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Abstract 
This paper explores the role that the imperfect knowledge of the structure of the economy plays in the uncertainty 
surrounding the effects of rule-based monetary policy on unemployment dynamics in the euro area and the US. We employ a 
Bayesian model averaging procedure on a wide range of models which differ in several dimensions to account for the 
uncertainty that the policymaker faces when setting the monetary policy and evaluating its effect on real economy. We find 
evidence of a high degree of dispersion across models in both policy rule parameters and impulse response functions. 
Moreover, monetary policy shocks have very similar recessionary effects on the two economies with a different role played 
by the participation rate in the transmission mechanism. Finally, we show that a policy maker who does not take model 
uncertainty into account and selects the results on the basis of a single model may come to misleading conclusions not only 
about the transmission mechanism, but also about the differences between the euro area and the US, which are on average 
essentially small. 
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1 Introduction

The pervasive uncertainty that central banks face precludes monetary policy from fine tuning the

level of economic activity. This paper explores the role that the imperfect knowledge of the structure

of the economy plays in the uncertainty surrounding the effects of rule-based monetary policy on

unemployment dynamics in the euro area and the US.

An extended (empirical and theoretical) literature has described how central banks should take

uncertainty into account in their decision-making process. A large part of this literature has focused

on the robustness of policy actions. Since the seminal papers of Hansen and Sargent (e.g. 2001

and 2007), many researchers (e.g. Giannoni 2002; Onatski and Stock 2002; Brock al. 2003) have

studied monetary policy uncertainty with a ‘robust control methodology.’ Within this framework,

the uncertainty surrounding the effect of policy actions is measured by first constructing a model

space where each model is obtained as a local perturbation to a given baseline model and then

applying a minimax rule. As a result, a policy with the smallest possible maximum risk is preferred.

Other studies (e.g. Levin and Williams 2003; Brock et al. 2007) have recently accounted

for model uncertainty with a Bayesian model averaging approach that, unlike the robust control

methodology, usually considers a model space with theoretically distinct models. The idea is

that, given considerable uncertainty about the true structure of the economy, policymakers aim at

identifying measures that perform well across a wide range of non-local models. Results are then

obtained as weighted averages across models, with weights given by the relative marginal likelihood

of the models.

Our paper follows the latter approach. Moreover, unlike most of the literature which only focuses

on how monetary policy should systematically react to changes in unemployment and inflation (i.e.

the policy rules), we go further and also analyze how the uncertainty about the policy rule translates

into the uncertainty surrounding the responses of the economy (and in particular of unemployment)

to policy shocks. We assume that the monetary authority minimizes expected losses of a social loss

function subject to the economy, and sets up a policy rule. In turn, the economy is alternatively

summarized by a wide range of multivariate models that differ in the assumptions regarding the

persistence of inflation and unemployment, the measurement of the natural rate of unemployment,

the number and types of variables entering the model, and the lag structure.

The perspective adopted in this paper is Bayesian, meaning that a complete model involving

unobservables (e.g. parameters), observables (e.g. data) and variables of interest (e.g. policy rule,

impulse response functions) is identified by a joint distribution of these elements. If M denotes

a model, θM denotes unobservable parameters, D denotes the observables, and ω is a vector of
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interest, then the model M specifies the joint distribution

p (θM ,D, ω |M) = p (θM |M) p (D | θM ,M) p (ω | D, θM ,M) (1)

The object of inference, then, is expressed as the posterior density of ω:

p (ω | D,M) =

Z
p (ω | D, θM ,M) p (θM | D,M) dθM (2)

which is the relevant density for the decisionmakers. In this framework, two sources of uncertainty

are considered. Model uncertainty is accounted for with the incorporation of several competing

modelsM1,M2, ...,MJ which might have generated the available sample of data. Parameter uncer-

tainty is reflected in a series of informative priors on the unobservables p
¡
θMj |Mj

¢
. We evaluate

the degree of dispersion of p (ω | D,Mj) between models and quantify the effects which policy

prescriptions coming from different models have on unemployment.

The paper can be considered as an extended application of the methodological approach sugges-

ted, for instance, by Brock et al (2007). As in their work, all models are equally likely a priori; unlike

their assumption, we specify informative priors for the model parameters and compare models on

the basis of their marginal likelihoods.

Using data for the US and the euro area, we show that simple linear autoregressive models which

differ in several dimensions may produce a significant degree of uncertainty in the distribution of

optimal policy parameters, expected losses and impulse responses.

Cross-country comparison corroborates the findings of Sauch and Smets (2008) and Smets and

Wouters (2005) that the differences in the monetary policy reaction function in the US and the euro

area are small. Moreover, although a monetary policy shock might be less important than other

structural shocks to explain unemployment dynamics, we show that on average it has a stable

recessionary effect in both economies. We also find that the average unemployment responses

are qualitatively and quantitatively very similar in the two economies, with results for the euro

area being more dispersed than those for the US. The analysis of the transmission mechanism also

indicates that other labor market variables, such as participation rate, play an important distinctive

role in the two economies.

Our results have significant policy implications. The high degree of dispersion across models

suggests that the effects of a given policy measure are model dependent, and therefore policy

decisions should be based on a wide range of possible scenarios about the structure of the economy

in order to overcome policy mistakes. We show that a policy maker who selects the results on

the basis of a single model may come to misleading conclusions not only about the transmission

mechanism — picking up models where, for instance, the price puzzle is more marked or the response
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of unemployment has a wrong sign — but also about the differences between the euro area and the

US — which may only result as an outcome of model selection. A combination procedure, instead,

helps dampen out this uncertainty. By taking into account model uncertainty and averaging across

models, results are more consistent with the economic theory and provide the policymaker with a

robust environment to calibrate interventions in a less distorting way for the economy.

The remainder of the paper is structured as follows. Section 2 describes the general framework

with the model space and the solution to the central bank’s problem. Section 3 reports the empir-

ical findings in terms of expected loss and policy parameters. Section 4 discusses the effects of a

monetary policy shock on unemployment in the designed uncertain environment. Section 5 sum-

marizes the paper’s main findings and provides conclusive remarks. A technical appendix presents

the model space and derives the posterior distributions for the Bayesian inference.

2 Model uncertainty and optimal monetary policy: the macroe-
conometric framework

In this section we illustrate the empirical framework, which comprises: (i) a set of monetary policy

rules; (ii) a monetary policymaker who chooses the parameters of the rules by minimizing a loss

function; (iii) a set of models which summarize the constraints faced by the policymaker in the

minimization problem.

A wide set of models is used to account for the uncertainty surrounding the representation

of the economy. As described in Brock et al. (2007) model uncertainty results from sources as

different as economic theory, specification conditional on theory, and heterogeneity regarding the

data generating process. We will generate the model space by limiting the analysis to multivariate

dynamic linear models (VARs) which entail policy and non-policy variables, with different prior

assumptions on both sets of variables, as well as on the lag structure.

The structural behavior of the non-policy variables is assumed to be given by the estimates of

the model. Using this estimated structure, the solution to the minimization problem yields the

values of the loss function under alternative policy parameters. A given set of these parameters

will then minimize the expected loss for each model. The interest rate policy which results from

this optimization problem can be of two types: (i) a linear optimal feedback rule (OFR) where the

nominal interest rate depends on all observable variables included in the model and which appear

to have a closed-form solution; and (ii) an optimized Taylor rule (TR) where the interest rate only

reacts to the current value of the unemployment gap and the inflation rate, similarly to the original

work of Taylor (1993), and where the weights attached to both variables are obtained with a grid

search procedure.
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Finally, the optimal or optimized rule becomes part of the interest rate equation in a structural

VAR, and its disturbance is used to quantify the uncertainty surrounding the effect of a monetary

policy shock on the unemployment gap using a standard Impulse Response Function (IRF) analysis

as, e.g., in Stock and Watson (2001).

In the following, we detail these elements backwards, starting from the model and then turning

to the policymakers and the rules.

2.1 The model space

We start by specifying a comprehensive range of multivariate linear dynamic models which span

the model space. The class of simultaneous equation models considered here takes the following

general VAR form:

Zt =

pX
j=1

AjZt−j +
pX

j=0

bjit−j + �zt

it =

pX
j=0

c0jZt−j +
pX

j=1

djit−j + �it (3)

where Zt is a vector of non-policy variables; it is the policy variable; A,b, c, d are conformable

matrices and vectors; �Zt and �it are vectors of serially uncorrelated structural disturbances. In

section 3 we will explain in more details the estimation algorithm and the impulse response analysis.

For the purpose of this section, it is sufficient to remark here that the structural coefficients can

be easily recovered with some identification scheme. We will use the same scheme throughout the

paper (both for the optimal policy derivation and for the impulse response analysis) and impose the

timing assumption that the central bank reacts contemporaneously to all variables in the economy,

whereas the policy rate does not contemporaneously affect the rest of the economy. In terms of the

above VAR, this assumption imposes a Choleski scheme by setting b0 = 0.1

The non-policy block Zt contains at least the inflation rate (πt) and the (negative) unemploy-

ment gap (ut), calculated as the difference between the natural rate of unemployment (u∗t ) and its

actual value (eut). Other non-policy variables enter the specification in the form we will explain

below.

Four broad sets of prior beliefs shape the dimensions of model uncertainty that characterize the

model space.

1The set up is similar to the one used e.g. by Sack (2000) in a different context.
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2.1.1 Priors on inflation dynamics

In the first set of priors, we deal with assumptions about the way the inflation rate is modelled.

Concretely, four general prior assumptions are made according to whether inflation is (i) left un-

restricted, or whether it is treated in the system as (ii) a random walk, (iii) an autoregressive

process of order p, or (iv) a white noise. In all cases we take a Bayesian perspective and place the

exclusion restrictions through the allocation of probability distributions to the model’s coefficients.

The starting point is always a Minnesota-type of prior: in the unrestricted case we complement

the autoregressive representation with the specification of a vague prior distribution and a loose

tightness on all coefficients; in the other three setups, instead, we assume that inflation follows one

of the three processes by setting the mean of own-lag coefficients, and allow for a much tighter

precision placed on all coefficients of the inflation equation as compared to the precision placed on

the coefficients of other equations. In other words, priors are always informative and differ in the

relative tightness placed on the coefficients in the equation for πt.2

2.1.2 Priors on labor market variables

The second set of priors reflects different assumptions on the dynamics of the labor market variables.

