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Abstract

Multicriteria games describe strategic interactions in which players , having more
than one criterion to take into account, don’t have an a-priori opinion on the rel-
ative importance of all these criteria. Roemer (2005) introduces an organizational
interpretation of the concept of equilibrium: each player can be viewed as running
a bargaining game among criteria. In this paper, we analyze the bargaining prob-
lem within each player by considering the Kalai-Smorodinsky bargaining solution.
We provide existence results for the so called Kalai-Smorodinsky bargaining solu-
tion equilibria for a general class of disagreement points which properly includes
the one considered in Roemer (2005). Moreover we look at the refinement power
of this equilibrium concept and show that it is an effective selection device even
when combined with classical refinement concepts based on stability with respect
to perturbations such as the the extension to multicriteria games of the Selten’s
(1975) trembling hand perfect equilibrium concept.

1 Introduction

Multicriteria games describe strategic interactions in which players’ payoff are vector-
valued functions, representing players’ multiple goals; in other words, agents, having more
than one criterion to take into account, don’t have an a-priori opinion on the relative
importance of all these criteria. Different extensions of the classical concept of Nash
equilibrium have been adopted for multicriteria games; the concepts of weak Pareto-Nash
and Pareto-Nash equilibrium, as introduced in Shapley (1959), play a fundamental role
and satisfy existence theorems under classical assumptions. Since in multicriteria games
multiplicity of the equilibria arises even more drastically with respect to the standard
scalar case, some contributions have also been made to generalize refinement concepts for
Nash equilibria to the multicriteria games (see Puerto and Fernandez (1995) or Borm, van
Megen and Tijs (1999) for perfect equilibria, Yang and Yu (2002) for essential equilibria).

Another approach is considered in Roemer (2005) where the author shows that, on the
one hand, in applications it will often be the case that in a multicriteria game each player is
an organization whose members have different goals and where the set of members sharing
the same goal is called a faction (organizations might be political parties, firms, or trade
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unions). On the other hand, each player can be regarded as an organization whose factions
are represented by the payoff’s components. Therefore he introduces an organizational
interpretation of the concept of equilibrium: each player/organization can be viewed as
running a bargaining game among criteria/internal factions” in which the disagreement
point corresponds to a fixed and exogenously given status quo strategy of the player. In
particular, the bargaining problem within each player/organization is solved by consid-
ering the weighted Nash bargaining solution (Nash (1950)) and it has been shown that
every Pareto-Nash equilibrium can been regarded as a weighted Nash bargaining solution
equilibrium for a suitable choice of the weights. In this paper, we analyze the bargaining
problem within each player/organization by considering the Kalai-Smorodinsky bargain-
ing solution (Kalai-Smorodinsky (1975)). We provide existence results for the so called
Kalai-Smorodinsky bargaining solution equilibria for a general class of disagreement points
which properly includes the one considered in Roemer (2005) and the one called minimal
expectation disagreement point defined in Roth (1977). Moreover, since in multicriteria
games multiplicity of equilibria arises even more drastically with respect to the standard
scalar case, we look at the refinement power of the Kalai-Smorodinsky bargaining solu-
tion equilibrium and show that, differently from the weighted Nash bargaining solution
equilibrium, it is an effective selection device. Finally we show that it is possible to com-
bine the Kalai-Smorodinsky bargaining solution equilibrium with the refinements based
on trembles; more precisely we consider the extension to multicriteria games of Selten’s
(1975) trembling hand perfect equilibria as defined in Borm, van Megen and Tijs (1999).
We show that the intersection between Kalai-Smorodinsky bargaining solution equilibria
and perfect equilibria is not empty and that it provides a sharper selection device for
weak Pareto-Nash equilibria.

2 Multicriteria Games

Multicriteria games describe interactions in which players’ payoff are vector-valued func-
tions; which means that players, having more then one criterion to take into account,
don’t have an a-priori opinion on the relative importance of all their criteria. In this
paper we will consider games of the form:

Γ = {I; X1, . . . , Xn; J1, . . . , Jn}

where I = {1, . . . , n} is the finite players’ set; for every player i, the strategy set Xi

is a subset of Rl(i) and the payoff is a vector-valued function Ji : X → Rr(i), where

X =
∏n

j=1 Xj and Ji =
(
Jh

i

)r(i)

h=1
; denote also X−i =

∏
j 6=i Xj.

