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Abstract 
 
Given their importance in determining the outcome of many economic interactions, different models have been 
proposed to determine how social networks form and which structures are stable. In Bala and Goyal (2000), the 
one-sided link formation model has been considered, which is based on a noncooperative game of network 
formation. They found out that the empty networks, the wheel in the one-way flow of benefits case and the center 
sponsored star in the two-way flow case play a fundamental role, since they are strict Nash equilibria of the 
corresponding games for certain classes of payoff functions. In this paper, firstly we prove that all these network 
structures are in weakly dominated strategies whenever there are no strict Nash equilibria. Then, we exhibit a 
more accurate selection device between these network architectures by considering ‘altruistic behavior’ 
refinements. Such refinements, that we investigate here in the framework of finite strategy sets games, have been 
introduced by the authors in previous papers. 
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1 Introduction

The role of social-relationship network structures has been studied in many economic sit-
uations and their importance in determining the outcome of many economic interactions
has been documented also in empirical work. Therefore, different models have been pro-
posed to determine how these networks form and which structures are stable. The basic
assumption behind models of network formation is that establishing and maintaining con-
nections with other individuals is costly. As a consequence, individuals limit the number
and the intensity of their connections and then network structures develop from agents’
comparison of disutility (costs) versus benefits of connection.

In previous papers, the two-sided link formation, i.e. a situation in which a link between
two people requires that both of them make some investments, has been investigated and
the notion of pairwise stability has been considered and analyzed in a cooperative theoretic
game framework (see Jackson and Wolinsky (1986) and Dutta and Mutuswami (1987)).

Successively, in Bala and Goyal (2000), the authors studied the one-sided link for-
mation, analyzed via a notion of individual stability based on a simple game of network
formation where each player simultaneously selects a list of the other players with whom
he wishes to be linked. Individual stability then corresponds to a (pure strategy) Nash
equilibrium of this game. In their paper, both the one-way and two-way flow of benefits
(which correspond to directed and not directed graphs) are considered, and agents are
supposed to be symmetric and maximizing real valued payoff functions depending on two
variables: the number of people (directly or indirectly) accessed and the number of links
the agent forms himself. Moreover payoffs are assumed to be strictly increasing in the first
variable and strictly decreasing in the second one.
The first important result in Bala and Goyal is that a Nash network is either empty or
connected, i.e., there is a path between any couple of players. However, it turns out that
there is a great number of Nash network so, as stated in Bala and Goyal, “multiplicity of
equilibria motivates an examination of a stronger equilibrium concept”. They focus on the
concept of strict Nash equilibrium which is characterized by the uniqueness of the best
reply correspondences in equilibrium. They find out that in the one-way flow model the
unique not empty strict Nash network is the wheel, while, in the two-way flow model the
unique not empty strict Nash network is the center-sponsored star.
However, in the Theory of Refinements of Nash Equilibria, it is well known that the strict
Nash equilibrium concept might be too restrictive. Indeed, in the network formation mod-
els, strict Nash exist only for a certain class of payoff functions. In this paper we extend
the analysis of the equilibria in the cases when strict Nash equilibria do not necessarily
exist. A first approach is to consider the Admissibility Property (i.e. each equilibrium
strategy is weakly undominated) because it is a necessary condition for many other classi-
cal refinement concepts based on stability with respect to perturbations: perfect equilibria
(Selten (1975)), proper equilibria (Myerson (1978)), essential equilibria (Wu and Jiang
(1962)), regular equilibria (Harsanyi (1973) and Ritzberger (1994)) ect... .
A different approach is to consider refinement concepts based on altruistic behavior of
the players as done by the authors in previous papers. In fact, in De Marco and Mor-
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gan (2007, 2008) the possibility of altruistic behavior of the players has been considered
and used as a refinement criterion; in particular, two different refinement concepts have
been introduced. Friendliness equilibria (De Marco and Morgan (2007)) are based on a
property of robustness of the equilibrium with respect to a particular class of deviations:
a player is supposed to move away from the equilibrium even only to guarantee a better
payoff to the others and feasible deviations are unilateral and only towards Nash equilib-
ria, that is valid deviations in the sense that there are no incentives to deviate from the
deviation (see Bernheim et al. (1987) for valid deviations of coalitions of players). Recall
also that fiendly behavior has been defined and used by Rusinowska (2002) for equilibrium
selection in some 2-players bargaining models. On the other hand, the concept of slightly
altruistic equilibrium (De Marco and Morgan (2008)) is based on a stability property with
respect to trembles which capture an idea of reciprocal altruism: each player cares only
about himself but his choice corresponds to the limit of choices he would have done in
equilibrium if he had cared about the others, provided the others had done the same. In
general, a slightly altruistic equilibrium is not necessarily a friendliness equilibrium and
viceversa. However, sufficient conditions on the payoffs of the game guarantee that ev-
ery slightly altruistic equilibrium is a friendliness equilibrium. Moreover, it is possible to
enforce the robustness property of friendliness equilibria to obtain strategy profiles which
are also slightly altruistic equilibria.
Aim of this paper is to analyze the equilibria of the one-way flow and the two-way flow
models in light of the Admissibility Property and of the refinements concepts based on
altruistic behavior. Since these games have finite strategy sets, firstly we look at the
connections between frindliness and slightly altruistic equilibria in this context: it turns
out that friendliness equilibria are slightly altruistic equilibria while the converse state-
ment still doesn’t hold. Then we look at the Bala and Goyal models and find out that
empty networks, wheel and center sponsored star do not satisfy the Admissibility Property
whenever they are not strict Nash equilibria, so that it seems hard to obtain a sharper and
self-enforcing selection mechanism between these concepts in such a case. The previous
arguments suggest to take into account the altruistic behavior refinements as a reasonable
selection device between the network architectures quoted above. Indeed, it turns out
that this latter selection device is effective: the wheel and the center sponsored star are
friendliness and slightly altruistic equilibria in every case in which they are Nash equilib-
ria, while the empty network is not of this kind in the two-way flow model. Moreover, the
fact that the empty network is a friendliness and a slightly altruistic equilibrium in the
one-way flow model is not surprising since it is an efficient Nash network architecture for
the same class of payoff functions and, in De Marco and Morgan (2007), it has been shown
that friendliness and efficiency are related even in general normal form games (in terms of
not empty intersection between the corresponding set of equilibria). Nevertheless, in the
two-way flow model, the empty network is an inefficient Nash network for a large class of
payoff functions.
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2 Equilibrium Selection and Altruistic Behavior in

