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1 Introduction

Solving realistic versions of stochastic dynamic models of consumer choices re-
quires employing numerical methods. The availability of large scale data-set
makes it attractive to estimate such models. To pin down structural parameters,
one needs to solve the models and bring the solution to the data. This requires
being able to nest estimation with optimization. The challenge is often one of
dimensionality and CPU time. This makes it particularly useful approximating
the solution of the models. Using approximations involves errors, but there is
not agreement on the effect of such errors on estimation. To the extent that the
errors are small, one can still rely on approximations. Furthermore, approxima-
tions might turn to be useful in the specification search.

Approximating the consumption function has been a common exercise among
economists since long time. The use of perturbation methods in precautionary
saving models dates back to Leland (1968). Only recently, however, Feigenbaum
(2005) has investigated the accuracy of second, third and higher approximations
to the consumption function and provided some warning on the use of perturba-
tion methods.

This paper does not use perturbation methods in that departing from the
literature. We provide a class C°° function to approximate the consumption
function in the buffer stock model of saving. The approximation is derived for
the Carroll’s (1992) incarnation of the buffer stock model, but equally applies

to the Deaton’s (1991) version of such model. It relies on the monotonicity of



the consumption function, on concavity, and on the fact that the consumption
function is bounded from above and below and so is its derivative.

The paper is organized as follows. Notation is lied down in Section 2. Section
3 reviews two methods for numerically solving the model: the standard method
and the endogenous gridpoints algorithm. The approximation is derived and
discussed in Section 4. Section 5 compares the approximate consumption function
with the solution obtained using the endogenous grid-point algorithm in five
economies, and section 6 explores the factors affecting the shape the approximate
consumption function. Gains and losses from using the approximate consumption

function are discussed in section 7, while section 8 concludes.

2 The notation

Consumers live from time 0 to time 7. They maximize:

T
By Bu(Cy)

t=0

with respect to consumption, C%, under the dynamic budget constraint:
Wip1 = RWi +Y; — Gy

where 3 is the subjective discount factor, Wy and W, are, respectively, non-
human wealth at time ¢t + 1 and ¢, R the interest factor and Y; labor income at

time t. The utility function is assumed to be of the CRRA type, i.e.:

1—p
Cy

U(Ct): 17[)




where p is the coefficient of relative risk aversion. Labor income shifts due to

transitory and permanent shocks:

Y: = B=Ey
P, =GP 1Y,
where P, is permanent income, = is the transitory and ¥, the permanent income
shocks, G is the growth factor of permanent income. Income is zero with a small

probability p, i.e.:

0  with probability p>0
Et-l—n =

6t+n
q

with probability ¢=1—p

Furthermore, following Carroll (1992) we assume that transitory and permanent
shocks are dawn from a log-normal distribution and that: F;[©,] = 1 for
n > 0, that var (log O1,) = 03, that Fy[V;yy,] = 1 and that var (log ¥iyy,) = ai.

Finally, it is assumed that consumer cannot die in debt, i.e.
Cr <Wr+Yr

This last assumption naturally leads to use the dynamic programming principleﬂ

The Bellman equation for the consumer problem is:

Vi (W, Py) = max {u(Ct) + BE Vi1 (Wig1, Pig1)}
t

s.t.

P =GPV

Wiv1 = RIW; — Cy + Y]

!The non-stationary nature of the problem is not an issue in this context, thanks to the

homogeneity of the objective function.



In order to exploit the homogeneity of the utility function, one can define cash-
on-hand as:

My =W +Y:
This allows to rewrite the Bellman equation as:

v (me) = max {u(er) + BEG W) Loepr(mis) |

s.t. (1)

Myl = G\I,L;H[mt — ] + i
where my = M;/P; and ¢, = C;/P,. Carroll (2004) shows that defines a
contraction mapping under three restrictions: (i) G < R; (ii) (Rﬁ)% < R; (iii)
RAE(GY,[] < 1.