In case the players act non-cooperatively, different extensions of the classical concept
of Nash equilibrium have been adopted; however, the concepts of weak Pareto-Nash and
Pareto-Nash equilibrium, as introduced in Shapley (1959), play a fundamental role (see
Wang (1993) for more general existence theorems and Morgan (2004) for variational sta-
bility, well-posedness and for an extensive list of references). We recall here some classical
definitions and notations:
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Definition 2.1: Given x−i ∈ X−i, the strategy x̂i ∈ Xi is said to be strongly (Pareto)
dominated by the strategy xi ∈ Xi if the vector Ji (x̂i, x−i) is strongly (Pareto) dominated
by the vector Ji (xi, x−i), that is

Ji (xi, x−i)− Ji (x̂i, x−i) ∈ intRr(i)
+ .

While, the strategy x̂i ∈ Xi is said to be (Pareto) dominated by the strategy xi ∈ Xi if
the vector Ji (x̂i, x−i) is (Pareto) dominated by the vector Ji (xi, x−i), that is

Ji (xi, x−i)− Ji (x̂i, x−i) ∈ Rr(i)
+ \ {0} .

Let Ji(Xi, x−i) = {Ji(xi, x−i) | xi ∈ Xi}, a vector yi is a weak Pareto point in Ji(Xi, x−i) if
it is not strongly dominated by any other vector in Ji(Xi, x−i), i.e. @zi ∈ Ji(Xi, x−i) such

that zi − yi ∈ intRr(i)
+ . A vector yi is a Pareto point in Ji(Xi, x−i) if it is not dominated

by any other vector in Ji(Xi, x−i), i.e. @zi ∈ Ji(Xi, x−i) such that zi − yi ∈ Rr(i)
+ \ {0}.

For every player i, let Wi : X−i Ã Rr(i) be the set-valued map where

Wi(x−i) is the set of all weak Pareto points in Ji(Xi, x−i) for all x−i ∈ X−i. (1)

and Pi : X−i Ã Rr(i) be the set-valued map where

Pi(x−i) is the set of all Pareto points in Ji(Xi, x−i) for all x−i ∈ X−i. (2)

Finally, for every player i and for every x−i ∈ X−i, a strategy xi is a weak-Pareto solution
for the vector-valued function Ji (·, x−i) in Xi if

xi ∈ Arg wmax
xi∈Xi

Ji(xi, x−i) = {xi ∈ Xi | Ji(xi, x−i) ∈ Wi(x−i)} (3)

and a strategy xi is a Pareto solution for the vector-valued function Ji (·, x−i) in Xi if

xi ∈ Arg max
xi∈Xi

Ji(xi, x−i) = {xi ∈ Xi | Ji(xi, x−i) ∈ Pi(x−i)}. (4)

Note that

Pi(x−i) ⊆ Wi(x−i) and Arg max
xi∈Xi

Ji(xi, x−i) ⊆ Arg wmax
xi∈Xi

Ji(xi, x−i)

Definition 2.2: (Shapley (1959)). A strategy profile x ∈ X is a weak Pareto-Nash
equilibrium if, for every player i, xi is a weak-Pareto solution for the vector-valued function
Ji (·, x−i) in Xi; while x ∈ X is a Pareto-Nash equilibrium if, for every player i, xi is a
Pareto solution for the vector-valued function Ji (·, x−i) in Xi.

Different interesting attempts have been made to generalize some refinement concepts
for Nash equilibria to the above solution concepts (see Puerto and Fernandez (1995)
or Borm, van Megen and Tijs (1999) for perfect equilibria, Yang and Yu (2002) for
essential equilibria). Moreover, in De Marco and Morgan (2007) it has been constructed
a refinement concept that takes into account the methodology of the scalarization which
adds to the original problem new endogenous parameters that are typical of the vector-
valued model.

