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Abstract 
 
In a costly state verification model under commitment the principal may acquire a costly public and imperfectly 
revealing signal before or after contracting. If the project remains profitable after all signal realisations, optimally 
the signal is collected, if at all, after contracting, and it may be acquired randomly or deterministically. Moreover, 
audit is deterministic and targeted on some signal-state combinations. The paper provides a detailed 
characterisation of the optimal contract and performs a comparative static analysis of signal acquisition strategy 
and payoffs with respect to enforcement costs and informativeness of the signal. We explore robustness of the 
results, including commitment issues. 
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Introduction

In the costly state veri�cation (CSV) models the reporting incentives of informed parties can often

be controlled by costly audit. Within a commitment setting, in general audits should be stochastic

(Border and Sobel, 1985; Mookherjee and Png, 1989). Deterministic audits may instead arise in

a no commitment world to ensure that the contracted plan will be executed (Krasa and Villamil,

2000). However it begs the question of why audit alone is used to police cheating. Either informed

or uninformed parties could seek alternatives. We analyse when and why it may be optimal to mix

costly endogenous public signals with costly audit. In particular we allow uninformed parties to

ex-ante spend resources to improve information regarding the likelihood of future events. Should

they do this and if so when (before or after contracting)? Moreover we investigate, for each of

these possible timings of information gathering, whether and how information alters the principal�s

ex-post audit strategy, providing a detailed characterisation of the optimal contract.

Many real world examples match our modelling scenario. In a corporate �nance setting, before

providing a capital injection, lenders may ask for a credit rating. The actual revenues that accrue

after the loan are the managers�private information, but the lenders�decision to audit could be

in�uenced by the rating company�s ex ante assessment. In a tax audit scenario, tax authorities adopt

a variety of methods to screen taxpayers, which may then a¤ect the subsequent audit selection.

In an insurance context, insurers collect information on policyholders characteristics, or history of

past claims to assign them to credit risk classes. The insurer�s decision to verify the occurrence or

the magnitude of damages of policyholders �ling for claims may be a¤ected by the credit risk class

they belong to.

We deal with the above questions by analysing the contract between an ex-post informed agent

and a principal who can, at a cost, choose to become ex-ante better informed and/or ex-post

perfectly informed. Speci�cally, we construct a CSV model in which, either before or after a

contract is signed, but before the agents revenue state is realised, the principal can improve the

information of both parties by acquiring a costly public signal correlated with the subsequent

state.1 This allows us to focus on the trade-o¤ between ex-ante and ex-post information gathering

1We will henceforth refer to the ex-ante public information collected by the principal as a signal about the state,
although it does not have the usual meaning of a privately informed person signalling (but see Section 8.2 for a
discussion of this case).
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as alternative policing methods available to the principal, the �rst corresponding to prevention and

the second to punishment.

In this framework we �nd that, provided the information cost is not too high, it may be optimal

to acquire information. However, the timing of information acquisition depends on the ex-ante

pro�tability of the project. If this is positive after all signal realisations, information should be

acquired only after the contract is signed, never before. This gives the advantage of using a broader

ex-ante participation constraint for the principal and retaining �exibility in information acquisition,

although it requires early commitment to investment. In these cases information acquisition occurs

either randomly or deterministically, while the audit is deterministic and contingent - audit if the

signal is good and do not audit if it is bad.

The frequency with which a signal is acquired is determined by the expected returns from such a

strategy. If following signal collection returns are just su¢ cient to let the principal break even, then

the signal is acquired for sure. If they exceed the minimal return demanded by the principal, then

it is possible to save on signal acquisition cost by reducing its frequency and not auditing no signal

states. If instead expected repayments following signal collection are insu¢ cient for the principal

to break even, then more resources can be raised by random signal acquisition accompanied by

auditing for sure also no signal states as well.

If acquiring information is costless, the preferred audit strategy is no longer necessarily

deterministic. There is an in�nite number of optimal solutions, which involve equal audit cost

and which range from deterministic audit and random signal acquisition to random audit and

deterministic signal acquisition. In particular, a variation in the audit probability can be exactly

compensated by a variation in the frequency of signal collection that keeps enforcement cost

constant. This is not so with costly signals because they involve an ex-ante cost that is incurred

irrespective of the true state and makes signal acquisition less attractive than auditing.

Lastly, if in some signal realisations the ex-ante pro�tability of the project is negative, it is

no longer clear that committing to the investment before the signal dominates: getting the signal

ex-ante allows the unpro�table projects to be ruled out, and, depending on the cost of the signal,

may possibly make the overall pro�tability higher under ex-ante information acquisition. In such

cases optimally auditing becomes stochastic again.
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The widespread empirical practice of combining screening and costly audit indicates that

the combination is a more e¢ cient way of sorting than audit alone. We provide a theoretical

understanding of when and why this is so. In tax audits, signals are increasingly used to help

detect tax evasion and target audit policy as predicted by the model. The U.S. Internal Revenue

Service (IRS), for example, uses its National Research Program (NRP) to compute expected tax

liability for groups of taxpayers and uses this to identify individual tax returns that need a higher

probability of audit.2 Similar devices arise in tax systems using presumptive taxation methods,

like France, Israel, Italy (see Thuronyi (1999) for a survey). In these systems, observable taxpayers

characteristics correlated with real tax liability, like consumption patterns, are used to predict

earnings and thus tax liability and to target audits on reports at odds with those inferred on the

basis of the signal.

For expository reasons we use two states and two signal realisations and all the results are

obtained in a commitment scenario. Extending the model to more than two states, we �nd that

there is a tendency to pool higher income states, leading to a �at repayment in those states.

This allows us to interpret our results in the light of observed features of �nancial contracts. In

particular in our setting the principal/investor gets a debt contract, while the agent/entrepreneur

gets a pro�t schedule resembling that of an equityholder.3 As regards the commitment assumption,

we �nd that, although deterministic audit overcomes the problems created by the unobservability

of audit, a commitment problem reappears in implementing signal acquisition when it is random.

We �nd that imposing sequential rationality leads to deterministic signal acquisition as well.

When the signal is acquired after the contract, the key results establishing deterministic auditing

and random signal acquisition are stated in Propositions 1 and 3, followed by discussion of two

special situations in Propositions 4 and 5, and by comparative static analysis of varying enforcement

costs and informativeness of the signal on the signal acquisition strategy. A further key result

establishes the optimal timing of signal acquisition (Proposition 8). The framework is extended

to allow for more than two income states of the world (Propositions 9 to 11), no commitment

(Proposition 12), private information and issues of distribution of the surplus. All proofs are in the

2The NRP has replaced the Taxpayer Compliance Measurement Program (TCMP), which consisted in more
thorough audits of strati�ed random sample of taxpayers (for a description of both programmes, see Andreoni, Erand
and Feinstein, 1998; Erard and Feinstein, 2010). Similar methods are used also in other countries.

3The more than two-state case is dealt with in Section 7, while the no commitment case in Section 8.1.
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Appendix.

Related Literature. The paper is related to the literature on optimal audit strategy in CSV

models. This can be split in two phases. The �rst only considers deterministic audit policies

(Townsend, 1979; Gale and Hellwig, 1985) and �nds that all states with revenues below some

critical level should be audited with probability one, but that higher income states should never be

audited and have a constant repayment. Reinganum and Wilde (1985) compare a common audit

probability for all types with deterministic audit and �nd the latter is dominant. In the second

phase, Border and Sobel (1987) and Mookherjee and Png (1989) point out that monitoring all

defaulting states for sure is unduly expensive and that truthtelling may sometimes be achieved at a

lower cost with random audit. Both studies use a setting with a �nite number of states. Mookherjee

and Png (1989), assuming the agent is risk-averse and his consumption is restricted to be positive

in every state, �nd that audit should be stochastic and that the agent should be strictly rewarded

for truthtelling. Border and Sobel (1987) use risk neutrality and �nd that the poorest individual

gets no reward for truthtelling and in fact zero consumption so long as he is audited with positive

probability. Moreover, they �nd one su¢ cient condition for the audit to be random: maximum

possible reward for truthtelling (Proposition 3, p. 534). Chander and Wilde (1998) show that these

results mainly extend to the case of a continuum of incomes.

All the above papers adopt a commitment principle: the principal announces an audit strategy

su¢ cient to induce truthful reports by the agent and then sticks to it despite it being costly. At the

interim stage there could nevertheless be a Pareto improving renegotiation or a non-cooperative

solution altering the nature of the optimal audit strategy. While with a non-cooperative solution

there is still scope for random auditing (Reinganum and Wilde, 1986; Khalil, 1997; Khalil and

Parigi, 1998), a renegotiation which must be acceptable to all types (i.e., there is no interim

possibility of revoking the contract) will instead make deterministic audit emerge as the optimal

solution (Krasa and Villamil, 2000). In the present paper, the possibility of accessing costly ex-

ante information is yet another reason for deterministic auditing in a commitment scenario and

generates an e¢ ciency gain relative to the standard ex-post only veri�cation setup, complementing

the e¢ ciency gain approach in Krasa and Villamil (2000).

Besides the commitment assumption, another modelling di¤erence with respect to Krasa and
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Villamil (2000) lies in the focus on explicit information acquisition rather than implicit information

revelation through actions (reports of the state in our framework). In Krasa and Villamil, by

receiving a report about the state the principal updates her beliefs and on the basis of this chooses

the enforcement strategy. In our setup, by receiving a signal which is positively correlated with

the state the principal updates her beliefs about the true pro�tability of the project. However,

since the signal is public and its value is exogenous to the contracting parties, there are no

credibility/incentive problems about the information used for updating beliefs by the principal.

In this sense the signal is a more e¤ective discriminating device than an agent�s report.

In conditioning audits on the realisation of an external signal correlated with true income, the

paper is related to part of the tax literature, in particular Scotchmer (1987) and Macho Stadler

and Perez Castrillo (2002). Within a setting in which information is freely available to the tax

authority ex-ante, these papers determine the audit policy with linear taxes and �nes and �nd that

additional information can overcome the usual regressive bias of revenue maximising audit rules,

where tax rates are highest on lower income groups or audit classes.

Last, in considering ex-ante information acquisition, the paper has some loose links with the

literature on private or social value of precontractual costly information (Crémer and Khalil, 1992;

Lewis and Sappington, 1997). In this literature the information can be privately gathered by the

agent and perfectly reveals his type, thus altering the nature of the asymmetric information problem

faced by the principal. In our paper the focus is rather di¤erent, as an imperfectly informative public

signal is collected by the principal as part of her policing strategy.

1 The Model Assumptions

An agent has an investment project costing I for which he needs to raise funding from a risk

neutral principal.4 The project gives a random return fs, s 2 fH;Lg, with fH > I > fL > 0;

with probability �H and �L respectively. I > fL implies that to recover the investment cost

the repayments to the principal (investors) must be non-decreasing in the state. While on their

realisation the agent learns the revenues of the project for free, the principal can only discover them

4We model a �nancial contracting relationship, but the setup is general and can be adapted to apply to a variety
of di¤erent contexts. Mookherjee and Png (1989) provide an interesting interpretation of a similar problem in a
context of taxation.
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with certainty by auditing at a cost cm � 0: Audit is observable and the result of it is veri�able.

At any time before the report the principal can acquire a signal � 2 fG;Bg at a cost ca � 0

which is positively correlated with the true state of nature. Signal acquisition is veri�able and

contractible, moreover the realised signal value is public information. Denote with �ij the joint

probability that s = i and � = j; and �ijj = Pr (s = ij� = j) the conditional probability of state

s = i given that signal � = j is received. Let � � �HG�LB � �HB�LG, with � > 0 de�ning the

requirement of positive correlation (r > 0) between state and signal.5 Under our assumptions, a

good signal improves the chance that the state is actually high and vice versa.

We impose a condition which ensures that the ex-ante social bene�ts of the project cover the

combined cost of any possible signal acquisition and monitoring policy:

Assumption 1

EP = �HfH + �LfL � I � �Lcm � ca > 0: (1)

This assumption ensures that the project is ex-ante pro�table even if enforcement involves both

always getting the signal and monitoring every low state report.

We measure the timing of actions and events relative to the date at which a contract is agreed.

We assume that the principal makes contract o¤ers and that, among those, the agent chooses the

one that maximises his expected utility. In line with Mookherjee and Png (1989), this is equivalent

to assuming that the principal�s problem is to �nd a scheme that maximises the utility of the agent

subject to a minimum expected pro�t constraint and to the appropriate incentive constraints.6 The

implications of relaxing this assumption and letting the principal get all the surplus are discussed

in Section 8.3.

The sequence of events is as follows: (1) The principal can acquire or not a signal. If acquired,

the signal is publicly observed. (2) A �nancing contract is o¤ered and, if accepted, the principal

is committed to the investment. (3) The principal can acquire a signal (if she has not done so in

5The signal is fully informative if �HjG = �LjB = 1. In this case r = 1: Conversely, the signal is completely
uninformative if �HjG = �HjB and �LjG = �LjB which implies �HG = �HB and �LG = �LB and then r = � = 0:

6This is then consistent either with the role of the principal as a utilitarian regulator who just wants to achieve
an e¢ cient monitoring system (e.g. a tax authority with a �xed revenue requirement who wishes to minimise
the enforcement cost), or of a principal that maximises her own expected payo¤ but, due to competition between
principals, is driven to o¤er contracts yielding her a zero expected payo¤. Border and Sobel (1987) point out that
for many objectives of the principal (the utilitarian case referred to above, minimising the expected audit cost or
maximising the achievable expected return to the principal) an optimal scheme will be audit e¢ cient.
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stage 1). (4) The output is privately observed by the agent, who makes a report to the principal.

(5) The principal can audit to discover the true value of output. (6) Payo¤s are distributed.

