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1 Introduction

Solving realistic versions of stochastic dynamic models of consumer choices re-

quires employing numerical methods. The availability of large scale data-set

makes it attractive to estimate such models. To pin down structural parameters,

one needs to solve the models and bring the solution to the data. This requires

being able to nest estimation with optimization. The challenge is often one of

dimensionality and CPU time. This makes it particularly useful approximating

the solution of the models. Using approximations involves errors, but there is

not agreement on the effect of such errors on estimation. To the extent that the

errors are small, one can still rely on approximations. Furthermore, approxima-

tions might turn to be useful in the specification search.

Approximating the consumption function has been a common exercise among

economists since long time. The use of perturbation methods in precautionary

saving models dates back to Leland (1968). Only recently, however, Feigenbaum

(2005) has investigated the accuracy of second, third and higher approximations

to the consumption function and provided some warning on the use of perturba-

tion methods.

This paper does not use perturbation methods in that departing from the

literature. We provide a class C∞ function to approximate the consumption

function in the buffer stock model of saving. The approximation is derived for

the Carroll’s (1992) incarnation of the buffer stock model, but equally applies

to the Deaton’s (1991) version of such model. It relies on the monotonicity of
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the consumption function, on concavity, and on the fact that the consumption

function is bounded from above and below and so is its derivative.

The paper is organized as follows. Notation is lied down in Section 2. Section

3 reviews two methods for numerically solving the model: the standard method

and the endogenous gridpoints algorithm. The approximation is derived and

discussed in Section 4. Section 5 compares the approximate consumption function

with the solution obtained using the endogenous grid-point algorithm in five

economies, and section 6 explores the factors affecting the shape the approximate

consumption function. Gains and losses from using the approximate consumption

function are discussed in section 7, while section 8 concludes.

2 The notation

Consumers live from time 0 to time T . They maximize:

E0

T∑
t=0

βtu (Ct)

with respect to consumption, Ct, under the dynamic budget constraint:

Wt+1 = R[Wt + Yt − Ct]

where β is the subjective discount factor, Wt+1 and Wt are, respectively, non-

human wealth at time t + 1 and t, R the interest factor and Yt labor income at

time t. The utility function is assumed to be of the CRRA type, i.e.:

u (Ct) =
C1−ρ
t

1− ρ
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where ρ is the coefficient of relative risk aversion. Labor income shifts due to

transitory and permanent shocks:

Yt = PtΞt

Pt = GPt−1Ψt

where Pt is permanent income, Ξt is the transitory and Ψt the permanent income

shocks, G is the growth factor of permanent income. Income is zero with a small

probability p, i.e.:

Ξt+n =


0 with probability p > 0

Θt+n
q with probability q ≡ 1− p

Furthermore, following Carroll (1992) we assume that transitory and permanent

shocks are dawn from a log-normal distribution and that: Et[Θt+n] = 1 for

n > 0, that var (log Θt+n) = σ2
θ , that Et[Ψt+n] = 1 and that var (log Ψt+n) = σ2

ψ.

Finally, it is assumed that consumer cannot die in debt, i.e.

CT ≤WT + YT

This last assumption naturally leads to use the dynamic programming principle.1

The Bellman equation for the consumer problem is:

Vt (Wt, Pt) = max
Ct
{u (Ct) + βEtVt+1 (Wt+1, Pt+1)}

s.t.

Pt+1 = GPtΨt+1

Wt+1 = R[Wt − Ct + Yt]

1The non-stationary nature of the problem is not an issue in this context, thanks to the

homogeneity of the objective function.
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In order to exploit the homogeneity of the utility function, one can define cash-

on-hand as:

Mt = Wt + Yt

This allows to rewrite the Bellman equation as:

vt (mt) = max
ct

{
u(ct) + βEtG

1−ρΨ1−ρ
t+1 vt+1(mt+1)

}
s.t.

mt+1 = R
GΨt+1

[mt − ct] + Ξt+1

(1)

where mt = Mt/Pt and ct = Ct/Pt. Carroll (2004) shows that (1) defines a

contraction mapping under three restrictions: (i) G < R; (ii) (Rβ)
1
ρ < R; (iii)

RβEt[GΨ−ρt+n] < 1.