The purpose of this paper is to construct a refinement concept that takes into account
the bargaining problem within the objectives of each player regarded as factions within
an organization.
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3 Games à la Kalai-Smorodinsky

Roemer (2005) shows that, on the one hand, in many applications players are organiza-
tions whose members have different goals and where the set of members of each organi-
zation sharing the same goal is called a faction; on the other hand, he points out that
each player in a multicriteria game can be regarded as an organization whose factions
are represented by the payoff’s components. Therefore he introduces an organizational
interpretation of the concept of equilibrium by considering a bargaining game among
criteria/internal factions in which the disagreement point corresponds to a fixed and ex-
ogenously given status quo strategy of the player. In particular, the bargaining problem
within each player/organization is solved by considering the weighted Nash bargaining so-
lution (Nash (1951)) and it has been shown that every Pareto-Nash equilibrium can been
regarded as a weighted Nash bargaining solution equilibrium for a suitable choice of the
weights. In this paper, we analyze the bargaining problem within each player/organization
by considering the Kalai-Smorodinsky bargaining solution (Kalai-Smorodinsky (1975)) for
a general class of disagreement points which properly includes the one considered in Roe-
mer (2005). We consider the case where the vector payoffs have only two components,
that is, for every i ∈ I, Ji : X → R2, because the properties of the Kalai-Smorodinsky
solution become different when the dimension is greater or equal than 3 and this case will
be considered in another paper.

More precisely, fixed a strategy profile for his opponents x−i, each player/organization
faces a bargaining problem (Ji(Xi, x−i), ϕi(x−i)) where:

1) Ji(Xi, x−i) = {Ji(xi, x−i) | xi ∈ Xi} is the set of alternatives.

2) ϕi(x−i) is the disagreement point.

In order to develop the theory we will use the following:

Assumption 1: For every player i, Xi is not empty, compact and convex, the function
Ji : X → R2 is continuous in X and Jh

i (·, x−i) is concave in Xi for all x−i ∈ X−i and for
h = 1, 2.

Assumption 2: For every player i and for every x−i ∈ X−i, the disagreement point is
given by the image ϕi(x−i) of a disagreement point function ϕi : X−i → R2 satisfying the
following condition

∀x−i ∈ X−i ∃y(x−i) ∈ Ji(Xi, x−i) such that y(x−i)− ϕi(x−i) ∈ intR2
+. (5)

The Kalai-Smorodinsky bargaining solution to this problem is constructed as follows:
given opponents’ profile x−i, let αi(x−i) be the ideal point of player i given opponents’
profile x−i, that is,

αi(x−i) =
(
αh

i (x−i)
)

h=1,2
with αh

i (x−i) = max
xi∈Xi

Jh
i (xi, x−i).

Denote with L(ϕi(x−i), x−i) ⊂ R2 the line joining ϕi(x−i) to αi(x−i). In light of con-
dition (5), L(ϕi(x−i), x−i) has positive slope so that the partial order given by the
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(Pareto) dominance relation in R2 induces a total order on L(ϕi(x−i), x−i). There-
fore, if L(ϕi(x−i), x−i) ∩ Ji(Xi, x−i) 6= ∅, then there exists a unique maximal element
in L(ϕi(x−i), x−i) ∩ Ji(Xi, x−i).

In order to show that L(ϕi(x−i), x−i)∩ Ji(Xi, x−i) 6= ∅, denote with Ci(x−i) the closed

convex hull of Ji(Xi, x−i) and with P̃i(x−i) the set of Pareto points in Ci(x−i); then

Lemma 3.1: In the Assumptions 1, for every player i and every x−i ∈ X−i it results that
Pi(x−i) = P̃i(x−i).

