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Abstract  
We consider a general model of pure exchange economies with consumption externalities. Households may have 
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1 Introduction

We consider a class of pure exchange economies with consumption externali-
ties. Our goal is to provide sufficient conditions for the generic regularity.

In the presence of externalities, competitive equilibria are not necessarily
Pareto optimal. It is therefore an open and important issue to study Pareto
improving policies. Our regularity result is a first step in studying this is-
sue, since the comparison of welfare at equilibrium before and after Pareto
improving policies is possible only in a neighborhood of a regular economy.
Indeed, in a regular economy, the number of equilibria is finite and the depen-
dence of each equilibrium on the parameters describing the economy is locally
continuous or differentiable, hence one can perform comparative static analy-
sis. The analysis of Pareto improving policies in regular economies is justified
only when regular economies are generic. In the presence of market failures,
recent works utilize the generic set of regular economies as the starting point
of several Pareto improving policies 2 .

There is a large and growing literature on general equilibrium models with ex-
ternalities. Following Laffont and Laroque (1972), Laffont (1976, 1977, 1988)
and Hammond (1998), we incorporate consumption externalities not only in
preferences but also in consumption sets. That is, consumption sets depend
on the consumption of the other agents. In the case of a network commodity
like the internet or electricity, the available quantity and quality of the ser-
vice depend on the global consumption. For example, congestion limits the
physically possible individual consumptions. So, for a consumer who suffers
negative external effects, the consumption set becomes “smaller” since less
consumption opportunities are available to him. But, on the contrary, posi-
tive external effects may enlarge the individual consumption possibilities. For
instance, positive effects due to the width of the network enables consumers
to have a better service. Importantly, in both examples the external effects
affect simply the individual consumption sets. They do not directly affect
preferences.

So, because of the externalities, the consumption set is not necessarily the
whole positive orthant of the commodity space. To model consumption sets

l’Hôpital, 75647 Paris Cedex 13, France. E-mail: Jean-Marc.Bonnisseau@univ-
paris1.fr; E. L. del Mercato (corresponding author), Paris School of Economics,
Université Paris 1 Panthéon–Sorbonne. Address: Centre d’Economie de la Sor-
bonne, 106-112 Boulevard de l’Hôpital, 75647 Paris Cedex 13, France. E-mail:
Elena.delMercato@univ-paris1.fr
2 See, in different settings, Geanakoplos and Polemarchakis (1986, 2008), Cass and
Citanna (1998), Citanna, Kajii and Villanacci (1998), Herings and Polemarchakis
(2005), Citanna, Polemarchakis and Tirelli (2006).
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possibly different from the set of positive consumptions, we follow Smale
(1974), where each consumption set is described by an inequality on a diffe-
rentiable function called the possibility function 3 . We simply assume that the
possibility functions depend on the consumption of the others as is done clas-
sically with the utility functions in the presence of consumption externalities.

Now we describe our contributions. We first provide an example of an ex-
change economy with externalities and no consumption constraints where all
endowments are singular and give rise to infinite equilibrium sets 4 . So, some
restrictions on the characteristics of the agents must be made in order to get
generic regularity.

In our example, externalities affect not only the utility levels but also the
marginal rates of substitution. This feature does not appear if one considers
additively separable utility functions as in Crès (1996) and in Geanakoplos and
Polemarchakis (2008), or a more general form of separable utility functions as
in Heidhues and Riedel (2007). In these latter cases, the genericity of regular
economies is merely a consequence of classical results, since the equilibrium
set coincides with the one of an associated economy without externalities.
Indeed, for utility functions which are additively separable or à la Heidhues
and Riedel, the demand does not depend on the externalities, since preferences
satisfy the following independence property: if household h prefers xh to x′h for
a given consumption of the others, then he always prefers xh to x′h whatever
is the consumption of the others. Consequently, there is no way to provide
evidence of externalities or to measure their impact by observing market’s
outcomes or individual demands. But, from an economic point of view, it is
important to go beyond this setting. Indeed, the literature on externalities,
in particular on network externalities or social preferences, reports that the
economic behavior of the agents is modified by a change of the environment.
Thus, it implies that externalities have an effect on the marginal rates of
substitution or on the willingness to pay for some commodities.

Our example shows that regularity fails since the external effects are too
strong. So, to get generic regularity, in Assumption 9 (see Section 4) we as-
sume that the second order external effects (consumption of the others) on
both utility and possibility functions are dominated by the second order direct
effect (own individual consumption). This assumption clearly puts some re-
strictions on the external effects on marginal rates of substitution but it allows
us to go beyond the utility functions which are additively separable or à la
Heidhues and Riedel, as illustrated in Section 4. We also note that in the ab-

3 In the same spirit are more recent works where portfolio sets are described in
terms of linear or differentiable functions, Siconolfi (1986,1988), Balasko, Cass and
Siconolfi (1990), Polemarchakis and Siconolfi (1997), Cass, Siconolfi and Villanacci
(2001), Carosi and Villanacci (2005).
4 We thank Andreu Mas-Colell and Paolo Siconolfi who greatly helped us with it.
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sence of consumption constraints, Assumption 9 implies that the equilibrium
set is smooth and that the demand functions satisfy the law of demand in a
neighborhood of any equilibrium allocation.

Furthermore, externalities in the consumption sets may lead to a lack of con-
tinuity on the equilibrium prices in the following sense. At equilibrium, if
the consumption of a household is on the boundary of his consumption set,
the prices reflect his marginal utilities as well as his marginal possibilities
to consume. However, if the consumption is in the interior of the consump-
tion set, equilibrium prices reflect only the marginal utilities, since locally the
household is not constrained at all in terms of consumption possibilities. So a
small change in endowments might drastically change the equilibrium prices.
Indeed, changing slightly the endowments, some equilibrium consumptions
which were on the boundary of the consumption sets may be moved toward the
interior. Consequently, previous equilibrium prices, reflecting marginal utili-
ties and marginal possibilities to consume, are far from the new ones which
now reflect only marginal utilities. To overcome this discontinuity, we con-
sider displacements of the boundaries of the consumption sets, that is, simple
perturbations of the possibility functions (see Section 5).

Our main result, Theorem 12, states that almost all perturbed economies are
regular. Then, in Corollary 13, we provide the generic regularity result in the
space of endowments and possibility functions 5 .

It is perhaps surprising, but to the best of our knowledge, there are few results
on regularity in the presence of externalities 6 . No one considers consumption
constraints. In Bonnisseau (2003), the result is based on a geometric assump-
tion on preferences. The economic interpretation of its extension to the case
with consumption constraints would be unwise.

In Kung (2008), where also public goods and production are considered, no
specific assumption on the utility functions is necessary. But the author has to
perturb utility functions as well as all the other fundamentals of the economy.
As noticed by the author, as many parameters as the number of the equations
are needed. The smaller is the number of parameters, the stronger is the
genericity result. In this trade off, we choose to use the classical parameters,
that is, initial endowments, at the cost of an additional assumption on the
utility functions. Indeed, in the absence of consumption constraints, economies
are regular for almost all initial endowments, without perturbing any other

5 Following Mas-Colell (1985), generic means in an open and dense subset. Follo-
wing Smale (1981), almost all means in an open and full measure subset.
6 In Crès (1996), Geanakoplos and Polemarchakis (2008) and Heidhues and Riedel
(2007), as already mentioned, the regularity is merely a consequence of classical
results. However, the purpose of these papers is not the study of regularity, since it
is not an issue due to their assumptions.
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fundamentals of the economy (see Section 5). So, our approach sheds some
light on the fact that the generic regularity holds true with external effects
affecting marginal rates of substitution and thus individual demands, so long
as these effects are not too strong.

The paper is organized as follows. Section 2 is devoted to the model and basic
assumptions. In Section 3, we present the definitions of competitive equilibria
and of the equilibrium function. Theorem 8 recalls non-emptiness and com-
pactness results. In Section 4, we provide an example, then we state Assump-
tion 9 and compare it with assumptions previously made in the literature. In
Section 5, we state the definitions of a regular economy and of a perturbed
economy. In Section 6, we present the main results of this paper, Theorem 12
and Corollary 13. In Section 7, we prove our main results. Finally, all the lem-
mas are proved in Appendix A. In Appendix B, the reader can find classical
results from differential topology used in our analysis.