We distinguish two types of prior, according to (i) the degree of persistence of the variables and

(ii) the computation of the natural rate of unemployment.

Analogously to the treatment of inflation, we model the degree of persistence of unemployment

(and participation rate, when included in the specification) either in an unrestricted way — by

placing a general unit root Minnesota prior and a loose tightness — or restricting the variables to

have a lower degree of persistence. In the latter case, as for the inflation dynamics, we set the mean

of own-lag coefficients to a value lower than one, while allowing for a much tighter precision placed

on the variance of these coefficients.

Regarding the uncertainty about the natural rate of unemployment, there has been an extensive

debate in the literature on the implications of natural rates mismeasurement for monetary policy.

Staiger et al. (1997a,b) and Laubach (2001) found that estimates of a time-varying natural rate of

unemployment are considerably imprecise. The same results are documented by Orphanides and

van Norden (2005) when analyzing the output gap. Finally, Orphanides andWilliams (2007) suggest

that policymakers should consider policy rules that react to changes in economic activity either than

2Note that while the RandomWalk and the Autoregressive hypotheses are relatively standard in the VAR literature
(see e.g. Doan et al., 1984; Stock and Watson, 2007), the White Noise (WN) assumption has been recently validated
in studies on inflation persistence that cover especially the last 10-15 years of sample observations. Benati (2008), for
instance, shows that on recent samples the WN assumption might have become a reasonable one in several countries,
including UK and the euro area, the latter especially after the creation of EMU. Our sample choice for the empirical
analysis is consistent with this prior (see section 3.1).
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reacting to the uncertain estimates of the natural rate. We do not pretend to be exhaustive here

and limit the scope of our analysis to two types of detrending methods: (i) a “statistical” approach

which uses the Baxter and King (1999) band pass filter; and (ii) a robust alternative that measures

the natural rate with a Phillips-curve method and incorporates some “economic” content. The

details of both approaches are given in the section on data transformation (Section 3.1).

2.1.3 Priors on other variables

In the third set of priors, we enlarge the model space by changing the model specification of the

non-policy block, and considering all combinations of three additional endogenous variables: the

labor force participation rate (prt); the exchange rate (et), and a commodity price inflation rate

(cpt).

The inclusion of the participation rate is motivated by the possibility of shaping more compre-

hensive dynamics of the labor market, as a negative impact of an increase in the nominal interest

rate on output may have diverse effects on the labor force and, ultimately, on the unemployment

rate. The inclusion of the participation rate would account for these effects and provide a cleaner

picture of the transmission mechanism. As observed above in the description of the first set of

priors, when the participation rate is included in the specification, it enters either with a vague

Minnesota (unit root) prior, or with a lower degree of persistence.

While the inclusion of an exchange rate might not be suitable for the US (e.g. Taylor, 2001),

it might nonetheless be appropriate for the Euro area (e.g. Peersman and Smets, 2003; Altavilla,

2003). In any case, its inclusion is intended to reflect the external environment, as well as its

conditionality role for monetary policy, as it is an important part of the monetary transmission

mechanism in an open economy. Moreover, some researchers provide empirical evidence that ex-

change rates are statistically significant in monetary policy rules summarizing the reaction functions

of several major central banks (e.g. Clarida et al., 1998; Svensson, 2000).

Finally, we include a commodity price inflation rate which should control for the expected future

inflation, as it has become customarily in recent applied works on the transmission mechanism of

monetary policy shocks (see e.g Sack 2000.)

2.1.4 Priors on the lag structure

In the last set of prior assumptions, the dynamics of the system is described by alternative lag

structures. The Wold theorem implies that VAR residuals must be white noise. Sometimes this

feature happens to be verified with a parsimonious representation of the lag structure, perhaps

with a rich number of endogenous variables. The VAR, however, easily becomes overparametrized,
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since the number of coefficients grows as a quadratic function of the number of variables and

proportionately to the number of lags. To trade-off between parsimonious and realistic assumptions,

we combine dogmatic with flexible priors and consider models with p lags, where p = 1, 2, 3 or 4.

Then, for models where p > 1, a tight Minnesota prior on coefficients different from the own lag is

used.

Summing up, should we account for all possible combinations of the features described above,

we would be dealing with a very large number of models. The model space would in fact be

composed of 1024 models, as a result of the product of 4 priors on inflation persistence, 2 priors

on the persistence of unemployment, 2 priors on the persistence of participation, 2 priors on the

detrending methods, 23 = 8 ways to combine variables in a model with a fixed block [u, π, i] and

three additional non-policy variables, and 4 lag assumptions.

We take a shortcut, instead, and restrict the analysis to a comprehensive subset spanned by

224 models. The composition of the models can be summarized as follows:

1. A group of models focuses on inflation dynamics and combines the three restrictive priors on

inflation persistence with unrestricted labor market variables and a band-pass estimation of

the natural rate of unemployment. This combination produces therefore 96 models given by

the product of 3 alternative priors on inflation, 8 ways to add the other non-policy variables

and 4 lag assumptions.

2. The remaining 128 models are characterized by assumptions on the labor market combined

with unrestricted inflation dynamics, and are obtained from the product of 2 prior assumptions

on the persistence of labor market variables, 2 detrending methods for the natural rate, 8

ways to add the other non-policy variables, and 4 lag assumptions.

Details of the model space are reported in the appendix (Table A1). The priors on other

unknown of the system which have not been described above will be described in Section 3.

2.2 The Central Bank’s Problem

The central bank minimizes an intertemporal loss function that has a positive relation with the

deviation between the goal variables and their target levels:

Lt = Et

( ∞X
τ=0

δτ
h
ϑu2t+τ + λπ2t+τ + γ (it+τ − it+τ−1)

2
i)

(4)

where Et denotes the expectations conditional upon the available information set at time t; δ is a

given discount factor, 0 < δ < 1; and ϑ, λ, and γ are non-negative weights.
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The variable ut has already been defined above as the gap between the natural rate of unem-

ployment and its actual value. We also interpret here πt as the deviation from a constant inflation

target. As a benchmark for our analysis, we take ϑ = 4, λ = 1, and γ = 0.5. Based on the Okun’s

law, the variance of the unemployment gap is about 1/4 of the variance of the output gap, so this

choice of ϑ is consistent with an equal weight on inflation and output gap variability.3

As shown in Rudebush and Svensson (1999), for δ = 1, the loss function can be written as the

weighted sum of the unconditional variances of the target variables:

E [Lt] = ϑV ar [ut] + λV ar [πt] + γV ar [it − it−1] (5)

The aim is to minimize this function subject to

Xt+1 = ΞXt +Ψit + ηt+1 (6)

which is the State space representation of the VAR (Eq.3). The dynamics of the state are governed

by the matrix Ξ and the vector Ψ, whose values are given by the point estimates of the corres-

ponding VAR coefficients, and depend on the particular model considered in the estimation. As a

consequence, we have 224 state-space representations for each country. For example, in a model

with 4 non-policy variables and two lags, the state space has the following representation:

Xt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ut
ut−1
prt
prt−1
et
et−1
πt
πt−1
it−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Ξ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a111 a211 a112 a212 a113 a213 a114 a214 b215
1 0 0 0 0 0 0 0 0
a121 a221 a122 a222 a123 a223 a124 a224 b225
0 0 1 0 0 0 0 0 0
a131 a231 a132 a232 a133 a233 a134 a234 b235
0 0 0 0 1 0 0 0 0
a141 a231 a142 a242 a143 a243 a144 a244 b245
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b115
0
b125
0
b135
0
b145
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ηt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ηut
0

ηPRt
0
ηet
0
ηπt
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
For the policy rules, we follow Rudebush and Svensson (1999) and consider a general linear

feedback instrument rule

i = fXt (7)

where f is a conformable row vector.

The problem of minimizing in each period the loss function in (4) subject to (6) is standard

and results in an optimal linear feedback rule (OFR) which, under the limit assumption of δ = 1,

converges to a closed-form solution for the vector f (e.g. Rudebush and Svensson, 1999, p.240 ).

3We also checked how sensitive are results to alternative settings. In particular we were able to confirm the
previous findings of the literature that the posterior distribution of the policy reaction to both unemployment and
interest rate shifts monotonically with the values of these parameters in a reasonable range. These changes in the
policy rules, however, do not seem to have a significant effect on the shape or the magnitude of the impulse response
functions.
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This rule is less restrictive than a classical Taylor rule, as the interest rate is a function of all

current and lagged values of the non-policy variables and lagged values of the interest rate.

We also derive results under an optimized classical Taylor rule (TR) that allows the interest

rate to react only to current values of unemployment gap and inflation, that is:

it = f ·
µ

ut
πt

¶
f = [fu (Ξ,Ψ) fπ (Ξ,Ψ)] (8)

In this case the parameters of the rule depend on the VAR coefficients in an open form, and need

to be recovered with an optimization routine.

In our empirical exercise we also allow for the presence of a lagged interest rate, capturing an

interest rate smoothing (e.g. Clarida et al. 2000), or other relevant but omitted macroeconomic

variables (e.g. Sack 2000).

3 From the models to the data

In this section, we apply our framework to US and euro area data, describe the estimation technique

and characterize the model space discussing its properties.

3.1 Data and transformations

The data are quarterly values of inflation, interest rate, unemployment rate, exchange rate, labor

force participation rate, and a commodity price index for the euro area and the US, covering 1970:1

to 2007:4. The first part of the sample (from 1970:1 to 1990:4) is used as a training sample to derive

the prior hyperparameters. The sample 1991:1 to 2007:4 is used for estimation and inference. Main

sources for the data are Datastream and the Area Wide Model (AWM) database (Fagan et al.,

2001).

The inflation rate is calculated as the four-quarter percentage change of CPI. The US interest

rate is the Federal Funds rate; the euro area interest rate is the short-run rate of the AWM database.