The first condition guarantees that human capital does not explode in perfect
foresight models; the second that consumers are not too patient; the third that
consumers are impatient enough for cash-on-hand not to go to infinity. Carroll
(2004) also shows that the consumption function is increasing, concave and that it
is bounded from above and from below; moreover, that there exists a unique and

stable level of cash-on-hand, the target m*, such that Eymsyr1 = my if my = m*.

3 Standard solution methods and the endogenous grid-

point algorithm

Problem has not a closed form solution. This means that its solution re-
quires employing numerical methods. The problem is naturally characterized as

a recursive one, which means that the solution can be found by value or policy
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function iteration or using projection methodsﬂ
A common solution strategy amounts to iterate Euler Equation for consump-

tion, starting from cp = my:

_ R —
u' (cr) = BRE {G_p‘l’tfﬂéﬂ[%(mt —a)+ :t+1]}

where, from the envelope condition, v] (m¢) = u’(¢;). In order to iterate the
Euler equation, one needs to discretize the state-space. This amounts to define a
grid for my, i.e. {p1,p2,- -, s}, to discretize the distribution of permanent and

transitory income shocks and solve:

u' (x1) = BRE; {Gip\l/t_—f—plvé—&-l[G\I/L;rl(Ml —x1)+ Et+1]}

u' (x2) = BRE {Gipq/;flvé+1[am¢;l(ﬂ2 —x2) + Et+1]}

u' (x1) = BRE; {G_p‘l’;ﬁvﬁl[ﬁ(m —Xx1)+ Et+1]}
with respect to {x1,X2, - ,xr}. The consumption function is then obtained
by interpolating the couples {(x1, p1), (x2, p2), - -+ , (X1, 41) }. Solving system
requires evaluating the expected value of the marginal utility of consumption at
each of the grid points. This entails a substantial amount of computer time, for
fine enough state-space grids.
The endogenous gridpoints algorithm improves on standard solution methods

(see Carroll, 2006). Instead of defining a grid for m;, the algorithm requires

2For an introductory treatment of the topic see Adda and Cooper, 2003; more advanced

readers might want to look at Judd, 1998.
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discretizing m; — ¢4, i.e. the end of period asset, and solving;:

X1 = u’—l {ﬂREt |:G_p\IJ;er1U£+1(G\PL;+10é1 + Et+1):|}

X2 = _1 {5REt |:G \IJtJrlthrl(G\I/ ag + ut—&—l)} }
(3)
X1 = {5REt [G \Ijt—i-lvt—i-l(c\p ar + ~t+1>”
where {aq, 9, -+ ,ar} is the grid for the end of period asset. The endoge-

nous gridpoints algorithm is more efficient than other standard methods since it
evaluates expectations only for points used in the interpolating functions. This
translates into non-negligible savings in the amount of computer time needed to
solve the consumers problem. We thus compare our approximate consumption

function with that obtained using the endogenous grid-point method.

4 The approximate consumption function

In order to derive our approximate consumption function, we exploit the analytic
properties of the marginal propensity to consume out of cash-on-hand (MPC).
This is known to be decreasing in a model with precautionary saving (see Carroll
and Kimball, 1996). Furthermore, Carroll (2004) shows that the MPC is bounded

from above and from below, namely that:

lim ¢/(m) =&
m—0

lim d(m) =k
m—0o0
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where ¢/(m) is the MPC, § > k > 0 and:
1 1
K = 1—-R (Rfp)r
1 l
£ = 1-R"(RB)r

This suggests to approximate the MPC with the following family of functions:

(1+e7%) (R — k)
1+ eb(m—a)

+ K (4)

where a is non-negative and b is positive realﬂ

Given K and k, each couple of parameters a and b identifies a different member
within the family of functions . It is immediate to verify that the approximate
MPC increases with a and that the larger b the faster the MPC goes to its
boundsﬁ Figure |1 shows the approximate MPC obtained by varying a and for
G=103,R=1.04,p=2,8=0.96 and p = 0.005 and b = 1.5. The approximate
MPC is decreasing, and bounded between K and k. Furthermore, it is concave
for m < a, convex for m > a, and therefore posses an inflexion point at a. Figure
shows the approximate MPC for various values of b, for G = 1.03, R = 1.04,
p=2,06=0.96 and p = 0.005 and a = 1.5. The Figure helps to visualize that
the higher b the faster the approximate MPC goes to its bounds.