2 Model and basic assumptions

There is a finite number C of physical commodities labeled by the superscript
c ∈ {1, ..., C}. The commodity space is RC

++. There is a finite number H of
households labeled by subscript h ∈ H := {1, ..., H}. Each household h ∈ H is
characterized by an endowment of commodities, a possibility function and a
utility function. Possibility and utility functions depend on the consumptions
of all households.

The notations are summarized below.

• xc
h is the consumption of commodity c of household h; xh := (x1

h, .., x
c
h, .., x

C
h )

denotes household h’s consumption and x−h := (xk)k 6=h the consumptions
of households other than h called the environment of household h; x :=
(xh)h∈H.

• ec
h is the endowment of commodity c of household h; eh := (e1

h, .., e
c
h, .., e

C
h )

denotes household h’s endowment; e := (eh)h∈H.
• As in general equilibrium model à la Arrow-Debreu, each household h has

to choose a consumption in his consumption set Xh, i.e., in the set of all
consumption alternatives which are a priori possible for him. In the spirit
of Smale’s work (1974), the consumption set of household h is described in
terms of an inequality on a function χh

7 . We call χh the possibility function.
The main innovation of this paper comes from the dependency of the

7 Observe that this idea is usual for smooth economies with production where each
production set is described by an inequality on a function called the transformation
function, see Mas-Colell (1985) and Villanacci et al. (2002), for instance.
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consumption set of each household with respect to the consumptions of the
other households, i.e., given the environment x−h, the consumption set of
household h is the following set 8 ,

Xh(x−h) =
{
xh ∈ RC

++ : χh(xh, x−h) ≥ 0
}

where the possibility function χh is a function from RC
++ × RC(H−1)

+ to R.
• Each household h ∈ H has preferences described by a utility function uh

from RC
++ × RC(H−1)

+ to R, and uh(xh, x−h) is household h’s utility level
associated with the consumption xh and the environment x−h.

• (uh, χh, eh)h∈H is an economy.
• pc ∈ R++ is the price of one unit of commodity c; p := (p1, .., pc, .., pC) ∈

RC
++.

• Given a vector w = (w1, .., wc, .., wC) ∈ RC , we denote
w\ := (w1, .., wc, .., wC−1) ∈ RC−1.

From now on we make the following assumptions on utility and possibility
functions taken from del Mercato (2006) 9 .

Assumption 1 For all h ∈ H,

(1) uh is continuous on RC
++×RC(H−1)

+ and C2 in the interior of its domain.

(2) for each x−h ∈ RC(H−1)
++ , the function uh(·, x−h) is differentiably strictly

increasing, i.e., for every xh ∈ RC
++, Dxh

uh(xh, x−h) ∈ RC
++.

(3) For each x−h ∈ RC(H−1)
++ , the function uh(·, x−h) is differentiably strictly

quasi-concave, i.e., for every xh ∈ RC
++, D2

xh
uh(xh, x−h) is negative defi-

nite on Ker Dxh
uh(xh, x−h)

10 .

(4) For each x−h ∈ RC(H−1)
+ and for every u ∈ Im uh(·, x−h), clRC{xh ∈ RC

++ :
uh(xh, x−h) ≥ u} ⊆ RC

++.

Assumption 2 For all h ∈ H,

(1) χh is continuous on RC
++×RC(H−1)

+ and C2 in the interior of its domain.

8 Note that in Smale (1974), each consumption set is described by several inequality
constraints. Our results can be extended to this case, but this is not our main
objective.
9 In this paper, possibility functions also depend on endowments. For the sake of
clarity, here we consider only externalities.
10 Let v and v′ be two vectors in Rn, v · v′ denotes the inner product of v and v′.
Let A be a real matrix with m rows and n columns, and B be a real matrix with
n rows and l columns, AB denotes the matrix product of A and B. Without loss of
generality, vectors are treated as row matrices and A denotes both the matrix and
the following linear application A : v ∈ Rn → A(v) := AvT ∈ R[m] where vT denotes
the transpose of v and R[m] := {wT : w ∈ Rm}. When m = 1, A(v) coincides with
the inner product A · v, treating A and v as vectors in Rn.
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(2) (Convexity of the consumption set) For each x−h ∈ RC(H−1)
+ , the function

χh(·, x−h) is quasi-concave 11 .
(3) (Survival condition) There exists x̄h ∈ RC

++ such that χh(x̄h, x−h) ≥ 0 for

every x−h ∈ RC(H−1)
+ .

(4) (Non-satiation) (a) For each x−h ∈ RC(H−1)
+ and for every xh ∈ RC

++,

Dxh
χh(xh, x−h) exists and Dxh

χh(xh, x−h) 6= 0; (b) for each x−h ∈ RC(H−1)
++

and for every xh ∈ RC
++, Dxh

χh(xh, x−h) /∈ −RC
++.

(5) (Global desirability) For each x ∈ RCH
++ and for each c ∈ {1, ..., C} there

exists h(c) ∈ H such that Dxc
h(c)

χh(c)(xh(c), x−h(c)) ∈ R+.

For the interpretation of Points 1, 2, 4 and 5 of Assumption 2 we refer to del
Mercato (2006), pp. 529-530.

Point 3 of Assumption 2 is called the “survival condition” since it guarantees
that there exists a consumption belonging to the consumption set Xh(x−h) of

household h, whatever are the consumptions x−h ∈ RC(H−1)
++ of the others.

Note that in order to get compactness and properness properties of the equi-
librium set, in Points 1 and 4 of Assumption 1 and in Points 1, 2 and 3 of
Assumption 2, we consider consumptions x−h in the closure of RC(H−1)

++ . This
gives some information on the boundary behavior of uh and χh.

Definition 3 U denotes the set of u = (uh)h∈H which satisfies Assumption 1,
and X denotes the set of χ = (χh)h∈H which satisfies Assumption 2.

We now define the set of endowments, which satisfy the survival assumption
for the given possibility functions. That is, endowments such that for each
household there exists in his consumption set an interior consumption which
is strictly smaller than his endowments.

Definition 4 Let χ ∈ X . Define the set Eχ :=
∏
h∈H

Eχh
⊆ RCH

++ where

Eχh
:=

 ⋂
x−h∈RC(H−1)

+

{
xh ∈ RC

++ : χh(xh, x−h) ≥ 0
}+ RC

++

From Point 3 of Assumption 2, Eχ is nonempty and it is open by definition.
From Points 3 and 4a of Assumption 2, the survival assumption (Point 3 of
Assumption 2 in del Mercato, 2006) is satisfied on Eχ, that is, for all e =

11 Since χh is C2 in the interior of its domain, then for each x−h ∈ RC(H−1)
++ , the

function χh(·, x−h) is differentiably quasi-concave, i.e., and for every xh ∈ RC
++,

D2
xh

χh(xh, x−h) is negative semidefinite on KerDxh
χh(xh, x−h).
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(eh)h∈H ∈ Eχ and for every h ∈ H:

∀ x−h ∈ RC(H−1)
+ , ∃ x̃h ∈ RC

++ : χh(x̃h, x−h) > 0 and x̃h � eh (1)

Remark 5 From now on, u ∈ U is kept fixed and an economy is parameterized
by (χ, e) taken in the following set.

Θ := {(χ, e) ∈ (C0−2(T, R))H × RCH
++ : χ ∈ X and e ∈ Eχ} (2)

where T := RC
++ ×RC(H−1)

+ and C0−2(T, R) is defined by (20) in Appendix B.

3 Competitive equilibrium with externalities

The definitions and the results stated in this section are direct transpositions
of the ones in del Mercato (2006).

Without loss of generality, commodity C is the numéraire good. Then, given
p\ ∈ RC−1

++ with innocuous abuse of notation we denote p := (p\, 1) ∈ RC
++.

Definition 6 (x∗, p∗\) ∈ RCH
++ × RC−1

++ is a competitive equilibrium for the
economy (χ, e) if for all h ∈ H, x∗h solves the following problem

max
xh∈RC

++

uh(xh, x
∗
−h)

subject to χh(xh, x
∗
−h) ≥ 0

p∗ · xh ≤ p∗ · eh

(3)

and x∗ satisfies market clearing conditions∑
h∈H

x∗h =
∑
h∈H

eh (4)

From now on we follow Smale’s extended approach, that is, an equilibrium is
defined as a zero of an equilibrium function explicitly built with the Kuhn-
Tucker conditions 12 . In the presence of externalities, this approach avoids
the following effect: the individual demand functions depend on the individ-
ual demand functions of the others, which depend on the individual demand
functions of the others, and so on. So, it would be impossible to define an
aggregate excess demand function which depends only on prices and endow-
ments.