The first condition guarantees that human capital does not explode in perfect

foresight models; the second that consumers are not too patient; the third that

consumers are impatient enough for cash-on-hand not to go to infinity. Carroll

(2004) also shows that the consumption function is increasing, concave and that it

is bounded from above and from below; moreover, that there exists a unique and

stable level of cash-on-hand, the target m∗, such that Etmt+1 = mt if mt = m∗.

3 Standard solution methods and the endogenous grid-

point algorithm

Problem (1) has not a closed form solution. This means that its solution re-

quires employing numerical methods. The problem is naturally characterized as

a recursive one, which means that the solution can be found by value or policy
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function iteration or using projection methods.2

A common solution strategy amounts to iterate Euler Equation for consump-

tion, starting from cT = mT :

u′ (ct) = βREt

{
G−ρΨ−ρt+1v

′
t+1[

R

GΨt+1
(mt − ct) + Ξt+1]

}

where, from the envelope condition, v′t (mt) = u′ (ct). In order to iterate the

Euler equation, one needs to discretize the state-space. This amounts to define a

grid for mt, i.e. {µ1, µ2, · · · , µI}, to discretize the distribution of permanent and

transitory income shocks and solve:

u′ (χ1) = βREt

{
G−ρΨ−ρt+1v

′
t+1[ R

GΨt+1
(µ1 − χ1) + Ξt+1]

}

u′ (χ2) = βREt

{
G−ρΨ−ρt+1v

′
t+1[ R

GΨt+1
(µ2 − χ2) + Ξt+1]

}
...

...

u′ (χI) = βREt

{
G−ρΨ−ρt+1v

′
t+1[ R

GΨt+1
(µI − χI) + Ξt+1]

}

(2)

with respect to {χ1, χ2, · · · , χI}. The consumption function is then obtained

by interpolating the couples {(χ1, µ1), (χ2, µ2), · · · , (χI , µI)}. Solving system (2)

requires evaluating the expected value of the marginal utility of consumption at

each of the grid points. This entails a substantial amount of computer time, for

fine enough state-space grids.

The endogenous gridpoints algorithm improves on standard solution methods

(see Carroll, 2006). Instead of defining a grid for mt, the algorithm requires
2For an introductory treatment of the topic see Adda and Cooper, 2003; more advanced

readers might want to look at Judd, 1998.
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discretizing mt − ct, i.e. the end of period asset, and solving:

χ1 = u
′−1
{
βREt

[
G−ρΨ−ρt+1v

′
t+1( R

GΨt+1
α1 + Ξt+1)

]}

χ2 = u
′−1
{
βREt

[
G−ρΨ−ρt+1v

′
t+1( R

GΨt+1
α2 + Ξt+1)

]}
...

...

χI = u
′−1
{
βREt

[
G−ρΨ−ρt+1v

′
t+1( R

GΨt+1
αI + Ξt+1)

]}

(3)

where {α1, α2, · · · , αI} is the grid for the end of period asset. The endoge-

nous gridpoints algorithm is more efficient than other standard methods since it

evaluates expectations only for points used in the interpolating functions. This

translates into non-negligible savings in the amount of computer time needed to

solve the consumers problem. We thus compare our approximate consumption

function with that obtained using the endogenous grid-point method.

4 The approximate consumption function

In order to derive our approximate consumption function, we exploit the analytic

properties of the marginal propensity to consume out of cash-on-hand (MPC).

This is known to be decreasing in a model with precautionary saving (see Carroll

and Kimball, 1996). Furthermore, Carroll (2004) shows that the MPC is bounded

from above and from below, namely that:

lim
m→0

c′(m) = κ

lim
m→∞

c′(m) = κ
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where c′(m) is the MPC, κ > κ > 0 and:

κ = 1−R−1(Rβp)
1
ρ

κ = 1−R−1(Rβ)
1
ρ

This suggests to approximate the MPC with the following family of functions:

(1 + e−ba)(κ− κ)
1 + eb(m−a)

+ κ (4)

where a is non-negative and b is positive real.3

Given κ and κ, each couple of parameters a and b identifies a different member

within the family of functions (4). It is immediate to verify that the approximate

MPC increases with a and that the larger b the faster the MPC goes to its

bounds.4 Figure 1 shows the approximate MPC obtained by varying a and for

G = 1.03, R = 1.04, ρ = 2, β = 0.96 and p = 0.005 and b = 1.5. The approximate

MPC is decreasing, and bounded between κ and κ. Furthermore, it is concave

for m < a, convex for m > a, and therefore posses an inflexion point at a. Figure

2 shows the approximate MPC for various values of b, for G = 1.03, R = 1.04,

ρ = 2, β = 0.96 and p = 0.005 and a = 1.5. The Figure helps to visualize that

the higher b the faster the approximate MPC goes to its bounds.