By integrating back and recalling that the consumption function goes to

zero and infinity for cash-on-hand going to zero and infinity, respectively, one

3The approximate MPC is obtained form the Fermi-Dirac distribution by multiplying it by
(1 + e ®) (% — k) and adding k. The Fermi-Dirac distribution describes the probability of
a fermion occupying a given energy level. In the Fermi-Dirac distribution a is the so-called
Fermi-energy and b the inverse of temperature.

be®? (ebmfl) (F—k)

4The first derivative of the approximate MPC with respect to a is (e rammy?
eab4ebm
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obtains the approximate consumption function, i.e.:

(1+e ) (% — k) {m - %[log(l + M=)y _log(1 + eba)]} +rm  (5)

The approximate consumption function is continuous, increasing and con-
caveﬂ Figure |3| plots the approximate consumption function for various values of
a, for G=1.03, R=1.04, p=2, 3 =0.96 and p = 0.005 and b = 1.5. The effect
of changing b is shown in Figure [4, which plots the approximate consumption
function for various values of b.

In order to select a member in the class of the approximate MPC, one needs
to chose a and b for given growth factor of income, interest factor, discount
factor, relative risk aversion, standard deviation of permanent and transitory in-
come shocks and probability of unemployment. Since in the buffer-stock model
the most travelled region of the state space is around the target level of cash-
on-hand, it seems natural to search for criteria that enhance the performance
of the approximation around the target. We therefore set a and b to minimize
the squared Euler equation errors at the target. Euler equation errors are a
standard measure of the quality of an approximation: the better an approxima-
tion, the lower (in absolute value) Euler equation errors. As in Judd (1992) and
Arouba, Fernandez-Villaverde and Rubio-Ramirez (2006), Euler equation error
are standardized by consumption.

The next section compares the approximate consumption with the consump-

tion function obtained employing the endogenous grid point algorithm to solve

®Notice that one can easily allow for life-cycle effects by making G to vary with age.
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the consumers problem. For simplicity of exposition, we call the latter the actual
consumption function, but we will show that in some region of the state space
the approximate involves lower errors than the actual consumption function.
The comparison between the actual and the approximate consumption func-
tion is made in five economies, which differ among them for the assumptions on
labor income uncertainty and risk aversion. This exercise will help to understand

how the quality of the approximation varies with uncertainty.

5 Five examples

This section uses the endogenous grid point algorithm to solve the consumer
problem for five economies and compares the solution with the approximate con-
sumption function.

Our first example assumes G = 1.03, R = 1.04, p = 2, 8 = 0.96, p =
0.005, 09 = oy = 0.1. These are the values used in Carroll (2004). In such
parametrization of the model, a and b, are found to be equal to 0.8982 and to
1.0941.

Figure || displays the actual and the approximate consumption function. The
approximate is very close to the actual consumption function in the 0 to 2 range
of cash-on-hand. The target level of cash-on-hand is equal to 1.45 and to 1.41
if one uses, respectively, the actual and the approximate consumption function.
This implies that the two functions are close in the relevant area, around the

target, where consumption spends most of time.
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To judge the quality of the approximation we compute Euler equation errors.
Since both our solution methods are in the end approximations, the Euler equa-
tion cannot be expected to hold exactly. The Euler equation errors are divided by
consumption, to get a unit free number. Figure [6] plots the log 10 of the absolute
value of normalized Euler Equation errors for both consumption functions. The
Figure reveals that the Euler equation errors incurred by using the endogenous
grid-point algorithm are generally lower, except around zero (between 0 and 0.36)
and around the targetﬁ The quality of the approximation is, therefore, better for
very small values of cash-on-hand and around the target. This is not surprising
since the approximation exploits the analytic properties of the consumption func-
tion at its bounds, while the endogenous grid-point algorithm does not, and the
parameters a and b are set to minimize the Euler equation errors at the targetﬂ