12 See Smale (1974, 1981). The reader can also find a survey of this approach in
Villanacci et al. (2002).
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Proposition 7 Let (χ, e) ∈ Θ be an economy, x∗−h ∈ RC(H−1)
++ and p∗\ ∈

RC−1
++ . Problem (3) has a unique solution. x∗h ∈ RC

++ is the solution to problem
(3) if and only if there exists (λ∗h, µ

∗
h) ∈ R++ × R such that (x∗h, λ

∗
h, µ

∗
h) is the

unique solution of the following system.
(h.1) Dxh

uh(xh, x
∗
−h)− λhp + µhDxh

χh(xh, x
∗
−h) = 0

(h.2) −p∗ · (xh − eh) = 0

(h.3) min
{
µh, χh(xh, x

∗
−h)

}
= 0

(5)

Define the set of endogenous variables as Ξ := (RC
++ × R++ × R)H × RC−1

++ ,
with generic element ξ := (x, λ, µ, p\) := ((xh, λh, µh)h∈H, p\). We can now
describe extended equilibria using system (5) and market clearing conditions
(4). Observe that, from Definition 6 and Proposition 7, the market clearing
condition for good C is “redundant” (see equations (h.2)h∈H in (5)). The
equilibrium function defined below takes into account this aspect. For each
economy (χ, e) ∈ Θ, the equilibrium function Fχ,e : Ξ → Rdim Ξ

Fχ,e(ξ) :=
((

F h.1
χ,e (ξ), F h.2

χ,e (ξ), F h.3
χ,e (ξ)

)
h∈H

, FM
χ,e(ξ)

)
(6)

is defined by

F h.1
χ,e (ξ) := Dxh

uh(xh, x−h)−λhp+µhDxh
χh(xh, x−h), F h.2

χ,e (ξ) := −p · (xh−eh),

F h.3
χ,e (ξ) := min {µh, χh(xh, x−h)}, and FM

χ,e(ξ) :=
∑
h∈H

(x
\
h − e

\
h).

ξ∗ ∈ Ξ is an extended competitive equilibrium (also called with an innocuous
abuse of terminology equilibrium) of the economy (χ, e) ∈ Θ if Fχ,e(ξ

∗) = 0.

Theorem 8 (Existence and compactness). For each economy (χ, e) ∈ Θ, the
equilibrium set F−1

χ,e (0) is non-empty and compact.

4 An example and an additional assumption

To illustrate the fact that the two previous assumptions are not sufficient
to get generic regularity, we consider the following example. Consider a two
commodity-two household economy with consumption sets coinciding with the
whole commodity space R2

++ and with the following utility functions.

u1(x1, x2) := ln((1 + ε)x1
1 + x1

2) + x2
1 +

1

1 + ε
x2

2 := u2(x2, x1), with ε > 0

9



One easily checks that for each (e1, e2) ∈ (R2
++)2,

(
(e1

1 − t1, e
2
1 + t2), (e

1
2 + t1, e

2
2 − t2), p

∗1 =
1 + ε

(e1
1 + e1

2) + ε(e1
1 − t1)

)

is an equilibrium for every (t1, t2) ∈ R2 such that t1 belongs to an appropriate
neighborhood of 0 and t2 = t1p

∗1. So, no economy (e1, e2) ∈ (R2
++)2 has a

finite number of equilibria, which implies that all economies are singular.

This phenomenon can be explained by the fact that the external effect of
household 1 on household 2 is too strong with respect to the effect of household
2’s own consumption. Indeed, let us consider the marginal rate of substitution

MRS2(x1, x2) of household 2 at (x1, x2), which is equal to
(1 + ε)

(1 + ε)x1
1 + x1

2

. So

∣∣∣∣∣∂ MRS2

∂x1
1

(x1, x2)

∣∣∣∣∣ = (1 + ε)2

((1 + ε)x1
1 + x1

2)
2

>

∣∣∣∣∣∂ MRS2

∂x1
2

(x1, x2)

∣∣∣∣∣ = (1 + ε)

((1 + ε)x1
1 + x1

2)
2

Thus, we introduce the following additional assumption.

Assumption 9 Let (x, v) ∈ RCH
++×RCH such that v ∈

∏
h∈H

Ker Dxh
uh(xh, x−h)

and
∑
h∈H

vh = 0. Then,

(1) vh

∑
k∈H

D2
xkxh

uh(xh, x−h)(vk) < 0 whenever vh 6= 0, and

(2) vh

∑
k∈H

D2
xkxh

χh(xh, x−h)(vk) ≤ 0 whenever vh ∈ Ker Dxh
χh(xh, x−h).

Point 1 of Assumption 9 means that the effect of changes in the consumptions
(xk)k 6=h of households other than h on the marginal utility Dxh

uh(xh, x−h) is
“dominated” by the effect of changes in the consumption xh of household h.
Indeed, under Point 3 of Assumption 1, Point 1 of Assumption 9 states that
the absolute value of vhD

2
xh

uh(xh, x−h)(vh) is larger than the remaining term

vh

∑
k 6=h

D2
xkxh

uh(xh, x−h)(vk).

Under Points 1 and 2 of Assumption 2, Point 2 of Assumption 9 has the same
interpretation as Point 1 for the possibility functions.

We can give a more precise statement when the externalities are almost uni-
form in the sense that the orthogonal projection on Ker Dxh

uh(xh, x−h) of
D2

xkxh
uh(xh, x−h) does not depend on k for all k 6= h. Indeed, let us denote

by D2
yxh

proj ◦ uh(xh, x−h) the matrix of the composition of the projection and

10



D2
xkxh

uh(xh, x−h). Then, since
∑
k∈H

vk = 0 and vh ∈ Ker Dxh
uh((xh, x−h),

vh

∑
k∈H

D2
xkxh

uh(xh, x−h)(vk) = vh

(
D2

xhxh
uh(xh, x−h)−

D2
yxh

proj ◦ uh(xh, x−h)
)

(vh).

So, Assumption 9(1) holds true if the matrix D2
xhxh

uh(xh, x−h) − D2
yxh

proj ◦
uh(xh, x−h) is negative definite on Ker Dxh

uh(xh, x−h). Since we already know
that the matrix D2

xhxh
uh(xh, x−h) is negative definite on Ker Dxh

uh(xh, x−h)
by Point 3 of Assumption 1, we get the result if the norm of D2

yxh
uh(xh, x−h) is

small enough with respect to the norm of D2
xhxh

uh(xh, x−h), which means that
the external effect is small with respect to the direct effect of the consumption
of the household. For example, let wh be a usual utility function on RC

++

satisfying the standard differentiability assumption and uh be defined by:

uh(xh, x−h) = wh

xh + ρ
∑
k 6=h

xk

 (7)

For ρ > 0 strictly smaller than 1, Assumption 9(1) is satisfied.

In the absence of consumption constraints, we can also deduce two important
properties of the economies satisfying Assumption 9(1). Let us define the set
of supported allocations for a price p ∈ RC

++ as follows:

S(p) = {x ∈ RCH
++ | ∀h ∈ H,∃λh > 0, Dxh

uh(xh, x−h) = λhp}

We can check that the proof of the main theorem works identically if we only
put Assumption 9 on the set of consumptions in ∪p∈RC

++
S(p). For given initial

endowments e, let us define the set of equilibrium points as follows:

Eq(e) = {x ∈ RCH
++ |

∑
h∈H

xh − eh = 0,∃p ∈ RC
++, x ∈ S(p)}

We remark that without externalities, an equilibrium allocation always belongs
to the set Eq(e), which is also called contract curve. We could also call it the set
of no-trade equilibria since if the initial endowments belong to this set, then
there exists an equilibrium where all agents keep their initial endowments.
This set is the set of Pareto optimal allocations if there are no externalities.