By integrating back (4) and recalling that the consumption function goes to

zero and infinity for cash-on-hand going to zero and infinity, respectively, one
3The approximate MPC is obtained form the Fermi-Dirac distribution by multiplying it by

(1 + e−ba)(κ − κ) and adding κ. The Fermi-Dirac distribution describes the probability of

a fermion occupying a given energy level. In the Fermi-Dirac distribution a is the so-called

Fermi-energy and b the inverse of temperature.

4The first derivative of the approximate MPC with respect to a is
b eab (ebm−1) (κ−κ)

(eab+ebm)2 .
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obtains the approximate consumption function, i.e.:

(1 + e−ba)(κ− κ)
{
m− 1

b
[log(1 + eb(m−a))− log(1 + e−ba)]

}
+ κm (5)

The approximate consumption function is continuous, increasing and con-

cave.5 Figure 3 plots the approximate consumption function for various values of

a, for G = 1.03, R = 1.04, ρ = 2, β = 0.96 and p = 0.005 and b = 1.5. The effect

of changing b is shown in Figure 4, which plots the approximate consumption

function for various values of b.

In order to select a member in the class of the approximate MPC, one needs

to chose a and b for given growth factor of income, interest factor, discount

factor, relative risk aversion, standard deviation of permanent and transitory in-

come shocks and probability of unemployment. Since in the buffer-stock model

the most travelled region of the state space is around the target level of cash-

on-hand, it seems natural to search for criteria that enhance the performance

of the approximation around the target. We therefore set a and b to minimize

the squared Euler equation errors at the target. Euler equation errors are a

standard measure of the quality of an approximation: the better an approxima-

tion, the lower (in absolute value) Euler equation errors. As in Judd (1992) and

Arouba, Fernández-Villaverde and Rubio-Ramı́rez (2006), Euler equation error

are standardized by consumption.

The next section compares the approximate consumption with the consump-

tion function obtained employing the endogenous grid point algorithm to solve
5Notice that one can easily allow for life-cycle effects by making G to vary with age.
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the consumers problem. For simplicity of exposition, we call the latter the actual

consumption function, but we will show that in some region of the state space

the approximate involves lower errors than the actual consumption function.

The comparison between the actual and the approximate consumption func-

tion is made in five economies, which differ among them for the assumptions on

labor income uncertainty and risk aversion. This exercise will help to understand

how the quality of the approximation varies with uncertainty.

5 Five examples

This section uses the endogenous grid point algorithm to solve the consumer

problem for five economies and compares the solution with the approximate con-

sumption function.

Our first example assumes G = 1.03, R = 1.04, ρ = 2, β = 0.96, p =

0.005, σθ = σψ = 0.1. These are the values used in Carroll (2004). In such

parametrization of the model, a and b, are found to be equal to 0.8982 and to

1.0941.

Figure 5 displays the actual and the approximate consumption function. The

approximate is very close to the actual consumption function in the 0 to 2 range

of cash-on-hand. The target level of cash-on-hand is equal to 1.45 and to 1.41

if one uses, respectively, the actual and the approximate consumption function.

This implies that the two functions are close in the relevant area, around the

target, where consumption spends most of time.
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To judge the quality of the approximation we compute Euler equation errors.