The unemployment gap is calculated as the difference between the natural rate of unemployment

(u∗t ) and its actual value (eut). To account for some model uncertainty about the natural rate, as
said in section 2, we compute (u∗t ) using both a “statistical” and an “economic” approach. For

the former, the national unemployment series were detrended using the Baxter and King (1999)

band pass filter. We extract cycles of length comprised between 6 and 32 quarters along with a

truncation of 12 lags. As the filter uses a centered moving average method, we pad the series at

the start and at the end with observations derived from AR(4) backcasts and forecasts.
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The other approach, which incorporates some economic content, is based on a system of equa-

tions which comprises a Phillips curve, an Okun law and a set of equations defining the stochastic

law of motions of the unobservable variables included in the system, namely potential output and

the natural rate. For the Phillips curve we use a simple relationship between CPI inflation and

lagged inflation, the state of aggregate demand as summarized by the unemployment gap, and

a supply-side shock as summarized by import prices. As inflation is assumed to depend only on

nominal factors in the long run, the coefficients of lagged inflation are constrained to add up to one.

The Okun law relates output gap to unemployment gap. The system is estimated with standard

Kalman-filter techniques.4

Exchange rates and commodity price are used in standardized four-quarter growth rates. The

exchange rate is defined as the price of foreign currency in terms of domestic currency, therefore

an exchange rate increase is a depreciation. Finally, the participation rate enter all models in gap

form, with the trend computed using the Baxter and King filter. All series are demeaned to omit

the constant term and ease the computations.

3.2 Estimation algorithm

The reduced form of (3) is estimated using Bayesian techniques and informative priors. If β denotes

the vector of all VAR coefficients and Σ denotes the variance-covariance matrix of the reduced

form disturbances, then θMj = (β,Σ |Mj). Given the data as summarized by the likelihood

p
¡
D | θMj ,M

¢
, and a prior distribution p

¡
θMj |Mj

¢
, the Bayesian algorithm implies obtaining

the posterior p
¡
θMj | D,Mj

¢
. In turn, given the estimated dynamic behavior of the non-policy

variables as summarized by the latter posterior distribution, we solve the minimization problem

and recover the distribution of the parameters of the rule that minimize the loss function.5 If we

denote with ω1 the vector of such parameters, its posterior distribution p (ω1 | D,Mj) is

p (ω1 | D,Mj) =

Z
f · p

¡
θMj | D,Mj

¢
dθMj (9)

where f is given by the OFR or the TR.6 Finally, given the posterior mean of ω1, we compute the

distribution of the unemployment response to a monetary policy shocks. The algorithm is applied

to each model Mj , each country and each policy rule.

4For more technical details the reader can refer to Steiger et al. (1997 a and b), and Fabiani and Mestre (2004).
The latter generously shared with us their RATS codes on the Kalman filter approach to estimating the natural rate.
We have used their baseline specification (see cit., p.320 and appendix A) for both euro area and US data.

5Following Sack (2000), the reaction function estimated from the VAR is ignored when solving the central bank’s
minimization problem.

6Note that the policy rule is assumed to be deterministic. Therefore its posterior uncertainty fully derives from
the uncertainty of the VAR coefficients.
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The following independent prior assumption is specified for each model (now omitting Mj):

p (θ) = p (β) p (Σ)

p (β) = N
³
β, Vβ

´
p
¡
Σ−1

¢
= W

¡
S−1, ν

¢
where W

¡
S−1, ν

¢
denotes a Wishart distribution with scale matrix S−1 and degrees of freedom ν;

and N
³
β, Vβ

´
denotes a Normal distribution with mean β and variance-covariance matrix Vβ.

The general form of p (β) in all models is the one of a Minnesota-type, where the prior mean

of coefficients for the first own lag is equal to one and the others are set equal to zero; individual

components of β are independent of each other, i.e. Vβ is a diagonal matrix; and the diagonal

elements of Vβ have the structure:

vij,l =

½
(γ1/l)

2 if i = j

(γ1γ2σi/lσj)
2 if i 6= j,

(10)

where vij,l is the prior variance of βij,l (coefficient in equation i relative to variable j at lag l), γ1
is the general tightness, γ2 is the tightness on “other coefficients”, and l is the lag.

For all models we assume γ1 = 0.1 and γ2 = 1, and estimate the variances σi and σj from AR(p)

regressions on the training sample. In all models where we restrict the persistence of inflation or

labor market variables, the own-lag coefficients of the prior mean β are set accordingly, and the

corresponding tightness is set to 10−3γ1. For the AR assumptions of both inflation and labor

variables, the own-lag coefficients of the prior mean β are estimated on the training sample with

univariate AR(p) regressions.

Regarding the prior for Σ, the prior scale matrix S is set equal to 10−1I, and the degrees of

freedom ν equal n+ 3, thus ensuring an informative but relatively vague prior assumption for Σ.

All in all, the prior assumptions on the unrestricted coefficients are sufficiently general and not

too tight in order to ensure that the posterior mean of the first own lag of variables like exchange

rate and commodity price will not necessarily be as persistent as the prior assumption.

Given the independent structure of the prior, a closed form solution for the posterior distribution

of the parameters of interest is not available. It is easy to show, however, that a Gibbs sampler can

be employed because the full conditional distributions p (β | Σ,D) and p (Σ | β,D) are easily derived
(see Appendix). The sampler is initialized using the ML estimate of Σ on the training sample. For

each draw of θ = (β,Σ), then, the parameters of the rule are derived from the minimization problem.

This algorithm provides the posterior distribution (9).7 For the optimized Taylor Rules, we use a

7Note that the Σ in the Gibbs sampler includes terms from the reduced form interest rate equations which are
then zeroed out in the optimal policy computation.
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grid search procedure to solve for the values of f that minimize the criterion function (5). Because

the computation with high-order models is cumbersome, we solve the optimization problem by

using the posterior median of θ, instead of grid-searching for each of its draws.

In the case of the optimal feedback rule, instead, the computational burden is not so heavy, for

the optimal values of f and of the loss function are straightforward to compute. However, in order

to ensure that the parameters of the rule have meaningful signs, we restrict the prior to be

q (θ) = p (θ) · = (ω1 ∈ F)

where = (ω1 ∈ F) is the indicator function that equals 1 if ω1 ∈ F and 0 otherwise, and F is

the relevant region. The corresponding posterior distribution is therefore q (θ | D) = p (θ | D) ·
= (ω1 ∈ F). Strictly speaking, an importance sampling algorithm should be used instead of the

Gibbs sampling, and an importance function elicited. It is easy to show, however, that if the

importance function is the unrestricted posterior distribution we can still use the Gibbs sampling,

drawing from the unrestricted posterior and discarding draws which violate the restrictions.8

Finally, an equal prior probability p (Mj) = 1/J is assigned to each model, therefore the pos-

terior probability of the models is proportional to their marginal likelihood, i.e.

p (Mj | D) =
p (Mj) p (D |Mj)P
j p (Mj) p (D |Mj)

=
p (D |Mj)P
j p (D |Mj)

(11)

where p (D |Mj) =
R
p
¡
D | θMj ,M

¢
p
¡
θMj |M

¢
dθMj is the marginal likelihood of model Mj . An

analytical evaluation of this integral is not possible given our prior assumptions. Therefore we

simulate it from the Gibbs output using the harmonic mean of the likelihood values at each draw

of θ (Newton and Raftery, 1994). Note that the marginal likelihood comparisons and averaging

require the set of left-hand side variables to be the same across models. In the computation of the

harmonic mean, therefore, all marginal likelihoods have been computed on the basis of equations

for the same three endogenous variables, namely unemployment, inflation and interest rate.9

Results (discussed in the next subsections) are based on 10000 iterations of the Gibbs sampling,

after discarding an initial 5000 burn-in replications and using the remaining 5000 for inference.

8 In particular we assign a zero weight to negative values of the parameters attached to the negative unemployment
gap, the inflation gap and the lagged interest rate. Note that a similar approach has been used by Cogley and Sargent
(2005) and Benati (2008) in different contexts, to rule out explosive autoregressive roots in VARs with time-varying
parameters.

9 If the VAR is written as a linear regression model, y = Xβ + Σ1/2ε, under the normality assumption a linear
transformation of y, Ry, is also normal. In all models, therefore, the matrix R selects always the same endogenous
variables when computing the likelihood values.

13



3.3 Properties of model space and rules

The properties of the model space can be briefly described by focusing on the Marginal Likelihood,

the parameters of the rules, and the expected losses.

In Figure 1 we plot the Relative Marginal Likelihood (RML) of the models, defined as in (11),

where j goes from 1 to 224. Given an equal prior model probability, p (Mj), the RML measures how

likely the data believes a given model is the most appropriate one. Models are ordered according

to scheme described in appendix A (Table A1), in ascending number of lags.

Figure 1 about here

The RML turn out to be substantially different across models, as shown by the difference

between the highest and the lowest values, and by the fact that, especially for the euro area, only

for few models the RML is greater than the equal weight (EW).

The data support relatively parsimonious models, and the best models are clustered around

specifications with three and four variables, particularly the specifications which include 3 lags for

the US and 4 lags for the euro area. More interestingly, there is clear evidence that a specification

which includes (either jointly or alternatively) the participation rate and the exchange rate is highly

supported by both the US and the euro area data, meaning that the inclusion of these variables

in an otherwise standard VAR model may be important to obtain an appropriate inference on

the effects of policy on unemployment. Data also support models with moderate persistence in

the labor market variables, and with an economic-based and a statistical-based detrending of the

unemployment rate for Euro area and US, respectively.

The posterior distributions of the optimal policy parameters and the associated expected losses

across models are summarized in Figure 2 and 3. Figure 2 reports the posterior distributions of

the relevant parameters and of the losses for the OFR and each model. The solid black line that

goes through the areas is the posterior median of each model. The shaded areas comprise the 95

percent of the posterior distribution around it, as in a fan chart representation: there are an equal

number of bands on either side of the central band. The latter covers the interquartile range and is

shaded with the deepest intensity. The next deepest shade, on both sides of the central band, takes

the distribution out to 80%; and so on until the 95% of the distribution is covered. Models on the

x-axes are organized according to two layers of complexity: they are first sorted in ascending lag

length order and then by number of variables.