Proof. Fixed i ∈ I, assume that y ∈ P̃i(x−i) \ Pi(x−i). Then y /∈ Ji(Xi, x−i), in fact y ∈
Ji(Xi, x−i)∩P̃i(x−i) imply y ∈ Pi(x−i). Since y ∈ Ci(x−i), then there exist xi,1, . . . , xi,m ∈
Xi and λ1, . . . , λm ≥ 0, with

∑m
j=1 λj = 1, such that y =

∑m
j=1 λjJi(xi,j, x−i). From

concavity of Jh
i , for h = 1, 2 it follows that

Jh
i

(
m∑

j=1

λjxi,j, x−i

)
≥

m∑
j=1

λjJ
h
i (xi,j, x−i) = yh h = 1, 2.

Since Ji

(∑m
j=1 λjxi,j, x−i

)
∈ Ji(Xi, x−i) and y /∈ Ji(Xi, x−i), then at least one of the

previous inequalities is strict, then

Ji

(
m∑

j=1

λjxi,j, x−i

)
− y ∈ R2

+ \ {0}.

Therefore y /∈ P̃i(x−i), which is a contradiction; hence y ∈ Pi(x−i) and P̃i(x−i) ⊆ Pi(x−i).

Now, fixed i ∈ I, assume that y ∈ Pi(x−i) \ P̃i(x−i); then y ∈ C(x−i) and there exists
ỹ ∈ C(x−i) such that ỹ−y ∈ R2

+\{0}. Since ỹ ∈ C(x−i) then there exist xi,1, . . . , xi,m ∈ Xi

and λ1, . . . , λm ≥ 0, with
∑m

j=1 λj = 1, such that ỹ =
∑m

j=1 λjJi(xi,j, x−i). Then, from

concavity of each Jh
i (·, x−i), it follows that Ji

(∑m
j=1 λjxi,j, x−i

)
− ỹ ∈ R2

+ and therefore

Ji

(∑m
j=1 λjxi,j, x−i

)
− y ∈ R2

+, so y /∈ P(x−i) and we get a contradiction. Hence y ∈
P̃i(x−i) and Pi(x−i) ⊆ P̃i(x−i).

Lemma 3.2: In the Assumptions 1 and 2, for every player i and every x−i ∈ X−i it results
that L(ϕi(x−i), x−i) ∩ Ji(Xi, x−i) 6= ∅.
Proof. The ideal point of Ci(x−i) coincides with αi(x−i), therefore, following the proof
of the main Theorem in Kalai-Smorodinsky (1975) (p. 516) it results that Ci(x−i) ∩
L(ϕi(x−i), x−i) 6= ∅. In fact, there exist (α1

i (x−i), β
2
i ) and (β1

i , α
2
i (x−i)) in P̃i(x−i) and the

line connecting these points have negative slope; it can be checked that (α1
i (x−i), β

2
i ) and

(β1
i , α

2
i (x−i)) are separated by the line L(ϕi(x−i), x−i). Therefore L(ϕi(x−i), x−i) inter-

sects the segment connecting these two points and this intersection belongs to Ci(x−i) ∩
L(ϕi(x−i), x−i). Following previous arguments, L(ϕi(x−i), x−i) has positive slope so that
the partial order given by the Pareto dominance relation in R2 induces a total or-
der on L(ϕi(x−i), x−i). Therefore, since Ci(x−i) ∩ L(ϕi(x−i), x−i) 6= ∅, then there ex-
ists a unique maximal element Ki = (K1

i , K
2
i ) with respect to Pareto dominance in
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L(ϕi(x−i), x−i) ∩ Ci(x−i). It follows that Ki ∈ P̃i(x−i). In fact suppose there exists
zi = (z1

i , z
2
i ) ∈ Ci(x−i) such that zi−Ki ∈ R2

+ \ {0}. Since z1
i ≤ α1

i (x−i) and z2
i ≤ α2

i (x−i)
with at least one of the two inequalities strict, then L(ϕi(x−i), x−i) intersects either the
segment connecting zi and (α1

i (x−i), β
2
i ) or the segment connecting zi and (β1

i , α
2
i (x−i)).

In both the cases the intersection dominates Ki with respect to Pareto dominance in
L(ϕi(x−i), x−i) ∩ Ci(x−i), but this is a contradiction and Ki ∈ P̃i(x−i).