Since both our solution methods are in the end approximations, the Euler equa-

tion cannot be expected to hold exactly. The Euler equation errors are divided by

consumption, to get a unit free number. Figure 6 plots the log 10 of the absolute

value of normalized Euler Equation errors for both consumption functions. The

Figure reveals that the Euler equation errors incurred by using the endogenous

grid-point algorithm are generally lower, except around zero (between 0 and 0.36)

and around the target.6 The quality of the approximation is, therefore, better for

very small values of cash-on-hand and around the target. This is not surprising

since the approximation exploits the analytic properties of the consumption func-

tion at its bounds, while the endogenous grid-point algorithm does not, and the

parameters a and b are set to minimize the Euler equation errors at the target.7

The comparison between the actual and the approximate consumption func-

tion is carried on by simulating 10,000 times the model. The correlation between

actual and approximate consumption ranges between 0.90 and 0.99 across simu-

lation runs and is equal on average to 96 percent. Figure 7 plots the actual and

the approximate simulated consumption for the first simulation run, together
6The Euler equation errors for the approximate consumption function are also lower for

cash-on-hand between 5 and 6, where there is a local minimum, and for very large values of

cash-on-hand.
7This suggests modifying the endogenous grid-point algorithm to account for the limiting

properties of the consumption function. This can be done by employing the approximate con-

sumption function for points outside the grid. While this requires more computer time, the

precision gains depends on the particular parametrization chosen.
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with income. The approximate consumption path is smoother that the actual,

as expected.

To shed further light on the quality of the approximation, we compute the

first four moments of the consumption paths generated from the actual and

the approximate consumption function. The across-simulation averages of these

moments are reported in Table 1. Under the actual consumption function, the

first, second, third and fourth moments of consumption average to 1.007 (with

standard error equal to 0.014), 1.018 (0.026), 1.033 (0.039) and 1.051 (0.052)

across simulation runs; under the approximate, to 1.004 (0.013), 1.014 (0.025),

1.029 (0.037), 1.049 (0.049), respectively. The differences between the actual

and the approximate consumption function show up at the third decimal place

for the first two moments of consumption, and at the second decimal place for

the third and fourth moments, but they are never statistically significant. We

also investigate the time dependency in the simulated data and compute two

more moments, the expected value of time t consumption multiplied by t −

1 consumption (E(ctct−1)) and by t − 2 consumption (E(ctct−2)). Using the

endogenous grid-point algorithm, E(ctct−1) and E(ctct−2) are equal respectively

to 1.02 and 1.021, using the approximate to 1.012 and 1.012. Again the differences

shows up at the second decimal place but are not statistically significant.

Taking the averages across simulation runs helps to compare the approximate

with the actual consumption function, but hides potential differences within each

simulation run between the approximate and the endogenous grid point solution.

We therefore compute in each simulation run the relative error for the first,
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second, third and fourth moments of consumption paths, and for E(ctct−1) and

E(ctct−2) as:

‖µappi − µacti ‖
‖µacti ‖

where µappi and µacti are, respectively, the relevant moments of approximate and

actual consumption computed in the ith simulation run. Figure 8 plots the

across-simulations kernel density of the relative error for the first four moments of

approximate consumption and for E(ctct−1) and E(ctct−2). The kernel densities

are spiked nearby zero. Moreover, the Figure shows that for the first moment

replacing the actual with the approximate consumption function causes an error

at the third decimal place, for the other moments at the second.

The second example differs from the first by setting σθ = σψ = 0.05. Under

this parametrization, a is found to be 1.07, and b 0.92. Figure 9 shows the

actual and the approximate consumption function and Figure 10 reports the

Euler equation error. As above, the quality of the approximation improves for

small values of cash-on-hand and around the target, which is equal to 1.35 and to

1.31, if one uses the actual or the approximate consumption function, respectively.

We simulate the model and find that the correlation between actual and ap-

proximate consumption ranges between 96% and 99%. Table 1 reports the across

simulation averages of the first four moments of consumption, and of E(ctct−1)

and E(ctct−2). Under the actual consumption function these are 1.002 (0.009),

1.008 (0.015), 1.016 (0.021), 1.025 (0.027), 1.009 (0.018), and 1.011 (0.018), un-

der the approximate 1.001 (0.009), 1.005 (0.015), 1.013 (0.020), 1.022 (0.026),

1.004 (0.017), and 1.004 (0.018). The differences across solution methods show
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up at the third decimal place for all moments except E(ctct−2) and are never

statistically significant. The kernel density of the relative errors for the first four

moments of consumption and for E(ctct−1) and E(ctct−2) are plotted in Figure

11. The Figure reveals that for all moments the most frequent errors are in the

order of 10−3.