Normal Form Games

2.1 Preliminaries

Let Γ = {I; S1, . . . , Sn; f1, . . . , fn} be a n-player game where I = {1, . . . , n} is the set of
players, the strategy set Si of Player i is a subset of Rk(i) and fi : S → R is the payoff
function of Player i, with S =

∏
i∈I Si. Let E be the set of Nash equilibria (see Nash (1950,

1951) of the game Γ; that is, a point s∗ ∈ S belongs to E if, for every Player i, fi(s
∗
i , s

∗
−i) ≥

fi(si, s
∗
−i) for all si ∈ Si, where (si, s

∗
−i) denotes the vector (s∗1, . . . , s

∗
i−1, si, s

∗
i+1, . . . , s

∗
N).

Recall also that a strategy profile s∗ ∈ S is said to be a strict Nash equilibrium if, for every
player i, fi(s

∗
i , s

∗
−i) > fi(si, s

∗
−i) for all si ∈ Si \ {s∗i }.

2.1.1 Admissibility

Strict Nash equilibria survive to most of the refinement criteria based on stability with
respect to perturbations since they are essential equilibria (see for example van Damme
(1989)). However, the strict Nash equilibrium concept might be too restrictive, since
in a wide class of games they do no exist, so other weaker selection devices might be
taken into account such as Perfectness or Admissibility (which is a necessary condition for
perfectness).

A strategy s∗i ∈ Si is said to be weakly dominated by the strateqy si ∈ Si (or si weakly
dominates s∗i ) if

fi(s
∗
i , s−i) ≤ fi(si, s−i) ∀s−i ∈

∏

j 6=i

Sj and ∃ŝ−i ∈
∏

j 6=i

Sj s.t. fi(s
∗
i , ŝ−i) < fi(si, ŝ−i)

Moreover, s∗i is said to be weakly undominated if there does not exist a strategy si ∈ Si

such that s∗i is weakly dominated by si.
Equilibria in weakly undominated strategies play an important role in the theory of re-
finements of Nash equilibria. In fact, they are related to properties of stability of the
equilibrium with respect to particular classes of perturbations (for example perfect equi-
libria, proper equilibria or essential equilibria) so that the so called Admissibility property
(i.e. every solution is in weakly undominated strategies) is an important selection de-
vice within the set of Nash equilibria. However, it has been shown that equilibria in
weakly undominated strategies might be payoff inefficient in the set of Nash equilibria
(i.e. they might be payoff Pareto dominated by a Nash equilibrium in weakly dominated
strategies)(see Example 1.5.2 in van Damme (1989)).

2.2 Altruistic Behavior

Following De Marco and Morgan (2007, 2008), we now introduce the concepts of friendli-
ness equilibrium and slightly altruistic equilibrium which intend to capture the possibility
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of altruistic behavior in normal games. Let Ki : S−i ⇒ Si be the set valued map defined
by:

Ki(s−i) = {si ∈ Si | (si, s−i) ∈ E} for all s−i ∈ S−i

where E is the set of Nash equilibria of the game and let gi : S → R be the function
defined by:

gi(s) =
∑

j∈I\{i}
fj(s) for all s ∈ S. (1)

then,

Definition 2.1: A Nash equilibrium s∗ is said to be a friendliness equilibrium of the
game Γ if, for every player i, the following friendly behavior property is satisfied:

(FB) : gi(s
∗
i , s

∗
−i) ≥ gi(si, s

∗
−i) for all si ∈ Ki(s

∗
−i).

Moreover, if we call reversed game associated to a game Γ = {I; S1, . . . , Sn; f1, . . . , fn}
the pseudo-game (Debreu (1952))

ΓR = {I; S1, . . . , SN ; K1, . . . , Kn; g1, . . . , gn} .

then, by definition, it follows that a strategy profile s∗ ∈ S is a friendliness equilibrium of
the game Γ if and only if s∗ is a social Nash equilibrium (Debreu (1952)) of ΓR.

Definition 2.2: Let ε be a positive real number and, for each player i, let hi,ε : S → R
be the function, called ε-altruistic payoff, defined by:

hi,ε(s) = fi(s) + ε


 ∑

j∈I\{i}
fj(s)


 for all s ∈ S. (2)

For every ε > 0, the game Γε = {I; S1, . . . , Sn; h1,ε, . . . , hn,ε} is called the ε-altruistic game
associated to Γ and Eε denotes the set of its Nash equilibria.

Each hi,ε represents the utility function of Player i supposed to take into account the
sum of the payoffs of the opponents with weight ε.
Therefore:

Definition 2.3: A Nash equilibrium s∗ of the game Γ is said to be a slightly altruistic
equilibrium if there exist a sequence of positive real numbers (εν)ν∈N decreasing to 0 and
a sequence of strategy profiles (s∗ν)ν∈N ⊆ S, such that

i) s∗ν is a Nash equilibrium of the εν-altruistic game Γεν associated to Γ, for every
ν ∈ N.

ii) s∗ν converges to s∗ as ν →∞, ν ∈ N.

Counterexamples have been given showing that in general a slightly altruistic equilib-
rium is not necessarily a friendliness equilibrium and viceversa. However, in Theorem 4.2
in De Marco and Morgan (2008) it has been shown that a condition of pseudomonotonicity
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of a particular operator associated to the game guarantees that every slightly altruistic
equilibrium is a friendliness equilibrium. On the other hand, in De Marco and Morgan
(2007) it has been shown that it is possible to enforce the robustness property of friendli-
ness equilibria to obtain elements which are also slightly altruistic equilibria in the context
of finite games in mixed strategies.