Figure 2 about here
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In Figure 3 we summarize instead the distribution of the optimal policy parameters and expected

losses by only taking the posterior median across models. In this way, we can visually compare

results also across the two rules.10 The box plots report the extreme values and the interquartile

ranges computed using the posterior medians across the 224 models in a given class (OFR or

TR) of the relevant policy parameters and the expected losses. For the TR, where it = fuut +

fππt + fiit−1, the coefficient on interest rate is simply fi, whereas the unemployment and inflation

long-run reaction coefficients are computed as fu/ (1− fi) and fπ/ (1− fi), respectively. For the

OFR, where the policy rate depends also on the lags of the variables, i.e., it =
Pp−1

j=0 f
j
uut−j +Pp−1

j=0 f
j
ππt−j +

Pp−1
j=1 f

j
i it−j + f 0ZZ, and Z contains all other non-policy variables, the respective

coefficients are
Pp−1

j=1 f
j
i ,
Pp−1

j=0 f
j
u/
³
1−

Pp−1
j=1 f

j
i

´
, and

Pp−1
j=0 f

j
π/
³
1−

Pp−1
j=1 f

j
i

´
, where p is the

order of autoregression of the estimated model. The dark squares in the box plot are the weighted

averages of the results, where the weights are given by the RML. The empty circles represent instead

results associated with the best models (i.e. Model 196 for the euro area and Model 117 for US as

described in Table A.1).

Figure 3 about here

Some considerations emerge from the charts. The first immediate feature is the high degree of

uncertainty, as measured by the dispersion of the results both within and between models. The

average ranges of results are, however, consistent with previous literature, as the bulks of the

distributions are concentrated on values in line both with the theory and with previous empirical

findings, for both classes of rules. The dispersion across models seems to be only marginally larger

for the TR than for the OFR in both countries, and results seem more volatile across models for

the euro area than for the US.

A closer look shows that the interquartile range of the optimal long-run reaction of unemploy-

ment is [1.7− 3.5] for the US and [0.7− 2.8] for the euro area; the long run reaction of inflation
is in the range [1.1− 2.5] for the US and [1.3− 2.6] for the euro area; and the lagged interest rate
coefficient is in the range [0.1 − 0.65] for both countries, with the variance of the distribution of
coefficients derived from the OFR significantly smaller than the one obtained from the TR. The

weighted averages and the results associated with the best models are very much similar to the

median values. These findings indicate that in both countries the policies have on average been

marginally more aggressive than the original Taylor rule, and that interest rate smoothing is a ro-

bust feature of the policy. Very similar results have been found by, for instance, Brock et al. (2007),

10Recall that due to the complexity of the grid search in the TR, we simulate the posterior distribution of parameters
and losses only for the OFR, whereas for the TR we compute the estimates of f using the posterior mean of θ = (β,Σ).
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Levin and Williams (2003), and Clarida et al (2000), for the US; and by Smets and Wouters (2005),

and Gerlach and Schnabel (2000), among others, for the euro area.

Comparing the two economies, the euro area policy rate reacts on average relatively more to

inflation than to unemployment, whereas the opposite seems to be true for the US policy rate

(on this see also Sahuc and Smets 2008). Another interesting finding is the negative relationship

between the optimal policy parameters and the model complexity as the median values in Figure

2 are clearly decreasing by lags and coefficients spike up with the first prior and short lag length.

This pattern is more evident for the euro area than for the US, and partly confirms previous results

which relate model complexity and optimal parameters (see e.g. Brock et al. 2007).

Finally, posterior expected losses are also consistent with the existing literature using similar

values for the weights in the loss function. If anything, our estimates seem to be on the lower side

(see e.g. Brock et al., 2007; and Rudebush and Svensson, 1999 for a comparison) and become not-

ably similar to those obtained by previous studies only under the autoregressive prior for inflation.

Interestingly, the posterior losses associated with the best models are overall lower than the average

(except in the Taylor Rule for the US).

In sum, the evidence provided above confirms that simple linear autoregressive models may

give rise to a significant degree of uncertainty in the distribution of optimal policy parameters

and expected losses. Simple or weighted averages across models help dampen this uncertainty and

provide a reasonable representation of the policy rules. Our results would also suggest the choice

of a relatively parsimonious representation of the economy, regardless of the country and the policy

rules.

4 Effects of policy on unemployment

The successful conduct of monetary policy requires policymakers not only to specify a set of object-

ives for the performance of the economy but also to understand the effects of policies designed to

attain these goals. In this section, therefore, we will answer the following questions: Given the set

of objectives and rules, what are the effects of policy prescriptions that come from different models

on the unemployment gap? What is the role of model uncertainty and what are the consequences

for policymakers of allowing for it?

The estimation algorithm directly follows from the one described in Section 3. Using the

structural VAR in Eq. (3), we assume that the central bank sets the policy variables it according

to the two policy rules OFR and TR as estimated in the previous step. The estimated equation error

�it can be interpreted as a monetary policy shock, as also discussed e.g. by Stock and Watson (2001),

or Sack (2000). The shock is identified by (i) replacing the parameters of the policy equation with
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the posterior means of the f estimated above, while leaving unrestricted all the other parameters of

the VAR; and (ii) imposing the timing assumption that the central bank reacts contemporaneously

to all variables in the economy, whereas the policy rate does not contemporaneously affect the

rest of the economy. The former restriction is placed in the form of a normal distribution with a

very tight variance. The latter restriction is a pure zero-restriction. A relatively vague Minnesota

prior is assumed on the rest of parameters in the two blocks. Results are reported in terms of

the probability distributions of the responses to the identified monetary policy shock (Figure 4

and Tables 1-2); in terms of variance decomposition (Figure 5); and in terms of the transmission

mechanism (Figure 6).

4.1 Impulse response dispersion

Figure 4 reports the responses of unemployment gap to a 100-basis-point contractionary monet-

ary policy for both countries and rules. Since the unemployment gap has been computed as the

difference between the natural rate of unemployment (u∗t ) and its actual value (ut), a slowdown

correspond to a negative response.

To jointly visualize the “average” effect and the dispersion within and between models we

report the posterior distribution of the IRF obtained from the Markov Chain Monte Carlo (MCMC)

simulation by ‘fan-charting’ separately three quantiles of such distributions — the median responses,

the 16th percentile and the 84th percentile — for all models. Therefore, in the charts with the title

‘median’, for instance, we plot the distribution across models of the median responses. In each

chart, the shaded areas represent the dispersion across models. The principle has already been

described for Figure 2: there is an equal number of bands on either side of the central band. The

latter covers the interquartile range across models and is shaded with the deepest intensity. The

next deepest shade, on both sides of the central band, takes the distribution out to 80%; and so

on up to the 95%. The solid black line that goes through the areas is the weighted average of each

quantile (median, 16th and 84th percentile) across models, where the weights are given by the RML

of each model.

A detailed quantification of the responses is also reported in Table 1, which displays the impacts

computed from the median of Figure 4 and reports the 10th and the 90th percentile, the median

and the weighted average across the 224 models.

Figure 4 and Table 1 about here

Four preliminary comments are in order.
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First, impulse responses look reasonably well behaved and give rise to the usual hump-shaped

dynamics. Their pattern is fairly robust across models, countries and rules. One dimension of

such robustness is that, although model responses are very much dispersed — and therefore any

statement on statistical significance would require some caution, especially for the euro area — the

68% posterior probability intervals do not include the 0 at the horizons of the peak effects, and

this, on average, appears to be a stable feature.

Second, regarding the dynamics, most of the significant economic slowdown occurs in the first

two years after the rate hike, when the cumulative impact on the unemployment gap is between

-0.2 and -0.3 percentage points, on average across models, rules and countries. Measured on the

weighted average response across models (the dark line in the charts), the (negative) unemployment

gap reaches a maximum decline of around 5 basis points 5-6 quarters after the contractionary

monetary policy shock for the US, and of 4 basis points 4-5 quarters after the rise in interest rate

for the euro area. Half of the maximum effect on the gap disappears after about 9 to 11 quarters

for both economies.

It is important to note that, the timing of the peak effect obtained by the previous literature is

very consistent with our results (see e.g. Christiano et al, 1996; Stock and Watson, 2001; Bernanke

et al. 2005). The size of our effects appears to be more subdued than in other studies, most likely

because our responses are measured on the unemployment gap and not on the unemployment rate.

Intuitively, as the natural rate of unemployment is not constant in the measurement of the gap, a

contractionary monetary policy shock might lead to an increase in the natural rate itself, after an

initial increase in the actual unemployment rate, and this in turn would explain the muffled effect

on the gap.11

Third, impulse responses are only marginally sensitive to the policy rule used in the identification

of the structural VAR. Visual inspection, however, seems to show that results based on the TR are

to some extent less dispersed than those based on OFR, and also that with a TR the average peak

effects might be delayed of one or two quarters with respect to the OFR, in both economies. These

results do not come entirely as a surprise for, even if both rules are backward-looking, the OFR

is less restrictive than the TR, being a function of all current and lagged values of the non-policy

variables beside the lagged values of the interest rate.

Fourth, there is a substantial degree of uncertainty across models, for a given rule or country.

The dispersion is significant for both economies and regardless of the policy rules in particular

11A more extensive analysis of this point goes clearly beyond the scope of this paper. We have, however, run a
subset of models with the (demeaned) actual unemployment rate instead of the unemployment gap. Coeteris paribus,
the average responses were doubled, thus confirming our intuition that the transformation used is in part responsible
for the result. In a companion paper (Altavilla and Ciccarelli, 2007), where we use the actual rate instead of the gap,
our impulse responses are the same as, e.g., those obtained by Stock and Watson (2001).
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around the peak values of the responses, between one and two years. Nonetheless, overall results

for the US are much less dispersed than those for the euro area where some models can even show

puzzling positive effects of monetary policy on the (negative) unemployment gap at the crucial

horizons. Moreover, for the euro area the weighted average provides more muted responses at the

peak than a simple average, meaning that models which receive more support by the data — and

therefore are weighted more in the average — tend to dampen the response of unemployment to a

monetary policy shock relatively to the other models.

Two conclusions can be drawn from the comparison between US and euro area results. First,

the elevated dispersion across models implies that policy decisions based on few selected models

— as opposed to a combination from several of them — may potentially give a twisted picture of

the policy effects, and this, in turn, might lead to policy mistakes. Second, while the degree of

uncertainty can differ considerably across countries, as Figure 4 shows, the average impacts hardly

exhibit meaningful differences across the two economies, both in terms of timing and in terms

of magnitude. We interpret this evidence as a warning for other comparative studies which may

find significant differences in the reaction of unemployment to a monetary policy shock across the

two economies. Our results suggest that major discrepancies could mainly arise as an outcome

of conditioning the analysis on few specific models, instead of accounting for model uncertainty.