In the third example, we consider the case of a high income risk economy and

therefore set σθ = σψ = 0.12. 8 The optimal a is smaller and b larger than in

the baseline case and are equal, respectively, to 0.7766 and 1.2232. The actual

and the approximate consumption function for this economy are displayed in

Figure 12, and the Euler equation errors in Figure 13. Again the approximation

performs relatively better in the vicinity of the target, equal, in this case, to

1.57 under the actual and to 1.53 under the approximate consumption function.

The correlation between actual and approximate consumption ranges between

88% and 98%, while the differences across the two solution methods show up

at the most at the second decimal place and are never statistically significant,

as shown in Table 1. Using the endogenous grid-point algorithm, the first for

moments of consumption paths and E(ctct−1) and E(ctct−2) are 1.011 (0.017),

1.027 (0.034), 1.048 (0.052), 1.073 (0.070), 1.03 (0.035), 1.031 (0.036); using

the approximate 1.007 (0.016), 1.021 (0.031), 1.041 (0.046), 1.067 (0.063), 1.02
8Values of σψ larger than 0.12 are not compatible with this parametrization of the buffer-

stock model of saving. In order for the solution to exhibit a unique target level of cash-on-hand,

it must happen that RβEt[GΨ−ρt+n] < 1 and it is easy to verify that LHS of this inequality

increases with σψ.
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(0.032), 1.02 (0.032). Figure 14 shows the kernel densities of relative errors. For

all moments most mass is around zero, and the distribution features a small

probability of errors of order larger than 10−2.

The last two experiments study how risk aversion affects the quality of the

approximation. We set the relative risk aversion in turn to 4 (high risk-aversion

case) and to 1.5 (low risk-aversion case). In the former case we find that a and

b are equal to 1.067 and 0.919, in the latter to 0.962 and 1.080, respectively.

Figure 15 plots the actual and the approximate consumption function for ρ = 4,

and 16 for ρ = 1.5. The figures reveal that for both values of the relative risk

aversion the approximate is close to the actual consumption function. To assess

the degree of similarity between actual and approximate consumption function,

we compute the Euler equation errors. These are plotted in Figure 17 for the high-

risk aversion case and in Figure 18 for low risk-aversion case. The approximate

features smaller errors than the actual consumption function around the target

(1.824 for high and 1.314 for low risk-aversion).

Simulating the model, we discover that the correlation between actual and

approximate consumption ranges between 0.85 to 0.97 in the high risk-aversion,

and between 0.908 and 0.987 in the low risk-aversion case. The differences be-

tween moments are larger in the high risk aversion than in the low risk-aversion

cases, but are never statistically significant in both cases, as shown in Table 1.

The kernel densities plotted in figures 19 and 20 confirm this pattern: relative

errors are larger in the more non-linear case. This is perhaps not surprising and

leads to wonder how a and b depend on the deep parameters of the consumer’s
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problem. The next section is devoted to answer such question.

6 The choice of a and b

This section explores how the choice of a and b depends on the deep parameters

of the consumer’s problem. Table 2 computes a and b in several experiments for

the discount factor, the relative risk aversion, the growth and the interest factor,

the probability of unemployment and the standard deviation of the logarithm of

permanent and transitory income shocks.

Letting the discount factor to vary between 0.95 and 0.99, we find a to de-

crease from 0.99 to 0.48 and b to increase from 1.05 and 1.40. To give economic

content to the effect of changing the discount factor on a and b, Table 2 also

reports the target cash-on-hand and the marginal propensity to consume out of

cash-on-hand at the target (MPC). As shown in the third and fourth rows of the

Table, the target increases and the MPC decreases as β increases, which accords

with expectations.

Varying the relative risk aversion from 1.2 to 4 causes the target to increase

from 1.24 to 1.83 and the MPC to decrease from 0.57 to 0.32, and a and b varying,

respectively, from 1.02 to 1.06 and from 1.015 to 0.919. Again the effect of ρ on

the target and the MPC has the expected sign.

The parameters a and b also vary with the income growth factor: a increases

and b decreases. Accordingly, the target decreases from 2.2 to 1.41 and the MPC

increases from 0.11 to 0.45. Raising the interest factor from 1.04 to 1.06 has a
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positive impact on b and on the target and a negative impact on a and MPC.