2.3 Finite strategy sets

Since the games of network formation that we will investigate below are games with finite
strategy sets, it will be useful to investigate the connections between the two concepts in
this particular case:

Proposition 2.4: Let Si be finite sets (endowed with the discrete topology). If s∗ is a
slightly altruistic equilibrium then it is a friendliness equilibrium.

Proof. Let s∗ be a slightly altruistic equilibrium. Then there exist a sequence (εν)ν∈N ⊂
R+ \ {0} decreasing to 0 and a sequence of Nash equilibria, (sν)ν∈N ⊆ S, of Γεν such that
sν → s∗ as ν →∞.
Since S is a finite set, there exists ν > 0 such that, for ν > ν, s∗ is a Nash equilibrium of
Γεν . Therefore, for ν > ν and for every player i,

fi(s
∗
i , s

∗
−i) + εν


 ∑

j∈I\{i}
fj(s

∗
i , s

∗
−i)


 ≥ fi(s

′
i, s

∗
−i) + εν


 ∑

j∈I\{i}
fj(s

′
i, s

∗
−i)


 ∀s′i ∈ Si

thus, since εν > 0, if fi(si, s
∗
−i) = fi(s

∗
i , s

∗
−i) it follows that

gi(s
∗
i , s

∗
−i) =

∑

j∈I\{i}
fj(s

∗
i , s

∗
−i) ≥

∑

j∈I\{i}
fj(si, s

∗
−i) = gi(si, s

∗
−i)

Since fi(si, s
∗
−i) = fi(s

∗
i , s

∗
−i) for every si ∈ Ki(s

∗
−i), then gi(s

∗
i , s

∗
−i) ≥ gi(si, s

∗
−i) for all

si ∈ Ki(s
∗
−i). Hence s∗ is a friendliness equilibrium.

The converse statement of the previous proposition does not hold even in the finite
strategy set case as shown in the following example:

Example 2.5: Consider the following 2 player game:

L R
T 1,1 -1,0
B 1,2 0,3

It is easy to check that (T, L) and (B, R) are the Nash equilibria in pure strategies, and
they are, by definition, friendliness equilibria. Since the ε-altruistic game is

L R
T 1 + ε, 1 + ε −1,−ε
B 1 + 2ε, 2 + ε 3ε, 3
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and (B, R) is the unique equilibrium in this game, then (B,R) is the unique slightly
altruistic equilibrium.

However, a slight modification of Proposition (4.1) in De Marco and Morgan (2007)
gives sufficient conditions for slight altruistic equilibria:

Proposition 2.6: Let Si be finite sets (endowed with the discrete topology) and s∗ be a
Nash equilibrium of Γ such that, for every player i, the following property, called strong
friendly behavior, is satisfied:

(SFB) : gi(s
∗
i , s

∗
−i) ≥ gi(si, s

∗
−i) for all si ∈ BRi(s

∗
−i)

where BRi(s
∗
−i) is the set of the best replies in Γ of Player i to his opponents’ strategy

profile s∗−i and gi is defined by equation (1). Then, s∗ is a slightly altruistic equilibrium.

For the sake of completeness we report a short proof which, however, could be deduced
from the proof of Proposition (4.1) in De Marco and Morgan (2007).

Proof of Proposition (2.6). Let s∗ be a Nash equilibrium such that the property (SFB) is
satisfied for every player i ∈ I . Then, for every player i ∈ I and for every pure strategy
ŝi ∈ BRi(s

∗
−i) it follows from (SFB) that

fi(s
∗
i , s

∗
−i) + ε


 ∑

j∈I\{i}
fj(s

∗
i , s

∗
−i)


 ≥ fi(ŝi, s

∗
−i) + ε


 ∑

j∈I\{i}
fj(ŝ, s

∗
−i)




for every ε > 0.
Denote with Ψi = {si ∈ Si | si /∈ BRi(s

∗
−i)}. Then, for every si ∈ Ψi, fi(s

∗
i , s

∗
−i) −

fi(si, s
∗
−i) > 0 and there exists εi(si) > 0 such that

fi(s
∗
i , s

∗
−i)− fi(si, s

∗
−i) > ε


 ∑

j∈I\{i}

[
fj(si, s

∗
−i)− fj(s

∗
i , s

∗
−i)

]



for all 0 < ε ≤ εi(si). Let εi = minsi∈Ψi
εi(si), then

fi(s
∗
i , s

∗
−i)− fi(si, s

∗
−i) > ε


 ∑

j∈I\{i}

[
fj(si, s

∗
−i)− fj(s

∗
i , s

∗
−i)

]

 ∀si ∈ Si

for all 0 < ε ≤ εi.
Therefore, if δ = mini εi, s∗ is a Nash equilibrium of the ε-altruistic game Γε, for every
0 < ε ≤ δ and then s∗ is a slightly altruistic equilibrium.

3 The Social Network Formation Game: Previous

Results

Following Bala and Goyal (2000), we consider one-sided link formation networks. Let
I = {1, . . . , n}, with n ≥ 3, be the set of agents, where each agent is assumed to be a
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source of benefits for the others. Then each agent can improve his utility connecting with
the others incurring in some cost.

A strategy for a player i is a n− 1 dimensional vector

xi = (xi,1, . . . , xi,i−1, xi,i+1, . . . , xi,n)

with xi,j ∈ {0, 1}, where xi,j = 1 if i establishes a link with j and xi,j = 0 otherwise, and
we denote with Xi the strategy set of Player i and X = X1 × · · · ×Xn.
A link between i and j can allow for either one-way or two-way flow of benefits. In the
two-way flow of benefits xi,j = 1 allows both i and j to access each other’s benefit, while
in the one-way flow xi,j = 1 allows only Player i to access Player j’s benefit.