A general game tree is sketched in Fig. 1.
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Fig. 1. The game tree

We refer to the two top branches of the �gure as the left hand branch and the right hand

branch. In each branch the variables written into the contract can depend on subsequent observable

events and actions prior to the repayments actually being made. Hence Rŝs� is the repayment due

following a signal value � 2 fG;Bg ; a report ŝ 2 fĤ; L̂g, and an audit which reveals that the state

is s 2 fH;Lg ; Rŝ�� is the repayment with report ŝ and signal �; but with no audit; m� are the

contracted probabilities of auditing a low report7 following play of the signal strategy. In the right

hand branch the contract also speci�es a signal acquisition probability �; repayments RŝsN , Rŝ�N

and monitoring probability mN when play of signal strategy results in no signal acquisition. All

repayments are non-negative and the agent has limited liability.

We �rst calculate the optimal contract and signal acquisition plan in the right hand branch of

Fig. 1 and then repeat this for the left hand branch. Then, by comparing the expected values of

these, we determine the optimal timing of information acquisition.

7 In principle, these could vary with the reported state, but this does not occur since repayments are non-decreasing
with the state. There is no incentive to cheat with low state incomes and hence no need to monitor high state
repayment.

7



2 The contract problems conditional on timing of signal
acquisition

Following the right hand branch of Fig. 1, a contract between principal and agent speci�es

repayments, audit probabilities and the probability with which information will be gathered.

The agent�s payo¤ is

EUA = �
P
� ��U� + (1� �)UN (2)

where

UN � �H
�
fH �RĤ�N

�
+ �L

�
fL � (1�mN )RL̂�N �mNRL̂LN

�
(3)

U� � �Hj�
�
fH �RĤ��

�
+ �Lj�

�
fL � (1�m�)RL̂�� �m�RL̂L�

�
; � 2 fG;Bg : (4)

The principal�s payo¤ is

E�P = � f
P
� ��PC� � cag+ (1� �)PCN � I (5)

where

PCN � �HRĤ�N + �L
�
(1�mN )RL̂�N +mN

�
RL̂LN � cm

��
(6)

PC� � �Hj�RĤ�� + �Lj�
�
(1�m�)RL̂�� +m�

�
RL̂L� � cm

��
; � 2 fG;Bg : (7)

To induce truthful reporting, repayments following a truthful high state report, RĤ��; RĤ�N ; must

not exceed repayments following a false low state report which can be audited with probability

m�;mN :

TTN : RĤ�N � mNRL̂HN + (1�mN )RL̂�N (8)

TT� : RĤ�� � m�RL̂H� + (1�m�)RL̂��; � 2 fG;Bg : (9)

Last, from limited liability:

fH � RĤ��; RL̂H�; RĤ�N ; RL̂HN
fL � RL̂��; RL̂L�; RL̂�N ; RL̂LN

(10)

Signal acquired after the contract has been agreed

If the principal collects the signal after the contract, the contract Pafter is a scheme (�; fmg ; fRg)

that maximises the expected pro�ts of the agent (2), subject to the principal�s expected returns

(5) meeting the investment outlay (E�P � 0), to the incentive constraints (8) and (9) and to the

limited liability conditions (10).
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Signal acquired before the contract has been agreed

If the principal collects the signal before the contract, the contract Pb4 will be conditional on

the received signal � and will determine (m�; fRg) to maximise the agents�expected pro�ts (4),

subject to the principal expected return (7) meeting the investment cost (PC� � I), the truthtelling

constraints (9) and the relevant limited liability conditions (10).

3 Generic properties of the optimal contract

Whatever the information gathering strategy, optimally each of the contracts Pb4;Pafter will display

some common features (demonstrations are in the Appendix):

(i) the participation constraint must bind since otherwise it would be possible to reduce RĤ��; RĤ�N

without violating any of the constraints and make the agent better o¤;

(ii) the truthtelling constraints must all bind. After allowing for the participation constraint, the

monitoring cost is a deadweight loss which ultimately subtracts from the expected gain to

the agent. So, whatever the detailed structure of repayments, it is optimal to minimise the

probability of monitoring. From this, it follows both that there must be maximum punishment

for false audited reports, RL̂H� = fH ; and that any relevant truthtelling constraints must bind.

(iii) in nonaudited low states the repayments RL̂��; RL̂�N are set to give zero rent to the agent:8

RL̂�� = RL̂�N = fL: This gives the agent the minimal incentive to cheat: if he cheats and is

not actually audited, there is a chance he can pro�t at most by fH � fL.

(iv) in audited low states there is zero rent to the agent: RL̂L� = RL̂LN = fL: These repayments

do not immediately impact on the incentive to cheat but, by setting them as high as possible,

maximum revenue fL for the principal from truthfully declared low states is realised in the

participation constraint. This then allows a reduction in RĤ��; RĤ�N ; and in turn a reduction

in expected audit cost.9

8We take the lowest possible return to the agent to be 0: There may be institutional restrictions which limit
punishment, e.g., bankruptcy legislation often requires creditors to leave a minimal standard of living to a defaulting
individual. If it was set above this, largely we can just reinterpret fL as being net of the minimum required return
to the agent.

9With many states there is generally a reward for truthtelling in all but the lowest state (Border and Sobel, 1987;
Mookherjee and Png, 1989). This is because paying a reward for truthful reporting in a state weakens the incentive
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Using these properties, from the truth-telling constraints (8) and (9),

m� =
RĤ�� � fL
fH � fL

;mN =
RĤ� � fL
fH � fL

: (11)

Thus, with commitment to audit, the contract will always ensure truthful reporting by the agent.

E¢ cient policing is achieved by demanding maximum repayments in the low state.

The �reduced� contract problems

Having established the common properties of each contract, we use these to write the two contract

problems in terms of just high state repayments.

If no signal is acquired before the contract, the contract problem becomes (P 0after):

max
�;RĤ�� ;RĤ�N

�
�
�HfH �

P
� �H�RĤ��

�
+ (1� �)�H

�
fH �RĤ�N

�
s.t. �

�P
�

�
�H�RĤ�� + �L� (fL �m�cm)

�
� ca

	
+ (1� �)

�
�HRĤ�N + �L (fL �mNcm)

	
= I
(12)

to the relevant limited liability constraints (10) and to 0 � � � 1; where m�;mN are de�ned by

(11).

If the signal is acquired before the contract then, when it has the value � 2 fG;Bg ; the contract

problem Pb4 becomes:

max
RĤ��

�Hj�
�
fH �RĤ��

�
s.t. �Hj�RĤ�� + �Lj�(fL �m�cm) = I (P 0

b4)

fH � RĤ�� � fL

We next determine the remaining properties of the optimal contract (high state repayments

RĤ��; RĤ�N , and corresponding audit probabilities m�;mN ; and, in the right hand branch, signal

acquisition strategy) with the di¤erent timings of signal acquisition, starting with the case in which

a contract is agreed prior to the signal.

4 Signal strategy after the contract

If no information has been gathered before the contract, there are three possible forms of information

gathering with associated high state repayments and audit after the contract:

for the agent to falsely declare the income of the adjacent lower state. However, for the lowest income state this
incentive e¤ect disappears and it is optimal, to maximise revenue collection, to give the lowest revenue agent zero
consumption whether or not he is audited. The extension to more than two states is discussed in Section 7.
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i. acquire the signal for sure;

ii. never acquire the signal;

iii. play a random strategy for acquiring the signal.

The choice between these depends on the relative costs of signal acquisition and monitoring, and

on the informativeness of the signal. In order to derive the remaining properties of the contract,

using (12) we rewrite the agent�s expected pro�ts as:

EUafter = �HfH + �LfL � I � � (ca +
P
� �L�m�cm)� (1� �)�LmNcm: (13)

The contract problem can then equivalently be written as one of minimising the enforcement cost

(expected cost of audit and signal acquisition) (PEC):

minEC � � (ca +
P
� �L�m�cm) + (1� �)�LmNcm (14)

subject to the same constraints as in problem P 0after ((10), (12) and 0 � � � 1).

4.1 Costly signal acquisition

When the signal is gathered either for sure or randomly at a cost ca; a maximum spread between

RĤ�G and RĤ�B is desirable. This is established in Proposition 1:

Proposition 1 When 0 < � � 1; optimally RĤ�G = fH and RĤ�B = fL: This implies that mG = 1;

mB = 0.

Proposition 1 has a pooling interpretation: after a bad signal, a �at repayment is collected

independent of state (RĤ�B = RL̂�B = RL̂LB = fL) and there is no audit (mB = 0). After

a good signal, repayments are state contingent and there is maximum spread between them

(RĤ�G = fH ; RL̂�G = RL̂LG = fL). This in turn implies that the principal always monitors after

good signal realisations (mG = 1), while she never does after bad signal realisations (mB = 0).

Intuitively, it is more e¢ cient to require higher payments following a good signal since such

payments can be supported with lower expected auditing costs. Indeed, since �HjG > �HjB (and

�LjG < �LjB ), setting the spread in high state repayments RĤ�G �RĤ�B as wide as possible both
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reduces audit costs, which are only paid in the low state, and makes the maximal contribution to

repaying the investment cost in the participation constraint.

The agent obtains a rent following a bad signal when it turns out that revenue is actually high

(RĤ�B = fL < fH), but zero rent following a good signal (RĤ�G = fH). In some respects, leaving

rent to the agent after a bad signal resembles debt forgiveness, although that usually arises in a

no commitment scenario. For example, following the 2008 great recession, in the Eurozone both

governments and banks have experienced debt forgiveness with various degrees of conditionality.

Our analysis argues that it can be rational even in a commitment scenario to write debt forgiveness

into the contract after a bad signal, leaving some rent to the debtor if the high state actually occurs.

Using Proposition 1, programme PEC becomes P 0EC :

min� (ca + �LGcm) + (1� �)�LmNcm (15)

s.t. �EPC� + (1� �) (PCN � I) = 0 (16)

where EPC� is the expected return to the principal upon signal collection, whether good or bad,

while PCN is the gross expected return when no signal is collected:

EPC� � �HGfH + (1� �HG)fL � I � �LGcm � ca (17)

PCN � �HRĤ�N + �L (fL �mNcm) (18)

This leaves the question of the optimal values of RĤ�N and � conditional on maximum spread

values of RĤ�G and RĤ�B: Remarkably, there is one simple condition, whose sign depends only on

exogenous parameters, which captures the relative costs of signal acquisition and monitoring and

the features of the joint probability distribution of signal and state:

NCa � �Hca � �cm: (19)

The expression NCa is a measure of the net cost of signal acquisition and auditing. Intuitively,

collecting the signal more frequently has a deadweight loss of �Hca since with probability �H there

will be a truthful high state report anyway and no need for audit. But conversely more frequent

signalling, allowing better targeting of audit, permits a saving on expected audit cost.10

10The cost saving to audit depends on how the informativeness of the signal leads to a di¤erential between
monitoring probabilities in good and bad signal states and can be written as �cm (mG �mB) : This reduces to
�cm as mG = 1;mB = 0: Consequently, the higher the auditing cost relative to the signal acquisition cost, the higher
the gain from signal acquisition.
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If ca = 0; NCa � 0 and we would expect the signal to be used. If cm = 0; then NCa � 0 and

information acquisition becomes unattractive relative to monitoring. This is also the case if � = 0

so that the signal is completely uninformative. In the case of perfect correlation between signal and

state, NCa reduces to �H [ca � �Lcm].11 Then, the sign of NCa depends on the di¤erence between

the signal acquisition cost and the expected audit cost without signal acquisition. If positive, the

deadweight loss of acquiring the signal exceeds the gain from saving audit costs and so it is not

acquired.

According to the sign of NCa, three possible cases arise. For su¢ ciently low auditing cost

relative to signal acquisition cost, NCa > 0 : although signal acquisition buys precision in targeting

repayments, this is so costly that the agent prefers to induce the principal not to gather the signal.

The result gives stochastic monitoring.

Proposition 2 When NCa > 0; whatever the sign of EPC�, it is optimal to gather no information

(� = 0). The optimal contract has monitoring probability

mN j�=0 =
I � fL

�H (fH � fL)� �Lcm
< 1; (20)

high state repayment

RĤ�N j�=0 =
(I � �LfL) (fH � fL)� fL�Lcm

�H (fH � fL)� �Lcm
< fH ; (21)

and cost function

EC�=0 =
(I � fL)�Lcm

�H (fH � fL)� �Lcm
: (22)

For a higher relative auditing cost, NCa < 0 : the signal is cheap enough and su¢ ciently

informative to make it worth collecting (� � 1). In this case, in determining the optimal

combination of �;mN ; the expression NCa (19) interacts with EPC� (17):

a. If EPC� > 0, the participation constraint (16) could be met entirely from with-signal states with

� < 1; not auditing without-signal states. Thus, the best mix of � and RĤ�N (mN ) involves

reducing RĤ�N as far as possible to fL; thus setting mN = 0; and raising � as necessary to

satisfy the participation constraint. This requires � = � < 1 (de�ned in (23) below).

11 In this case, �H = �HG; �L = 1� �HG, � = �H�L.
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b. If EPC� = 0, the return from the with-signal state fully meets the participation constraint. So

the signal is acquired for sure (� = 1), which means that RĤ�N is arbitrary.

c. If EPC� < 0; there is a shortage of revenue following signal acquisition. Since the participation

constraint cannot be met solely from repayments arising from post-signal reports, more

revenue must come from no signal states. The solution is to set RĤ�N at its highest possible

rate (fH), auditing all low reports in cases in which the signal is not acquired (mN = 1).

This generates the necessary revenue for the principal with relatively more infrequent signal

acquisition �. The latter is obtained solving the participation constraint and is given by

� = �� < 1 (de�ned in (26) below).