The same is true for the probability of unemployment, and for the standard

deviations of log permanent and transitory shocks. Raising the probability of

unemployment from 0.001 to 0.10 makes the a to decrease from 1.17 to 0.83,

b to increase from 0.85 to 1.13, the target to more than double, and the MPC

at the target to shrink from 0.62 to 0.11. The effect of changing the standard

deviations of log permanent and transitory income has the same sign but is

smaller in magnitude. As one expects from the theory, increasing uncertainty

makes the precautionary motive for saving more intense and accordingly causes

the target wealth to increase.

In summary, a ranges between 0.65 and 1.17, and b between 0.85 and 1.38

across all experiments. The optimal values of a and b are found for several

different combinations of the model parameters and are reported in Table 3 and

4. Beyond a and b the tables also compute the target level of cash-on-hand and

the MPC at the target. The results accord with the intuition: the target increases

with the discount factor, with the interest rate, with relative risk aversion and

with uncertainty and decreases with income growth. Having found the values of

a and b under several parametrization of the model, one wanders what one gains

(and loses) from using the approximate consumption function. The next section

answers this question.
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7 Gains and losses from using the approximate con-

sumption function

In order to quantify gains and losses from using the approximate consumption

function, two exercises are performed. First, we estimate the log-linearized Eu-

ler Equation (LLEE) on the data generated by the actual and the approximate

consumption function. The second exercise simulates the actual and the approx-

imate consumption function and investigates what error comes from replacing

the actual with the approximate consumption function.

To estimate the LLEE, we simulate a 100 time periods consumption model

using the actual and the approximate consumption function for 1000 consumers,

each differing for the interest factor and the realizations of the income shocks.

We will therefore exploit the across-consumers variation in the interest factor to

estimate the coefficients of the LLEE. Since the expectation error in the Euler

equation is correlated with the interest rate across-consumers, the exercise will

not provide a consistent estimate of the intertemporal elasticity of substitution

(IES). But, this equally applies to the estimation on the data obtained using

the actual and the approximate consumption function, in line with the indirect

inference approach to the estimation of the IES.9

9The indirect inference approach prescribes that one estimates the IES in two steps. In

the first an auxiliary model is estimated on real and simulated data. The simulated data are

obtained fixing to a given value the IES, and the other deep parameters of the consumer problem.

The auxiliary model is typically a version of the Euler Equation, that delivers biased estimate

of the IES. In the second step, the estimated coefficients of the auxiliary model on the real
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We estimate a log-linearized version of the Euler equation, i.e.:

∆ lnCit+1 = α0 + α1ri + εit+1

where ri = lnRi.

The results are shown in Table 5 and refer to five different configurations

of the parameters’ set. The first column of the Table refers to the baseline

configuration, which sets the discount factor to 0.96, the relative risk aversion to

2, the growth factor to 1.03, the probability of unemployment to 0.005, and the

standard deviation of log transitory and permanent income to 0.10. The Table

shows that the estimated α0 and α1 do not statistically differ if one uses data

generated from the actual or the approximate consumption function. The results

are similar in the second column, which assumes that the standard deviation

of the log transitory and permanent income shocks is 0.05 and leaves the other

parameters unchanged, in the third, where the standard deviation of the log

transitory and permanent income shocks is set to 0.12, in the fourth, where the

relative risk aversion is set to 4, in the fifth where it is set to 1.5. Therefore,

estimating the log-linearized Euler equation on data generated from the actual

and the approximate consumption function delivers very similar results.

Replacing the actual with the approximate consumption function entails an

approximation error. One might wonder what are the consequences of such error

data are compared with those obtained from the estimation of the auxiliary model in simulated

data. If the two set of coefficients are close enough, this means that the IES is the one used to

simulate the model. If they are not close, one goes back to the first step and sets a new value

for the IES (see Allen and Browning, 2003).
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for the estimation of the log-linearized Euler equation. To answer this question,

we regress the approximation error on the interest rate. The results are reported

at the bottom of Table 5 and show that for all parameters configurations, except

for the high variance and the high risk aversion configurations (columns 3 and

4), the approximation error is orthogonal to the interest rate. This suggests that

the error entailed by replacing the actual with the approximate consumption

function is generally inconsequential for the estimation of the log-linearized Euler

equation, but in the case when the consumption function is highly concave, due

to high risk faced by the consumers or high risk aversion.