3.1 One-way flow

In the one-way flow model, a strategy profile x depicts one and only one directed network.
We say there is one-way path from i to j if there exists a subset {j1, . . . , jm} ⊆ I such
that i = j1, j = jm and xjk−1,jk

= 1 for all k = 2, . . . , m. If there is a one-way path
between player i and j then i is said to be one-way connected with j. For every player i
the payoff χ : N×N→ R is a function that associates to (qi, li) the term χ(qi, li) where qi

is the number of players with whom Player i is directly or indirectly one-way connected
(i included) and li is the number of players j 6= i such that xi,j = 1. It is assumed that χ
is strictly increasing in the first variable and strictly decreasing in the second one.
Obviously, qi and li depend on the network formed and hence they are functions of the
strategy profile, therefore setting χ(qi(x1, . . . , xn), li(x1, . . . , xn)) = ζi(x1, . . . , xn), it is
possible to consider the following game of network formation:

ΓO = {I; {Xi}i; {ζi}i} .

3.1.1 Nash Networks

Proposition 3.1: [Bala and Goyal (2000)]. If x is a Nash equilibrium of ΓO then the
corresponding network is either empty or satisfies the following:

i) Every couple of players (i, j) is one way connected.

ii) Whenever a link xi,j = 1 is replaced with x′i,j = 0 then, there exist at least two players
who are not longer one-way connected.

In the one-way flow model we have a great variety of Nash networks, however, in this
case the wheel and the empty network have an important role. A network x is said to be
a wheel if there exists a permutation δ : I → I such that δ(I) = {j1, . . . , jn} and

xj1,j2 = xj2,j3 = · · · = xjn−1,jn = xjn,j1 = 1;

and there aren’t other links while the empty network is obviously the network x such that
xi,j = 0 for all i ∈ I and j 6= i.
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Proposition 3.2: [Bala and Goyal (2000)]. Let x be a strict Nash equilibrium of ΓO,
then the corresponding network is either empty or a wheel. Moreover,

a) if χ(w + 1, w) > χ(1, 0) for some w ∈ {1, . . . , n− 1} then the wheel x is the unique
strict Nash equilibrium.

b) if χ(w + 1, w) < χ(1, 0) for all w ∈ {1, . . . , n − 1} and χ(n, 1) > χ(1, 0) then the
empty network and the wheel are both strict Nash equilibria.

c) if χ(w + 1, w) < χ(1, 0) for all w ∈ {1, . . . , n − 1} and χ(n, 1) < χ(1, 0) then the
empty network is the unique strict Nash equilibrium.

3.1.2 Efficient Networks

Let Φ : X → R be the function defined by Φ(x) =
∑

i∈I ζi(x) for all x ∈ X, then a network
x is said to be one-way efficient if

Φ(x) ≥ Φ(x) ∀x ∈ X

Proposition 3.3: [Bala and Goyal (2000)].

i) If χ(n, 1) > χ(1, 0) then the wheel is the unique one-way efficient network.

ii) If χ(n, 1) < χ(1, 0) then the empty network is the unique one-way efficient network.

3.2 Two-way flow

In the two-way flow model, a strategy profile x depicts one and only one undirected
network. Let µ(xi,j) = max {xi,j, xj,i}, then, we say there exists a two-way path between i
and j if there exists a subset {j1, . . . , jm} ⊆ I such that i = j1, j = jm and µ(xjk−1,jk

) = 1
for all k = 2, . . . , m (in this case i and j are also said to be two-way connected). For every
player i, the payoff is the function ψ : N × N → R which associates to (zi, li) the term
ψ(zi, li) where zi is the number of players with whom Player i is (directly or indirectly)
two-way connected (i included) and li is the number of players j 6= i such that xi,j = 1. It
is assumed that ψ is strictly increasing in the first variable and strictly decreasing in the
second one.
Obviously, zi and li depend on the network formed and hence they are functions of the
strategy profile, therefore setting ψ(zi(x1, . . . , xn), li(x1, . . . , xn)) = γi(x1, . . . , xn), it is
possible to consider the following game of network formation:

ΓT = {I; {Xi}i; {γi}i}

3.2.1 Nash Networks

In Bala and Goyal it has been proved that

Proposition 3.4: [Bala and Goyal (2000)]. If x is a Nash equilibrium of ΓT then the
corresponding network is either empty or satisfies the following:
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i) Every couple of players (i, j) is two-way connected.

ii) There does not exist a cycle, i.e. a subset of players {j1, . . . , jq} ⊆ I such that

µ(xj1,j2) = · · · = µ(xjq−1,jq) = µ(xjq ,j1) = 1.

The previous result shows that a great variety of networks can be implemented by Nash
equilibria of the corresponding game, however some network structures play a predominant
role: a network x is said to be a center-sponsored star if there exists i ∈ I such that xi,j = 1
for all j and xj,h = 0 for all j 6= i and for all h; a network x is said to be the empty network
if xi,j = 0 for all i, j ∈ I with i 6= j.

Proposition 3.5: [Bala and Goyal (2000)]. Let x be a strict Nash equilibrium x of ΓT ,
then x is either a center-sponsored star or the empty network. If x is a center-sponsored
star then it is a strict Nash equilibrium if and only if ψ(n, n − 1) > ψ(w + 1, w) for all
w ∈ {0, . . . , n − 2}. If x is the empty network then it is a strict Nash equilibrium if and
only if ψ(1, 0) > ψ(w + 1, w) for all w ∈ {1, . . . , n− 1}.

3.2.2 Efficient Networks

Let Ψ : X → R be the function defined by Ψ(x) =
∑

i∈I γi(x) for all x ∈ X, then a
network x is said to be two-way efficient if

Ψ(x) ≥ Ψ(x) ∀x ∈ X

Proposition 3.6: [Bala and Goyal (2000)] Given a two-way efficient network then every
set of two-way connected players (two-way component) does not have a cycle (i.e. it is
minimal). Moreover, if χ(w + 1, h + 1) > χ(w, h) for all h ∈ {0, 1, . . . , n − 2} and
w ∈ {h + 1, . . . , n− 1}, every couple of players is two-way connected.