The comparison between the actual and the approximate consumption func-
tion is carried on by simulating 10,000 times the model. The correlation between
actual and approximate consumption ranges between 0.90 and 0.99 across simu-
lation runs and is equal on average to 96 percent. Figure [7| plots the actual and

the approximate simulated consumption for the first simulation run, together

5The Euler equation errors for the approximate consumption function are also lower for
cash-on-hand between 5 and 6, where there is a local minimum, and for very large values of

cash-on-hand.

"This suggests modifying the endogenous grid-point algorithm to account for the limiting
properties of the consumption function. This can be done by employing the approximate con-
sumption function for points outside the grid. While this requires more computer time, the

precision gains depends on the particular parametrization chosen.
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with income. The approximate consumption path is smoother that the actual,
as expected.

To shed further light on the quality of the approximation, we compute the
first four moments of the consumption paths generated from the actual and
the approximate consumption function. The across-simulation averages of these
moments are reported in Table Under the actual consumption function, the
first, second, third and fourth moments of consumption average to 1.007 (with
standard error equal to 0.014), 1.018 (0.026), 1.033 (0.039) and 1.051 (0.052)
across simulation runs; under the approximate, to 1.004 (0.013), 1.014 (0.025),
1.029 (0.037), 1.049 (0.049), respectively. The differences between the actual
and the approximate consumption function show up at the third decimal place
for the first two moments of consumption, and at the second decimal place for
the third and fourth moments, but they are never statistically significant. We
also investigate the time dependency in the simulated data and compute two
more moments, the expected value of time ¢ consumption multiplied by ¢ —
1 consumption (E(ctct—1)) and by ¢ — 2 consumption (E(cici—2)). Using the
endogenous grid-point algorithm, F(cici—1) and E(cpei—2) are equal respectively
to 1.02 and 1.021, using the approximate to 1.012 and 1.012. Again the differences
shows up at the second decimal place but are not statistically significant.

Taking the averages across simulation runs helps to compare the approximate
with the actual consumption function, but hides potential differences within each
simulation run between the approximate and the endogenous grid point solution.

We therefore compute in each simulation run the relative error for the first,
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second, third and fourth moments of consumption paths, and for E(cic;—1) and

E(ciei—9) as:

[P — ||

Izl

where £/ and pg<

4¢t are, respectively, the relevant moments of approximate and

actual consumption computed in the i‘h simulation run. Figure |8 plots the
across-simulations kernel density of the relative error for the first four moments of
approximate consumption and for F(c;c;—1) and E(ciei—2). The kernel densities
are spiked nearby zero. Moreover, the Figure shows that for the first moment
replacing the actual with the approximate consumption function causes an error
at the third decimal place, for the other moments at the second.

The second example differs from the first by setting o9 = o, = 0.05. Under
this parametrization, a is found to be 1.07, and b 0.92. Figure [0 shows the
actual and the approximate consumption function and Figure reports the
Euler equation error. As above, the quality of the approximation improves for
small values of cash-on-hand and around the target, which is equal to 1.35 and to
1.31, if one uses the actual or the approximate consumption function, respectively.