Quite often researchers are interested in solving and simulating models with

heterogenous agents. Agents typically have different preferences or different be-

liefs. One way to describe such differences is to assume that the interest factor

varies between agents. Therefore, as second exercise, we run the model for 100

time periods and 1000 agents, each differing by the the interest factor ranging

from 1.025 to 1.055. One question that might arise when dealing with such an

economy is what error entails replacing the heterogenous agents economy with a

single agent economy. Accordingly, we investigate what happens if one replaces

the actual consumption function with the approximate consumption function

computed for a unique interest factor, say equal to 1.04. For interest factors

different from 1.04, this amounts to ask how large is the error from replacing

the right actual consumption function with the wrong approximate consumption

function. This leads to the second exercise.

Table 6 computes the error that one incurs, on average, by replacing the right
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actual with the wrong approximate consumption function. The Table focuses on

two extreme cases. In the top panel, we show the average error when the actual

consumption function obtained with the interest factor set to 1.025 is replaced

with the approximate consumption function obtained with the interest factor set

to 1.04. The error is small, but statistically significant. Exploring the parameter

space along the interest factor dimension, we find that 1.025 is the only case

in which the error from replacing the right actual with the wrong approximate

consumption function is statistically different from zero. For brevity, we only

report in the bottom panel of Table 6 the average error incurred by replacing

the actual consumption function computed with the interest factor 1.055 and the

approximate consumption with interest factor 1.04. The Table shows that the

error is small and never statistically different from zero.

8 Conclusions

This paper has provided an approximate consumption function for the Carroll’s

(1997) buffer stock model of saving. The approximation is derived by exploit-

ing the asymptotic behavior of the consumption function and of the marginal

propensity to consume out of cash-on-hand. Using the restrictions implied by

such asymptotic behavior, we proposed to approximate the marginal propen-

sity to consume by a linear transformation of the Fermi-Dirac distribution. The

transformation is made to depend explicitly on the interest factor, on the un-

employment probability, on the discount factor and the constant relative risk
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aversion. Moreover, the distribution depends on a couple of parameters, a and b,

which control for the degree of concavity of the consumption function, the speed

at which the marginal propensity to consume goes to its bounds and are therefore

related to the income risk parameters.

We simulate the actual and the approximate consumption function model

under five alternative configurations of the parameters space and show that one

cannot statistically distinguish simulated consumption moments from the actual

and the approximate consumption function. We then investigate how a and b

change with the deep parameters of the consumer problem and show that in the

several different parameter experiments a ranges between 0.65 and 1.17, and b

between 0.85 and 1.38.

We finally show that replacing the actual with the approximate consump-

tion function in the estimation of the log-linearized Euler equation is generally

inconsequential, except for high risk or high risk aversion economies.
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Table 5. The log-linearized Euler equation

Actual
r 0.013 0.010 0.018 0.005 0.018

(0.008) (0.007) (0.008)* (0.006) (0.008)*
constant 0.026 0.030 0.024 0.028 0.026

(0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)***

Approximate
r 0.015 0.009 0.025 0.009 0.019

(0.006)* (0.006) (0.006)*** (0.006) (0.007)**
constant 0.025 0.029 0.023 0.026 0.025

(0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)***

Error
r -0.002 0.001 -0.006 -0.004 -0.001

(0.002) (0.001) (0.002)** (0.001)** (0.002)
constant 0.001 0.001 0.001 0.001 0.001

(0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)***

Note. The table shows the estimated coefficients of the log-linearized Euler equation. In each

column β, G, and p are set to 0.96, 1.03, and 0.005, respectively. In the first, second and third

column, ρ is set to 2, in the fourth to 4 and in the fifth 1.5. The standard deviation of log

income shocks is set to 0.1 in the first, the fourth, and the fifth, to 0.05 in the second and to

0.12 in the third. Standard errors are reported in parenthesis.