Proposition 3 summarises these �ndings:

Proposition 3 When NCa < 0 and the degree of correlation between signal and state is not too

high, it is optimal to randomly or always gather information.12 The actual values of RĤ�N ; mN

and � vary with the sign of EPC�. In particular:

i. (MSa) If EPC� > 0; the unique optimum has mN = 0; RĤ�N = fL,

� = � � I � fL
�HG (fH � fL)� �LGcm � ca

< 1 (23)

and cost function:

ECaMS =
(I � fL) (ca + �LGcm)

�HG (fH � fL)� �LGcm � ca
: (24)

ii. If EPC� = 0; it is optimal to always gather information (� = 1). The cost function is

EC�=1 = ca + �LGcm (25)

iii. (MSb) If EPC� < 0; the unique optimum has mN = 1; RĤ�N = fH ,

� = �� � Ef � I � �Lcm
�HB (fH � fL)� �LBcm + ca

< 1 (26)

and cost function

ECbMS =
(�Hca � �cm) (fH � fL) + (I � fL) (�LBcm � ca)

�HB (fH � fL)� �LBcm + ca
: (27)

12Namely � � �H�L(I�fL)
�HG(fH�fL)

. For a higher degree of correlation, cases (ii) and (iii) might not arise. This is more
thoroughly discussed in section 4.3.
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Along with those in Proposition 1, these results show that, when the signal is worth acquiring it

reverses the usual result about optimality of random audits and restores deterministic auditing even

in situations in which parties are allowed to commit to stochastic auditing schemes. Depending

on EPC�; repayments with no signal are either pooled with those after a bad signal (so mB =

mN = 0; when revenues are relatively abundant) or pooled with the good signal repayments (so

mG = mN = 1; when revenues are relatively scarce), while the signal strategy is set so as to meet

the participation constraint. Intuitively, the reason for randomising on signal acquisition strategy

rather audit is due to the fact that the signal has no impact on audit after a high state report but

always has to be paid for, whereas the monitoring cost is zero after a high state report.13

When NCa = 0; the principal is indi¤erent between not collecting the signal, getting RĤ�N =

RĤ�N j�=0 (21), or collecting it with positive probability and getting a repayment conditional on

each signal-state combination. This is stated in Proposition 4:

Proposition 4 If NCa = 0; three cases can arise according to the sign of EPC� :

i. if EPC� > 0; all combinations of mN 2
�
0;mN j�=0

�
and � 2 [�; 0] which satisfy the participation

constraint (16) are possible;

ii. if EPC� < 0; all combinations of mN 2
�
mN j�=0; 1

�
and � 2 [0; ��] which satisfy the

participation constraint (16) are possible;

iii. if EPC� = 0; there are two equally good solutions (mN ; �) = f(0;mN j�=0) ; (1; �)g where

� 2 [0; 1] is arbitrary.

In all cases mN j�=0; �; �� are de�ned in (20), (23) and (26) respectively and the cost function

is identical to that with no signal acquisition EC�=0 (22).

As Propositions 2 to 4 make clear, as NCa varies from positive to negative values, the relative

advantage of the signal increases and the policing policy varies continuously from exclusively

auditing to combinations of audit and signal acquisition. The particular combinations are

determined by how di¢ cult it is to make the necessary repayments in di¤erent states. As NCa
13When the signal is costless, this cost disadvantage of signal acquisition is lost and random audits can re-emerge

(see Section 4.2). These arguments are more thoroughly developed in the Proofs of Propositions 3 and 5 in the
Appendix.
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passes through zero, the two policing methods have equal merit with comparable cost and so there

is an element of substitutability between acquiring the signal for sure or never acquiring it.

4.2 Costless signal acquisition

Some special features arise when ca = 0. In this case NCa < 0, and so it is always optimal to

acquire the signal. However, acquiring the signal and auditing tend to interact together in a one to

one way on the enforcement cost. When EPC� > 0; these costs are EC = ��LGmGcm so � andmG

can trade-o¤ against each other. When EPC� < 0; EC = [� (�LG + �LBmB) + (1� �)�L] cm =

[�L � ��LB (1�mB)] cm: E¤ectively, � and 1�mB appear as perfect substitutes in EC: In both

cases this generates multiple optimal enforcement policies. Proposition 5 summarises these �ndings:

Proposition 5 If ca = 0; and still the degree of correlation between signal and state is not too

high, the repayment structure and the signal dependent monitoring probabilities depend on the sign

of EPC� :

i. when EPC� > 0; mN = mB = 0; RĤ�N = RĤ�B = fL: There are in�nitely many optimal

possibilities with � � � � 1 and mG � 1 :

RĤ�G = fL +
(I � fL)(fH � fL)

�[�HG (fH � fL)� �LGcm]
� fH

mG =
I � fL

�[�HG (fH � fL)� �LGcm]
� 1

The cost function coincides with ECaMS in (24) when ca = 0:

ii. when EPC� = 0; mG = 1; RĤ�G = fH ; mB = 0; RĤ�B = fL: It is optimal to always gather

information (� = 1) and the cost function coincides with EC�=1 in (25) when ca = 0:

iii. when EPC� < 0; mG = mN = 1 and RĤ�G = RĤ�N = fH : There are in�nitely many optimal

possibilities with �� � � � 1; and 0 � mB < 1 :

RĤ�B = fH �
(fH � fL)(�HfH + �L(fL � cm)� I)

� [�HB (fH � fL)� �LBcm]
< fH

mB = 1� �HfH + �L(fL � cm)� I
� [�HB (fH � fL)� �LBcm]

� 0

The cost function coincides with ECbMS (27) when ca = 0:
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These results are in striking contrast with those obtained under costly signal acquisition, where

audits are deterministic and randomisation occurs on the signal acquisition side. Under costless

signal acquisition there is some indi¤erence between randomising over the signal acquisition strategy

and some of the audit strategies. As highlighted in Section 4.1, the di¤erence between the two cases

is to be found in the presence of the signal acquisition cost ca. A costly signal has a disadvantage

relative to audit, because it is paid even when it is not needed, but when ca = 0 audit and signal

are equally costly means of enforcement.

The solutions just seen under costly and costless signal collection are sketched in Fig. 2, which

divides the ca � cm space into areas according to the sign of NCa and EPC�:

EPCσ=0

cm

ca

NCa=0

α=0

α=1

α<1 (MSb)
mG= mN =1
mB=0

α<1 (MSa)
mG=1
mB=mN=0

�

Indiffe
rence lin

e between α=0 and α<1

α=0

�
Indifference line between α<1 and α=1

Fig. 2. Signal and audit strategy in the space of audit and signal acquisition cost.

To the left of the NCa = 0 line, the signal is never acquired, regardless of the sign of EPC�: To the

right of it, the signal is acquired either randomly or for sure depending on the sign of EPC�: Last,

the NCa = 0 and the ca = 0 lines denote indi¤erence regions: along the NCa = 0 line the principal

is indi¤erent between acquiring the signal or not, while along the ca = 0 line she is indi¤erent to

acquiring it for sure or randomly.

This shows that the �standard�stochastic auditing result need not be optimal when it is possible

for either party to unilaterally improve the information structure of both ex-ante.14

14The propositions also hold if it is the agent who can collect the signal.

17



4.3 Informativeness of the signal

The above results have been derived assuming that the signal is not too informative. However, a

high degree of correlation between signal and state might rule out some of the solutions listed in

Propositions 2 to 5. To see why, note that the overall project pro�tability expression EP (1) can

be decomposed into the sum of two factors: EPC� (17), which is a measure of the pro�tability of

the project in with-signal states, and EPB = �HB (fH � fL) � �LBcm; which is a measure of the

gain to the principal from monitoring low reports.

Consider now the three relations EP = EPC� = EPB = 0 in ca � cm space. These are linear

and their slopes are such that the line EPB = 0 is vertical, while EP = 0 and EPC� = 0 are each

downward sloping, with EP steeper than EPC�: Since EP = EPC�+EPB; any two of these three

lines intersect at

c�m =
�HB
�LB

(fH � fL) ; c�a =
�

�LB
(fH � fL) + fL � I (28)

Since EP > 0 from Assumption 1, our feasible set is con�ned to the area below the EP = 0 line

(the red solid downward sloping line in Figures 3a to 3d). The signal is of value only if NCa � 0 so

another intersection of interest is that between EPC� and NCa which occurs at

bcm = �H(�HGfH + (1� �HG)fL � I)
�HG�L

; bca = �(�HGfH + (1� �HG)fL � I)
�HG�L

(29)

The signal acquisition strategies MSb and � = 1 can only arise if there are points ca; cm with

EP < 0; EPC� � 0 and NCa � 0: If bca < c�a no such points exist although the solution MSa is

still possible. But if bca > c�a such points do exist and there are values of the enforcement costs

supporting each of the signal strategies in Proposition 3. The di¤erence c�a � bca (which has the
opposite sign of c�m�bcm) is equal to ��HG (fH � fL)��H�LB(I�fL). It is increasing in � and zero
when � = �� � �H�LB(I�fL)

�HG(fH�fL) : So � < �
� allows all signal strategies to occur whereas with � > �� the

only possible acquisition strategy given NCa � 0 is MSa:

Proposition 6 De�ne �� � �H�LB(I�fL)
�HG(fH�fL) : If it is worth collecting the signal, when � < ��; the

results of Proposition 3 hold, but if � � ��; only case MSa is optimal.

It is easy to see this graphically. Depending on the degree of correlation between signal and state

four possible scenarios can arise. When the correlation is 1; �HG = �H ; �LB = �L; �HB = �LG = 0:
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The EPB line coincides with the vertical axis and the EPC� line is horizontal and has the same

intercept as EP = 0: Since the feasible set is con�ned to the area below the EP = 0 line, the

possible solutions are described by � = 0 in Prop. 2 and by case MSa in Prop. 3 (�g. 3a). As the

correlation falls, EPB shifts rightward. For high but not perfect correlation, the solution form is

still described by � = 0 or by case MSa (�g. 3b). As the correlation falls further, there is a region

of correlation for which all of the cases described in Propositions 2 to 5 enter as a possible solution

(� = 0; MSa, MSb, � = 1) (�g. 3c). When the correlation is zero (�g. 3d), the signal has no

information value, the NCa line coincides with the horizontal axis and the unique optimal solution

has � = 0 (Proposition 2).
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3d. Uninformative signal

4.4 Signal strategy as a function of acquisition and audit costs

The results in Propositions 2 to 5 allow us to analyse how the signal acquisition strategy varies

with ca and cm: The striking result here is that the frequency of signal acquisition is non-monotone
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in audit and signal collection costs. When NCa < 0 and EPC� � 0; the probability of signal

acquisition increases at an increasing rate with audit and signal acquisition costs. On the other

hand, when EPC� < 0, the optimal � starts decreasing in both audit (at a decreasing rate) and

signal acquisition cost (at an increasing rate). The � (cm; ca) function is continuous (except when

NCa = 0) and has a kink at its maximum, which occurs where EPC� = 0. At �rst sight it is

surprising that � can increase with ca: Starting from a point at which MSa is optimal (and so

mN = 0) (case i; Prop. 3), there is a large saving from not auditing no signal states. But as ca

rises, to satisfy the participation constraint, some extra revenue must be generated and this is done

by increasing �: If initially cm is high enough,15 as ca rises � can increase all the way to � = 1. For

lower initial values of cm; � can only rise so far. Eventually, for any initial value of cm; as ca gets

high enough, � falls discontinuously to zero. This pattern is depicted in �gure 4.

EPCσ=0 NCa=0
α

UMSa caUMSb U0

α=1

α(ca) for cm>0

Fig. 4. � (ca) for cm > 0:

EPCσ=0NCa=0
α

UMSa cmUMSbU0

α=1

U1

α(cm) for ca>0

EP=0

Fig. 5. � (cm) for ca > 0

A similar pattern arises if we increase cm; keeping ca �xed, as depicted in �gure 5. In this case, if

ca is low enough,16 � can increase all the way to � = 1; and then decreases until cm is so high to

violate Assumption 1.

Obviously, utility falls as signal acquisition and audit cost rise. It falls continuously, with kinks

when the sign of NCa and EPC� changes, as Figures 8 and 9 in Appendix show.

5 Signal gathered before the contract

We now turn to the case in which a signal is collected before any contractual commitment. The

peculiarity of this setting is that collecting the signal ex-ante may impact on the principal�s

decision to make a contract o¤er. In particular, since the signal is realised before any contractual
15 I.e., for cm no less than the value at which EPC� and NCa intersect: cm � bcm:
16 I.e., for ca � bca; the value at which EPC� and NCa intersect:
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commitment, if it gives su¢ ciently bad news about the project, the investor can decide to not

undertake it. This depends on the expected pro�ts after a bad signal:

�B � �HjBfH + (1� �HjB)fL)� I � �LjBcm: (30)

If �B � 0; the principal will make no contract o¤er upon receiving a bad signal.

Solution to Program Pb4 is summarised by the following proposition:

Proposition 7 When the contract is agreed after the signal has been collected,

(i) if �B > 0; the project is executed after any signal and the contract stipulates:

m�jb4 =
I � fL

�Hj� (fH � fL)� �Lj�cm
; (31)

with mGjb4 < mBjb4; high state repayments

RĤ�� =
(fH � fL)I � �Lj�fL (fH � fL + cm)

�Hj�(fH � fL)� �Lj�cm
; (32)

and the agent�s ex ante utility

EUb4 =
P
� ��

�
�Hj�fH + �Lj�fL � I �

�Lj�cm (I � fL)
�Hj� (fH � fL)� �Lj�cm

� ca
�
; (33)

(ii) if �B � 0; the project is abandoned after a bad signal but executed after a good signal and

the contract stipulates audit probability and high state repayment conditional on a good signal

de�ned in 31 and 32 respectively, and the agent�s ex ante utility is

EUGjb4 = �G

�
�HjGfH + �LjGfL � I �

�LjGcm (I � fL)
�HjG (fH � fL)� �LjGcm

�
� ca: (34)

The above proposition shows that if the signal is gathered before investment is committed, the

contract has the same qualitative properties as the CSV commitment contract with no information

gathering described in Proposition 2, in particular stochastic monitoring conditional on the signal

re-emerges.