4 The Social Network Formation Game: New Results

4.1 One-way flow

4.1.1 The wheel

Proposition 4.1: A wheel is a Nash equilibrium of ΓO if and only if χ(n, 1) ≥ χ(1, 0).
Moreover, a wheel is a strict Nash equilibrium if and only if χ(n, 1) > χ(1, 0).

Proof. Let x be a wheel (i.e. there exists a permutation δ : I → I such that δ(I) =
{j1, . . . , jn} and xj1,j2 = xj2,j3 = · · · = xjn−1,jn = xjn,j1 = 1 and there aren’t other links).
It follows that for every player the payoff in equilibrium is equal to χ(n, 1). Given a player
i, for every strategy x̂i 6= xi different from the strategy “no links” x∗i it follows that

qi(x̂i, x−i) < n or li(x̂i, x−i) > 1 or both.
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Since

∀w = 2, . . . , n− 1 χ(n, 1) > χ(w, 1) and χ(w, 1) > χ(w, d) ∀d = 2, . . . , w− 1 (3)

then, {xi, x
∗
i } = BRi(x−i) if and only if χ(n, 1) = χ(1, 0) and {xi} = BRi(x−i) if and only

if χ(n, 1) > χ(1, 0). So x is a Nash equilibrium if and only if χ(n, 1) ≥ χ(1, 0) and x is a
strict Nash equilibrium if and only if χ(n, 1) > χ(1, 0).

Proposition 4.2: If a wheel is a Nash equilibrium but not a strict Nash equilibrium of
ΓO then it is an equilibrium in weakly dominated strategies.

Proof. From the assumptions and Proposition 4.1, it follows that χ(n, 1) = χ(1, 0). Let
x be a wheel and i be such that xi,j = 1 and xi,k = 0 k 6= i, k 6= j. We claim that the
strategy x∗i in which Player i establishes no links weakly dominates xi. In fact ζi(x

∗
i , x−i) =

χ(qi(x
∗
i , x−i), 0) = χ(1, 0). Being ζi(xi, x−i) = χ(qi(xi, x−i), 1) = χ(n, 1), it follows that

ζi(x
∗
i , x−i) = ζi(xi, x−i).

Moreover, for every other strategy profile x−i of his opponents, we have that ζi(x
∗
i , x−i) =

χ(1, 0) while ζi(xi, x−i) = χ(w+1, 1) if Player j is directly one-way connected with w−1 ≤
n − 2 players different from Player i in the network (xi, x−i). From strict monotonicity
χ(w + 1, 1) ≤ χ(n, 1) with the inequality strict as w + 1 < n. Since there exists a strategy
profile x̂−i such that Player j is directly one-way connected with h < n− 2 players in the
network (xi, x̂−i), it follows that

ζi(x
∗
i , x−i) ≥ ζi(xi, x−i) ∀x−i and ∃x̂−i s.t. ζi(x

∗
i , x̂−i) > ζi(xi, x̂−i)

which means that x∗i weakly dominates xi.

Proposition 4.3: If χ(n, 1) ≥ χ(1, 0) then every wheel is a friendliness equilibrium and
a slightly altruistic equilibrium of ΓO.

Proof. Let x be a wheel (i.e. there exists a permutation δ : I → I such that δ(I) =
{j1, . . . , jn} and xj1,j2 = xj2,j3 = · · · = xjn−1,jn = xjn,j1 = 1, and there are no other links).
If x is a strict Nash equilibrium then it is obviously a friendliness equilibrium. Suppose
that x is not a strict Nash, that is, χ(n, 1) = χ(1, 0). So BRi(x−i) = {xi, x

∗
i }, where x∗i

is the strategy in which Player i establishes no links. Note that, for every other player j,
qj(x

∗
i , x−i) < qj(xi, x−i) = n so that

ζj(x
∗
i , x−i) = χ(qj(x

∗
i , x−i), 1) < χ(qj(xi, x−i), 1) = χ(n, 1) = ζj(xi, x−i)

So
∑

j 6=i ζj(xi, x−i) >
∑

j 6=i ζj(x
∗
i , x−i). Since Ki(x−i) ⊆ BRi(x−i) x is a friendliness

equilibrium and in light of Proposition 2.6 a slightly altruistic equilibrium.
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4.1.2 The empty network

Proposition 4.4: The empty network is a Nash equilibrium of ΓO if and only if

χ(w + 1, w) ≤ χ(1, 0) ∀w ∈ {1, . . . , n− 1}. (4)

Moreover, the empty network is a strict Nash equilibrium if and only if the inequalities are
strict.

Proof. Let x be the empty network. Given a player i, for every strategy x̂i 6= xi, it follows
that

qi(x̂i, x−i) > 1 and li(x̂i, x−i) = qi(x̂i, x−i)− 1

So, for every strategy x̂i 6= xi, let qi(x̂i, x−i) = w + 1, then

ζi(x̂i, x−i) = χ(qi(x̂i, x−i), li(x̂i, x−i)) = χ(w+, w) with

and then x is a Nash equilibrium if and only if

χ(w + 1, w) ≤ χ(1, 0) = ζi(xi, x−i) ∀w ∈ {1, . . . , n− 1}

while x is a strict Nash equilibrium if and only if the inequalities are strict.

Proposition 4.5: If the empty network is a Nash equilibrium but not a strict Nash equi-
librium of ΓO then it is a Nash equilibrium in weakly dominated strategies.

Proof. From the assumptions and Proposition 4.4, it follows that χ(w+1, w) ≤ χ(1, 0) for
all w ∈ {1, . . . , n−1} with at least one equality. Let w be such that χ(w+1, w) = χ(1, 0),
x be the empty network and xi be a strategy for Player i in which Player i establishes w
links. We claim that xi weakly dominates xi. In fact, it follows that

ζi(xi, x−i) = χ(w + 1, w) = χ(1, 0) = ζi(xi, x−i)

Moreover, for any other strategy profile x̂−i, it follows that strategy xi guarantees to Player
i qi(xi, x̂−i) = w + k ≥ w + 1 with k ≥ 1. Therefore

ζi(xi, x̂−i) = χ(w + k, w) ≥ χ(w + 1, w)

with k ≥ 1, with the inequality strict as k > 1 and

χ(w + 1, w) = χ(1, 0) = ζi(xi, x̂−i).

