A(σ)− A(τ), σ − τ〉 = 2.

The assumption of pseudo-monotonicity cannot be drooped in the Theorem 4.2 as
shown below. Consider the game in Example 3.5, where the operator A is not pseudo-
monotone. In fact, recalling that the payoff functions are f1(s1, s2) = 2s1s2 + 1 and
f2(s1, s2) = s2 [s1 − 1]− 3s1 + 3, we have

∂f1

∂s1

(s) = 2s2 and
∂f2

∂s2

(s) = s1 − 1.

Given σ = (0, 0) and τ = (1, 1),

〈A(σ), σ − τ〉 =
∂f1

∂s1

(σ) [σ1 − τ1] +
∂f2

∂s2

(σ) [σ2 − τ2] =

= 2σ2(σ1 − τ1) + (σ1 − 1)(σ2 − τ2) = 1,

while

〈A(τ), σ − τ〉 =
∂f1

∂s1

(τ) [σ1 − τ1] +
∂f2

∂s2

(τ) [σ2 − τ2] =

= 2τ2(σ1 − τ1) + (τ1 − 1)(σ2 − τ2) = −2

Therefore, Theorem 4.2 does not hold and we can see that in the slightly altruistic
equilibrium (1, 0), the equilibrium strategy of Player 1, that is s1 = 1, does not maximize
the function f2(·, 0) in [0, 1]. Hence, in this game the slightly altruistic equilibrium
concept does not satisfy the Friendliness Property.

Observe that, in order to obtain uniqueness of Nash equilibria, the operator A defined
in (4) has been used in Rosen (1965) under the stronger condition (of strict monotonicity):

〈A(σ)− A(τ), σ − τ〉 < 0 for all σ, τ ∈ S, σ 6= τ

In Rosen (1965), the functions fi satisfying the assumptions of strictly monotonicity
of the operator A are said to be diagonally strictly concave. Similarly, when A is
pseudo-monotone, the functions fi will be said to be diagonally pseudo-concave. Pseudo-
monotone operators have been introduced in Brezis, Nirenmberg and Stampacchia (1972)
and then applied in many fields (see also Lignola and Morgan (1999)). Finally, recall that
in 1-player games the pseudo-monotonicity assumption on the operator A coincides with
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the pseudo-concavity of the payoff function (Mangasarian (1965), see also, for example,
Avriel et al. (1988)).

Finally, note that the Friendliness Property has been extensively investigated as a
selection device in the general framework of N-player normal form games also by the
authors in De Marco and Morgan (2007).

Remark 4.4: Theorem 4.2 could be modified for slightly altruistic equilibria with a-
priori α in a natural way. In fact, under the same assumptions of Theorem 4.2 on the
payoffs and the strategy sets, in every slightly altruistic equilibrium with a-priori α s∗,
the strategy s∗i maximizes the weighted sum of opponents’ payoffs gαi =

∑
j∈I\{i} αi,jfj

on the set Ei(s
∗
−i). The proof comes directly from the proof of Theorem 4.2 by replacing

(in the proof) the functions hi,n with the functions βαi,n as defined in (2), the operator B
as defined in (7) with the operator Bα : S → R defined by:

Bα(s) =

 ∑
j∈I\{1}

α1,j∇s1fj(s),
∑

j∈I\{2}

α2,j∇s2fj(s), . . . ,
∑

j∈I\{N}

αN,j∇sN
fj(s)

 (11)

and the functions gi with the functions gαi .

5 Conclusions

In this paper we define a refinement concept for situations in which (a little amount of) al-
truism may emerge. The evidence coming out from the examples shows that this concept
leads to different predictions with respect to other classical refinement concepts which
are based on different assumptions (trembles in the choice of the equilibrium strategies or
not binding pre-play communication between players) and that, if players are supposed
to be altruist (even in a faintly way), such predictions seem to be reasonable (also in
light of the Friendliness Property). However, there are no theoretical or psychological
reasons which state that an altruism assumption is not compatible with one of the as-
sumptions associated to other refinement concepts and, therefore, they could be taken
simultaneously into account.
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