Table 6. Approximation error

Interest factor equal to 1.025
Average Error -0.028 -0.025 -0.032 -0.040 -0.025

(0.012)* (0.012)* (0.012)** (0.010)*** (0.014)

Interest factor equal to 1.055
Average Error 0.009 0.005 0.016 0.013 0.010

(0.007) (0.004) (0.008) (0.008) (0.007)

Note. In the top panel the interest factor is 1.025, in the bottom 1.055. The approximate

consumption function is obtained with 1.04 interest factor. The error is computed as the

difference between actual and approximate consumption. In each column β, G, and p are

set to 0.96, 1.03, and 0.005, respectively. In the first, second and third column, ρ is set to 2, in

the fourth to 4 and in the fifth 1.5. The standard deviation of log income shocks is set to 0.1

in the first, the fourth, and the fifth, to 0.05 in the second and to 0.12 in the third. Standard

errors are reported in parenthesis.
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Figure 1. The effect of a on the marginal propensity to consume

Figure 2. The effect of b on the marginal propensity to consume
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Figure 3. The effect of a on the approximate consumption function

Figure 4. The effect of b on the approximate consumption function
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Figure 5. Approximate and actual consumption function. G = 1.03, R = 1.04,
ρ = 2, β = 0.96, p = 0.005, σθ = σψ = 0.1.
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Figure 6. Log 10 of the absolute value Euler Equation errors. G = 1.03,
R = 1.04, ρ = 2, β = 0.96, p = 0.005, σθ = σψ = 0.1.
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Figure 7. Consumption and Income. G = 1.03, R = 1.04, ρ = 2, β = 0.96,
p = 0.005, σθ = σψ = 0.1.
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Figure 8. Across simulations distribution of relative errors. G = 1.03, R = 1.04,
ρ = 2, β = 0.96, p = 0.005, σθ = σψ = 0.1.
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Figure 9. Approximate and actual consumption function. G = 1.03, R = 1.04,
ρ = 2, β = 0.96, p = 0.005, σθ = σψ = 0.05.

Figure 10. Log 10 of the absolute value Euler Equation errors. G = 1.03,
R = 1.04, ρ = 2, β = 0.96, p = 0.005, σθ = σψ = 0.05.
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Figure 11. Across simulations distribution of relative errors. G = 1.03, R =
1.04, ρ = 2, β = 0.96, p = 0.005, σθ = σψ = 0.05.
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Figure 12. Approximate and actual consumption function. G = 1.03, R = 1.04,
ρ = 2, β = 0.96, p = 0.005, σθ = σψ = 0.12.

Figure 13. Log 10 of the absolute value Euler Equation errors. G = 1.03,
R = 1.04, ρ = 2, β = 0.96, p = 0.005, σθ = σψ = 0.12.
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Figure 14. Across simulations distribution of relative errors. G = 1.03, R =
1.04, ρ = 2, β = 0.96, p = 0.005, σθ = σψ = 0.12.
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Figure 15. Approximate and actual consumption function. G = 1.03, R = 1.04,
ρ = 4, β = 0.96, p = 0.005, σθ = σψ = 0.1.
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Figure 16. Approximate and actual consumption function. G = 1.03, R = 1.04,
ρ = 1.5, β = 0.96, p = 0.005, σθ = σψ = 0.1.
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Figure 17. Log 10 of the absolute value Euler Equation errors. G = 1.03,
R = 1.04, ρ = 4, β = 0.96, p = 0.005, σθ = σψ = 0.1.

Figure 18. Log 10 of the absolute value Euler Equation errors. G = 1.03,
R = 1.04, ρ = 1.5, β = 0.96, p = 0.005, σθ = σψ = 0.1.
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Figure 19. Across simulations distribution of relative errors. G = 1.03, R =
1.04, ρ = 4, β = 0.96, p = 0.005, σθ = σψ = 0.1.
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Figure 20. Across simulations distribution of relative errors. G = 1.03, R =
1.04, ρ = 1.5, β = 0.96, p = 0.005, σθ = σψ = 0.1.

49


	approxconsfun_csefwp.pdf
	Introduction
	The notation
	Standard solution methods and the endogenous grid-point algorithm
	The approximate consumption function
	Five examples
	The choice of a and b
	Gains and losses from using the approximate consumption function
	Conclusions