We simulate the model and find that the correlation between actual and ap-
proximate consumption ranges between 96% and 99%. Table[l|reports the across
simulation averages of the first four moments of consumption, and of E(cici—1)
and E(cici—2). Under the actual consumption function these are 1.002 (0.009),
1.008 (0.015), 1.016 (0.021), 1.025 (0.027), 1.009 (0.018), and 1.011 (0.018), un-
der the approximate 1.001 (0.009), 1.005 (0.015), 1.013 (0.020), 1.022 (0.026),

1.004 (0.017), and 1.004 (0.018). The differences across solution methods show
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up at the third decimal place for all moments except F(cic;—2) and are never
statistically significant. The kernel density of the relative errors for the first four
moments of consumption and for F(cici—1) and E(cici—2) are plotted in Figure
[[1 The Figure reveals that for all moments the most frequent errors are in the
order of 1073,

In the third example, we consider the case of a high income risk economy and
therefore set 09 = o, = 0.12. |§| The optimal a is smaller and b larger than in
the baseline case and are equal, respectively, to 0.7766 and 1.2232. The actual
and the approximate consumption function for this economy are displayed in
Figure and the Euler equation errors in Figure Again the approximation
performs relatively better in the vicinity of the target, equal, in this case, to
1.57 under the actual and to 1.53 under the approximate consumption function.
The correlation between actual and approximate consumption ranges between
88% and 98%, while the differences across the two solution methods show up
at the most at the second decimal place and are never statistically significant,
as shown in Table Using the endogenous grid-point algorithm, the first for
moments of consumption paths and E(cici—1) and E(cici—2) are 1.011 (0.017),
1.027 (0.034), 1.048 (0.052), 1.073 (0.070), 1.03 (0.035), 1.031 (0.036); using

the approximate 1.007 (0.016), 1.021 (0.031), 1.041 (0.046), 1.067 (0.063), 1.02

8Values of oy larger than 0.12 are not compatible with this parametrization of the buffer-
stock model of saving. In order for the solution to exhibit a unique target level of cash-on-hand,
it must happen that RGE;[G¥,[,] < 1 and it is easy to verify that LHS of this inequality

increases with oy,.
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(0.032), 1.02 (0.032). Figure [14]shows the kernel densities of relative errors. For
all moments most mass is around zero, and the distribution features a small
probability of errors of order larger than 1072

The last two experiments study how risk aversion affects the quality of the
approximation. We set the relative risk aversion in turn to 4 (high risk-aversion
case) and to 1.5 (low risk-aversion case). In the former case we find that ¢ and
b are equal to 1.067 and 0.919, in the latter to 0.962 and 1.080, respectively.
Figure [15] plots the actual and the approximate consumption function for p = 4,
and [16] for p = 1.5. The figures reveal that for both values of the relative risk
aversion the approximate is close to the actual consumption function. To assess
the degree of similarity between actual and approximate consumption function,
we compute the Euler equation errors. These are plotted in Figure[I7]for the high-
risk aversion case and in Figure [18| for low risk-aversion case. The approximate
features smaller errors than the actual consumption function around the target
(1.824 for high and 1.314 for low risk-aversion).

Simulating the model, we discover that the correlation between actual and
approximate consumption ranges between 0.85 to 0.97 in the high risk-aversion,
and between 0.908 and 0.987 in the low risk-aversion case. The differences be-
tween moments are larger in the high risk aversion than in the low risk-aversion
cases, but are never statistically significant in both cases, as shown in Table
The kernel densities plotted in figures and [20] confirm this pattern: relative
errors are larger in the more non-linear case. This is perhaps not surprising and

leads to wonder how a and b depend on the deep parameters of the consumer’s
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problem. The next section is devoted to answer such question.

6 The choice of ¢ and b

This section explores how the choice of a and b depends on the deep parameters
of the consumer’s problem. Table [2] computes a and b in several experiments for
the discount factor, the relative risk aversion, the growth and the interest factor,
the probability of unemployment and the standard deviation of the logarithm of
permanent and transitory income shocks.