Using the same tools as in the proof of the main theorem, we can show that
the set Eq(e) is a manifold of dimension C − 1 under Assumption 9(1). So
we recover an important property of the equilibrium set that is known for
economies without externalities.

Let us now consider the endowments e such that e ∈ S(p̄) for some p̄ ∈ RC
++.

11



Let us define the global demand δ(p, e) as follows:

δ(p, e) = {x ∈ S(p) | ∀h ∈ H, p · xh = p · eh}

Assumption 9 implies that δ(·, e) is a differentiable mapping on a neighbor-
hood of p̄. Furthermore, the demand satisfies the law of demand at p̄, that is
Dpδh(p̄, e)(∆p) · ∆p < 0 for all vectors ∆p orthogonal to p. In the standard
case without externalities, this property is deduced from the fact that the
Slutsky matrix is negative definite on the orthogonal complement of p. So,
Assumption 9 implies that the law of demand remains true in the absence of
the revenue effect.

4.1 Comparison with previous assumptions

If the external effects do not influence the supporting prices of any allo-
cation, that is Dxh

uh(xh, x−h) and Dxh
χh(xh, x−h) do not depend on x−h,

then under Assumptions 1 and 2, Assumption 9 is clearly satisfied since
D2

xkxh
uh(xh, x−h) = 0 and D2

xkxh
χh(xh, x−h) = 0 for every k 6= h. This is

the case of Smale (1974) with no externalities at all, and of Crès (1996) and
Geanakoplos and Polemarchakis (2008) where utility functions are additively
separable between individual consumption and external effects.

In Heidhues and Riedel (2007), the authors consider a more general functional
form of separable utility functions, but Assumption 9 is still valid since the
range of D2

xkxh
uh(xh, x−h) is included in the line generated by Dxh

uh(xh, x−h).
We also remark that the example of utility function given in (7) does not
satisfy the Heidhues and Riedel’s assumption since the derivative of uh does
not remain collinear with respect to the consumptions x−h.

However, the objective of these papers is not the genericity of regular economies,
since they are dealing with Pareto optimality issues or equivalence of the equi-
librium set with and without externalities.

In Kung (2008), utility functions satisfy assumptions similar to the ones given
in Assumption 1. There are no additional assumption on the utility functions
but the author needs to perturb the utility functions to obtain generic regular-
ity in the class of economy he considers, as widely discussed in Introduction.

In Bonnisseau (2003), preferences are more general than the ones considered
in this paper, since they are non transitive and non complete. In this general
setting, the author obtains the result of regularity for almost all endowments,
under a geometric assumption. To borrow this assumption in our framework
with possibility functions, it would be necessary to involve the Lagrange mul-
tipliers associated with the possibility functions. Consequently, utility and

12



possibility functions would not be considered independently. So, the economic
interpretation would be unwise.

5 Regular economies and possibility perturbations

Let us start with the definition of regular economy.

Definition 10 (χ, e) ∈ Θ is a regular economy if for each ξ∗ ∈ F−1
χ,e (0),

(1) Fχ,e is a C1 function around ξ∗ 13 .
(2) The differential mapping DξFχ,e(ξ

∗) is onto.

Our analysis is based on results from differential topology, in the spirit of the
works of Balasko, Debreu, Mas-Colell and Smale. Since nothing prevents the
equilibrium consumptions from being on the boundaries of the consumption
sets, for every h ∈ H the function F h.3

χ,e (ξ) = min {µh, χh(xh, x−h)} is not C1 if
µh = 0 and χh(xh, x−h) = 0. Therefore, first of all, it shall be shown that this
case is exceptional at each equilibrium. For that purpose we follow the strategy
laid out in Cass, Siconolfi and Villanacci (2001), where general portfolio sets
are encompassed while still permitting differentiable techniques.

But, the presence of externalities in the consumption sets leads to a possible
lack of continuity in the set of household’s supporting prices. Indeed, consider
the situation in which, at equilibrium, the consumption of household h is on
the boundary of his consumption set, i.e., χh(x

∗
h, x

∗
−h) = 0. If the associated

multiplier µ∗h is strictly positive, household h’s supporting prices belong to the
cone positively generated by Dxh

uh(x
∗
h, x

∗
−h) and Dxh

χh(x
∗
h, x

∗
−h). If, in every

neighborhood of x∗−h, households other than h can move to x−h in such a way
that x∗h is now in the interior of the consumption set, that is χh(x

∗
h, x−h) > 0,

then the positive cone of household h’s supporting prices collapses into the
positive half-line generated by Dxh

uh(x
∗
h, x−h). If the associated multiplier µ∗h

is equal to 0, household h’s supporting prices belong to the positive half-line
generated by Dxh

uh(x
∗
h, x

∗
−h). If, in every neighborhood of x∗−h, households

other than h can move to x−h in such a way that x∗h remains on the boundary
of the consumption set, i.e., χh(x

∗
h, x−h) = 0, then the positive half-line of

household h’s supporting prices might spread over the cone positively gener-
ated by Dxh

uh(x
∗
h, x−h) and Dxh

χh(x
∗
h, x−h). In both cases, previous household

h’s supporting prices may be far from the new ones.

Therefore, we consider displacements of the boundaries of the consumption
sets, that is, simple perturbations of the possibility functions. The following is

13 Fχ,e is a C1 function around ξ∗ means that there exists an open neighborhood
I(ξ∗) of ξ∗ in Ξ such that the restriction of Fχ,e to I(ξ∗) is a C1 function.
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the definition of a perturbed economy for a given χ ∈ X .

Definition 11 A perturbed economy (χ + a, e) is parameterized by possibility
levels a = (ah)h∈H ∈ RH

++ and endowments e ∈ Eχ, and it is defined by

χ + a := (χh + ah)h∈H

Λχ := RH
++ × Eχ denotes the set of perturbed economies.

It is an easy matter to check that for every (a, e) ∈ Λχ, the perturbed economy
(χ + a, e) ∈ Θ.

Finally, note that for the reasons mentioned above:

(1) if all consumption sets coincide with RC
++, i.e., for all h ∈ H, Xh(x−h) =

RC
++ for any given x−h, then perturbations of the possibility functions

are not needed. So, under Point 1 of Assumption 9, the result of regular
economies holds true for almost all initial endowments.

(2) if utility and possibility functions do not depend on the environment, as in
Smale (1974), then, once again, perturbations of the possibility functions
are not needed. Indeed, the set of household h’s supporting prices does
not depend on the consumptions of the others.

6 Main results

We now state the main results of the paper: the regularity for almost all
perturbed economies and the generic regularity in the space of endowments
and possibility functions.

Theorem 12 (Regularity for almost all perturbed economies). Let χ ∈ X .
The set Λr

χ of (a, e) ∈ Λχ such that (χ + a, e) is a regular economy is an open
and full measure subset of Λχ.

Now, endow the set C0−2(T, R) with the topology of the C0−2 uniform con-
vergence on compacta (see Definition 21 in Appendix B), the set RCH

++ with
the topology induced by the usual topology on RCH , and the set Θ with the
topology induced by the product topology on (C0−2(T, R))H × RCH

++ . As a
consequence of Theorem 12 we obtain the following corollary.

Corollary 13 (Generic regularity). The set R of (χ, e) ∈ Θ such that (χ, e)
is a regular economy is an open and dense subset of Θ.

From Corollary 13, Theorem 8, a consequence of the Regular Value Theorem,
and the Implicit Function Theorem (see Corollary 25 and Theorem 28 in
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Appendix B), we obtain the following proposition which provides the main
properties of regular economies.

Proposition 14 (Properties of regular economies). For each (χ, e) ∈ R,

(1) the equilibrium set associated with the economy (χ, e) is a non-empty
finite set, i.e.,

∃ r ∈ N \ {0} : F−1
χ,e (0) = {ξ1, ..., ξr}

(2) there exist an open neighborhood I of (χ, e) in Θ, and for each i = 1, . . . , r
an open neighborhood Ni of ξi in Ξ and a continuous function gi : I → Ni

such that

(a) Nj ∩Nk = ∅ if j 6= k,
(b) gi(χ, e) = ξi,
(c) for all (χ′, e′) ∈ I, F−1

χ′,e′(0) = {gi(χ
′, e′) : i = 1, . . . , r},

(d) the economies (χ′, e′) ∈ I are regular.