Let Player s be such that xi,s = 1. Obviously, there exists a strategy profile x̂−i in which
Player s is one-way connected with a Player t such that x∗i,t = 0, hence k > 1 and

ζi(x
∗
i , x̂−i) = χ(w + k, w) > χ(1, 0) = ζi(xi, x̂−i).

Therefore x∗i weakly dominates xi.
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Proposition 4.6: If

χ(w + 1, w) ≤ χ(1, 0) ∀w ∈ {1, . . . , n− 1} (5)

then, the empty network is a friendliness equilibrium and a slightly altruistic equilibrium
of ΓO.

Proof. Let x be the empty network. If x is a strict Nash equilibrium then it is a friend-
liness equilibrium. Assume that x is not a strict Nash, then, from the assumptions and
Proposition 4.4, it follows that there exists 1 < w < n− 1 such that χ(w +1, w) = χ(1, 0).
For every other strategy xi of Player i in which he establishes w direct links we have
ζi(xi, x−i) = χ(w+1, w), so xi ∈ BRi(x−i) if and only if χ(w+1, w) = χ(1, 0) = ζi(xi, x−i).
In light of the previous arguments, there exists a strategy xi 6= xi with xi ∈ BRi(x−i)
Since in the new network (xi, x−i) only Player i is one-way connected with other players
then, for every other player j, the payoff is given by

ζj(xi, x−i) = χ(1, 0) = ζj(xi, x−i)

which implies that

∑

j 6=i

ζj(xi, x−i) =
∑

j 6=i

ζj(xi, x−i) ∀xi ∈ BRi(x−i)

Then x is a friendliness equilibrium and in light of Proposition 2.6 it is a slightly altruistic
equilibrium.

4.2 Two-way flow

As done for the one-way flow case, now we investigate the admissibility property and the
altruistic behavior properties for the wheel and the empty network.

4.2.1 The center-sponsored star

Proposition 4.7: A center-sponsored star x is a Nash equilibrium of ΓT if and only if

ψ(n, n− 1) ≥ ψ(w + 1, w) for all w ∈ {0, . . . , n− 2}.

In particular, x is a strict Nash equilibrium if and only if all the inequalities are strict.

Proof. Let i be the center of the star then γi(xi, x−i) = ψ(n, n−1). In every other strategy
x̂i 6= xi Player i establishes ŵ < n − 1 direct links so that γi(x̂i, x−i) = ψ(ŵ + 1, ŵ) ≤
ψ(n, n−1). For every player j 6= i, γj(xj, x−j) = ψ(n, 0). Moreover, in every other strategy
x̂j 6= xj Player j establishes 0 < ŵ < n − 1 direct links so that γj(x̂j, x−j) = ψ(n, ŵ) <
ψ(n, 0). Then, from the assumptions, it obviously follows the assertion.

Proposition 4.8: If x is a center-sponsored star and it is not a strict Nash equilibrium
of ΓT , then x is an equilibrium in weakly dominated strategies.
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Proof. From the assumptions it follows that ψ(n, n − 1) ≥ ψ(w + 1, w) for all w ∈
{0, . . . , n-2} and there exists w such that ψ(n, n − 1) = ψ(w + 1, w). Let x be a center-
sponsored star and i be the center of the star so that Player i’s payoff is ψ(n, n− 1).
Consider another strategy xi for Player i in which he establishes only w links such that
ψ(n, n − 1) = ψ(w + 1, w). We claim that xi weakly dominates strategy xi. In fact, first
suppose that every player j 6= i is playing his equilibrium strategy (xj,k = 0 ∀k 6= j), then
Player i’s payoff is

γi(xi, x−i) = ψ(zi(xi, x−i), li(xi, x−i)) = ψ(w + 1, w).

Then, suppose that a player j 6= i plays a different strategy x′j. From x′j 6= xj, it follows
that x′j,k = 1 for at least another player k. For the sake of simplicity assume first that k is
unique (the other cases follow similarly). If k = i then payoff of Player i does not change.
Consider k 6= i. If strategy xi is such that xi,j = 1 or xi,k = 1 (but not both of them) then,
payoff of Player i is ψ(w + 2, w), with ψ(w + 2, w) > ψ(w + 1, w) = ψ(n, n − 1). In the
other cases, the payoff of Player i remains ψ(w + 1, w). Summarizing, for every strategy
profile of his opponents x∗−i we get

γi(xi, x
∗
−i) = ψ(zi(xi, x

∗
−i), li(xi, x

∗
−i)) = ψ(n, n− 1)

while
γi(xi, x

∗
−i) = ψ(zi(xi, x

∗
−i), li(xi, x

∗
−i)) = ψ(w + h, w) with h ≥ 1.

Hence

γi(xi, x
∗
−i) = ψ(n, n− 1) = ψ(w + 1, w) ≤ ψ(w + h, w) = γi(xi, x

∗
−i) for all x∗−i (6)

with the inequality strict as h > 1. Note also that there exists a strategy profile x̂−i

such that the inequality in (6) is strict. In fact, there obviously exist players j 6= i and
s 6= i such that xi,j = 1 and xi,s = 0, so if x̂−i is such that x̂j,s = 1 or x̂s,j = 1 then,
γi(xi, x̂−i) = ψ(w+h,w) with h > 1, because, in this case, a link with Player j guarantees
to Player i an indirect two-way connection with Player s.

Therefore, there exists a strategy xi such that

γi(xi, x
∗
−i) ≤ γi(xi, x

∗
−i)

for all x∗−i with at least one inequality strict.

Proposition 4.9: Assume ψ(n, n − 1) ≥ ψ(w + 1, w) for all w ∈ {0, . . . , n − 2}. If
x is a center-sponsored star then it is a slightly altruistic equilibrium and a friendliness
equilibrium of ΓT .