Consequent policy decisions taken on the basis of presumed differences between the two economies

could therefore lead to distorting effects.

4.2 Variance decomposition

So far the discussion seems to indicate that, albeit a mute one, monetary policy shocks play a

similar recessionary role for unemployment fluctuations in both economies. In order to examine

from a different perspective the relative importance of the identified shock for the volatility of the

unemployment gap, we have also inspected the forecast error variance decomposition. Results —

reported in Figure 5 using the same fan-chart approach — show that at short and long horizons

only a small fraction of the forecast error variance of the unemployment gap is accounted for by

the monetary policy shock which, beyond the one year horizon, is never contributing with more

than 10 percent on average across countries and rules.

Interestingly, the dispersion across models of the percentage of variance explained by the iden-

tified shock is very tiny when compared with the dispersion of the portion of variance explained by

other non-policy variables. This, in turn, leads to two additional considerations. On the one hand,

it seems that there are important sources of variability in unemployment that are not identified

by the monetary policy shock and are reflected in the portion of variance explained by the other
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variables of the model space. On the other hand, it suggests that such a muted contribution of

the monetary policy shock would anyway be a robust feature, should we not account for model

uncertainty.

Figure 5 about here

Clearly, any speculation about the role that other structural shocks might have played goes

beyond the scope of this paper. It is nonetheless interesting to remark that the selected non-policy

variables can help explain up to 40 percent of the movements in unemployment gap beyond the

three-year horizon. Incidentally, this high percentage amply justifies our prior variable selection to

construct the model space.

A significant role is played in particular by the labor force participation rate whose variability

helps explain 20 to 25 percent of the variability of unemployment gap across countries, models and

rules after a two-year horizon.12 This is a remarkable result and reinforces the finding - previously

discussed in Section 3 - that including labor force participation often increases the relative posterior

probabilities (and lowers the value of the loss function), meaning that the data at hand support

the importance of this variable to understand the effects of policy on unemployment.

One might want to ask, therefore, whether the impact of a monetary policy shock measured with

our model space may change (and by how much) depending on the presence of the participation

rate in the specification. An attempt to describe and quantify a plausible answer could be based on

the same kind of inference discussed so far, only dividing the set of models in two groups, according

to the presence of the labor force participation rate among the non-policy variables.

In table 2 we report the evidence on unemployment gap. Given the model space described in

table A.1 we have 112 models including participation rate (denoted as “with” in table 2) and 112

models which do not include participation rate (denoted as “without” in table 2). The quantiles

and the weighted averages have been computed from the median responses of all models as in

Table 1. Although the differences might not be impressive, they point out that on average the

monetary policy effect is slightly more muted in models that contain the participation rate. This

is easily rationalized and it is in line with the evidence reported in table 1 showing that the simple

average across models provides a deeper impact than the weighted average, as the models with

the highest RML always contain the participation rate. Intuitively, in models with participation a

contractionary monetary policy shock eventually has a negative impact on the participation rate

(see below) and this, in turn, reduces the initial impact on unemployment.

12Note that the average variances explained by each variable as shown in Figure 6 cannot sum up to one as not all
variables appear always in the same models. Therefore the variance attributed to the single variables refers to the
fraction of the variance explained by these variables only in models whose specification contains them.
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4.3 Transmission mechanism

The difference in impacts displayed in table 2 is similar in the two economies and seems only

marginally more pronounced for the Euro area than for the US. This turns out to be related to

a different transmission mechanism and in particular to different dynamics that the participation

rate shows in the two countries in response to a monetary policy shock. To better analyze this

point, Figure 6 reports the distributions (over all models) of the median responses of all variables.

Figure 6 about here

Average responses (the darkest areas of the charts or the black lines inside them) present the

expected signs and patterns, and, except for the somewhat uncertain response of the exchange rate

for the US in the OFR, which might depend on the subsequent dynamics of the interest rate after

the initial hike, they are also qualitatively similar in the two economies.

More interestingly, in both countries the response function for the inflation rate obtained by

combining all models with the Bayesian averaging scheme (the black line in all graphs) exhibits a

small price-puzzle. This evidence might suggest that the initial positive reaction of the inflation

rate to a monetary policy shock is a model-dependent phenomenon that tends to disappear when

taking into account model uncertainty.

One of the main differences in the transmission mechanisms of the two economies is clearly

related to the different responses of the participation rate. In the US the response of labor force

participation follows with some lag the inverted U-shape of the unemployment response, has broadly

the same magnitude, and peaks 8 to 9 quarters after the rise in interest rate. The fall in participation

rate is therefore consequent to the initial impact on unemployment.

In the euro area, on the contrary, the participation rate not only reacts earlier than unemploy-

ment, but it also displays an initial positive response which, depending on the policy rule, may

last more than one year. Afterwards the response becomes negative, with a maximum decrease

reached only around 9 to 14 quarters after the initial increase in the interest rate. This pattern

may help explain the greater uncertainty around the unemployment responses in the euro area,

and is consistent with a lower degree of flexibility of the European labor market with respect to

the one exhibited in the US, where a contractionary shock directly influences the unemployment

gap without being transmitted through the participation (see, e.g. Blanchard and Katz, 1992; and

Blanchard, 2006).

The initial positive response of participation in the euro area —which is also responsible for the

slightly more persistent dynamics of the unemployment response and for some positive responses

of unemployment right after the shock— is not necessarily unreasonable and can be rationalized
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from a theoretical perspective. After a contractionary monetary policy shock, unemployed workers

may stop actively looking for a job and exit the labor force. This effect —that the literature has

typically denominated “discouraged worker effect”— gives rise to a net reduction of the labor force

participation rate. On the other hand, the same contractionary monetary policy can force workers

who are currently outside the labor force to start actively looking for a job, and this, in turn, may

result in a positive effect on the participation rate. In fact, secondary workers (women and youths)

might start seeking employment because of drop in primary workers’ wages and employment. The

literature has typically referred to this phenomenon as “added work effect”. Theoretically, models

of family utility maximization indicate that a decrease in family income due to the earnings losses

of one family member might be offset by increases in the labor supply of others (e.g. Stephens,

2002).

In the comparison between the US and the euro area the relative importance of the two ef-

fects, in combination with different degrees of flexibility in the labor market, provides a reasonable

explanation for the different transmission mechanisms.

5 Conclusive remarks

We have shown that model uncertainty plays a crucial role in determining the effects of monetary

policy shocks on unemployment dynamics in the euro area and the US.

Our findings support the view that in order to overcome severe policy mistakes, decisions could

be based on a wide range of possible scenarios about the structure of the economy. As a result,

when allowing for model uncertainty, policy advice may look significantly different from the one

that would be optimal based on few selected models.

With the help of a Bayesian model averaging procedure to account for the uncertainty inherent

to the model selection process, we have specified a range of 224 BVAR models that differ in several

dimensions according to assumptions regarding inflation, persistence of labor market variables,

measurement of the natural rate of unemployment, number of variables and lag structure. Each

model represents a constraint for the central bank which sets the interest rate minimizing a social

loss function. Given the solution in terms of policy rule, we have quantified the impact of a

monetary policy shock on unemployment and measured the degree of uncertainty as represented by

the dispersion of both the policy rule parameters and the impulse response functions across models.

The comparative evidence from the US and the euro confirms that simple linear autoregressive

models that differ in several dimensions may give rise to a significant degree of uncertainty in the

distribution of optimal policy parameters, expected losses and impulse response functions.

We have shown that, although a monetary policy shock might be less important than other
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structural shocks to explain unemployment dynamics, it has a stable recessionary effect. Moreover,

the average unemployment responses for the US and the euro area are qualitatively and quantit-

atively very similar, with results for the euro area being more dispersed than those for the US.

The analysis of the transmission mechanism also indicates that other labor market variables such

as participation rate play a significantly different role in the transmission mechanism of the two

economies.

One of the main policy implications of our results is that combining results from alternative

representations of the structure of the economy represents a useful strategy to account for model

uncertainty when assessing the risks for price stability or when deciding a given policy. In particular,

our results show that a policymaker who selects the results on the basis of a single model may come

to misleading conclusions not only about the transmission mechanism —picking up models where,

for instance, the price puzzle is more marked or the effect on unemployment has a wrong sign— but

also about the differences between the euro area and the US, which on average are tiny. By allowing

for model uncertainty, instead, results are on average closer to what we expect from a theoretical

point of view, and put the policymaker in a favorable position to calibrate the policy interventions

in a more appropriate way, that is, more consistently with the economic theory and less distorting

for the economy.

Some extensions that enrich the previous analysis are feasible in the same framework. Another

dimension of uncertainty could be explored perhaps in a unified framework that considers model

and data uncertainty. First-released data are often noisy, as incomplete or mismeasured initial

information has been used in their construction and it may take several years of revisions before

data are considered as final. All relevant information for monetary policy is, therefore, measured

with error and the difference between the responses obtained with real-time vs final data might be

sizable.

The model space can also be enlarged by considering several alternative economic models in

the estimation of the natural rate of unemployment based on the Phillips curve. We have taken a

shortcut and considered, instead, only one possible specification ignoring further sources of uncer-

tainty.

Finally, the set of models could be further expanded by including additional labor market

variables such as wages, which would provide a more complete dynamics of the labor market and a

richer transmission mechanism. Wages would in fact reflect the conditions on which the equilibrium

in the labor market is established and might, at the same time, give some indications on the price

formation process or the existence of nominal pressures on the path of prices.
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Appendix

A Models

The table A1 describes the 224 models that span the model space. The first column reports the

model number. In the second column the models specification is detailed with the number and the

type of variables used; the third column reports the codification. Each model is characterized by

4 elements: the number of variables (V), the number of lags (L), the type of prior (P), and the

type of detrending method used in the calculation of the natural rate of unemployment (U). The

estimated VAR can have three (3V) to six (6V) endogenous variables, and one (1L) to four (4L)

lags. Five types of priors are possible. With the first prior (1P), both the inflation persistence

and the persistence of the labor market variables are unrestricted, in the sense that a very loose

prior assumption is assumed. With the second (2P), third (3P) and fourth (4P) prior, inflation is

assumed to be a Random Walk, an Autoregressive process and a White Noise respectively, while

the persistence of the labor market variables is unrestricted. With the fifth prior (5P), there is

no restriction on the inflation persistence and the labor market variables are assumed to follow an

Autoregressive process. Two types of detrending methods are used to compute the natural rate

of unemployment. The first one (1U) uses the Baxter and King band pass filter. The second one

(2U) is a Phillips-curve-based method estimated with Kalman Filter techniques. As an example, in

model 117 (coded as 3V_3L_5P_1U) there are three variables (unemployment, inflation rate and

interest rate), three lags, the prior on inflation and unemployment is the fifth one, and the natural

rate of unemployment has been computed with Baxter and King’s method.