One interesting point is that, provided that the expected return conditional on a bad signal

realisation is positive, audits after a bad signal occur with a higher frequency than audits after

a good signal (mBjb4 > mGjb4) in contrast to the results we have in the right hand branch where

mG = 1 > mB = 0: This is because here the principal�s participation constraint is in ex-post terms
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- it must be satis�ed state-by state - and, to ensure compliance, auditing has to be carried out

in each state-signal realisation. Since receiving a good signal makes the high state more likely,

expected revenues from nonaudited high states increase. This slackens the participation constraint,

reduces the repayment RĤ�G to the principal and lessens the need for audit of low reported states

after a good signal. The opposite is true if a bad signal is received.

6 Globally optimal signal strategy

To determine when to collect the signal, the principal compares the expected return when the

signal is collected before any contract o¤er, (33) or (34), according to the sign of �B (30), with

that obtained when the signal is collected after a contract o¤er is made (13).

Suppose �rst that �B > 0; i.e., it is pro�table to o¤er a contract even after a bad signal.

Coupled with fL < I; this assumption sets an upper bound on the maximum informativeness of

the signal, precluding the case in which the signal is perfectly informative (�HjB = �LjG = 0) and

crowds out audit. This leads to the following proposition:

Proposition 8 Under the assumption that �B > 0; when NCa < 0 it is never optimal to gather

the signal before a contract has been agreed.

The principal will always strictly prefer to agree to a contract prior to any signal acquisition.

So the right hand branch of the game tree strictly dominates the left hand branch. This is because

the right hand branch saves signal costs and allows the participation constraint (16) to be set in

ex-ante terms. The possibility of cross-subsidisation between these di¤erent signal states means

that if the signal is collected for sure, the right hand branch must always at least weakly dominate

the left hand branch. That is, within the right hand branch we can replicate the left hand branch

for any particular signal value by setting � = 1. If EPC� = 0, � = 1 is actually optimal in the right

hand branch and there is cross-subsidisation from the pro�table good signal outcome to the bad

signal outcome. Then the right hand branch strictly dominates the left hand one. In other cases,

when optimally � < 1 in the right hand branch, the optimal right hand branch solution again must

strictly dominate the solution restricted to � = 1 and so must dominate the left hand branch.

Assuming �B > 0 limits the range of correlation between signal and state and allows us to derive

a clear superiority of setting the contract after getting the signal rather than before. However it
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also rules out one useful role for the signal in detecting projects which are ex-ante unpro�table

and from which the investor would like to abstain. The literature which does consider signalling

highlights this role for ex-ante information acquisition (Crémer, 1992). So suppose that conditional

on a bad signal realisation the ex-ante expected return from the project is negative �B < 0. If the

signal is collected prior to commitment to the investment loan, then with a bad signal realisation

the project will not be undertaken (with a good signal of course the project is revealed to be more

pro�table than at �rst sight and so will be undertaken). On the other hand, if the signal is collected

after commitment to the investment, then this opportunity of not undertaking a project revealed

to have a negative ex-ante return is sacri�ced.

However, it is not always the case that the left hand branch dominates. The intuition for

this is that the expected gain from the project for a particular time sequence of contract writing

and signal acquisition is composed of three distinct elements: the expected gross revenue that the

project will yield allowing for optimal decision making; the expected monitoring cost; the expected

signalling cost. The expected signal cost is generally lower if the signal is collected only after the

investment has been committed since both cases MSa and MSb in Proposition 3 have � < 1.

However, the expected audit cost in the di¤erent timings is ambiguous and depends on whether

the optimal audit strategy when investment is committed �rst corresponds to MSa, MSb or � = 1.

The expected audit cost in the di¤erent timings is ambiguous and depends on whether the optimal

audit strategy when investment is committed �rst corresponds to MSa, MSb or � = 1. The

expected revenues of the project in the di¤erent timings are also ambiguous, their di¤erence being

�HjBfH +(1� �HjB)fL� I. Which of these e¤ects dominate then depends on the precise values of

ca; cm and the probability distribution of project returns.17

For a particular probability distribution of pro�ts (fH = 10; fL = 1; �HB = 0:1; �LG = 0:1; I = 4

which implies that � = 0:11); Fig. 6 (�HG = :6) and 7 (�HG = :4) plot combinations of cm; ca giving

indi¤erence between the left and right hand branches for EPC� > 0 and EPC� < 0 respectively.

17The ambiguity remains even in the extreme case in which the signal is perfectly informative.
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Inside the area delimited by the blue curve, the right hand branch still dominates.
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Fig. 6. Region of optimality of right
hand branch when EPC� > 0:
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Fig. 7. Region of optimality of right
hand branch when EPC� < 0:

Another interesting comparison can be made for the case in which NCa > 0 in the right hand

branch. In this case the signal is never collected after investment is committed (� = 0) and the

optimal audit strategy is random. Again, despite the fact that ex-ante signal acquisition makes it

possible to rule out unpro�table projects, the right hand branch may still dominate the left hand

branch if signal saving cost is high.

7 More than two income levels

We now show that the results of the two-state world apply more generally with many income

states for suitable probability distributions of revenues. Suppose revenues f can take three possible

realisations, high, medium and low (H;M;L), with fH > fM > I > fL; and suppose that prior to

the realisation of the state the principal can acquire a signal which can take two realisations, good

and bad (G;B).

The probability distribution of states and signals is given by

G B �s
H �HG �HB �H
M �MG �MB �M
L �LG �LB �L
�� �G �B 1

We assume that the signal and the state satisfy the bivariate monotone likelihood property (BMLP )

(Chew, 1973), which re�ects the idea of positive correlation between signal and state. In particular,
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it implies that each 2x2 minor of the 3x2 probability matrix is positive, i.e.

�HG�MB > �HB�MG;

�HG�LB > �HB�LG;

�MG�LB > �MB�LG:

BMLP implies:

�3 � (�HG + �MG)�LB � (�HB + �MB)�LG > 0 (35)

and has the interpretation of the chance of one of the top two states being higher after a good than

a bad signal.

Assumption 1 is now replaced by a stronger condition:18

EP3 � (�H + �M ) fM + �LfL � I � �Lcm � ca > 0: (36)

Essentially a distribution in which the top two states have the same revenue covers the investment

and agency cost. EP3 can be decomposed into the sum of EPC�3 � (�HG + �MG) fM +

(1� �HG � �MG) fL � I � �LGcm � �ca and EPB3 � (�HB + �MB) (fM � fL)� �LBcm.

Let Rŝs� be the repayment due following a signal value � 2 fG;Bg ; a report ŝ 2 fĤ; M̂ ; L̂g, and

an audit which reveals that the state is s 2 fH;M;Lg ; Rŝs the analogous repayment with no signal

acquisition, Rŝ�� the repayment with report ŝ and signal �; but with no audit, and Rŝ� the analogous

repayment with no signal acquisition. The facts that an optimal scheme must involve maximum

punishment and also a zero rent to the agent in the lowest state are independent of the numbers

of state and signal realisations (Border and Sobel, 1987), so RL̂L = RL̂� = RL̂L� = RL̂�� = fL, and

RM̂H = RM̂H� = RL̂H = RL̂H� = fH ;RL̂M = RL̂M� = fM :

Letting ms�;ms be the probability of auditing a report of states s 2 fL;Mg and signal

� 2 fG;Bg ; the incentive compatibility conditions ensuring truthful reporting when the state

is high or medium become:

� for the high type to truthfully report high and not medium (IC (HM)):

�
fH �RM̂ �

�
(1�mM ) � fH �RĤ� (37)�

fH �RM̂ ��
�
(1�mM�) � fH �RĤ��

18 It is stronger because (�H + �M ) fM + �LfL � �HfH � �MfM � �LfL = �H (fM � fH) < 0:
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� for the high type to truthfully report high and not low (IC (HL)):

(fH � fL) (1�mL) � fH �RĤ� (38)

(fH � fL) (1�mL�) � fH �RĤ��

� for the intermediate type to truthfully report medium and not low (IC (ML)):

(fM � fL) (1�mL) � fM �
�
(1�mM )RM̂ � +mMRM̂M

�
(39)

(fM � fL) (1�mL�) � fM �
�
(1�mM�)RM̂ �� +mMGRM̂M�

�
The contract problem is to minimise the expected signal acquisition cost and audit cost after a

low or intermediate report

min
�;fmg;fRg

��� [(�M�mM� + �L�mL�) cm + ca] + (1� �) (�MmM + �LmL) cm (40)

subject to the incentive constraints above and the participation constraint being non-negative:

���
�
�H�RĤ�� + �M�

�
(1�mM�)RM̂ �� +mM�RM̂M�

�
� (�M�mM� + �L�mL�) cm � ca

	
(41)

+(1� �)
�
�HRĤ� + �M

�
(1�mM )RM̂ � +mMRM̂M

�
� (�MmM + �LmL) cm

	
+ �LfL � I

Minimum monitoring costs are achieved with binding incentive constraints (37) and (39). Together

then these imply that (38) is slack. In addition we can show that for each signal situation,

mM� = mM = 0 so that optimally reports of the top two states are not audited at all, and they

have a common repayment which is at most equal to fM : The rationale is that if mM ;mM� > 0,

it is possible to raise RM̂ �; RM̂ �� up to fM ; and if necessary reduce RĤ�; RĤ�� down to fM whilst

reducing mM ;mM� to zero, thus reducing audit costs. The fact that the top two states are pooled

is a key result in characterising the optimal contract.

Proposition 9 If EP3 holds, optimally (37) and (39) bind, mM ;mM� = 0; RM̂ � = RĤ�;

RĤ�� = RM̂ ��: Thus, the optimal audit scheme involves pooling the top two states.

The argument for pooling the top two states is applicable to any problem with more than two

states. Hence with n states it could be applied successively, involving pooling over the top n � 1

states so long as:

EPn = �
n
i=2�if2 + �1f1 � I � �1cm � ca > 0
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i.e., in general there is su¢ cient revenue in the lowest non-audited state.

Pooling states H and M; the three-state problem reduces to one in two new states. The issues

then mirror the two state arguments with suitable modi�cations. The questions become �nding the

best split of upper state repayments, low report audit probability and signal acquisition probability.

Imposing mM = mM� = 0 and RM̂ � = RĤ�; RM̂ �� = RĤ��; the problem becomes (P 0EC3):

min� (���L�mL�cm + ca) + (1� �)�LmLcm (42)

s.t. ���
�
(�H� + �M�)RM̂ �� � �L�mL�cm � ca

	
+

+(1� �)
�
(�H + �M )RM̂ � � �LmLcm

	
+ �LfL = I (43)

and the single binding incentive constraint (39)

RM̂ � � fL = mL (fM � fL)

RM̂ �� � fL = mL� (fM � fL)

By using an argument similar to that used to prove Proposition 1, we �nd that:

Proposition 10 When 0 < � � 1; optimally RM̂ �G = fM and RM̂ �B = fL: This implies that

mLG = 1; mLB = 0.

Consequently � and the low state audit probability solve

min� (�LGcm + ca) + (1� �)�LmLcm

� f(�HG + �MG) fM + (1� �HG � �MG) fL � I � �LGcm � cag+

+(1� �)
�
(�H + �M )RM̂ � + �L

�
fL �

RM̂ � � fL
fM � fL

cm

�
� I

�
= 0

where the multiplier of � is the equivalent in a 3-state setting of EPC�:

EPC�3 � f(�HG + �MG) fM + (1� �HG � �MG) fL � I � �LGcm � cag :

As in the two state case there is a simple expression expressing the trade-o¤ between the costs of

signal acquisition and monitoring which tells us when the signal is worth it:

NCa3 � (�H + �M )ca � (�LB(�HG + �MG)� �LG(�HB + �MB))cm

� (�H + �M )ca � �3cm
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Proposition 11 When NCa3 < 0 and the degree of correlation between signal and state is not too

high, it is optimal to randomly or always gather information. The actual values of RM̂ �; mL and �

vary with the sign of EPC�3. In particular:

i. If EPC�3 > 0; the unique optimum has mL = 0; RM̂ � = fL,

� = �3 �
I � fL

(�HG + �MG) (fM � fL)� �LGcm � ca
< 1 (44)

ii. If EPC�3 = 0; it is optimal to always gather information (� = 1).

iii. If EPC�3 < 0; the unique optimum has mL = 1; RM̂ � = fM ,

� = ��3 �
(�H + �M ) fM + �LfL � I � �Lcm

(�HB + �MB) (fM � fL)� �LBcm + ca
< 1 (45)

Applying a similar analysis to the one seen for the two-state cases, we can show that when NCa3

is positive, then � = 0, and when NCa3 = 0; the principal is indi¤erent between collecting the signal

or not. This allows us to sketch a diagram similar to Fig. 2, and with the same interpretation,

with the ca � cm space divided into areas according to the sign of EP3; NCa3 and EPC�3 :

So the tendency to generate deterministic monitoring also occurs with more than two states

and arises because the income di¤erences between states combined with the positive correlation of

signal and state make it cheapest to concentrate monitoring on better signal states.

8 Discussion and extensions

In this section we analyse the role of some simplifying assumptions and discuss possible

generalisations. To keep the notation simple we use two income states, but the discussion below

applies also to three or more states cases.

8.1 Commitment

We have assumed commitment of the principal to the enforcement strategy written into the contract.

As regards the audit strategy, it is well known that for a truthtelling contract to be credible, lenders

must have some way of locking in to an agreed veri�cation policy - some exogenous commitment

device forcing the principal to audit low reports, even though she knows them to be truthful (Hart,

1995). While a deterministic audit policy may be enforceable if the report and the act of audit are
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public, this enforcement seems more problematic when the contract stipulates random audit, as it

is impossible to infer the strategy actually used by the principal just from observation of whether

an audit occurred (Khalil, 1997).19 The only way round this is to insist that play of the random

device requiring audit is public. In our setting, since optimally there are deterministic audits in

the right hand branch when NCa < 0; this problem is mitigated.20

The commitment problem to signal acquisition is rather di¤erent and its relevance depends on

the sign of EPC� (17). If EPC� = 0; the principal cannot defect from the contracted deterministic

strategy � = 1, since any deviation is observable.