Letting the discount factor to vary between 0.95 and 0.99, we find a to de-
crease from 0.99 to 0.48 and b to increase from 1.05 and 1.40. To give economic
content to the effect of changing the discount factor on a and b, Table [2] also
reports the target cash-on-hand and the marginal propensity to consume out of
cash-on-hand at the target (MPC). As shown in the third and fourth rows of the
Table, the target increases and the MPC decreases as ( increases, which accords
with expectations.

Varying the relative risk aversion from 1.2 to 4 causes the target to increase
from 1.24 to 1.83 and the MPC to decrease from 0.57 to 0.32, and a and b varying,
respectively, from 1.02 to 1.06 and from 1.015 to 0.919. Again the effect of p on
the target and the MPC has the expected sign.

The parameters a and b also vary with the income growth factor: a increases
and b decreases. Accordingly, the target decreases from 2.2 to 1.41 and the MPC

increases from 0.11 to 0.45. Raising the interest factor from 1.04 to 1.06 has a
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positive impact on b and on the target and a negative impact on a and MPC.
The same is true for the probability of unemployment, and for the standard
deviations of log permanent and transitory shocks. Raising the probability of
unemployment from 0.001 to 0.10 makes the a to decrease from 1.17 to 0.83,
b to increase from 0.85 to 1.13, the target to more than double, and the MPC
at the target to shrink from 0.62 to 0.11. The effect of changing the standard
deviations of log permanent and transitory income has the same sign but is
smaller in magnitude. As one expects from the theory, increasing uncertainty
makes the precautionary motive for saving more intense and accordingly causes
the target wealth to increase.

In summary, a ranges between 0.65 and 1.17, and b between 0.85 and 1.38
across all experiments. The optimal values of @ and b are found for several
different combinations of the model parameters and are reported in Table [3| and
[ Beyond a and b the tables also compute the target level of cash-on-hand and
the MPC at the target. The results accord with the intuition: the target increases
with the discount factor, with the interest rate, with relative risk aversion and
with uncertainty and decreases with income growth. Having found the values of
a and b under several parametrization of the model, one wanders what one gains
(and loses) from using the approximate consumption function. The next section

answers this question.
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7 Gains and losses from using the approximate con-

sumption function

In order to quantify gains and losses from using the approximate consumption
function, two exercises are performed. First, we estimate the log-linearized Eu-
ler Equation (LLEE) on the data generated by the actual and the approximate
consumption function. The second exercise simulates the actual and the approx-
imate consumption function and investigates what error comes from replacing
the actual with the approximate consumption function.

To estimate the LLEE, we simulate a 100 time periods consumption model
using the actual and the approximate consumption function for 1000 consumers,
each differing for the interest factor and the realizations of the income shocks.
We will therefore exploit the across-consumers variation in the interest factor to
estimate the coefficients of the LLEE. Since the expectation error in the Euler
equation is correlated with the interest rate across-consumers, the exercise will
not provide a consistent estimate of the intertemporal elasticity of substitution
(IES). But, this equally applies to the estimation on the data obtained using
the actual and the approximate consumption function, in line with the indirect

inference approach to the estimation of the IESE]

9The indirect inference approach prescribes that one estimates the IES in two steps. In
the first an auxiliary model is estimated on real and simulated data. The simulated data are
obtained fixing to a given value the IES, and the other deep parameters of the consumer problem.
The auxiliary model is typically a version of the Euler Equation, that delivers biased estimate

of the IES. In the second step, the estimated coefficients of the auxiliary model on the real
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We estimate a log-linearized version of the Euler equation, i.e.:

AlnCiq1 = ag + arri + €ip 41

where 7; = In R;.

The results are shown in Table [5| and refer to five different configurations
of the parameters’ set. The first column of the Table refers to the baseline
configuration, which sets the discount factor to 0.96, the relative risk aversion to
2, the growth factor to 1.03, the probability of unemployment to 0.005, and the
standard deviation of log transitory and permanent income to 0.10. The Table
shows that the estimated ag and «; do not statistically differ if one uses data
generated from the actual or the approximate consumption function. The results
are similar in the second column, which assumes that the standard deviation
of the log transitory and permanent income shocks is 0.05 and leaves the other
parameters unchanged, in the third, where the standard deviation of the log
transitory and permanent income shocks is set to 0.12, in the fourth, where the
relative risk aversion is set to 4, in the fifth where it is set to 1.5. Therefore,
estimating the log-linearized Euler equation on data generated from the actual
and the approximate consumption function delivers very similar results.