Table A1 here

B Derivation of the posterior

By stacking appropriately variables and coefficients in the VAR (3), we can re-write it as:

yt = (In ⊗Wt)β + εt (12)

where, yt is the (n× 1) vector of endogenous variables [Z 0t i0t]
0, Wt =

¡
y0t−1, ..., y

0
t−p
¢0 is k × 1, β is

the nk× 1 vectorization of all coefficients, εt is the (n× 1) vector of reduced form innovations, and

k = np is the number of parameters in each equation.

Because by assumption it is p (εt) = N (0,Σ), the likelihood is proportional to

L (D | β,Σ) ∝ |Σ|−T/2 exp
(
−1
2

X
t

[yt − (In ⊗Wt)β]
0Σ−1 [yt − (In ⊗Wt)β]

)
(13)

24



where, as in the text, D represents the stacked data.

Given the joint prior distribution on the parameters, p (β,Σ), the joint posterior distribution of

the parameters conditional on the data is obtained through the Bayes rule

p (β,Σ | D) =
p (β,Σ)L (D | β,Σ)

p (D)

∝ p (β,Σ)L (D | β,Σ) ,

We have assumed an independent Normal-Wishart distribution for the prior, with

p (β) = N
³
β, Vβ

´
∝
¯̄̄
Vβ

¯̄̄−1/2
exp

½
−1
2

¡
β − β

¢0
Vβ
−1 ¡β − β

¢¾
(14)

and

p
¡
Σ−1

¢
=W

¡
S−1, ν

¢
∝ |Σ|−(ν−n−1)/2 exp

½
−1
2
tr
¡
SΣ−1

¢¾
(15)

As remarked above (Section 3), the chosen hyperparameters S and ν ensure a relatively vague prior

assumption for Σ and therefore for most terms of the Cholesky decomposition. The joint posterior

density for (β,Σ) is proportional to the product of (13), (14), and (15). Given the independency

assumption, such posterior does not take the form of a standard distribution and cannot be directly

used for inference. A Gibbs sampling algorithm is instead available, for the conditional posterior

of both β and Σ are simple to derive. The conditional posterior of β is derived by multiplying (13)

and (14), and ignoring the terms that in the product do not involve β. It is given by

p (β | D,Σ) = N
¡
β̄, V̄β

¢
∝ exp

½
−1
2

¡
β − β̄

¢0
V̄ −1β

¡
β − β̄

¢¾
(16)

where

V̄β =

ÃX
t

(In ⊗Wt)
0Σ−1 (In ⊗Wt) + Vβ

−1
!−1

β̄ = V̄β

ÃX
t

(In ⊗Wt)
0Σ−1yt + Vβ

−1β

!

Similarly, the conditional posterior for Σ is derived by multiplying (13) and (15). Ignoring the

terms that do not involve Σ, we have

p
¡
Σ−1 | D,β

¢
= W

¡
S∗−1, ν∗

¢
∝ |Σ|−(ν∗−n−1)/2 exp

½
−1
2
tr
¡
S∗Σ−1

¢¾
(17)
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where

S∗ = S +
X
t

[yt − (In ⊗Wt)β] [yt − (In ⊗Wt)β]
0

ν∗ = ν + T

Starting from arbitrary values of Σ, a Gibbs algorithm samples alternately from (16) and (17). For

each draw of the posterior the minimization problem is solved and the empirical distributions of

the policy rules parameters and the losses are computed.
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Table 1: Properties of Impulse Response Functions. Effects on unemployment gap of a 100 basis-
point contractionary monetary policy shock

10th median wgt. ave. 90th 10th median wgt. ave. 90th

1 Quarter -0.035 -0.022 -0.014 0.003 -0.029 -0.013 -0.014 -0.006
2 Quarters -0.063 -0.044 -0.027 -0.001 -0.047 -0.030 -0.031 -0.018
3 Quarters -0.075 -0.053 -0.034 -0.004 -0.059 -0.042 -0.043 -0.028
4 Quarters -0.076 -0.053 -0.035 -0.006 -0.065 -0.048 -0.048 -0.034
5 Quarters -0.071 -0.045 -0.033 -0.007 -0.066 -0.048 -0.048 -0.035

6-8 Quarters -0.053 -0.028 -0.024 -0.003 -0.058 -0.038 -0.040 -0.027
9-12 Quarters -0.021 -0.005 -0.008 0.013 -0.033 -0.016 -0.019 -0.010

cumulative impact after 2 years -0.479 -0.303 -0.197 -0.026 -0.439 -0.297 -0.270 -0.203

variance decomposition 2.313 4.322 3.885 5.248 3.182 4.949 5.248 7.216

10th median wgt. ave. 90th 10th median wgt. ave. 90th

1 Quarter -0.036 -0.016 -0.011 0.002 -0.032 -0.015 -0.018 -0.001
2 Quarters -0.056 -0.030 -0.022 -0.005 -0.050 -0.027 -0.031 -0.013
3 Quarters -0.067 -0.038 -0.029 -0.012 -0.062 -0.034 -0.038 -0.018
4 Quarters -0.070 -0.044 -0.033 -0.019 -0.066 -0.038 -0.042 -0.021
5 Quarters -0.070 -0.046 -0.035 -0.023 -0.063 -0.042 -0.043 -0.023

6-8 Quarters -0.061 -0.042 -0.034 -0.023 -0.056 -0.039 -0.038 -0.021
9-12 Quarters -0.041 -0.022 -0.024 -0.010 -0.035 -0.023 -0.022 -0.012

cumulative impact after 2 years -0.482 -0.298 -0.201 -0.127 -0.442 -0.271 -0.251 -0.140

variance decomposition 2.304 3.285 4.605 5.084 3.344 5.141 5.869 8.156

Euro Area US

Euro Area US

Optimal Feedback rule

Taylor Rule

Note: The table reports the posterior impulse responses of unemploym ent gap to a 100 basis-p oint contractionary monetary p olicy

shock. The top and the b ottom panel refer to the resp onses under the Optim al Feedback Rule and the Taylor Rule, resp ectively.

Column (2) to (4) refer to the euro area resu lts. Column (6) to (9) refer to the US resu lts. Rows from (1) to (5) rep ort the quantiles

of the simple responses. Rows (6) and (7) rep ort a tim e average of the quantiles over the second half o f the second year and over the

third year resp ectively. Row (8) reports the cumulative impact after 8 quarters. Row (9) reports the p ercentage of the variance of the

unemployment gap 24-quarter-ahead forecast errors exp la ined by the monetary p olicy shock. The reported quantiles (10th, m ed ian,

average and 90th) are computed over the distribution of the p osterior median resp onses across the 224 models. The column "average"

rep orts a weighted average over all models w ith weights given by the relative marginal likeliho od computed as in Eq. 11 of the pap er.
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Table 2: Change in inference due to labor force participation. Effects on the responses of unem-
ployment gap to a 100 basis-point contractionary monetary policy shock

steps
with without with without with without with without with without with without

1 Quarter -0.035 -0.035 -0.020 -0.013 0.006 0.001 -0.028 -0.029 -0.015 -0.013 -0.007 -0.005
2 Quarters -0.063 -0.064 -0.036 -0.025 0.004 -0.005 -0.047 -0.048 -0.033 -0.030 -0.020 -0.018
3 Quarters -0.074 -0.080 -0.043 -0.032 0.000 -0.009 -0.058 -0.059 -0.044 -0.042 -0.029 -0.028
4 Quarters -0.073 -0.082 -0.042 -0.034 -0.001 -0.012 -0.065 -0.064 -0.049 -0.047 -0.033 -0.034
5 Quarters -0.066 -0.078 -0.037 -0.033 0.000 -0.013 -0.066 -0.066 -0.048 -0.048 -0.035 -0.035

6-8 Quarters -0.043 -0.058 -0.022 -0.025 0.002 -0.007 -0.058 -0.057 -0.039 -0.041 -0.027 -0.028
9-12 Quarters -0.014 -0.025 -0.001 -0.011 0.015 0.007 -0.031 -0.034 -0.017 -0.021 -0.010 -0.010

cumulative impact after 2 years -0.440 -0.513 -0.244 -0.213 0.014 -0.060 -0.438 -0.437 -0.305 -0.303 -0.205 -0.204
cumulative impact after 6 years -0.547 -0.730 -0.150 -0.226 0.338 0.278 -0.546 -0.602 -0.297 -0.339 -0.104 -0.108

variance decomposition 2.176 2.689 3.275 4.097 4.504 6.004 2.996 4.202 4.475 5.800 6.040 7.567

steps

with without with without with without with without with without with without
1 Quarter -0.039 -0.033 -0.010 -0.010 0.003 0.000 -0.030 -0.033 -0.018 -0.018 0.000 -0.003

2 Quarters -0.059 -0.054 -0.021 -0.021 -0.004 -0.007 -0.050 -0.049 -0.030 -0.031 -0.010 -0.014
3 Quarters -0.068 -0.065 -0.029 -0.028 -0.011 -0.015 -0.062 -0.061 -0.037 -0.039 -0.015 -0.021
4 Quarters -0.069 -0.071 -0.034 -0.032 -0.018 -0.019 -0.066 -0.067 -0.041 -0.042 -0.018 -0.026
5 Quarters -0.070 -0.071 -0.037 -0.034 -0.023 -0.023 -0.062 -0.063 -0.042 -0.044 -0.021 -0.027