However, if EPC� 6= 0; the principal does have an incentive to cheat on a random signal

acquisition strategy.21 His return, de�ned in (16), is �EPC� + (1� �) (PCN � I) = 0. If

EPC� > 0; the contract has � < 1 and PCN = fL < I; so he has an incentive to deviate setting

� = 1: Similarly if EPC� < 0; the contract has 0 < � < 1 and PCN = �HfH + �LfL � �Lcm > I;

so he has an incentive to never collect the signal. Since play of the random device is unobservable,

the only sequentially rational signal strategies are deterministic: � = 1 when EPC� > 0 and � = 0

when EPC� < 0: In these cases, lack of commitment will generate deterministic signal acquisition

as well as deterministic audit. However, these contracts will give the agent a zero return in every

signal-state outcome and a positive return to the principal.

From the above discussion, we derive the following proposition:

Proposition 12 Under lack of commitment, the only sequentially rational signal acquisition

strategies are deterministic.

So, under no commitment, both audit and signal acquisition strategies are deterministic.

19The principal could cheat on the realisation of the random device, either by using a public device with the wrong
odds or playing the device privately.
20Another way round the no commitment problem has the two parties engaging in some bargaining after the

state is realised, e.g., collude to �nd an ex-post e¢ cient repayment combined with no audit (Dewatripont, 1988),
or noncooperatively trade-o¤ the threat of audit against the threat of cheating on the report (Khalil, 1997; Khalil
and Parigi, 1998). Knowing that some such process could occur, the contract would have to include a renegotiation-
proof constraint, so that only those reporting and audit schemes that will actually be implemented subsequently are
feasible. This leads to deterministic audit again (Krasa and Villamil, 2000).
21We have assumed that ex-ante competition between principals leads to a contract maximising the agent�s expected

payo¤. However, ex-post, once the contract is agreed, the agent is locked in and the principal acts in his own interest.
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8.2 Private information

Throughout the paper we have assumed that the signal is public. New issues arise if the signal is

private information to the principal. In this case, depending on the timing of signal acquisition,

the contract o¤er may have an informational content for the agent, becoming an informed principal

problem (Maskin and Tirole (1990, 1992)). The main result in this literature is that with risk

neutral parties the principal can do no better than publicly reveal her signal. However Cella (2008)

shows that gains from hiding information are positive even with risk neutrality if there is correlation

between the type of the principal and that of the agent, with two types of each. These results are

derived in a context in which the signal is de�nitely acquired before the contract o¤er and it is

a surplus-seeking principal who writes the contract. This is in contrast with our setup where the

contract is written in the interests of the agent and the signal may be acquired either before or

after the contract o¤er. Although these modelling di¤erences do not allow us to immediately apply

these results to our setting, an intuitive argument might run as follows. Suppose both parties know

that a signal has been collected, but only the principal (who is rent-seeking) knows its outcome.

Then the left and right hand branches of the game tree are still well de�ned. As far as the left hand

branch of the game tree is concerned, a contract o¤er will convey information about the signal to

the agent. If �B � 0 (30), the project pro�tability is negative after a bad signal and the principal

will make a contract o¤er only after a good signal, thereby revealing it. The Maskin-Tirole result

applies also in this setting. However, if �B > 0 (30), a contract o¤er will be made after any signal

realisation. Because the returns are higher for the principal if a bad signal occurs (RĤ�Gjb4 < RĤ�Bjb4

from Proposition 7), she may opportunistically hide the good signal and the Maskin-Tirole results

may not apply. However, the possibility of competition among principals implies that competitors

may also acquire information and undercut the principal�s o¤er. Competitive o¤ers would then

reveal the signal. The principal could therefore decide to wait until after the contract to get the

signal, given that competition has no force after the contract has been agreed. But a contract

o¤er equal to the one with public signal may again induce the principal to hide information: she

would now want to hide the bad signal, given that returns are higher after the good signal (recall

RĤ�G = fH > RĤ�B = fL from Proposition 1). Anticipating this, the agent would not accept a

contract o¤er conditional on the signal and a pooling contract would presumably arise. The variety

30



of the possible cases outlined above shows that the way private information would work out here

needs a more thorough analysis.

8.3 Does it matter who gets the surplus?

Throughout the entire analysis we have taken the contract to allocate all the surplus to the agent

so long as the principal breaks even ex-ante on the project. Besides being widely used in the CSV

literature (Gale and Hellwig, 1985; Mookherjee and Png, 1989, among others), this assumption

has social advantages as it minimises the deadweight loss of ensuring truthtelling. Indeed, without

the signal (� = 0), writing the contract to maximise the surplus of the principal subject to the

participation constraint of the agent implies that, because of limited liability, the agent has to make

a non-negative return in each state, i.e., his participation constraint must hold state by state. The

principal can then raise the repayment required in a truthfully declared high state to the entire

agents revenue by monitoring low reports with probability one (mN = 1 and RH�N = fH): This

gives the principal the highest ex-ante return possible, but then the social cost of controlling the

agent�s incentives through monitoring is higher than it would be when the contract gives all the

surplus to the agent. This can be seen by looking at the expected audit cost: �Lcm, when the

principal gets the surplus, and �LmNcm when the agent gets the surplus (Menichini and Simmons,

2012). Thus, having the principal writing the contract has an e¤ect on the audit strategy, leading

to deterministic audits already in the scenario with no signal, but at the social cost of a higher

expected deadweight loss.

In a with-signal scenario, if the principal got the surplus, she would never choose to collect the

signal. Again, since the agent�s participation constraint must bind in each signal-state realisation,

the principal can extract all revenue from the agent by monitoring each eventuality with probability

one. But this implies that there is no return to using a signal to attain a �ner classi�cation of states

and hence no need for a signal.

Concluding remarks

We have considered the contract problem in which an agent carries out a project generating private

risky revenues which are subject to costly audit by a principal. The principal can choose at any

time to get a costly and imperfectly informative signal about future revenues, whose realisation is
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freely available to the agent. The question is: how does the information in the signal control the

debtors incentives? Should the principal get the signal and if so when? What impact does the

signal have on the audit strategy and the structure of repayments in the contract?

Since the parties are risk-neutral, acquiring the signal has no risk sharing gain, but the reduction

in uncertainty allows the principal to update and sharpen his beliefs about the prevalence of the

incentive to cheat and may have incentive e¤ects that reduce deadweight losses. There are three

factors involved in the signal acquisition decision. Firstly, since collecting the signal reduces the

uncertainty about future revenues, it allows the contract to be written with more precise separation

of the possible types of agent. Secondly, since both the signal and audit are costly, it allows for a

trade-o¤ in control devices between paying to reduce uncertainty by getting a signal and paying

for auditing. Thirdly, there are incentive e¤ects of the signal which work indirectly through the

principal�s participation constraint and the agent�s truthtelling constraint, that allow reduction in

the deadweight loss of audits.

Sections 7 and 8 have discussed various possible extensions and open questions. One further

issue concerns the possibility of delaying signal acquisition until after the agent has reported on

the state. However, rather than representing a di¤erent timing of signal acquisition, this possibility

represents a more sophisticated audit technology, given that, at the time at which the signal is

acquired, the agent knows the true realisation of the state and is then una¤ected by the outcome of

the signal. In particular, it can be modelled as a sequential audit approach that �rst uses a cheap

but imperfect screening device and then, if the results of that warrant it, goes on to a thorough

more costly audit. We see this a fruitful topic for future research.
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A Generic Properties of the Contract

(i) the participation constraint must bind since otherwise the high state repayments can be reduced.

(ii) and (iii) the truthtelling (TT) constraints must bind and there must be maximum punishment

RL̂H� = fH � ca; RL̂HN = fH :
In all contracts the truthtelling constraint is

m�(RL̂H� �RL̂��) � RĤ�� �RL̂�� � 0 � = G;B

mN (RL̂HN �RL̂�N ) � RĤ�N �RL̂�N � 0

The deadweight loss of monitoring is minimised by raising RL̂H�; RL̂HN to its maximum level of

fH (if � > 0) and reducing m�;mN until the TT holds with equality. In the left hand branch we

must have m� > 0 since otherwise, for some �; RĤ�� = RL̂�� � fL < I and there is then insu¢ cient
revenue to meet the investment cost.

(iv) low state repayments in all contracts are set to give zero surplus to the �rm.

In the right hand branch (a similar argument applies to the left hand branch) after imposing

binding truthtelling constraints and maximum punishment for cheating, the contract problem

becomes

max �
nP

�

h
�H�

�
fH �RĤ��

�
+ �L�

�
fL �

�
1� RĤ���RL̂��

fH�RL̂��

�
RL̂�� �

RĤ���RL̂��
fH�RL̂��

RL̂L�

�io
+(1� �)

n
�H

�
fH �RĤ�N

�
+ �L

h
fL �

�
1� RĤ�N�RL̂�N

fH�RL̂�N

�
RL̂�N �

RĤ�N�RL̂�N
fH�RL̂�N

RL̂LN

io
s.t. �

P
�

n
�H�RĤ�� + �L�

h�
1� RĤ���RL̂��

fH�RL̂��

�
RL̂�� +

RĤ���RL̂��
fH�RL̂��

(RL̂L� � cm)
i
� ca

o
+(1� �)

n
�HRĤ�N + �L

�
1� RĤ�N�RL̂�N

fH�RL̂�N

�
RL̂�N +

RĤ�N�RL̂�N
fH�RL̂�N

�
RL̂LN � cm

�o
� I

Forming a Lagrangian with multiplier �; the FOC wrt RĤ�� is (a very similar expression arises for

RĤ�N ):

@L
@RĤ��

: � (�� 1)
�
�H� �

�L�(RL̂���RL̂L�)
fH�RL̂��

�
� �� �L�cm

fH�RL̂��
� 0; RĤ�� � fH :

At the optimum � > 1. If not, the FOCs wrt RĤ��; RĤ�N are all negative, so all repayments are at

most fL: But this would yield insu¢ cient revenue to the principal.

Using the FOC wrt RL̂��:
@L

@RL̂��
: ��L�

(fH�RL̂��)
2

�
(�� 1)

�
fH �RĤ��

� �
fH �RL̂L�

�
+ �cm

�
fH �RĤ��

�	
� 0; RL̂�� � fL:

This is positive and hence RL̂�� = fL: A similar argument holds for RL̂�N :

The FOC wrt RL̂L� is (a similar expression arises for RL̂LN ):
@L

@RL̂L�
: � (�� 1)�L�

RĤ���RL̂��
fH�RL̂��

�
0; RL̂L� � fL:
This is positive (also for no signal state N) and hence optimally RL̂L� = RL̂LN = fL: Hence low

state audited and nonaudited repayments are set to give zero rent to the �rm.

Using RL̂�� = RL̂L� = RL̂�N = RL̂LN = fL; we obtain programme PEC :
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B Signal after the contract

The rest of the proof proceeds as follows. We have four variables to choosem�;mN ; �:We �rst show

that one set of optimal solution values for mG;mB are mG = 1;mB = 0 for any admissible values

of 0 � �;mN � 1: In fact if ca > 0 these are the only optimal values when � > 0:When � = 0 they
are admissible but so are any others (in fact mG;mB are then irrelevant). When ca = 0 there are

also multiple combinations of optimal �;mG or �;mB depending on the probability distribution

of revenues. Using mG = 1;mB = 0 then gives information about the optimal values of �;mN

(through the trade-o¤ between � and mN in the objective and constraint).

Proposition 1 shows that if optimally � > 0 then mG = 1;mB = 0: Proposition 3 shows that

if NCa < 0 and ca > 0 then optimally � > 0 and, depending on the probability distribution of

revenues, either mN = 0;mN = 1 or � = 1 and mN is irrelevant. Proposition 2 shows that if

NCa > 0 and ca > 0 then optimally � = 0 and mN assumes the value of the no-signal contract.

Proposition 4 takes the watershed case NCa = 0 and ca > 0 in which case the no-signal type

monitoring with � = 0 and a random signal acquisition policy are indi¤erent. Finally Proposition

5 analyses the ca = 0 case and shows that as well as the � > 0;mG = 1;mB = 0 case, an in�nite

number of other optimal solutions exist which involve mixes of �;mG > 0 or mixes of �;mG > 0

according the distribution of revenue between states.

Proof of Proposition 1. Suppose that 0 < � < 1 and ca > 0:

1. An optimum cannot have all m� = mN = 1; � = G;B: If it did, the participation constraint

(12) would be slack (Ef � I � �Lcm � ca > 0 by assumption) and a rent would be needlessly
left to the principal. Similarly, it cannot have all m� = mN = 0; � = G;B; since then the

expected repayments would not meet the reservation level of the principal (fL� I < 0). Thus
at least one audit probability must be positive.

2. Suppose that there are m�;mN > 0; � = G;B; and mG < 1 such that the participation

constraint (12) holds. This is not an optimum because it is possible to lower mB (i.e. lower

RĤ�B) and increase mG (i.e. increase RĤ�G) while reducing the expected cost (14) and

slackening the participation constraint (12). Indeed because �HG > �HB the increase in mG

(RĤ�G) and reduction in mB (RĤ�B) allows an increase in the expected revenues after a good

signal larger than the fall in revenues after the bad signal. Similarly this shift reduces the with

signal expected audit cost since �LG < �LB: This can be seen in the following expression:

1

fH � fL
�
(�HG (fH � fL)� �LGcm) dRĤ�G + (�HB (fH � fL)� �LBcm) dRĤ�B

�
:

Since (�HG (fH � fL)� �LGcm)�(�HB (fH � fL)� �LBcm) > 0; the participation constraint
is slackened by an increase in mG matched by an equal reduction in mB: This allows a further

reduction in mB and thus a reduction of the objective function. So an optimum cannot have

mG < 1 and mB > 0 and must at least entail one of mG = 1 or mB = 0:
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3. Suppose that mG = 1 but 1 > mB > 0: Then if mN < 1; it is possible to vary mN and mB

keeping the participation constraint constant

dmN = �
� (�HB(fH � fL)� �LBcm)
(1� �) (�H(fH � fL)� �Lcm)

dmB < 0 (46)

Thus, mB and mN must vary in opposite directions to satisfy the participation

constraint. The e¤ect of such variations on the objective function (14) is dEC =

�cm [��LGdmN + �LB(dmB � dmN )] + �LcmdmN ; which, using (46), becomes dEC =

�cm
�(fH�fL)

�H(fH�fL)��LcmdmB: Since the coe¢ cient of dmB is positive, it is best to reduce mB

and raise mN: as far as possible.