From Lemma 3.1 it follows that P̃i(x−i) = Pi(x−i) and hence

Ji(Xi, x−i) ∩ L(ϕi(x−i), x−i) ⊇ Pi(x−i) ∩ L(ϕi(x−i), x−i) = P̃i(x−i) ∩ L(ϕi(x−i), x−i) 6= ∅.

So, in the Assumptions 1 and 2, the following definition is well posed:

Definition 3.3 (Kalai Smorodinsky (1975)): The Kalai-Smorodinsky solution (KS-s)
κi(ϕi(x−i), x−i) to the bargaining problem (Ji(Xi, x−i), ϕi(x−i)) is the maximal element
in Ji(Xi, x−i) on the line joining ϕi(x−i) to αi(x−i).

Lemma 3.4: In the Assumptions 1 and 2, for every player i and every x−i ∈ X−i it results
that κi(ϕi(x−i), x−i) ∈ P(x−i).

Proof. Suppose there exists zi = (z1
i , z

2
i ) ∈ Ji(Xi, x−i) such that zi − κi(ϕi(x−i), x−i) ∈

R2
+ \ {0}. Since z1

i ≤ α1
i (x−i) and z2

i ≤ α2
i (x−i) with at least one of the two inequalities

strict, then L(ϕi(x−i), x−i) intersects either the segment connecting zi and (α1
i (x−i), β

2
i ) or

the segment connecting zi and (β1
i , α

2
i (x−i)). In both the cases the intersection dominates

κi(ϕi(x−i), x−i) with respect to Pareto dominance in L(ϕi(x−i), x−i) ∩ Ji(Xi, x−i) , but
this is a contradiction and κi(ϕi(x−i), x−i) ∈ Pi(x−i).

Definition 3.5: A strategy profile x∗ ∈ X is said to be a Kalai-Smorodinsky solution
equilibrium (KS-s equilibrium) with disagreement point functions ϕ = (ϕ1, . . . , ϕn) if

κi(ϕi(x
∗
−i), x

∗
−i) = Ji(x

∗
i , x

∗
−i) ∀i ∈ I. (6)

The set of all KS-s equilibrium with disagreement point functions ϕ is denoted with K(ϕ).

Leontief Preferences

Now we introduce the game with the Leontief preferences deriving from the bargaining
problems (Ji(Xi, x−i), ϕi(x−i)) for i = 1, . . . , n and we characterize KS-s equilibria in
terms of equilibria of this game. For every player i and for every disagreement point
function ϕi, let fi(ϕi(·), ·) : X → R be the function defined by:

fi(ϕi(x−i), x) = min

{
J1

i (xi, x−i)− ϕ1
i (x−i)

α1
i (x−i)− ϕ1

i (x−i)
,
J2

i (xi, x−i)− ϕ2
i (x−i)

α2
i (x−i)− ϕ2

i (x−i)

}
. (7)

So, we can consider the game between organizations with Leontief preferences and with
disagreement point functions ϕ

ΓO(ϕ) = {I; X1, . . . , Xn; f1(ϕ1(·), ·), . . . , fn(ϕn(·), ·)}. (8)
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Definition 3.6: A strategy profile x∗ ∈ X is said to be a bargaining solution equilib-
rium with Leontief preferences and with disagreement point functions ϕ if it is a Nash
equilibrium of the normal form game ΓO(ϕ). That is

fi(ϕi(x
∗
−i), x

∗
i , x

∗
−i) = max

xi∈Xi

fi(ϕi(x
∗
−i), xi, x

∗
−i) ∀i ∈ I.

Therefore, the following characterization holds:

Proposition 3.7: In the Assumptions 1 and 2, it results that, for every i ∈ I,

κi(ϕi(x−i), x−i) = Ji(x̃i, x−i) ⇐⇒ x̃i ∈ arg max
xi∈Xi

fi(ϕi(x−i), xi, x−i) ∀i ∈ I.

Therefore x∗ is a KS-s equilibrium if and only if x∗ is a bargaining solution equilibrium
with Leontief preferences and with disagreement point functions ϕ.