Replacing the actual with the approximate consumption function entails an

approximation error. One might wonder what are the consequences of such error

data are compared with those obtained from the estimation of the auxiliary model in simulated
data. If the two set of coefficients are close enough, this means that the TES is the one used to
simulate the model. If they are not close, one goes back to the first step and sets a new value

for the IES (see Allen and Browning, 2003).

24



for the estimation of the log-linearized Euler equation. To answer this question,
we regress the approximation error on the interest rate. The results are reported
at the bottom of Table [5| and show that for all parameters configurations, except
for the high variance and the high risk aversion configurations (columns 3 and
4), the approximation error is orthogonal to the interest rate. This suggests that
the error entailed by replacing the actual with the approximate consumption
function is generally inconsequential for the estimation of the log-linearized Euler
equation, but in the case when the consumption function is highly concave, due
to high risk faced by the consumers or high risk aversion.

Quite often researchers are interested in solving and simulating models with
heterogenous agents. Agents typically have different preferences or different be-
liefs. One way to describe such differences is to assume that the interest factor
varies between agents. Therefore, as second exercise, we run the model for 100
time periods and 1000 agents, each differing by the the interest factor ranging
from 1.025 to 1.055. One question that might arise when dealing with such an
economy is what error entails replacing the heterogenous agents economy with a
single agent economy. Accordingly, we investigate what happens if one replaces
the actual consumption function with the approximate consumption function
computed for a unique interest factor, say equal to 1.04. For interest factors
different from 1.04, this amounts to ask how large is the error from replacing
the right actual consumption function with the wrong approximate consumption
function. This leads to the second exercise.

Table [6] computes the error that one incurs, on average, by replacing the right
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actual with the wrong approximate consumption function. The Table focuses on
two extreme cases. In the top panel, we show the average error when the actual
consumption function obtained with the interest factor set to 1.025 is replaced
with the approximate consumption function obtained with the interest factor set
to 1.04. The error is small, but statistically significant. Exploring the parameter
space along the interest factor dimension, we find that 1.025 is the only case
in which the error from replacing the right actual with the wrong approximate
consumption function is statistically different from zero. For brevity, we only
report in the bottom panel of Table [] the average error incurred by replacing
the actual consumption function computed with the interest factor 1.055 and the
approximate consumption with interest factor 1.04. The Table shows that the

error is small and never statistically different from zero.

8 Conclusions

This paper has provided an approximate consumption function for the Carroll’s
(1997) buffer stock model of saving. The approximation is derived by exploit-
ing the asymptotic behavior of the consumption function and of the marginal
propensity to consume out of cash-on-hand. Using the restrictions implied by
such asymptotic behavior, we proposed to approximate the marginal propen-
sity to consume by a linear transformation of the Fermi-Dirac distribution. The
transformation is made to depend explicitly on the interest factor, on the un-

employment probability, on the discount factor and the constant relative risk
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aversion. Moreover, the distribution depends on a couple of parameters, a and b,
which control for the degree of concavity of the consumption function, the speed
at which the marginal propensity to consume goes to its bounds and are therefore
related to the income risk parameters.

We simulate the actual and the approximate consumption function model
under five alternative configurations of the parameters space and show that one
cannot statistically distinguish simulated consumption moments from the actual
and the approximate consumption function. We then investigate how a and b
change with the deep parameters of the consumer problem and show that in the
several different parameter experiments a ranges between 0.65 and 1.17, and b
between 0.85 and 1.38.