(a) One possibility is to hit mB = 0 with mN > 0: This proves the result.

(b) Alternatively mN = 1 with mB > 0 still. In this last case the optimisation problem

becomes:

min� [ca � �LBcm (1�mB)] + �Lcm

s.t. � � f(1�mB) [�HB(fH � fL)� �LBcm] + cag+ (�HfH + �LfL � �Lcm) = I

It is then possible to vary � and mB keeping the participation constraint constant

d� =
� (�HB(fH � fL)� �LBcm)

(1�mB) [�HB(fH � fL)� �LBcm] + ca
dmB > 0 (47)

The e¤ect on the objective function (14) is dEC = [ca � �LBcm (1�mB)] d� +

��LBcmdmB; whence, using (47) gives dEC =
�ca�HB(fH�fL)

(1�mB)[�HB(fH�fL)��LBcm]+cadmB > 0: It

is possible to reducemB to zero whilst keeping � > 0 since, withmG = mN = 1; mB = 0;

the participation constraint becomes �EPC�+(1� �) (�HfH + �LfL � I � �Lcm) � 0:
Since (�HfH + �LfL � I � �Lcm) > 0; this can be satis�ed with � > 0:

4. Alternatively suppose the optimum has mB = 0 but 0 < mG < 1 and mN > 0:

It is then possible to reduce mN ; raise mG so as to keep the participation constraint

constant: dmN = � �f�HG(fH�fL)��LGcmg
(1��)f�H(fH�fL)��LcmgdmG: The change in objective (14) is dEC =

�cm
��(fH�fL)

�H(fH�fL)��LcmdmG < 0: So it is best to raise mG to maximum and reduce mN :

(a) One possibility is that we hit mG = 1 with mN > 0; which proves the result.

(b) The other possible case has mN = 0 with mG < 1 still. In this last case the optimisation

problem becomes

min� (ca + �LGmGcm)

s.t. � f(�HG (fH � fL)� �LGcm)mG � cag = I � fL:

Varying mG and � so as to keep the participation constraint constant gives dmG =

� (�HG(fH�fL)��LGcm)mG�ca
�[�HG(fH�fL)��LGcm] d�: Using the resulting dmG in the objective function dEC =

(ca + cm�LGmG) d�+�cm�LGdmG gives dEC =
�HG(fH�fL)ca

�HG(fH�fL)��LGcmd� > 0: So it is best

to reduce � and raise mG: as far as possible. In fact we can attain mG = 1 with � > 0:
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Hence the optimum must involve mG = 1;mB = 0:

Proposition 1 is valid if � > 0: If � = 0;m� have no impact on participation constraint or

objective and so without loss of generality we can also set them to these values if � = 0:

To prove Propositions 2 to 5, we use the following lemma.

Lemma 1 If 0 � � < 1 and 0 < mN < 1 are optimal, if EPC� 6= 0; a simultaneous variation in �
and mN keeping the participation constraint constant changes expected enforcement cost according

to dEC = (�Hca��cm)(fH�fL)
[�H(fH�fL)��Lcm] d�; whose sign depends on the sign of �Hca � �cm � NCa:

Proof. Consider Programme P 0EC : Suppose 0 � � < 1 and 0 < mN < 1 are optimal. When

EPC� 6= 0 simultaneous variation in �;mN to keep the participation constraint constant must

satisfy
dmN

d�
jPC = �

EPC� � (PCN � I)
(1� �) [�H(fH � fL)� �Lcm]

(48)

While the sign of the denominator is certainly positive, the sign of the numerator is ambiguous.

However, it can be inferred from the sign of EPC�: For � 2 (0; 1) ; to satisfy (16) with equality,
PCN � I Q 0 if EPC� R 0: Thus, if:

� EPC� > 0; dmN
d� jPC < 0;

� EPC� < 0; dmN
d� jPC > 0:

The simultaneous variation in mN ; � changes the expected enforcement cost by

(ca + �LGcm � �LmNcm) d�+ (1� �)�LcmdmN ; i.e., using 48,

(ca + �LGcm � �LmNcm) d�+ (1� �)�Lcm
�
� EPC� � (PCN � I)
(1� �) [�H (fH � fL)� �Lcm]

�
d�

which reduces to

dEC =
(�Hca � �cm) (fH � fL)
[�H(fH � fL)� �Lcm]

d�:22 (49)

� If EPC� = 0; PC = (1� �)(mN (�H (fH � fL)� �Lcm)� I + fL) and given � < 1 we must
have mN (�H (fH � fL)� �Lcm)�I+fL = 0: In this case no marginal compensation between
mN ; � is possible.

Proof of Proposition 2. If NCa > 0; from (49) enforcement costs are minimised by reducing

�: However, the change in mN following a change in � necessary to preserve the participation

constraint depends on the sign of EPC�: Three cases can arise:

1. If EPC� > 0; dmN
d� jPC < 0: Thus mN and � vary in opposite directions to satisfy the

participation constraint. So, to minimise the enforcement cost, it is best to raise mN

22A similar procedure applies to work out dEC=dmN :
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and decrease �. However, an optimum cannot have mN = 1 and � > 0, because the

participation constraint would be slack (�EPC� + (1 � �) (PCN � I) = 0: If mN = 1;

PCN � I = �HfH + �LfL � I � �Lcm > 0: Given EPC� > 0; PC > 0). The �rm can

then reduce mN until the participation constraint binds, giving PCN � I < 0 (given that

EPC� > 0). But because dEC
dmN

= � (1��)(fH�fL)(�Hca��cm)
EPC��(PCN�I) < 0; it is best to raise mN and

lower �: However mN only has to rise to balance PC and we know that the no-signal solution

with � = 0 is achievable with mN < 1: If � were positive but small there would be further

gains to be realised. Thus optimally � = 0; with RĤ�N = RĤ�N j�=0 (21).

2. If EPC� < 0;
dmN
d� jPC > 0: Now �;mN must both fall to balance PC. Again we know that

we can achieve � = 0 with PC = 0 at the no-signal solution. And if we left � > 0 there

would still be gains to be realised from reducing both �;mN . Thus the solution must have

mN > 0; RĤ�N = RĤ�N j�=0 (21), and � = 0:

3. If EPC� = 0; PC = (1 � �)(PCN � I): One possibility is � = 1; in which case mN is

immaterial, the other is mNPN � I + fL = 0 in which case, since ca > 0; it is best to set

� = 0: Of these two possibilities, if NCa > 0 it is best to set � = 0:

In either case enforcement costs are EC�=0 = �LmNcm (22).

Proof of Proposition 3. IfNCa < 0; from (49) dECd� < 0 : enforcement costs are minimised by

raising �: However, the change inmN following a change in � necessary to preserve the participation

constraint depends on the sign of EPC�: Three cases can arise:

1. If EPC� > 0; from (48) dmN
d� jPC < 0: Thus mN and � vary in opposite directions to satisfy

the participation constraint. To minimise the enforcement cost, it is best to reduce mN as

far as possible resulting in mN = 0 (RĤ�N = fL) and raise � just far enough to satisfy the

participation constraint to �: Setting � = 1 (and mN interior) is not optimal as it would give

a slack participation constraint.

2. If EPC� = 0; since NCa < 0 now it is best to set � = 1 and then mN is immaterial.

If EPC� = 0 there are two possible ways in which the participation constraint can hold: either

� = 1 or mN is selected so that PCN = I: This in turn gives mN j�=0 = I�fL
�H(fH�fL)��Lcm

(mN j�=0 is de�ned in (20)) If the second route is taken, there is still a free choice of �:
However, when mN = mN j�=0; dECd� = (�Hca��cm)(fH�fL)��LGcacm

�H(fH�fL)��Lcm < 0, and so the best choice

of �; given this, is � = 0: Thus, if EPC� = 0 we can reach EC�=1 = ca + �LGcm via

� = 1 or EC�=0 =
�L(I�fL)cm

�H(fH�fL)��Lcm with � = 0: Comparing EC�=1 with EC�=0 we obtain

(�Hca � �cm) (fH � fL) < 0 : the optimum when EPC� = 0 is to set � = 1 and have full

information gathering.

3. If EPC� < 0; dmN
d� jPC > 0: Thus mN and � vary in the same direction to satisfy the

participation constraint and � has to be increased to minimise the enforcement cost. Setting
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� = 1 is not optimal as it would violate participation constraint. Thus mN must be raised as

far as possible, giving mN = 1 and � must be raised su¢ ciently to satisfy the participation

constraint: � = �� (26).

To see why policing involves concentrated audit with mG = 1 and � interior, consider the

enforcement costs when mG is interior: EC = � (ca + �LGmGcm) : Proportional and opposite

changes in mG or � have identical expected audit cost e¤ects, but in addition the expected signal

acquisition cost is �ca. Thus, the extra cost of a proportional increase in the audit probability mG

is more than o¤set by the saving induced by a reduction in signal acquisition frequency �. It is

then optimal to increase the audit probability all the way until mG = 1 and reduce the chance of

signal acquisition until the participation constraint binds. Thus, it is the direct cost of collecting

the signal that ultimately makes the signal acquisition strategy more expensive than auditing and

leads to deterministic audits.

If the project is not ex-ante pro�table after a signal (EPC� < 0), then high state repayments in

no signal states must be increased to satisfy the participation constraint, thus necessitating audit of

no signal states too. Signal contingent deterministic monitoring is still optimal (mG = 1;mB = 0);

but now signal acquisition has e¤ects on the relative expected audit costs of good signal and no signal

low reports . The optimal combination �;mN minimises EC = � (ca + �LGcm)+(1� �)�LmNcm:

In trading o¤ � and mN ; each has a speci�c cost (ca+ �LGcm) for � and mN�Lcm for mN , as well

as a common saving of ��LmNcm; since, when there is a signal, mN is not applied. From the fact

that NCa < 0 and the signal is relatively cheap, it turns out that the cost saving from reducing �

exceeds that from reducing mN and it is optimal to increase the audit probability all the way until

mN = 1 and use � just to satisfy the participation constraint.

Proof of Proposition 4. If NCa = 0 then dEC=d� = 0 so simultaneous variation in �

and mN (RHN ) which ensure that the participation constraint of the principal continues to hold

have a zero e¤ect on policing cost. It follows that any combination of values �;mN in the unit

interval which satisfy the participation constraint will generate the same optimal policing cost and

there is an in�nity of solutions. The permissible ranges of �;mN are derived from the participation

constraint (16) and depend on the sign of EPC�:

1. If EPC� > 0; from (48) dmN
d� jPC < 0; so mN and � must move in opposite direction to

satisfy the participation constraint. To ensure that �;mN remain in the unit interval the

range of values of � is � 2 [0; �] with a corresponding range of values of mN 2 [0;mN j�=0]
(RHN 2 [fL; RHN j�=0]), where � and mN j�=0 are de�ned in (23) and (20) respectively.

2. If EPC� < 0; � and mN must move in the same direction along the PC (from (48)
dmN
d� jPC > 0). To ensure that �;mN remain in the unit interval the range of values of � is

� 2 [0; ��] ;with �� as de�ned in (26), with a corresponding range of values of mN 2 [mN j�=0; 1]
(RHN 2 [RHN j�=0; fH ]).
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3. If EPC� = 0; the multiplier of � in PC is zero and the PC is satis�ed either by setting

mN = mN j�=0 (in which case � = 0) of by setting � = 1; in which case mN is unde�ned.

In either case enforcement costs are equal to those obtained when � = 0 (22).

Proof of Proposition 5. From Proposition 1 we know that an optimum cannot have mG < 1

and mB > 0 and must at least entail one of mG = 1 or mB = 0:

1. Suppose that mG = 1 but 1 > mB > 0: Then if mN < 1; as in the case of Proposition 1 with

ca > 0; it is best to reduce mB and raise mN: as far as possible. There are two possibilities:

(a) One has mN = 1 with mB > 0. This case has been dealt with in point 3 of the Proof of

Proposition 1. With ca = 0, the trade-o¤ between mB and � is given by

dEC = �

�
��LBcm (1�mB)

�
(�HB (fH � fL)� �LBcm)

(1�mB) [�HB (fH � fL)� �LBcm]

�
+ �LBcm

�
dmB = 0

and the �rm is indi¤erent between monitoring after a bad signal or acquiring

the signal. The solution has � 2
h
min

n
�HfH+�LfL�I��Lcm
�HB(fH�fL)��LBcm ; 1

o
; 1
i
and mB 2h

0;max
n
0;� EPC�

�HB(fH�fL)��LBcm

oi
:

(b) Alternatively mB = 0; mN > 0: This case is the analogous to the one dealt with in

Lemma 1 with NCa < 0 always, given ca = 0: The solution depends on the sign of

EPC� and is described in Proposition 3.

2. Alternatively suppose the optimum has mB = 0 but 0 < mG < 1 and mN > 0: As in the case

of Proposition 1, it is desirable to reduce mN and raise mG as far as possible. Then there are

two possibilities:

(a) mN = 0, mG < 1. This case has been dealt with in point 4 of the Proof of Proposition

1. With ca = 0, the trade-o¤ between mG and � becomes dEC = (cm�LGmG) d� +

cm�LG (�mGd�) = 0: The �rm is indi¤erent between monitoring after a good signal

or acquiring the signal. The solution has � 2
h
1;min

n
I�fL

�HG(fH�fL)��LGcm ; 1
oi

and

mG 2
h
min

n
I�fL

�HG(fH�fL)��LGcm ; 1
o
; 1
i
: The enforcement costs are EC = ��LGmGcm =

�LG
I�fL

�HG(fH�fL)��LGcm cm.