Proof. Fix i ∈ I and let κi(ϕi(x−i), x−i) = Ji(x̃i, x−i). By definition it follows that

J1
i (x̃i, x−i)− ϕ1

i (x−i)

α1
i (x−i)− ϕ1

i (x−i)
=

J2
i (x̃i, x−i)− ϕ2

i (x−i)

α2
i (x−i)− ϕ2

i (x−i)
. (9)

Assume there exists xi such that fi(ϕi(x−i), xi, x−i) > fi(ϕi(x−i), x̃i, x−i), then

J1
i (xi,x−i)−ϕ1

i (x−i)

α1
i (x−i)−ϕ1

i (x−i)
>

J1
i (x̃i,x−i)−ϕ1

i (x−i)

α1
i (x−i)−ϕ1

i (x−i)
, and

J2
i (xi,x−i)−ϕ2

i (x−i)

α2
i (x−i)−ϕ2

i (x−i)
>

J2
i (x̃i,x−i)−ϕ2

i (x−i)

α2
i (x−i)−ϕ2

i (x−i)

From Assumption 2 it follows that α1
i (x−i) − ϕ1

i (x−i) > 0 and α2
i (x−i) − ϕ2

i (x−i) > 0;
therefore

J1
i (xi, x−i) > J1

i (x̃i, x−i) and J2
i (xi, x−i) > J2

i (x̃i, x−i)

which is a contradiction since from Lemma 3.4 it follows that κi(ϕi(x−i), x−i) ∈ P(x−i).
Hence

x̃i ∈ arg max
xi∈Xi

fi(ϕi(x−i), xi, x−i). (10)

Conversely, let x̃ satisfy (10). By definition of KS-s, we have

κ1
i (ϕi(x−i), x−i)− ϕ1

i (x−i)

α1
i (x−i)− ϕ1

i (x−i)
=

κ2
i (ϕi(x−i), x−i)− ϕ2

i (x−i)

α2
i (x−i)− ϕ2

i (x−i)
.

Assume that κi(ϕi(x−i), x−i) 6= Ji(x̃i, x−i), then

κ1
i (ϕi(x−i),x−i)−ϕ1

i (x−i)

α1
i (x−i)−ϕ1

i (x−i)
≤ J1

i (x̃i,x−i)−ϕ1
i (x−i)

α1
i (x−i)−ϕ1

i (x−i)
, and

κ2
i (ϕi(x−i),x−i)−ϕ2

i (x−i)

α2
i (x−i)−ϕ2

i (x−i)
≤ J2

i (x̃i,x−i)−ϕ2
i (x−i)

α2
i (x−i)−ϕ2

i (x−i)

(11)
with at least one of the two inequalities strict. From Assumption 2 it follows α1

i (x−i) −
ϕ1

i (x−i) > 0 and α2
i (x−i)− ϕ2

i (x−i) > 0; then (11) implies that

κ1
i (ϕi(x−i), x−i) ≤ J1

i (x̃i, x−i) and κ2
i (ϕi(x−i), x−i) ≤ J2

i (x̃i, x−i)

with at least one of the two inequalities strict, but this is a contradiction since from
Lemma 3.4 it follows that κi(ϕi(x−i), x−i) ∈ P(x−i). Then κi(ϕi(x−i), x−i) = Ji(x̃i, x−i)
and the assertion follows.

Remark 3.8: It can be easily deduced that the only if part of the previous Proposition
can be immediately generalized to the case where Ji : X → Rn with n ≥ 3. While, the
used proof of the other implication requires the dimension 2 of the image space for Ji.
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Existence of KS-s equilibria

Theorem 3.9: In the Assumptions 1 and 2 hold true, if, for every player i, each com-
ponent ϕh

i is continuous in X−i, then there exists a KS-s equilibrium with disagreement
point functions ϕ.