Proof. If x is a center-sponsored star then, from the assumptions, it follows that it is an
equilibrium of ΓT . Let i be the center of the star; by construction, for j 6= i, xj,k = 0 for
all k 6= j. A strategy xi of Player i belongs to the set of best replies BRi(x−i) if and only
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if in the strategy xi player i establishes w links for a number w ∈ {0, . . . , n− 2} such that
ψ(n, n− 1) = ψ(w + 1, w), in fact, in this case payoff of Player i is

γi(xi, x−i) = ψ(zi(xi, x−i), li(xi, x−i)) = ψ(w + 1, w).

Moreover, the strategy profile (xi, x−i) gives payoff ψ(w + 1, 0) to the players two-way
connected with Player i and ψ(1, 0) to the other players. Since w + 1 < n implies ψ(w +
1, 0) < ψ(n, 0), xi maximizes

∑
j 6=i γj(·, x−i) in the set BRi(x−i) . Then, since Ki(x−i) ⊆

BRi(x−i), from Proposition 2.6 we get the assertion.

4.2.2 The empty network

Proposition 4.10: The empty network x is a Nash equilibrium of ΓT if and only if

ψ(1, 0) ≥ ψ(w + 1, w) for all w ∈ {1, . . . , n− 1}.

Moreover, the empty network x is a strict Nash equilibrium if and only if all the inequalities
are strict.

Proof. Since x is the empty network then, for every player i, γi(xi, xi) = ψ(1, 0). In every
other strategy xi 6= xi Player i establishes w > 0 direct links so that γi(xi, xi) = ψ(w+1, w).
Then, from the assumptions, it obviously follows the assertion.

Proposition 4.11: If the empty network x is a Nash equilibrium but not a strict Nash
equilibrium of ΓT then, x is an equilibrium in weakly dominated strategies.

Proof. From the assumptions it follows that ψ(1, 0) ≥ ψ(w+1, w) for all w ∈ {0, . . . , n−1}
and there exists w ∈ {1, . . . , n − 1} such that ψ(1, 0) = ψ(w + 1, w). From the assump-
tions and the previous proposition the empty network x is a Nash but not a strict Nash
equilibrium. Given a player i, consider another strategy xi in which Player i establishes
w links such that ψ(1, 0) = ψ(w + 1, w). Then xi weakly dominates xi. In fact, following
the proof of Proposition 4.8, there exists a strategy profile x̂−i for players j 6= i such that
zi(xi, x̂−i) > w + 1. Being ψ strictly increasing in the first variable then

γi(xi, x̂−i) = ψ(zi(xi, x̂−i), w) > ψ(w + 1, w) = ψ(1, 0).

Moreover, every other strategy profile x∗−i is such that zi(xi, x
∗
−i) ≥ w + 1 therefore

γi(xi, x
∗
−i) = ψ(zi(xi, x

∗
−i), w) ≥ ψ(w + 1, w) = ψ(1, 0)

and xi weakly dominates xi.

Proposition 4.12: If the empty network x is a Nash equilibrium and Ki(x−i) 6= {xi}
then x is not a friendliness equilibrium nor a slightly altruistic equilibrium of ΓT .
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Proof. From the assumptions it follows that ψ(1, 0) ≥ ψ(w+1, w) for all w ∈ {1, . . . , n−1}.
Moreover Ki(x−i) 6= {xi} implies that the empty network x is not a strict Nash then,
there exists w ∈ {1, . . . , n− 1} such that ψ(1, 0) = ψ(w + 1, w). A strategy xi belongs to
Ki(x−i) only if in xi Player i establishes w links such that ψ(w + 1, w) = ψ(1, 0). From
the assumptions, there exists a Nash equilibrium (xi, x−i), then

γi(xi, x−i) = ψ(w + 1, w) = ψ(1, 0) = γi(xi, x−i), with w ∈ {1, . . . , n− 1}

Moreover, for every player j two-way connected with i in the network (wi, x−i) the payoffs
are

γj(xi, x−i) = ψ(w + 1, 0) > ψ(1, 0) = γj(xi, x−i)

while, for the other players, payoffs are

γj(xi, x−i) = ψ(1, 0) = γj(xi, x−i).

It easily follows that ∑

j 6=i

γj(xi, x−i) >
∑

j 6=i

γj(xi, x−i)

so x is not a friendliness equilibrium. Finally, from Proposition (2.4), x is not a slightly
altruistic equilibrium.

The conditions in the previous Proposition are satisfied even in simple cases as shown
by the following:

Example 4.13: Consider a three player two-sided social network in which the payoff
function ψ is given by

ψ(1, 0) = ψ(3, 2) = ψ(2, 1) = 3; ψ(2, 0) = ψ(3, 1) = 4; ψ(3, 0) = 5. (7)

Obviously, the empty network x is a Nash but not a strict Nash equilibrium. Let xi1 be
the strategy of Player i1 in which he establishes a link with Player i2 and a link with Player
i3. It follows that the payoff of Player i1 is γi1(xi1 , x−i1) = ψ(3, 2) so xi1 ∈ BRi1(x−i1).
Moreover, the payoff of Player i2 is γi2(xi2 , xi1 , xi3) = ψ(3, 0), while, if Player i2 establishes
direct links himself, his payoff is ψ(3, 2) or ψ(3, 1), with ψ(3, 2) < ψ(3, 1) < ψ(3, 0). The
same arguments hold true for Player i3 so that (xi1 , x−i1) is a Nash equilibrium and
xi1 ∈ Ki1(x−i1) with xi1 6= xi1 .

Remark 4.14: When
ψ(n, n− 1) < ψ(n, 1)

then
ψ(1, 0) > ψ(n, 1) =⇒ ψ(1, 0) > ψ(n, n− 1)

Since in Bala and Goyal (pp. 1205), it has been shown that the empty network is a
Nash efficient architecture if and only if ψ(1, 0) > ψ(n, 1) then the empty network is an
inefficient Nash network for a large class of payoff functions.
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4.2.3 The periphery-sponsored star

Besides the notions of empty network and center-sponsored star another network plays
and important role: a network x is said to be a periphery-sponsored star if there exists
i ∈ I such that, for all j 6= i, xj,i = 1 and xj,h = 0 for all h 6= i, while xi,k = 0 for all k 6= i.
It immediately follows that

Proposition 4.15: A periphery sponsored star x is a Nash equilibrium of ΓT if and only
if ψ(n, 1) ≥ ψ(1, 0).