(b) mG = 1, mN > 0. This case is the analogous of the one dealt with in Lemma 1 with

NCa < 0 always, given ca = 0: The solution depends on the sign of EPC� and is

described in Proposition 3.

Thus, as in the case in which ca > 0, the solution depends on the sign of EPC�:When positive,

starting from the equilibrium with costly signal acquisition (mG = 1; � = �), an increase in � can

be exactly compensated by a proportional decrease in mG; thus keeping the expected deadweight

loss of audit constant. This gives rise to a continuum of possible equilibria with � � � � 1 and

audit after a good signal at a rate m0
G � mGj�=1 =

I�fL
�HG(fH�fL)��LGcm (rising to m0

G = 1 when
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� = �; where � is always set to the level that satis�es the participation constraint). If EPC� = 0;

the participation constraint (16) can be satis�ed either by always getting the signal or by audit of

no signal states. Since the signal is now free, a fortiori it is cheaper to set � = 1. If EPC� < 0;

�; mN and mB trade-o¤ against each other. We know that mN = 1 from Proposition 3 and the

enforcement cost is EC = [�L � ��LB (1�mB)] cm: Any simultaneous increase in � and mB gives

dEC = �LB(�dmB � (1 � mB)d�): So, choosing d� = �= (1�mB) dmB keeps enforcement cost

constant. This gives rise to a continuum of possible equilibria with �� � � � 1 and audit after a

bad signal at a rate 0 � m0
B � mBj�=1 = � EPC�

�HB(fH�fL)��LBcm .

Proof of Proposition 6. Let c�m; c
�
a solve EP = EPC� = 0: Note that in the ca; cm plane

EP falls faster than EPC�. Similarly let bcm;bca solve EPC� = NCa: c�a = bca; c�m = bcm if � = ��

and if � > ��; c�a > bca and c�m < bcm:
Feasibility requires ca; cm are below EP: If c�a < bca there exist feasible pairs ca; cm at which

EPC� � 0 with ca < bca; cm > bcm but NCa < 0: At any such point the optimal signal strategy is

MSb if EPC� < 0 or � = 1 if EPC� = 0: And at points ca; cm with EPC� > 0 it is MSa
The di¤erence c�a � bca (which has the opposite sign of c�m � bcm) is equal to ��HG (fH � fL) �

�H�LB(I � fL). It is increasing in � and zero when � = �� � �H�LB(I�fL)
�HG(fH�fL) : Hence if � � �

� we have

c�a < bca and all three parts of proposition 3 apply.
Conversely if � > ��; c�a > bca and c�m < bcm: Now the only feasible points cacm below EP and

with NCa � 0 must entail EPC� > 0 and hence whenever NCa � 0; the signal strategy can only
be MSa if it acquired at all.

Comparative statics: Signal strategy as a function of acquisition and audit cost. We

�rst plot � against ca and cm:When NCa < 0 and EPC� � 0; @�
@cm

= �LG(I�fL)
(�HG(fH�fL)��LGcm�ca)2

> 0;

@2�
@c2m

=
2�2LG�

(�HG(fH�fL)��LGcm�ca)2
> 0:

When EPC� < 0; @��
@cm

= � �L���LB
(�HB(fH�fL)��LBcm+ca)2

< 0; @
2��
@c2m

= � 2�LB(�L���LB)
(�HB(fH�fL)��LBcm+ca)2

< 0:

At its maximum, the slope of � (cm) changes from @�
@cm

= �LG
I�fL to

@�
@cm

=
�2LG

�(fH�fL)��LB(I�fL)��Lca <

0:23

When EPC� � 0; @�@ca =
I�fL

(�HG(fH�fL)��LGcm�ca)2
> 0; @

2�
@c2a

= 2(I�fL)
(�HG(fH�fL)��LGcm�ca)3

> 0:

When EPC� < 0, @��@ca = �
Ef�I��Lcm

(�HB(fH�fL)��LBcm+ca)2
< 0; @

2��
@c2a

= 2(Ef�I��Lcm)
(�HB(fH�fL)��LBcm+ca)3

> 0:

Since utility is given by U = �HfH + �LfL � I � EC; where EC is the relevant cost function,

we can easily plot U against ca and cm: For ca > 0 and increasing cm; optimally � = 0 and from 22

utility is given by U�=0 =
�H(fH�fL)(�HfH+�LfL�I��Lcm)

�H(fH�fL)��Lcm . Then @U�=0
@cm

= � �H�L(fH�fL)(I�fL)
(�H(fH�fL)��Lcm)2

< 0;

@U2�=0
@c2m

= �2�H�
2
L(fH�fL)(I�fL)

(�H(fH�fL)��Lcm)3
< 0:

For higher cm; optimally � > 0 and from 24 utility is given by UaMS =

(fH�fL)f�HB(I�fL)+�HEPC�g
�HG(fH�fL)��LGcm�ca and @UaMS

@cm
= � �LG�HG(fH�fL)(I�fL)

(�HG(fH�fL)��LGcm�ca)2
< 0;

@Ua
2

MS
@c2m

=

� 2�2LG�HG(fH�fL)(I�fL)
(�HG(fH�fL)��LGcm�ca)2

< 0:

23For this to be negative, we need EPB = �HB (fH � fL) � �LBcm > 0 at the value of cm at which EPC� = 0.
This follows from assumption 1 and EP = EPB + EPC�.
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Last, for su¢ ciently high cm; optimally still � > 0; but from 27 utility is given by

U bMS =
(Ef�I��Lcm)�HB(fH�fL)
�HB(fH�fL)��LBcm+ca and @UbMS

@cm
= �HB(fH�fL)f�LBEPC���LG[�HB(fH�fL)��LBcm+ca]g

(�HB(fH�fL)��LBcm+ca)2
< 0;

@Ub
2

MS
@c2m

= �2�LB�HB(fH�fL)f�LBEPC���LG[�HB(fH�fL)��LBcm+ca]g
(�HB(fH�fL)��LBcm+ca)3

< 0:

The pattern of utility for varying ca and cm is depicted in �gures 8 and 9:

EPCσ=0NCa=0
U

UMSa cmUMSbU0 U1

U(cm) for ca>0

Fig. 8. U (cm) for ca > 0:

EPCσ=0 NCa=0
U

UMSa caUMSb U0

U(ca) for cm>0

Fig. 9. U (ca) for cm > 0:

C Signal before the contract

Proof of Proposition 7. When �B > 0; using programme P 0
b4, solving the participation

constraint for RĤ�� (32) and substituting out both in m� and in the utility function U� gives

m�jb4 and EUb4 reported in Proposition 7 (31 and 33) respectively). Notice that mGjb4 �mBjb4 =
�(I�fL)�(fH�fL+cm)

(�HG(fH�fL)��LGcm)(�HB(fH�fL)��LBcm) < 0: When �B � 0; the principal knows he will make zero
pro�t at best from proceeding after a bad signal and generally will abandon the project. The

outcomes after a good signal are not a¤ected, so the expected return to the agent arises only from

the good signal outcome (34).

D Globally optimal signal strategy

Proof of Proposition 8. Let Rb4 be the optimal repayments in the left hand (LH) branch (signal

before the contract), �;Rafter the optimal signal strategy and repayments in the right hand (RH)

branch (signal after the contract).

Rb4 satis�es the truthtelling constraint (TT), the participation constraint (PC) in each signal

state Esj�PC� = 0; � = G;B; and the relevant limited liability (LL) constraints (10).

The maximum payo¤ in LH branch is EUb4 =
P
� ��Esj�U�(R�b4):

The RH contract has the same TT constraints and LL constraints and the PC of principal is

�
X
�

Esj�PC� + (1� �)EsjNPCN

The maximum payo¤ on RH branch is

EUafter(�;Rafter) = �
X
�

��Esj�U� (Rafter) + (1� �)EUN (Rafter):
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In more detail

EUb4(Rb4) = �GEsjGUG + �BEsjBUB

= �Gmax
RG

[EsjGUGjEsjGPCG; TTG; LLG] + �Bmax
RB

[EsjBUBjEsjBPCB; TTB; LLB]

= �GEsjGUG(RGb4) + �BEsjBUB(RBb4)

� max
RG;RB

[
�
�GEsjGUG + �BEsjBUB

�
j
�
�GEsjGPCG + �BEsjBPCB

�
; TTG; LLG; TTB; LLB]

� EUafter(1; RG (1) ; RB (1))

� max
�
[EUafter(�;RG (�) ; RB (�))j0 � � � 1]

where R� (�) is the optimal RH branch repayment at the �xed value of �. In fact the �rst inequality

is strict since for � = 1 there is cross-subsidisation in the participation constraint with the principal

making a loss in the bad signal state and a gain in the good signal state. � = 1 is optimal if

EPC� = 0: In other cases (EPC� 7 0) optimally � < 1 in which case the second inequality is then
also strict. Incidentally in these cases there is also cross subsidisation in the di¤erent parts of the

ex-ante participation constraint but now between the signal and no signal states.

E More than two income levels

The contract problem (PEC3) is to minimise the enforcement costs (audit cost after a low or

intermediate report and the signal acquisition cost (40)) subject to the participation constraint

(41) and the incentive constraints (37), (38) and (39).

Proof of Proposition 9. The proof proceeds in steps. We �rst show that the incentive

constraint (37) binds. Then that mM = mM� = 0. Further that also the incentive constraint (39)

binds. Last we prove that (38) is slack. This allows us to set the contract problem as one in two

states, where the top two, H and M, are pooled into a single state. With suitable modi�cations,

the remaining proofs (Proof of Proposition 10, of Lemma 2 and of Proposition 11) closely mirror

those for the two-state case.

1. The set of incentive constraints (37) binds.

It follows from Border and Sobel (1987) that the bottom non-monitored state has a binding

incentive constraint with the top monitored state. So if mM > 0; (37) must bind. Conversely,

if mM = 0; repayments must be pooled in the top two states and RM̂ � = RĤ�.

2. mM = mM� = 0 (this is proved below for the no signal case, but the proof is analogous for

the with signal case).

The rationale is that when mM > 0 and RM̂ � < fM there are savings to be made on audit

cost by reducing mM and raising RM̂ � in a way which has a neutral e¤ect on the participation

constraint (keeping RM̂ � (1�mM ) constant), but slackens (39), reducing the enforcement

cost. This goes on until we hit one of the two corners, i.e., either mM = 0; or RM̂ � = fM or

both.
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Suppose we �rst reach mM = 0 and RM̂ � < fM : Then RM̂M is irrelevant and from (37)

binding RM̂ � = RĤ�: If in constraint (39) we replace RĤ� with RM̂ � and rearrange, this

becomes RM̂ � � (1�mL) fL+mLfM : If we hit RM̂ � = fM with mM > 0; we can reduce both

RĤ� and mM ;preserving the participation constraint. Doing this, we can attain mM = 0: To

see this, replace RĤ� by fM ; RM̂ � by fM and mM by zero in the participation constraint, to

get

�HfM + �MfM + �LfL � I � (����L�mL� + (1� �)�LmL) cm � �ca � EP3:

This is positive by assumption and shows that there exists a value of RĤ� � fM with

mM = 0; RM̂ � = fM which satis�es the participation constraint.

3. The set of incentive constraints (39) binds (this is proved below for the no signal case, but

the proof is analogous for the with signal case).

Consider constraints (38) and (39). Suppose we have an optimum with (39) slack and (as we

know from Border and Sobel) mL > 0; since the lowest state always has positive monitoring:

The optimum must satisfy both the above inequalities and the participation constraint.

Keep all the RĤ�; RM̂ � �xed, so the right hand sides of the incentive constraints are all �xed.

Reducing mL will keep the second inequality valid for small changes but could violate the �rst

inequality (if it was binding initially). Suppose it was binding initially. Then it is possible

to reduce RĤ� too to keep (38) binding. This will also slacken (37). The e¤ect, if possible,

is to reduce agency cost. Reducing RĤ� and mM also has implications for the participation

constraint.

Can you keep doing this until (39) binds at the given RM̂ �? If so to keep (38) binding there

will be �nite changes �RĤ��;�mL� such that

(fH � fL) (1�mL ��mL) = fH �RĤ� ��RH ; (50)

(fM � fL) (1�mL ��mL) = fM �RM̂ �: (51)

(50) will certainly hold if (fH � fL)�mL � �RĤ� or �RĤ�=�mL � fH � fL: Within a
given signal situation the participation constraint is �HRĤ�+ �MRM̂ �+ �L (fL �mLcm) : To

prevent this falling with simultaneous reductions in RĤ� andmL needs �H�RĤ� � �Lcm�mL

or �RĤ�=�mL � �Lcm=�H : So we need both �RĤ�=�mL � fH � fL and �RĤ�=�mL �
�Lcm=�H : We can �nd such simultaneous changes �RĤ�;�mL if �H(fH � fL) � �Lcm: We
can reduce mL and RĤ� to reach a solution where (39) binds if �H(fH � fL) � �Lcm so long
as there are 0 � m�

L � 1; R�Ĥ� < fH such that

(fH � fL) (1�m�
L) � fH �R�Ĥ�

(fM � fL) (1�m�
L) = fM �RM̂ �

which would imply

(fM � fL) (1�m�
L) = fM �RM̂ �

� fM � fL � fH � fL
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But this is always true. So it is always possible to reduce mL su¢ ciently to make (39) bind.

4. The set of incentive constraints (38) is slack.

Setting mM ;mM� = 0, RĤ� = RM̂ � and (39) binding, the remaining incentive constraints (38)

and (39) become respectively:

RM̂ � � fL � mL (fH � fL) ; RM̂ �� � fL � mL� (fH � fL)

RM̂ � � fL = mL (fM � fL) ; RM̂ �� � fL = mL� (fM � fL)

whence we deduce that if the last set is binding, the �rst must be slack.