7 Proofs

The proof of Theorem 12 is divided into two steps: first, we prove that the
equilibrium function is C1 around each equilibrium, for almost all perturbed
economies. Second, we show that almost all perturbed economies are regular.

Corollary 13 is then deduced from Theorem 12 by using the particular form
of perturbations. The proofs of the lemmas are gathered in Appendix A.

7.1 The equilibrium function is almost everywhere C1

Take for fixed χ ∈ X and consider the set of perturbed economies Λχ given in
Definition 11. We prove the following statement.

Proposition 15 The set Λ1
χ of (a, e) ∈ Λχ such that for each ξ∗ ∈ F−1

χ+a,e(0),
Fχ+a,e is a C1 function around ξ∗ is an open and full measure subset of Λχ.

From Assumptions 1 and 2, the equilibrium function Fχ+a,e is differentiable
everywhere but not at any point ξ such that µh = χh(xh, x−h) + ah = 0. To
prove that this so-called border line case is exceptional, we consider a finite
family of auxiliary functions. We then show that a border line case is a pre-
image of 0 by one of these functions and that the set of perturbed economies
for which the pre-image of 0 is non-empty is exceptional.
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We consider the equilibrium function F̃ : Ξ× Λχ → Rdim Ξ defined by

F̃ (ξ, a, e) := Fχ+a,e(ξ) (8)

We also consider the mapping Φ which is the restriction to F̃−1(0) of the
projection of Ξ× Λχ onto Λχ, that is:

Φ : (ξ, a, e) ∈ F̃−1(0) → Φ(ξ, a, e) := (a, e) ∈ Λχ

We state a fundamental property of Φ. A similar result is proved in del Mercato
(2006).

Lemma 16 The projection Φ : F̃−1(0) → Λχ is a proper function.

For all h ∈ H, we consider the set

B̃h :=
{
(ξ, a, e) ∈ F̃−1(0) : µh = χh(xh, x−h) + ah = 0

}
and B̃ :=

⋃
h∈H

B̃h

We remark that

Λ1
χ = Λχ \ Φ(B̃) (9)

Then Λ1
χ is open since B̃ is clearly closed in F̃−1(0) and Φ(B̃) is then closed

by the properness of Φ.

We now show that Φ(B̃) is of measure zero in Λχ. For this, we consider the
following finite set

P :=

J = {J1,J2,J3}
Ji ⊆ H, ∀ i = 1, 2, 3; J1 ∪ J2 ∪ J3 = H;

Ji ∩ Jj = ∅, ∀ i, j = 1, 2, 3, i 6= j.


For all J ∈ P, |Ji| denotes the number of elements of Ji and

ΞJ := R(C+1)H
++ × (R|J1|+|J3| × R|J2|

++ )× R(C−1)
++ (10)

The function F̃J : ΞJ × Λχ → Rdim ΞJ is defined by

F̃J (ξ, a, e) := ((F̃ h.1(ξ, a, e), F̃ h.2(ξ, a, e), F̃ h.3
J (ξ, a, e))h∈H, F̃M(ξ, a, e))

where F̃J differs from F̃ defined in (8), for the domain and for the component
F̃ h.3
J defined by

F̃ h.3
J (ξ, a, e) :=

µh if h ∈ J1 ∪ J3,

χh(xh, x−h) + ah if h ∈ J2

(11)
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When J3 is non-empty, for each h̄ ∈ J3, we define the function F̃J ,h̄ : ΞJ ×
Λχ → Rdim ΞJ+1 where

F̃J ,h̄(ξ, a, e) := (F̃J (ξ, a, e), F̃ h̄.4
J (ξ, a, e)) ∈ Rdim ΞJ+1

where F̃ h̄.4
J (ξ, a, e) := χh̄(xh̄, x−h̄) + ah̄

(12)

Note that F̃J and F̃J ,h̄ are C1 functions on their domains. Furthermore, for
all J ∈ P, dim ΞJ = dim Ξ. The key lemma of this step is the following one.

Lemma 17 For every J ∈ P such that J3 6= ∅ and for each h̄ ∈ J3, 0 is a
regular value for F̃J ,h̄.

Since the dimension dim ΞJ + 1 of the target space is strictly larger than
the dimension of ΞJ , the Regular Value Theorem and a consequence of Sard’s
Theorem (see Theorems 24 and 26 in Appendix B) imply that for every J ∈ P
such that J3 6= ∅ there exists a full measure subset ΩJ ,h̄ of Λχ such that for
each (a, e) ∈ ΩJ ,h̄,

{ξ ∈ ΞJ : F̃J ,h̄(ξ, a, e) = 0} = ∅

Now, let us consider an element (a, e) ∈ Φ(B̃). Then, there exist ξ ∈ Ξ such
that F̃ (ξ, a, e) = 0 and h̄ ∈ H such that µh̄ = χh̄(xh̄, x−h̄)+ah̄ = 0. Let J ∈ P
defined by

J1 := {h ∈ H : µh = 0 and χh(xh, x−h) + ah > 0},
J2 := {h ∈ H : µh > 0 and χh(xh, x−h) + ah = 0},
J3 := {h ∈ H : µh = χh(xh, x−h) + ah = 0}.

One easily checks that F̃J ,h̄(ξ, a, e) = 0. So, (a, e) /∈ ΩJ ,h̄. Hence, we have

proven that Φ(B̃) is included in the finite union of the complements of ΩJ ,h̄

over all J ∈ P such that J3 6= ∅ and h̄ ∈ J3. Since each of these sets is of
measure zero, so too does Φ(B̃).

7.2 Almost all perturbed economies are regular

Take for fixed χ ∈ X . Observe that for given (a, e) ∈ Λχ, by Definition 10, the
economy (χ + a, e) is regular if (a, e) belongs to the open and full measure set
Λ1

χ given by (9) in the previous subsection, and

∀ ξ∗ ∈ F−1
χ+a,e(0), rank DξFχ+a,e(ξ

∗) = dim Ξ

From now on, with innocuous abuse of notation:

• the domain of F̃ defined in (8) will be Ξ× Λ1
χ instead of Ξ× Λχ,
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• Φ denotes the restriction to F̃−1(0) of the projection of Ξ× Λ1
χ onto Λ1

χ.

Importantly, one easily checks that from (9), now DξF̃ (ξ, a, e) = DξFχ+a,e(ξ)
for every (ξ, a, e) ∈ F̃−1(0). Then, from Assumptions 1 and 2, DξF̃ is now a
continuous function on F̃−1(0).

Let us consider the following set

C̃ :=
{
(ξ, a, e) ∈ F̃−1(0) : rank DξF̃ (ξ, a, e) < dim Ξ

}
We remark that

Λr
χ = Λ1

χ \ Φ(C̃)

Then, we have to prove that Φ(C̃) is closed in Λ1
χ and Φ(C̃) is of measure zero.

Step 1. An element (ξ, a, e) of C̃ is characterized by the fact that the determi-
nant of all the square submatrices of DξF̃ (ξ, a, e) of dimension dim Ξ is equal
to zero. C̃ is closed in F̃−1(0) since the determinant is a continuous function
and DξF̃ is continuous on F̃−1(0). Then, Φ(C̃) is closed since Φ is proper 14 .

Step 2. We now show that Φ(C̃) is of measure zero in Λ1
χ. The key lemma is

the following one.

Lemma 18 For every J ∈ P such that J3 = ∅, 0 is a regular value for F̃J .

Then, from a consequence of Sard’s Theorem (see Theorem 26 in Appendix
B), for every J ∈ P such that J3 = ∅, there exists a full measure subset ΩJ
of Λ1

χ such that for each (a, e) ∈ ΩJ and for each ξ∗ such that F̃J (ξ∗, a, e) = 0,

rank DξF̃J (ξ∗, a, e) = dim ΞJ .

Now, let us consider (a, e) ∈ Φ(C̃). Then, there exists ξ ∈ Ξ such that
F̃ (ξ, a, e) = 0 and rank DξF̃ (ξ, a, e) < dim Ξ. Let us consider the partition
J associated to (ξ, a, e) as in the previous subsection. Since (a, e) belongs to
Λ1

χ, then J3 = ∅. Hence, one easily checks that F̃J(ξ, a, e) = F̃ (ξ, a, e) on a
neighborhood of (ξ, a, e). So, the partial differential with respect to ξ is the
same and one concludes that (a, e) /∈ ΩJ .