We finally show that replacing the actual with the approximate consump-
tion function in the estimation of the log-linearized Euler equation is generally

inconsequential, except for high risk or high risk aversion economies.
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TABLE 5. The log-linearized Euler equation

Actual
r 0.013 0.010 0.018 0.005 0.018
(0.008) (0.007) (0.008)* (0.006) (0.008)*
constant 0.026 0.030 0.024 0.028 0.026
(0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)***

Approximate

r 0.015 0.009 0.025 0.009 0.019
(0.006)* (0.006) (0.006)*** (0.006) (0.007)**
constant 0.025 0.029 0.023 0.026 0.025
(0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)***

Error
r -0.002 0.001 -0.006 -0.004 -0.001
(0.002) (0.001) (0.002)** (0.001)** (0.002)
constant 0.001 0.001 0.001 0.001 0.001

(0.000)¥%*  (0.000)***  (0.000)***  (0.000)*** (0.000)***

Note. The table shows the estimated coefficients of the log-linearized Euler equation. In each
column 3, G, and p are set to 0.96, 1.03, and 0.005, respectively. In the first, second and third
column, p is set to 2, in the fourth to 4 and in the fifth 1.5. The standard deviation of log
income shocks is set to 0.1 in the first, the fourth, and the fifth, to 0.05 in the second and to

0.12 in the third. Standard errors are reported in parenthesis.

TABLE 6. Approximation error

Interest factor equal to 1.025
Average Error -0.028 -0.025 -0.032 -0.040 -0.025
(0.012)* (0.012)* (0.012)** (0.010)*** (0.014)

Interest factor equal to 1.055
Average Error 0.009 0.005 0.016 0.013 0.010
(0.007) (0.004) (0.008) (0.008) (0.007)

Note. In the top panel the interest factor is 1.025, in the bottom 1.055. The approximate
consumption function is obtained with 1.04 interest factor. The error is computed as the
difference between actual and approximate consumption. In each column 3, G, and p are
set to 0.96, 1.03, and 0.005, respectively. In the first, second and third column, p is set to 2, in
the fourth to 4 and in the fifth 1.5. The standard deviation of log income shocks is set to 0.1
in the first, the fourth, and the fifth, to 0.05 in the second and to 0.12 in the third. Standard

errors are reported in parenthesis.
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FIGURE 11. Across simulations distribution of relative errors. G = 1.03, R =
1.04, p =2, 3=0.96, p = 0.005, 09 = oy, = 0.05.
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FIGURE 12. Approximate and actual consumption function. G = 1.03, R = 1.04,

p=2,0=096,p=0.005 0p= 0y =0.12,
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FIGURE 13. Log 10 of the absolute value Euler Equation errors.

R=1.04,p=2, 8=0.96, p=0.005, 0y = 0 = 0.12.
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FIGURE 14. Across simulations distribution of relative errors. G = 1.03, R =
1.04, p =2, 3=0.96, p = 0.005, 09 = oy, = 0.12.
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FIGURE 15. Approximate and actual consumption function. G = 1.03, R = 1.04,
p=4,8=0.96,p=0.005 09 =0y =0.1.
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FIGURE 16. Approximate and actual consumption function. G = 1.03, R = 1.04,
p=15,3=0.96, p=0.005, 09 = 0y = 0.1.
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FicURE 17. Log 10 of the absolute value Euler Equation errors.

R=1.04, p=4, f=0.96, p=0.005, 0y = 0y = 0.1.
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FIGURE 18. Log 10 of the absolute value Euler Equation errors.

R=1.04, p=15,8=096, p=0.005, gy = o = 0.1.
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FIGURE 19. Across simulations distribution of relative errors. G = 1.03, R =
1.04, p =4, 3=0.96, p = 0.005, 0g = oy, = 0.1.
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FIGURE 20. Across simulations distribution of relative errors. G = 1.03, R =
1.04, p=1.5, 3 =10.96, p = 0.005, o9 = 0y, = 0.1.
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