6-8 Quarters -0.062 -0.060 -0.036 -0.033 -0.024 -0.023 -0.055 -0.058 -0.037 -0.039 -0.020 -0.024
9-12 Quarters -0.044 -0.039 -0.025 -0.023 -0.011 -0.010 -0.033 -0.036 -0.021 -0.023 -0.011 -0.013

cumulative impact after 2 years -0.490 -0.476 -0.239 -0.225 -0.125 -0.133 -0.434 -0.447 -0.278 -0.292 -0.123 -0.161
cumulative impact after 6 years -0.880 -0.790 -0.358 -0.309 0.078 0.135 -0.615 -0.649 -0.306 -0.332 0.000 -0.042

variance decomposition 2.266 2.323 4.080 4.176 5.091 4.990 3.061 3.950 6.145 7.335 7.108 8.361

weighted average 90th10th weighted average 90th 10th

weighted average 90th

Taylor Rule
Euro Area US

10th weighted average 90th 10th

Optimal Feedback rule
Euro Area US

Note: The table rep orts the impulse resp onses of unemploym ent gap to a 100 basis-p oint contractionary monetary p olicy shock. The

top and the b ottom panel refer to the resp onses under the Optimal Feedback Rule and the Taylor Rule, resp ectively. Column (2) to

(7) refer to the euro area resu lts. Column (8) to (13) refer to the US results. Rows from (1) to (5) rep ort the quantiles of the simple

resp onses. Rows (6) and (7) rep ort a tim e average of the quantiles over the second half o f the second year and over the third year

resp ective ly. Row (8) and (9) report the cumulative impact after 8 and 24 quarters resp ectively. Row (10) rep orts the p ercentage of

the variance of the unemploym ent gap 24-quarter-ahead forecast errors exp la ined by the monetary policy shock. The rep orted quantiles

(10th, weighted average and 90th) are computed over the distribution of the posterior median resp onses across the 224 models. The

weighted average is taken over all models w ith weights given by the relative marginal likelihood computed as in Eq. 11 of the pap er.

Results for each quantile are rep orted for two classes of m odels, accord ing to whether the model inc ludes (column "w ith") or does not

include (co lumn "w ithout") the lab or force participation rate in the sp ecifi cation . Note that, g iven the model space describ ed in tab le

A .1, there are 112 models w ith partic ipation rate and 112 models w ithout.
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Table A.1: Mapping of the model numbers

Model 
number Variables Code

Model 
number Variables Code

Model 1 3 Variables 3V_1L_1P_1U Model 57 3 Variables 3V_2L_1P_1U
Model 2 3V_1L_2P_1U Model 58 3V_2L_2P_1U
Model 3 3V_1L_3P_1U Model 59 3V_2L_3P_1U
Model 4 3V_1L_4P_1U Model 60 3V_2L_4P_1U
Model 5 3V_1L_5P_1U Model 61 3V_2L_5P_1U
Model 6 3V_1L_1P_2U Model 62 3V_2L_1P_2U
Model 7 3V_1L_5P_2U Model 63 3V_2L_5P_2U
Model 8 4 Variables 4V_1L_1P_1U Model 64 4 Variables 4V_2L_1P_1U
Model 9 4V_1L_2P_1U Model 65 4V_2L_2P_1U
Model 10 4V_1L_3P_1U Model 66 4V_2L_3P_1U
Model 11 4V_1L_4P_1U Model 67 4V_2L_4P_1U
Model 12 4V_1L_5P_1U Model 68 4V_2L_5P_1U
Model 13 4V_1L_1P_2U Model 69 4V_2L_1P_2U
Model 14 4V_1L_5P_2U Model 70 4V_2L_5P_2U
Model 15 4 Variables 4V_1L_1P_1U Model 71 4 Variables 4V_2L_1P_1U
Model 16 4V_1L_2P_1U Model 72 4V_2L_2P_1U
Model 17 4V_1L_3P_1U Model 73 4V_2L_3P_1U
Model 18 4V_1L_4P_1U Model 74 4V_2L_4P_1U
Model 19 4V_1L_5P_1U Model 75 4V_2L_5P_1U
Model 20 4V_1L_1P_2U Model 76 4V_2L_1P_2U
Model 21 4V_1L_5P_2U Model 77 4V_2L_5P_2U
Model 22 4 Variables 4V_1L_1P_1U Model 78 4 Variables 4V_2L_1P_1U
Model 23 4V_1L_2P_1U Model 79 4V_2L_2P_1U
Model 24 4V_1L_3P_1U Model 80 4V_2L_3P_1U
Model 25 4V_1L_4P_1U Model 81 4V_2L_4P_1U
Model 26 4V_1L_5P_1U Model 82 4V_2L_5P_1U
Model 27 4V_1L_1P_2U Model 83 4V_2L_1P_2U
Model 28 4V_1L_5P_2U Model 84 4V_2L_5P_2U
Model 29 5 Variables 5V_1L_1P_1U Model 85 5 Variables 5V_2L_1P_1U
Model 30 5V_1L_2P_1U Model 86 5V_2L_2P_1U
Model 31 5V_1L_3P_1U Model 87 5V_2L_3P_1U
Model 32 5V_1L_4P_1U Model 88 5V_2L_4P_1U
Model 33 5V_1L_5P_1U Model 89 5V_2L_5P_1U
Model 34 5V_1L_1P_2U Model 90 5V_2L_1P_2U
Model 35 5V_1L_5P_2U Model 91 5V_2L_5P_2U
Model 36 5 Variables 5V_1L_1P_1U Model 92 5 Variables 5V_2L_1P_1U
Model 37 5V_1L_2P_1U Model 93 5V_2L_2P_1U
Model 38 5V_1L_3P_1U Model 94 5V_2L_3P_1U
Model 39 5V_1L_4P_1U Model 95 5V_2L_4P_1U
Model 40 5V_1L_5P_1U Model 96 5V_2L_5P_1U
Model 41 5V_1L_1P_2U Model 97 5V_2L_1P_2U
Model 42 5V_1L_5P_2U Model 98 5V_2L_5P_2U
Model 43 5 Variables 5V_1L_1P_1U Model 99 5 Variables 5V_2L_1P_1U
Model 44 5V_1L_2P_1U Model 100 5V_2L_2P_1U
Model 45 5V_1L_3P_1U Model 101 5V_2L_3P_1U
Model 46 5V_1L_4P_1U Model 102 5V_2L_4P_1U
Model 47 5V_1L_5P_1U Model 103 5V_2L_5P_1U
Model 48 5V_1L_1P_2U Model 104 5V_2L_1P_2U
Model 49 5V_1L_5P_2U Model 105 5V_2L_5P_2U
Model 50 6 Variables 6V_1L_1P_1U Model 106 6 Variables 6V_2L_1P_1U
Model 51 6V_1L_2P_1U Model 107 6V_2L_2P_1U
Model 52 6V_1L_3P_1U Model 108 6V_2L_3P_1U
Model 53 6V_1L_4P_1U Model 109 6V_2L_4P_1U
Model 54 6V_1L_5P_1U Model 110 6V_2L_5P_1U
Model 55 6V_1L_1P_2U Model 111 6V_2L_1P_2U
Model 56 6V_1L_5P_2U Model 112 6V_2L_5P_2U
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Model 113 3 Variables 3V_3L_1P_1U Model 169 3 Variables 3V_4L_1P_1U
Model 114 3V_3L_2P_1U Model 170 3V_4L_2P_1U
Model 115 3V_3L_3P_1U Model 171 3V_4L_3P_1U
Model 116 3V_3L_4P_1U Model 172 3V_4L_4P_1U
Model 117 3V_3L_5P_1U Model 173 3V_4L_5P_1U
Model 118 3V_3L_1P_2U Model 174 3V_4L_1P_2U
Model 119 3V_3L_5P_2U Model 175 3V_4L_5P_2U
Model 120 4 Variables 4V_3L_1P_1U Model 176 4 Variables 4V_4L_1P_1U
Model 121 4V_3L_2P_1U Model 177 4V_4L_2P_1U
Model 122 4V_3L_3P_1U Model 178 4V_4L_3P_1U
Model 123 4V_3L_4P_1U Model 179 4V_4L_4P_1U
Model 124 4V_3L_5P_1U Model 180 4V_4L_5P_1U
Model 125 4V_3L_1P_2U Model 181 4V_4L_1P_2U
Model 126 4V_3L_5P_2U Model 182 4V_4L_5P_2U
Model 127 4 Variables 4V_3L_1P_1U Model 183 4 Variables 4V_4L_1P_1U
Model 128 4V_3L_2P_1U Model 184 4V_4L_2P_1U
Model 129 4V_3L_3P_1U Model 185 4V_4L_3P_1U
Model 130 4V_3L_4P_1U Model 186 4V_4L_4P_1U
Model 131 4V_3L_5P_1U Model 187 4V_4L_5P_1U
Model 132 4V_3L_1P_2U Model 188 4V_4L_1P_2U
Model 133 4V_3L_5P_2U Model 189 4V_4L_5P_2U
Model 134 4 Variables 4V_3L_1P_1U Model 190 4 Variables 4V_4L_1P_1U
Model 135 4V_3L_2P_1U Model 191 4V_4L_2P_1U
Model 136 4V_3L_3P_1U Model 192 4V_4L_3P_1U
Model 137 4V_3L_4P_1U Model 193 4V_4L_4P_1U
Model 138 4V_3L_5P_1U Model 194 4V_4L_5P_1U
Model 139 4V_3L_1P_2U Model 195 4V_4L_1P_2U
Model 140 4V_3L_5P_2U Model 196 4V_4L_5P_2U
Model 141 5 Variables 5V_3L_1P_1U Model 197 5 Variables 5V_4L_1P_1U
Model 142 5V_3L_2P_1U Model 198 5V_4L_2P_1U
Model 143 5V_3L_3P_1U Model 199 5V_4L_3P_1U
Model 144 5V_3L_4P_1U Model 200 5V_4L_4P_1U
Model 145 5V_3L_5P_1U Model 201 5V_4L_5P_1U
Model 146 5V_3L_1P_2U Model 202 5V_4L_1P_2U
Model 147 5V_3L_5P_2U Model 203 5V_4L_5P_2U
Model 148 5 Variables 5V_3L_1P_1U Model 204 5 Variables 5V_4L_1P_1U
Model 149 5V_3L_2P_1U Model 205 5V_4L_2P_1U
Model 150 5V_3L_3P_1U Model 206 5V_4L_3P_1U
Model 151 5V_3L_4P_1U Model 207 5V_4L_4P_1U
Model 152 5V_3L_5P_1U Model 208 5V_4L_5P_1U
Model 153 5V_3L_1P_2U Model 209 5V_4L_1P_2U
Model 154 5V_3L_5P_2U Model 210 5V_4L_5P_2U
Model 155 5 Variables 5V_3L_1P_1U Model 211 5 Variables 5V_4L_1P_1U
Model 156 5V_3L_2P_1U Model 212 5V_4L_2P_1U
Model 157 5V_3L_3P_1U Model 213 5V_4L_3P_1U
Model 158 5V_3L_4P_1U Model 214 5V_4L_4P_1U
Model 159 5V_3L_5P_1U Model 215 5V_4L_5P_1U
Model 160 5V_3L_1P_2U Model 216 5V_4L_1P_2U
Model 161 5V_3L_5P_2U Model 217 5V_4L_5P_2U
Model 162 6 Variables 6V_3L_1P_1U Model 218 6 Variables 6V_4L_1P_1U
Model 163 6V_3L_2P_1U Model 219 6V_4L_2P_1U
Model 164 6V_3L_3P_1U Model 220 6V_4L_3P_1U
Model 165 6V_3L_4P_1U Model 221 6V_4L_4P_1U
Model 166 6V_3L_5P_1U Model 222 6V_4L_5P_1U
Model 167 6V_3L_1P_2U Model 223 6V_4L_1P_2U
Model 168 6V_3L_5P_2U Model 224 6V_4L_5P_2U