This prove that Φ(C̃) is included in the finite union of the complementary of
ΩJ over all J ∈ P such that J3 = ∅. Since these sets have zero measure, so
too does Φ(C̃).

14 The proof of the properness of Φ can be easily obtained using the same steps as
in the proof of Lemma 16.
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7.3 Generic regularity result in the space of economies

In this subsection, we prove Corollary 13. To show openess and density re-
sults, we follow a similar strategy to the one presented in Citanna, Kajii and
Villanacci (1998) 15 .

Let R be the set of economies (χ, e) ∈ Θ such that (χ, e) is a regular economy.
The density ofR is a direct consequence of Theorem 12. Indeed, let (χ, e) ∈ Θ.
Using Theorem 12, since an open and full measure subset is dense, one can
find a sequence (aν , eν)ν∈N ⊆ Λχ converging to (0, e) such that (χ + aν , eν)
is a regular economy for every ν ∈ N. From Remark 23 in Appendix B, the
sequence (χ + aν , eν)ν∈N converges to (χ, e), hence R is dense in Θ.

We now show that R is open. We consider the global equilibrium function
F : Ξ×Θ → Rdim Ξ defined by

F (ξ, χ, e) := Fχ,e(ξ) (13)

By Assumptions 1 and 2 and Remark 22 in Appendix B, F is continuous. Let
us also define the restriction Π to F−1(0) of the projection of Ξ×Θ onto Θ,

Π : (ξ, χ, e) ∈ F−1(0) → Π(ξ, χ, e) := (χ, e) ∈ Θ

The important property of Π is given in the following lemma.

Lemma 19 The projection Π : F−1(0) → Θ is a proper function.

For every h ∈ H, we define the following set

Bh := {(ξ, a, e) ∈ F−1(0) : µh = χh(xh, x−h) = 0} and B :=
⋃

h∈H
Bh

Let
Θ1 := Θ \ Π(B) (14)

Θ1 is the set of (χ, e) ∈ Θ such that for every ξ∗ ∈ F−1
χ,e (0), Fχ,e is a C1 function

around ξ∗. Definition 10 implies that R ⊆ Θ1.

Θ1 is open in Θ. Indeed, B is closed in F−1(0) as a consequence of Remark 22
(see Appendix B), and Π(B) is closed from the properness of Π.

Now, we prove that R is open in Θ1. We denote again by F the mapping now
defined on Ξ × Θ1 instead of Ξ × Θ and by Π the restriction to F−1(0) of
the projection from Ξ×Θ1 onto Θ1. Importantly, one easily checks that from
(14), now DξF (ξ, χ, e) = DξFχ,e(ξ) for every (ξ, a, e) ∈ F−1(0). Then, from

15 Observe that in Citanna, Kajii and Villanacci (1998), openess and density results
mainly concern constrained suboptimality issues.

19



Assumptions 1 and 2 and Remark 22 in Appendix B, DξF is now a continuous
function on F−1(0).

Let us consider the set

C := {(ξ, χ, e) ∈ F−1(0) : rank DξF (ξ, χ, e) < dim Ξ}

Definition 10 implies that

R = Θ1 \ Π(C)

C is closed due to the continuity of the determinant function and of DξF ,
Π(C) is closed due to the properness of Π. Consequently, R is open in Θ1.

Appendix A

We start by a selection property of the consumption sets, which will play a
fundamental role in the properness result used to show openess properties in
the space of economies Θ (see the proof of Lemma 19). Next, we show all the
lemmas stated in Section 7.

Proposition 20 Let h ∈ H, Θh is the projection of Θ onto C0−2(T, R)×RC
++

equipped with the metric induced by the one on C0−2(T, R)× RC 16 . For each

h ∈ H, there is a continuous function x̂h : RC(H−1)
+ ×Θh → RC

++ such that for

each (z, χh, eh) ∈ RC(H−1)
+ ×Θh, χh(x̂h(z, χh, eh), z) > 0 and x̂h(z, χh, eh) � eh.

Proof of Proposition 20. First, observe that RC(H−1)
+ × Θh is a metric

space. Second, the correspondence φh : RC(H−1)
+ × Θh ⇒ RC defined by

φh(z, χh, eh) :=
{
xh ∈ RC

++ : χh(xh, z) > 0 and xh � eh

}
is non-empty con-

vex valued by (1) and Definition 11, and by Point 2 of Assumption 2. We now
prove that φh has open fiber, that is, for all xh ∈ RC

+, the following set

φ−1
h (xh) :=

{
(z, χh, eh) ∈ RC(H−1)

+ ×Θh : χh(xh, z) > 0 and xh � eh

}
is open in RC(H−1)

+ ×Θh. This follows from Remark 22 in Appendix B, which
shows that the application (χh, xh, z) → χh(xh, z) is continuous on C0−2(T, R)×
T . Finally, we get the desired result since the correspondence φh satisfies the
assumptions of Michael’s Selection Theorem (see Florenzano, 2003).

Proof of Lemma 16. The proof is a direct consequence of Lemma 19 since
the mapping (χ, a) → χ+a is continuous on (C0−2(T, R))H×RH (see Remark
23 in Appendix B).

16 The metric on C0−2(T, R)×RC is given by summing the metric d̃ on C0−2(T, R)
(see Definition 21 in Appendix B) and the Euclidean metric on RC .
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Proof of Lemma 17. The function F̃J ,h̄ is defined in (12). We have to show

that for each (ξ∗, a∗, e∗) ∈ F̃−1
J ,h̄

(0), the Jacobian matrix Dξ,a,eF̃J ,h̄(ξ
∗, a∗, e∗)

has full row rank.

Let ∆ := ((∆xh, ∆λh, ∆µh)h∈H, ∆p\, ∆w) ∈ R(C+2)H ×RC−1×R. It is enough
to show that ∆Dξ,a,eF̃J ,h̄(ξ

∗, a∗, e∗) = 0 implies ∆ = 0. To prove it, we consider
the computation of the partial Jacobian matrix with respect to the following
variables

((xh, λh, eh)h∈H, (ah′)h′∈J2 , ah̄, p
\)

The partial system ∆Dξ,a,eF̃J ,h̄(ξ
∗, a∗, e∗) = 0 is written in detail below.



∑
h∈H

∆xhD
2
xkxh

uh(x
∗
h, x

∗
−h) +

∑
h′∈J2

µ∗h′∆xh′D
2
xkxh′

χh′(x
∗
h′ , x

∗
−h′)+∑

h′∈J2

∆µh′Dxk
χh′(x

∗
h′ , x

∗
−h′)−∆λkp

∗ + ∆p\ [IC−1|0] +

∆wDxk
χh̄(x

∗
h̄, x

∗
−h̄) = 0, ∀ k ∈ H

−∆xh · p∗ = 0, ∀ h ∈ H

∆xh ·Dxh
χh(x

∗
h, x

∗
−h) + ∆µh = 0, ∀ h ∈ J1 ∪ J3

∆xh′ ·Dxh′
χh′(x

∗
h′ , x

∗
−h′) = 0, ∀ h′ ∈ J2

∆λhp
∗ −∆p\ [IC−1|0] = 0, ∀ h ∈ H

∆µh′ = 0, ∀ h′ ∈ J2

∆w = 0∑
h∈H

λ∗h∆x
\
h +

∑
h∈H

∆λh(x
∗\
h − e

∗\
h ) = 0

(15)

Since p∗C = 1, we get ∆λh = 0 for each h ∈ H and ∆p\ = 0. Then, the
relevant equations of the above system become



∀ k ∈ H,∑
h∈H

∆xhD
2
xkxh

uh(x
∗
h, x

∗
−h) +

∑
h′∈J2

µ∗h′∆xh′D
2
xkxh′

χh′(x
∗
h′ , x

∗
−h′) = 0

−∆xh · p∗ = 0, ∀ h ∈ H

∆xh ·Dxh
χh(x

∗
h, x

∗
−h) + ∆µh = 0, ∀ h ∈ J1 ∪ J3

∆xh′ ·Dxh′
χh′(x

∗
h′ , x

∗
−h′) = 0, ∀ h′ ∈ J2∑

h∈H
λ∗h∆xh = 0

(16)
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Observe that from F̃ h.1
J (ξ∗, a∗, e∗) = 0 and the above system, we get