Proof of Proposition 10. Suppose that 0 < � < 1 and ca > 0:

1. An optimum cannot have all mL� = mL = 1; � = G;B: If it did, the participation constraint

(43) would be slack ((�H + �M ) fM + �LfL � I � �Lcm � �ca > 0 by assumption) and a

rent would be needlessly left to the principal. Similarly, it cannot have all mL� = mL =

0; � = G;B; since then the expected repayments would not meet the reservation level of the

principal (fL � I � �ca < 0). Thus at least one audit probability must be positive.

2. Suppose that there are mL�;mN > 0; � = G;B; and mLG < 1 such that the participation

constraint (43) holds. This is not an optimum because it is possible to lower mLB (i.e. lower

RM̂ �B) and increase mLG (i.e. increase RM̂ �G) reducing the expected cost (42) and slackening

the participation constraint (43). Indeed because �HG + �MG > �HB + �MB the increase

in mLG (RM̂ �G) and reduction in mLB (RM̂ �B) allows an increase in the expected revenues

after a good signal larger than the fall in revenues after the bad signal. Similarly this shift

reduces the with signal expected audit cost since �LG < �LB: This can be seen in the following

expression:

1

fH � fL
�
[(�HG + �MG) (fM � fL)� �LGcm] dRM̂ �G

+((�HB + �MB) (fM � fL)� �LBcm) dRM̂ �B:
	

Since [(�HG + �MG) (fH � fL)� �LGcm] � [(�HB + �MB) (fH � fL)� �LBcm] > 0; the

participation constraint is slackened by an increase in mLG matched by an equal reduction in

mLB: This allows a further reduction in mLB and thus a reduction of the objective function.

So an optimum cannot have mLG < 1 and mLB > 0 and must at least entail one of mLG = 1

or mLB = 0:

3. Suppose that mLG = 1 but 1 > mLB > 0: Then if mL < 1; it is possible to vary mL and mLB

keeping the participation constraint constant

dmL = �
� [(�HB + �MB) (fM � fL)� �LBcm]
(1� �) [(�H + �M ) (fM � fL)� �Lcm]

dmLB < 0 (52)
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Thus, mLB and mL must vary in opposite directions to satisfy the participation

constraint. The e¤ect of such variations on the objective function (42) is dEC =

�cm [��LGdmN + �LB(dmL � dmL)] + �LcmdmL; which, using (52), becomes dEC =

�cm
�3(fM�fL)

(�H+�M )(fM�fL)��LcmdmLB; where �3 � [�LB (�HG + �MG)� �LG (�HB + �MB)] is the

equivalent for the 3-states case of the correlation index �: Since the coe¢ cient of dmLB is

positive, it is best to reduce mB and raise mL: as far as possible.

(a) One possibility is to hit mLB = 0 with mL > 0: This proves the result.

(b) Alternatively mL = 1 with mLB > 0 still. In this last case the optimisation problem

becomes:

min� [ca � �LBcm (1�mLB)] + �Lcm

s.t. � � f(1�mLB) [(�HB + �MB) (fM � fL)� �LBcm] + cag

+((�H + �M ) fM + �LfL � �Lcm) = I

It is then possible to vary � and mB keeping the participation constraint constant

d� =
� f[(�HB + �MB) (fM � fL)� �LBcm]g

(1�mLB) [(�HB + �MB) (fM � fL)� �LBcm] + ca
dmLB > 0 (53)

The e¤ect on the objective function is dEC = [ca � �LBcm (1�mLB)] d� +

��LBcmdmLB; whence, using (53) gives

dEC =
�ca (�HB + �MB) (fM � fL)

(1�mLB) [(�HB + �MB) (fM � fL)� �LBcm] + ca
dmLB > 0:

It is possible to reduce mLB to zero whilst keeping � > 0 since, with mLG = mL = 1;

mLB = 0; the participation

constraint becomes �EPC� + (1� �) ((�H + �M ) fM + �LfL � I � �Lcm) � 0: Since

((�H + �M ) fM + �LfL � I � �Lcm) > 0; this can be satis�ed with � > 0:

4. Alternatively suppose the optimum has mLB = 0 but 0 < mLG < 1 and mL > 0:

It is then possible to reduce mL; raise mLG so as to keep the participation constraint

constant: dmL = � �f(�HG+�HB)(fM�fL)��LGcmg
(1��)f(�H+�M )(fM�fL)��LcmgdmLG: The change in objective (42) is

dEC = �cm
��3(fH�fL)

(�H+�M )(fM�fL)��LcmdmLG < 0: So it is best to raise mLG to maximum and

reduce mL:

(a) One possibility is that we hit mLG = 1 with mL > 0; which proves the result.

(b) The other possible case hasmL = 0 withmLG < 1 still. In this last case the optimisation

problem becomes

min� (ca + �LGmLGcm)

s.t. � f[(�HG + �HB) (fM � fL)� �LGcm]mLG � cag = I � fL:
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Varying mLG and � so as to keep the participation constraint constant gives

dmLG = � ((�HG+�HB)(fM�fL)��LGcm)mLG�ca
�[(�HG+�HB)(fM�fL)��LGcm] d�: Using the resulting dmLG in the

objective function dEC = (ca + cm�LGmLG) d� + �cm�LGdmLG gives dEC =
(�HG+�HB)(fM�fL)ca

(�HG+�HB)(fM�fL)��LGcmd� > 0: So it is best to reduce � and raise mLG: as far as

possible. In fact we can attain mLG = 1 with � > 0:

Hence the optimum must involve mLG = 1;mLB = 0:

Proposition 10 is valid if � > 0: If � = 0;mL� have no impact on participation constraint or

objective and so without loss of generality we can also set them to these values if � = 0:

To prove that the results in Proposition 3 (3) extend to more than two states, we use the

following lemma.

Lemma 2 If 0 � � < 1 and 0 < mL < 1 are optimal, if EPC� 6= 0; a simultaneous variation in �
and mL keeping the participation constraint constant changes expected enforcement cost according

to

dEC =
f(�H + �M ) ca � [�LB (�HG + �MG)� �LG (�HB + �MB)] cmg (fM � fL)

(�H + �M ) (fM � fL)� �Lcm
d�;

whose sign depends on the sign of (�H + �M ) ca � �3cm � NCa3 :

Proof. Consider Programme P 0EC : The participation constraint is

� f(�HG + �MG) fM + (1� �HG � �MG) fL � I � �LGcm � cag+

+(1� �)
�
(�H + �M )RM̂ � + �L (fL �mLcm)� I

	
= 0

which can also be written as:

� f(�HG + �MG) fM + (1� �HG � �MG) fL � I � �LGcm � cag+

+(1� �) f(�H + �M ) (fM � fL)mL + (�H + �M ) fL + �L (fL �mLcm)� Ig = 0

Suppose 0 � � < 1 and 0 < mL < 1 are optimal. When EPC�3 6= 0 simultaneous variation in

�;mL to keep the participation constraint constant must satisfy

fEPC�3 � (PCN � I)g d�+ (1� �) (pHM (fM � fL)� �Lcm) dmL = 0

dmL

d�
= � EPC�3 � (PCN � I)

(1� �) [(�H + �M ) (fM � fL)� �Lcm]
(54)

While the sign of the denominator is positive by Assumption 36, the sign of the numerator is

ambiguous. However, it can be inferred from the sign of EPC�3 : For � 2 (0; 1) ; to satisfy the
participation constraint with equality, PCN � I Q 0 if EPC�3 R 0: Thus, if:

� EPC�3 > 0; dmL
d� jPC < 0;

� EPC�3 < 0; dmL
d� jPC > 0:
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The simultaneous variation in mL; � changes the expected enforcement cost by

(ca + �LGcm � �LmLcm) d�+ (1� �)�LcmdmL; i.e., using 54,

dEC =
f(�H + �M ) ca � [�LB (�HG + �MG)� �LG (�HB + �MB)] cmg (fM � fL)

(�H + �M ) (fM � fL)� �Lcm
d�: (55)

� If EPC�3 = 0; PC = (1� �)(mL (�H (fH � fL)� �Lcm)� I + fL) and given � < 1 we must
have mL ((�H + �M ) (fM � fL)� �Lcm)� I+fL = 0: In this case no marginal compensation
between mL; � is possible.

Proof of Proposition 11. If NCa3 < 0; from (55) dEC
d� < 0 : enforcement costs are

minimised by raising �: However, the change in mL following a change in � necessary to preserve

the participation constraint depends on the sign of EPC�3 : Three cases can arise:

1. If EPC�3 > 0; from (54) dmL
d� jPC < 0: Thus mL and � vary in opposite directions to satisfy

the participation constraint. To minimise the enforcement cost, it is best to reduce mL as

far as possible resulting in mL = 0 (RM̂ � = fL) and raise � just far enough to satisfy the

participation constraint (� = �3). Setting � = 1 (and mL interior) is not optimal as it would

give a slack participation constraint. The enforcement costs are �3 (ca + �LGcm).

2. If EPC�3 = 0; since NCa3 < 0 now it is best to set � = 1 and then mL is immaterial.

Enforcement costs are ca + �LGcm.

3. If EPC�3 < 0; dmL
d� jPC > 0: Thus mL and � vary in the same direction to satisfy the

participation constraint and � has to be increased to minimise the enforcement cost. Setting

� = 1 is not optimal as it would violate participation constraint. Thus mL must be raised as

far as possible, giving mL = 1 and � must be raised su¢ ciently to satisfy the participation

constraint (� = ��3). The enforcement costs are ��3 (ca + �LGcm) + (1� ��3)�Lcm.

F Acknowledgements

We are grateful to two anonymous referees, Sandeep Baliga, Alberto Bennardo, Gabriella Chiesa,

Marcello D�Amato, Paolo Garella, Tracy Lewis, Dilip Mookherjee, Marco Pagano, Nicola Persico,

Salvatore Piccolo, Ailsa Roell, Maria Grazia Romano, Joel Sobel, Francesca Toscano, Zaifu Yang,

the participants to the CSEF-IGIER Symposium on Economics and Institutions in Capri, the

ASSET Conference in Padua, the RES Conference in Surrey, the 50th SIE Conference in Rome,

the EARIE Conference in Toulouse, as well as the seminar participants at the universities of Bologna

and Naples. The usual disclaimer applies.

47



References

[1] Andreoni, J., Erard, B. and J. Feinstein (1998), �Tax Compliance,� Journal of Economic
Literature, 36, 818-860.

[2] Border, K.C. and J. Sobel (1987), �Samurai Accounting: A Theory of Auditing and Plunder,�
Review of Economic Studies, 54, 525-540.

[3] Cella, M. (2008), �Informed Principal with Correlation,�Games and Economic Behavior, 64,
433-456.

[4] Chander, P. and L.L. Wilde (1998), �A General Characterization of Optimal Income Tax
Enforcement,�The Review of Economic Studies, 65, 165-183.

[5] Chew, M. C.(1973), �On Pairing Observations from a Distribution with Monotone Likelihood
Ratio,�Annals of Statistics, 1 (3) , 433-445

[6] Crémer, J. and F. Khalil (1992), �Gathering Information before Signing a Contract,�American
Economic Review, 82 , 566-578.

[7] Dewatripont, M. (1988), �Commitment through Renegotiation-Proof Contracts with Third
Parties,�Review of Economic Studies, 55 (3), 377-89.

[8] Erard, B. and J. Feinstein (2010), �Econometric Models for Multi-Stage Audit Processes: An
Application to the IRS National Research Program,� in Developing Alternative Frameworks
for Explaining Tax Compliance, edited by James Alm, Jorge Martinez-Vazquez and Benno
Torgler, Routledge, 113-37.

[9] Gale, D. and M. Hellwig (1985), �Incentive-compatible debt contracts: the one period
problem,�Review of Economic Studies, 52, 647-663.

[10] Hart, O. (1995), �Firms, Contracts and Financial Structure,�Clarendon Press, Oxford.

[11] Khalil, F. (1997), �Auditing without Commitment,�RAND Journal of Economics, 28, 629-
640.

[12] Khalil, F. and B. Parigi (1998), �Loan Size as a Commitment Device,�International Economic
Review, 39, 135-150.

[13] Krasa, S. and A.P. Villamil (2000), �Optimal Contracts When Enforcement is a Decision
Variable,�Econometrica, 68, 119-134.

[14] Lewis, T.R. and D.E.M. Sappington (1997), �Information Management in Incentive Problems,�
Journal of Political Economy, 105, 796 821.

[15] Macho-Stadler, I. and D. Pérez-Castrillo (2002), �Auditing with Signals,� Economica, 69,
1�20.

[16] Maskin, E. and J. Tirole (1990), �The Principal-Agent Relationship with an Informed
Principal: The Case of Private Values,�Econometrica, 58, 379-409.

[17] Maskin, E. and J. Tirole (1992) �The Principal-Agent Relationship with an Informed Principal,
II: Common Values,�Econometrica, 60, 1-42.

48



[18] Menichini, A. and P. Simmons (2012), �Auditing, Insurance and Bargaining Power: The Case
with Two States of Nature,�mimeo.

[19] Mookherjee, D. and I. Png (1989), �Optimal Auditing, Insurance and Redistribution,�
Quarterly Journal of Economics, 104, 399-415.

[20] Reinganum, J. F. and L.L. Wilde (1985), Income Tax Compliance in a Principal Agent
Framework,�Journal of Public Economics, 26, l-18.

[21] Reinganum, J. F. and L.L. Wilde (1986), �Equilibrium Veri�cation and Reporting Policies in
a Model of Tax Compliance,�International Economic Review, 27, 739-760.

[22] Scotchmer, S. (1987), �Audit Classes and Tax Enforcement Policy,� American Economic
Review, 77, 229-33.

[23] Thuronyi, V. (1996), �Presumptive Taxation,� in V. Thuronyi (ed.), Tax Law Design and
Drafting, vol. 1, Washington D.C., International Monetary Fund.

49