[ ], ,u iπ
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[ ], , ,u cp iπ
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Note: The tab le rep orts the composition of the model space, w ith the total number of models (column 1), the variables included (column

2) and the cod ifi cation (column 3). Each model is characterized by 4 elem ents: number of variables (V ), number of lags (L), typ e of

prior (P), and typ e of detrending method used in the calcu lation of the natura l rate of unemployment (U). The VAR can have from

three (3V) to six (6V) endogenous variables, and from one (1L) to four (4L) lags. F ive typ es of priors are p ossib le. W ith the fi rst prior

(1P), b oth the inflation persistence and the p ersistence of the lab or market variab les are unrestricted. W ith the second (2P), th ird

(3P) and fourth (4P) prior, inflation is assumed to b e a Random Walk, an Autoregressive pro cess and a White Noise, resp ectively,

while the p ersistence of the labor market variables is unrestricted . W ith the fi fth prior (5P), there is no restriction on the inflation

p ersistence and the labor market variables are assumed to fo llow an Autoregressive pro cess. Two typ es of detrending m ethods are used

to compute the natural rate of unemploym ent. The fi rst one (1U) uses the Baxter and K ing band pass fi lter. The second one (2U) is

a Phillip s-curve-based m ethod estimated w ith Kalman Filter techniques. Therefore , in model 196 (coded as 4V_4L_5P_2U) there are

four variables (unemployment, inflation rate and interest rate and exchange rate), four lags, the prior on inflation and unemploym ent

is the fi fth one, and the natural rate of unemploym ent has b een computed w ith a Phillips-curve-based method estim ated w ith Kalman

Filter techniques.
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Figure 1: Relative Marginal Likelihoods
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Note: The charts rep ort the Relative Marginal L ikelihood (RML) of the 224 models (bars) and the fixed equal weight (horizontal line).

The RML is defined as the ratio of the Marginal L ikelihood (ML) of a given model over the sum of all MLs (Eq. 11 in the paper). The

ML is numerically computed from the G ibbs output using the harmonic m ean of the likelihood values at each draw of the posterior

d istribution of the param eter vector. In the computation of the harmonic m ean all m arginal like lihoods have b een computed on the

basis of equations for the sam e three endogenous variables, nam ely unemploym ent, infl ation and interest rate. The models on the x-axis

are ordered according to the schem e describ ed in Table A1.
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Figure 2: Posterior distributions of policy parameters and expected losses
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Note: The charts report the p osterior d istributions of the long run reaction co effi cient of unemploym ent gap and inflation rate, the

smoothing param eter of the interest rate and the loss values, for the OFR and all m odels. Column (1) refers to the euro area resu lts.

Column (2) refers to the US results. The solid b lack line that go es through the areas is the p osterior median of each model. The shaded

areas comprise the 95 p ercent of the posterior d istribution around it, as in a fan chart representation: there is an equal number of

bands on either side of the central band. The latter covers the interquartile range and is shaded w ith the deep est intensity. The next

deep est shade, on b oth sides of the centra l band , takes the distribution out to 80% ; and so on, until the 95% of the distribution is

covered. M odels on the x-axes are organized according to two layers of complexity : they are fi rst sorted in ascending lag length order

and then by the number of variables. Therefore , the models w ith one lag come fi rst, then the models w ith two lags, and so on. Among

the sp ecifi cations w ith the same number of lags, the models w ith three variab les com e fi rst, fo llowed by the models w ith four variables,

and so on. Thereafter, the ordering is the sam e as in tab le A1, i.e ., fi rst we have the sp ecifi cations w ith priors from 1 to 5 and the fi rst

detrend ing m ethod, and then the sp ecifi cations w ith priors 1 and 5 and the second detrending method.
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Figure 3: Distributions across models of the median policy parameters and expected losses
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Note: The b ox plots rep ort the extrem e values, the median and the interquartile ranges of the relevant (long-run) policy param eters

and the expected losses computed over the posterior medians of the 224 models for the Optim al Feedback Rule (OFR) and the Taylor

Rule (TR). Each chart is d iv ided in two parts: on the left hand side the euro area box p lots are reported , and on the right hand side the

US box plots are reported. The interest rate co effi cient is simply the smoothing param eter in the TR , and the sum over p− 1 lags

of the autoregressive co effi cients in the OFR. The long-run resp onse co effi cients for unemployment gap and inflation rate are computed

as fu/ (1− f i), fπ/ (1− f i), for the TR and as
Pp−1

j=0 fu/(1−
Pp−1

j=1 fi) and
Pp−1

j=0 fπ/(1−
Pp−1

j=1 fi) for
the OFR, resp ectively, where p represents the order of autoregression of the estim ated model. The dark squares in the b ox p lot are

the weighted averages of the resu lts, where the weights are given by the RML. The empty circ les represent the resu lts asso ciated w ith

the b est models (i.e. Model 196 and Model 117 of Tab le A .1, for the Euro Area and for the US, resp ectively).
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Figure 4: Posterior distributions of impulse response functions - Responses of unemployment gap
to a 100 basis-point contractionary monetary policy shock
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Note: The charts rep ort three quantiles — the median, the 16th percentile and the 84th percentile — of the posterior Impulse Resp onse

Functions of unemployment gap to a 100 basis-p oint contractionary monetary p olicy obtained from the G ibbs sampler. For each quantile

the distribution across the models has b een ‘fan -charted’. Resu lts are reported for the Optim al Feedback Rule and the Taylor ru le,

and for the euro area and the US. Hence, in the charts w ith the title ‘m ed ian ’ we plot the distribution across models of the m ed ian

resp onses. In each chart, the shaded areas represent the d isp ersion across models. There is an equal number of bands on either side of

the centra l band. The latter covers the interquartile range across models and is shaded w ith the deep est intensity. The next deep est

shade, on b oth sides of the centra l band, takes the distribution out to 80% ; and so on up to the 95% . The solid b lack line that go es

through the areas is the weighted average across models, where the weights are given by the re lative marginal like lihoods of each model

computed as in Eq. 11 of the paper.
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Figure 5: Forecast errorr variance decomposition. Percentage of the variance of unemployment gap
explained by all variables
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Note: The charts rep ort the posterior m edians of the p ercentage of the unemploym ent gap forecast errors variance exp la ined by the

monetary p olicy shock (column “ i”) and by all other endogenous variables of the VAR. More precisely, u is the unemployment gap;

pr is the partic ipation rate; π is the infl ation rate; cp is the commodity price infl ation ; e is the exchange rate; and, i stands for
the nom inal interest rate. The d istributions — which are obtained under the Optim al Feedback Rule for b oth econom ies — are reported

w ith the same “fan-chart” princip le as in F igure 4. Hence, in each chart, the shaded areas represent the disp ersion across models of the

p ortion of variance expla ined by each variable . There is an equal number of bands on either side of the centra l band. The latter covers

the interquartile range across models and is shaded w ith the deep est intensity. The next deep est shade, on b oth sides of the central

band, takes the distribution out to 80% ; and so on , until the 95% is covered . The solid black line that go es through the areas is the

weighted average across models, where the weights are given by the relative marginal likelihoods of each model computed as in Eq. 11

of the pap er. The average variances explained by each variab le cannot sum up to one as not all variables app ear always in the sam e

models. Therefore, the variance attributed to the single variables refers to the fraction of the variance expla ined by these variab les only

in models whose sp ecifi cation contains them .
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Figure 6: The transmission mechanism. Distribution across models of the posterior median impulse
responses of all variables to a 100 basis-point contractionary monetary policy shock
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Note: The charts report the p osterior m ed ians of the Impulse Response Functions of a ll variables to a 100 basis-p oint contractionary

monetary p olicy. The acronyms of the variables are the same as in F igure 5, that is: pr is the participation rate; π is the inflation rate;

cp is the commodity price infl ation ; e is the exchange rate; i stands for the nom inal interest rate. The d istributions across models are
rep orted for the Optimal Feedback Rule and the Taylor ru le , and for the euro area and the US. The ‘fan-chart’ princip le is the same as

in F igures 4 and 5. Therefore, in each chart, the shaded areas represent the d isp ersion across models of the m ed ian resp onses. There

is an equal number of bands on either side of the centra l band . The latter covers the interquartile range across models and is shaded

w ith the deep est intensity. The next deep est shade, on both sides of the central band , takes the distribution out to 80% ; and so on

until the 95% is covered. The solid b lack line that go es through the areas is the weighted average of each quantile (median, 16th and

84th percentile) across models, where the weights are given by the relative marginal likelihoods of each model computed as in Eq. 11

of the pap er.
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