(∆xh)h∈H ∈
∏
h∈H

Ker Dxh
uh(x

∗
h, x

∗
−h)

Indeed, Dxh
uh(x

∗
h, x

∗
−h) · ∆xh = λ∗hp

∗ · ∆xh = 0 for each h ∈ J1 ∪ J3, and
Dxh′

uh′(x
∗
h′ , x

∗
−h′) · ∆xh′ = λ∗h′p

∗ · ∆xh′ − µ∗h′Dxh′
χh′(x

∗
h′ , x

∗
−h′ , e

∗
h′) · ∆xh′ = 0

for each h′ ∈ J2. Now, for each h ∈ H define

vh := λ∗h∆xh (17)

From equations in (16) and the above conditions, it follows that the vector
(x∗h, vh)h∈H ∈ RCH

++ × RCH satisfies the following conditions∑
h∈H

vh = 0 and (vh)h∈H ∈
∏
h∈H

Ker Dxh
uh(x

∗
h, x

∗
−h)

and
vh′ ∈ Ker Dxh′

χh′(x
∗
h′ , x

∗
−h′) for each h′ ∈ J2 (18)

Now, observe that the first equation of system (16) implies that for each k ∈ H∑
h∈H

∆xhD
2
xkxh

uh(x
∗
h, x

∗
−h)(vk) = −

∑
h′∈J2

µ∗h′∆xh′D
2
xkxh′

χh′(x
∗
h′ , x

∗
−h′)(vk)

Since λ∗h 6= 0 for all h ∈ H, then it follows by (17) that for each k ∈ H
∑
h∈H

vh

λ∗h
D2

xkxh
uh(x

∗
h, x

∗
−h)(vk) = −

∑
h′∈H2

µ∗h′
vh′

λ∗h′
D2

xkxh′
χh′(x

∗
h′ , x

∗
−h′)(vk)

Summing up k ∈ H, we get

∑
h∈H

vh

λ∗h

∑
k∈H

D2
xkxh

uh(x
∗
h, x

∗
−h)(vk) = −

∑
h′∈J2

µ∗h′

λ∗h′
vh′
∑
k∈H

D2
xkxh′

χh′(x
∗
h′ , x

∗
−h′)(vk)

Since λ∗h′ > 0 and µ∗h′ > 0 for each h′ ∈ J2, then from the above condition,
(18) and Point 2 of Assumption 9 we have that

∑
h∈H

1

λ∗h
vh

∑
k∈H

D2
xkxh

uh(x
∗
h, x

∗
−h)(vk) ≥ 0

Therefore, since λ∗h > 0 for all h ∈ H, Point 1 of Assumption 9 implies that
vh = 0 for each h ∈ H. By (17), we get ∆xh = 0 for all h ∈ H. Then, by
system (16), we have that ∆µh = 0 for each h ∈ J1 ∪ J3. Thus, ∆ = 0.

Proof of Lemma 18. The function F̃J is defined in (8). We have to show
that for each (ξ∗, a∗, e∗) ∈ F̃−1

J (0), the Jacobian matrix Dξ,a,eF̃J (ξ∗, a∗, e∗) has
full row rank.
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Let ∆ := ((∆xh, ∆λh, ∆µh)h∈H, ∆p\) ∈ R(C+2)H ×RC−1. It is enough to show
that ∆Dξ,a,eF̃J (ξ∗, a∗, e∗) = 0 implies ∆ = 0. To prove it, we consider the
computation of the partial Jacobian matrix with respect to the following vari-
ables

((xh, λh, eh)h∈H, (ah′)h′∈J2 , p
\)

and the corresponding partial system. Then, the proof follows the same steps
as in the proof of Lemma 17. Indeed, note that there is a slight difference
between this partial system and the one given in (15): now J3 = ∅. Then, we
have one variable less, i.e., ∆w, and one equation less, i.e., ∆w = 0.

Proof of Lemma 19. We show that any sequence (ξν , χν , eν)ν∈N ⊆ F−1(0), up
to a subsequence, converges to an element of F−1(0), knowing that (χν , eν)ν∈N ⊆
Θ converges to (χ∗, e∗) ∈ Θ.

We recall that ξν = (xν , λν , µν , pν\).

• (xν)v∈N, up to a subsequence, converges to x∗ ∈ RCH
++ .

(xν)v∈N ⊆ RCH
++ . From FM(ξν , χν , eν) = 0 and F k.2(ξν , χν , eν) = 0, xν

k =∑
h∈H

eν
h−

∑
h 6=k

xν
h ≤

∑
h∈H

eν
h for each k ∈ H. Then, (xν)ν∈N is bounded from above by

an element of RCH
++ , since for each h ∈ H, (eν

h)ν∈N converges to e∗h ∈ Eχ∗
h
⊆ RC

++.
Then, (xν)ν∈N, up to a subsequence, converges to x∗ ≥ 0.

Now, we prove that x∗h � 0 for each h ∈ H.

By F h.1(ξν , χν , eν) = 0, F h.2(ξν , χν , eν) = 0 and F h.3(ξν , χν , eν) = 0, it fol-
lows that uh(x

ν
h, x

ν
−h) ≥ uh(x̂h(x

ν
−h, χ

ν
h, e

ν
h), x

ν
−h) for every ν ∈ N, where x̂h

is the continuous selection function given by Proposition 20. Define 1 :=
(1, ..., 1) ∈ RC

++, from Point 2 of Assumption 1 we have that for each ε > 0,
uh(x

ν
h + ε1, xν

−h) ≥ uh(x̂h(x
ν
−h, χ

v
h, e

ν), xν
−h) for every ν ∈ N. So taking the

limit on ν, since (χν
h, e

ν
h)ν∈N converges to (χ∗h, e

∗
h) ∈ Θh, and uh and x̂h are

continuous functions (see Point 1 of Assumption 1 and Proposition 20), then
uh(x

∗
h + ε1, x∗−h) ≥ uh(x̂h(x

∗
−h, χ

∗
h, e

∗
h), x

∗
−h) := uh for each ε > 0. By Point

4 of Assumption 1, x∗h ∈ RC
++ since x∗h belongs to the set clRC{xh ∈ RC

++ :
uh(xh, x

∗
−h) ≥ uh}.

• (λν , µν)v∈N, up to a subsequence, converges to (λ∗, µ∗) ∈ RH
+ × RH

+ .

It is enough to show that (λν
hp

ν , µν
h)ν∈N is bounded for each h ∈ H. Then,

(λν
hp

ν , µν
h)ν∈N ⊆ RC

++ × R+, up to a subsequence, converges to (π∗h, µ
∗
h) ∈

RC
+ × R+, and λ∗h = π∗Ch since pvC = 1 for each ν ∈ N.

Suppose otherwise that there is a subsequence of (λν
hp

ν , µν
h)ν∈N (that with-

out loss of generality we continue to denote with (λν
hp

ν , µν
h)v∈N) such that
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‖(λν
hp

ν , µν
h)‖ → +∞. Consider the sequence

(
(λν

hpν ,µν
h)

‖(λν
h
pν ,µν

h
)‖

)
ν∈N

in the sphere, a

compact set. Then, up to a subsequence
(

(λν
hpν ,µν

h)

‖(λν
h
pν ,µν

h
)‖

)
→ (πh, µh) 6= 0. πh ≥ 0

and µh ≥ 0, since λν
hp

ν � 0 and µν
h ≥ 0 for each ν ∈ N. By F h.1(ξν , χν , eν) = 0

for each ν ∈ N, we get λν
hp

ν = Dxh
uh(x

ν
h, x

ν
−h)+µν

hDxh
χν

h(x
ν
h, x

ν
−h). Now, divide

both sides by ‖(λν
hp

ν , µν
h)‖ and take the limits. From Point 1 of Assumption 1

and Remark 22, we get

πh = µhDxh
χ∗h(x

∗
h, x

∗
−h)

Then, µh > 0. Otherwise we get (πh, µh) = 0. From Point 4 of Assumption 2,
we have that Dxh

χ∗h(x
∗
h, x

∗
−h) 6= 0. Then, πh 6= 0. From Kuhn-Tucker necessary

and sufficient conditions, we have that

πh · x∗h = min
xh∈RC

++

πh · xh

subject to χ∗h(xh, x
∗
−h) ≥ 0

(19)

By F h.2(ξν , χν , eν) = 0, we get λν
hp

ν ·xν
h = λν

hp
ν ·eν

h for each ν ∈ N. Now, divide
both sides by ‖(λν

hp
ν , µν

h)‖ and take the limits. We get πh · x∗h = πh · e∗h. By
(1), there is x̃h ∈ RC

++ such that χ∗h(x̃h, x
∗
−h) > 0 and πh · x̃h < πh · e∗h = πh ·x∗h

which contradict (19).