Proof. Let i be the center of the star then γi(xi, x−i) = ψ(n, 0). In every other strategy
xi 6= xi Player i establishes 0 < w ≤ n − 1 direct links so that γi(xi, x−i) = ψ(n,w) <
ψ(n, 0). For every player j 6= i, γj(xj, x−j) = ψ(n, 1). Moreover, in every other strategy
xj 6= xj Player j establishes w ≤ n− 1 direct links so that γj(xj, x−j) = ψ(α, w). If w = 0
then α = 1 while w > 0 implies 1 < α ≤ n and therefore, from the assumptions it follows
that ψ(α, w) ≤ ψ(n, 1). So x is a Nash equilibrium.

Remark 4.16: Note that a periphery sponsored star x is not a strict Nash equilibrium
even when ψ(n, 1) > ψ(1, 0). In fact, let i be the center of the star, then for every player
j 6= i every other strategy x̂j in which Player j makes a unique link with a player k, with
k 6= i, assures to Player j the same payoff ψ(n, 1) being the n − 1 opponents two-way
connected.

Proposition 4.17: If ψ(n, 1) ≥ ψ(1, 0) then the periphery sponsored star is a friendliness
and a slightly altruistic equilibrium of ΓT .

Proof. Let x be a periphery sponsored star and i be the center of the star. In light of
the assumptions and Remark 4.16 then, for every player j 6= i, every strategy xj in which
Player j makes a unique link with a player k 6= i assures to Player j the same payoff
ψ(n, 1) of the equilibrium strategy xj, being the n−1 opponents two-way connected. This
implies that xj ∈ BRj(x−j). Note that, if xj is defined as above, the payoff of every player
k with k 6= j, k 6= i is

γk(xj, x−j) = γk(xj, x−j) = ψ(n, 1)

while
γi(xj, x−j) = γi(xj, x−j) = ψ(n, 0)

Moreover, any other strategy in which Player j makes a β ≥ 2 links gives to j payoff
ψ(α, β) < ψ(n, 1) with α ≤ n.

Finally, let x∗j be the no links strategy of Player j. Then x∗j ∈ BRj(x−j) if and only
if ψ(n, 1) = ψ(1, 0). If this is the case, for every player k with k 6= j, k 6= i we have
zk(x

∗
j , x−j) = n− 1, lk(x

∗
j , x−j) = 1 and

γk(x
∗
j , x−j) = ψ(n− 1, 1) < ψ(n, 1) = γk(xj, x−j).

Moreover, zi(x
∗
j , x−j) = n− 1, li(x

∗
j , x−j) = 0 and

γi(x
∗
i , x−i) = ψ(n− 1, 0) < ψ(n, 0) = γj(xj, x−j).
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Summarizing, ∑

k 6=j

γk(x
∗
j , x−j) <

∑

k 6=j

γk(xj, x−j) ∀x∗j ∈ BRj(x−j)

and x is a friendliness equilibrium. Finally, from Proposition 2.6, x is a slightly altruistic
equilibrium.

Remark 4.18: When
ψ(n, n− 1) < ψ(n, 1)

then
ψ(1, 0) ≤ ψ(n, n− 1) =⇒ ψ(1, 0) ≤ ψ(n, 1).

So, the condition for the center sponsored star to be a Nash and a friendliness equilibrium
is more restrictive than the condition for the periphery sponsored to be a Nash and a
friendliness equilibrium.

References

[1] Bala V. and S. Goyal (2000), A Noncooperative Model of Network Formation. Econometrica, 68,
1181-1229.

[2] Debreu D. (1952): A Social Equilibrium Existence Theorem. Proceedings of the National Academy
of Sciences of the U.S.A. 38, 386-393.

[3] De Marco G. and J. Morgan (2008): Friendliness and Reciprocity in Equilibrium Selection, Inter-
national Game Theory Review, 10(1),53-72.

[4] De Marco G. and J. Morgan (2008): Slightly Altruistic Equilibria, Journal of Optimization Theory
and Applications, 137(2),347-362.

[5] Dutta B. and S. Mutuswami (1997), Stable Networks. Journal of Economic Theory, 76, 322-344.

[6] Harsanyi J.C. (1973): Oddness of the Number of Equilibrium Points: a New Proof, International
Journal of Game Theory, 2, 235-250.

[7] Myerson R.B. (1978): Refinements of the Nash Equilibrium Concept, International Journal of Game
Theory, 7, 73-80.

[8] Nash J. (1950): Equilibrium Points in N-Person Game. Proceedings of the National Academy of
Sciences of the U.S.A., 36, 48-49.

[9] Nash J. (1951): J. Nash, Non-Cooperative Games. Annals of Mathematics, 54, 286-295.

[10] Okada A. (1981): On Stability of Perfect Equilibrium Points. International Journal of Game Theory,
10, 67-73.

[11] Ritzberger K. (1994): The Theory of Normal Form Games from the Differentiable Viewpoint, In-
ternational Journal of Game Theory, 23, 207-236.

[12] Rusinowska A. (2002): Refinements of Nash Equilibria in view of Jealous and Friendly Behavior of
Players, International Game Theory Review, 4, 281-299.

18



[13] Selten R. (1975): Reexamination of the Perfectness Concept for Equilibrium Points in Estensive
Games, International Journal of Game Theory, 4, 25-55.

[14] van Damme E. (1987): Stability and Perfection of Nash Equilibria Berlin: Springer-Verlag.

[15] Wu W.T. and J.H. Jiang (1962): Essential Equilibrium Points of n-person Cooperative Games, Sci.
Sinica, 11, 1307-1322.

19