• (pν\)ν∈N, up to a subsequence, converges to p∗\ ∈ RC−1
++ .

Taking the limit, from Remark 22, Points 1 and 2 of Assumption 1, and Points
1 and 5 of Assumption 2, we get λ∗k = DxC

k
uk(x

∗
k, x

∗
−k) + µ∗kDxC

k
χ∗k(x

∗
k, x

∗
−k) >

0 for some k = h(C) ∈ H. From the previous step, (λν
kp

v\)ν∈N admits a

subsequence converging to π
∗\
k ≥ 0. Then, (pv\)ν∈N, up to a subsequence,

converges to p∗\ ≥ 0, since λ∗k > 0. Now, suppose that there is c 6= C, such
that p∗c = 0. Taking the limit, from Remark 22, Points 1 and 2 of Assumption
1, and Points 1 and 5 of Assumption 2, for some k′ = h(c) ∈ H we get 0 <
Dxc

k′
uk′(x

∗
k′ , x

∗
−k′)+µ∗k′Dxc

k′
χ∗k′(x

∗
k′ , x

∗
−k′) = λ∗k′p

∗c = 0, which is a contradiction.

• λ∗ ∈ RH
++.

Otherwise, suppose that λ∗h = 0 for some h ∈ H. By F h.1(ξν , χν , eν) = 0,
we get λν

hp
ν = Dxh

uh(x
ν
h, x

ν
−h) + µν

hDxh
χν

h(x
ν
h, x

ν
−h) for each ν ∈ N. Taking

the limit, from Remark 22 and Point 1 of Assumption 1, we get 0 = λ∗hp
∗ =

Dxh
uh(x

∗
h, x

∗
−h) + µ∗hDxh

χ∗h(x
∗
h, x

∗
−h). By Point 2 of Assumption 1 and Point 4

of Assumption 2, we get 0 < Dxc
h
uh(x

∗
h, x

∗
−h) + µ∗hDxc

h
χ∗h(x

∗
h, x

∗
−h) = λ∗hp

∗c = 0
for some good c, which is a contradiction.

Appendix B
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Topology of the C0−2 uniform convergence on compacta

Let T := RC
++ × RC(H−1)

+ . We are interested on continuous functions defined
on T which are C2 in the interior of T (see Point 1 of Assumption 2). Then,
first, define the following set

C0−2(T, R) := {f ∈ C0(T, R) : f|Int T ∈ C2(Int T, R)} (20)

where Int T denotes the interior of T and f|Int T denotes the restriction of f
to Int T . The topology on C0−2(T, R) of the C0−2 uniform convergence on
compacta is a “combination” of the topology on C0(T, R) of the C0 uniform
convergence on compacta and of the topology on C2(Int T, R) of the C2 uni-
form convergence on compacta.

Definition 21 The topology on C0−2(T, R) of the C0−2 uniform convergence
on compacta is the topology generated by the metric d̃ defined by

∀ (f, g) ∈ C0−2(T, R), d̃(f, g) := d0(f, g) + d2(f|Int T , g|Int T )

where d2 is the metric d given in Allen (1981), p. 281, and d0 is defined in
an analogous way: let {Tn} be a sequence of compact subsets of T such that⋃∞

n=1 Tn = T , d0(f, g) :=
∑∞

n=1
1
2n min{‖f −g‖0,Tn , 1} for f and g in C0(T, R),

where ‖ · ‖0,Tn is defined by ‖w‖0,Tn := sup
x∈Tn

|w(x)| for w ∈ C0(Tn, R).

Remark 22 Observe that, by definition fn
d̃→ f̄ in C0−2(T, R) if and only if

fn
d0→ f̄ in C0(T, R) and fn|Int T

d2→ f̄|Int T in C2(Int T, R)

That is, fn
d̃→ f̄ in C0−2(T, R) if and only if (fn)n∈N converges uniformly

to f̄ on any compact set included in T , and (fn|Int T )n∈N, (Dfn|Int T )n∈N and
(D2fn|Int T )n∈N converge uniformly to f̄|Int T , Df̄|Int T and D2f̄|Int T respectively,
on any compact set included in Int T .

Consequentially, the mapping (f, x) → f(x) is continuous on C0−2(T, R)× T
if and only if

(1) the mapping (f, x) → f(x) is continuous on C0(T, R)× T , and
(2) the mappings (f|Int T , x) → f|Int T (x), (Df|Int T , x) → Df|Int T (x), and

(D2f|Int T , x) → D2f|Int T (x) are continuous on C2(Int T, R)× Int T .

Since (1) holds true by definition of topology of the C0 uniform convergence
on compacta and (2) holds true by definition of topology of the C2 uniform
convergence on compacta, then the mapping (f, x) → f(x) is continuous on
C0−2(T, R)× T .
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Remark 23 One easily checks that the mapping (f, a) → f + a is continuous
on C0−2(T, R)× R.

Finally, we remark that the topology of the C0 uniform convergence on any
compact set included in T is uniquely used to show Proposition 20 which plays
a fundamental role in the proof of Lemma 19.

Regular values and transversality

The theory of general economic equilibrium from a differentiable prospective
is based on results from differential topology. Following are the ones used in
our analysis. These results, as well as generalizations on these issues, can be
found for instance in Guillemin and Pollack (1974), Hirsch (1976), Mas-Colell
(1985) and Villanacci et al. (2002).

Theorem 24 (Regular Value Theorem) Let M , N be Cr manifolds of di-
mensions m and n, respectively. Let f : M → N be a Cr function. Assume
r > max{m− n, 0}. If y ∈ N is a regular value for f , then

(1) if m < n, f−1(y) = ∅,
(2) if m ≥ n, either f−1(y) = ∅, or f−1(y) is an (m − n)-dimensional sub-

manifold of M .

Corollary 25 Let M , N be Cr manifolds of the same dimension. Let f :
M → N be a Cr function. Assume r ≥ 1. Let y ∈ N a regular value for f
such that f−1(y) is non-empty and compact. Then, f−1(y) is a finite subset of
M .

The following results is a consequence of Sard’s Theorem for manifolds.

Theorem 26 (Transversality Theorem) Let M , Ω and N be Cr manifolds of
dimensions m, p and n, respectively. Let f : M × Ω → N be a Cr function.
Assume r > max{m−n, 0}. If y ∈ N is a regular value for f , then there exists
a full measure subset Ω∗ of Ω such that for any ω ∈ Ω∗, y ∈ N is a regular
value for fω, where

fω : ξ ∈ M → fω(ξ) := f(ξ, ω) ∈ N

Definition 27 Let (X, d) and (Y, d′) be two metric spaces. A function π :
X → Y is proper if it is continuous and one among the following conditions
holds true.

(1) π is closed and π−1(y) is compact for each y ∈ Y ,
(2) if K is a compact subset of Y , then π−1(K) is a compact subset of X,
(3) if (xn)n∈N is a sequence in X such that (π(xn))n∈N converges in Y , then

(xn)n∈N has a converging subsequence in X.
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The above conditions are equivalent.

Theorem 28 (Implicit Function Theorem) Let M , N be Cr manifolds of the
same dimension. Assume r ≥ 1. Let (X, τ) be a topological space, and f :
M × X → N be a continuous function such that Dξf(ξ, x) exists and it is
continuous on M ×X. If f(ξ, x) = 0 and Dξf(ξ, x) is onto, then there exist
an open neighborhood I of x in X, an open neighborhood U of ξ in M and a
continuous function g : I → U such that g(x) = ξ and f(ξ′, x′) = 0 holds for
(ξ′, x′) ∈ U × I if and only if ξ′ = g(x′).
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