Proof. We prove existence of equilibria with Leontief preferences and with disagreement
point functions ϕ and then the assertion follows from Proposition 3.7. In fact, for every
player i and from the Berge’s maximum theorem each function αh

i (·) is continuous in
X−i for every h = 1, . . . , r(i). Since the function each ϕh

i is continuous then the function
defined by

F h
i (x) =

Jh
i (xi, x−i)− ϕh

i (x−i)

αh
i (x−i)− ϕh

i (x−i)
,

is also continuous in X since, in light of the assumptions, αh
i (x−i)−ϕh

i (x−i) 6= 0 for all x−i

in X−i. Moreover, from the concavity of Jh
i (·, x−i) for every x−i it follows the concavity of

F h
i (·, x−i) for every x−i. The min function of concave and continuous functions is concave

and continuous so it is Fi(·, x−i). Therefore the game ΓO(ϕ) defined in (8) satisfies the
Nash equilibrium existence theorem and there exists a KS-s equilibrium disagreement
point functions ϕ.

Remark 3.10: From the proof of the previous theorem, the existence result for equilibria
in the game with Leontief preferences efined in (8) can be obviously generalized to the
case where Ji : X → Rn with n ≥ 3. While, in order to obtain also the existence
of KS-s equilibria in this case, we would need additional conditions; for instance, the
generalization of Proposition 3.7 would imply existence of KS-s equilibria when n ≥ 3.

Remark 3.11: If one of the players, say player h, has a unique criterion/faction then,
setting κh(ϕh(x−h), x−h) = maxxh∈Xh

Jh(xh, x−h), we can adapt the definition of KS-s
equilibrium. In this case all the results contained in this paper hold true.

4 Models of disagreement point functions

In this section we analyze some examples by choosing explicit formulas for the disagree-
ment point functions. The first example is the one considered in Roemer (2005) where
the disagreement point function of each player i is given by an exogenous strategy of
player i called status quo strategy. Then we consider the Roth’s (1977) idea of minimal
expectation disagreement point and we define two other different models of disagreement
point functions.

4.1 Status quo strategy

As in Roemer (2005), for every player i we consider the disagreement point function
δi : X−i → R2 defined by

δi(x−i) = Ji(di, x−i) for h = 1, 2
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where di is an exogenously given strategy of player i called status quo strategy. Then

Definition 4.1: A strategy profile x∗ ∈ X is said to be a KS-s equilibrium with status
quo strategies d if

κi(δi(x
∗
−i), x

∗
−i) = Ji(x

∗
i , x

∗
−i) ∀i ∈ I.

If the payoff function x → fi(δi(x−i), x) of player i is obtained replacing ϕi with δi in
(7) then we consider the game

ΓO(δ) = {I; X1, . . . , Xn; f1(δ1(·), ·), . . . , fn(δn(·), ·)}.

and as a direct application of Lemma 3.7 we get

Corollary 4.2: A strategy profile x∗ ∈ X is a KS-s equilibrium with with status quo
strategies d if and only if x∗ is a Nash equilibrium of the normal form game ΓO(δ).

As a direct application of Theorem 3.9 we obtain:

Proposition 4.3: If the Assumptions 1 and 2 hold for the bargaining problems
(Ji(Xi, x−i), δi(x−i)) with i = 1, . . . , n, then there exists a KS-s equilibrium with status
quo strategies d.

4.2 Minimal expectations

In the previous section we constructed the KS-s equilibrium with fixed status quo strategy.
However, in some situations the disagreement point is given endogenously; in particular,
here we consider the Roth’s idea of minimal expectations.

Recall that, for every player i, let Wi : X−i Ã R2 be the set-valued map where, for
all x−i ∈ X−i, Wi(x−i) is the set of all weak Pareto points in Ji(Xi, x−i). The minimum
expectation point mi(x−i) ∈ R2 is defined by

mh
i (x−i) = min

yi∈Wi(x−i)
yh

i for h = 1, 2.

If we consider the function mi : X−i → R2 as the disagreement point function of player i,
we obtain the following

Definition 4.4: A strategy profile x∗ ∈ X is said to be a KS-s equilibrium with minimal
expectations if

κi(mi(x
∗
−i), x

∗
−i) = Ji(x

∗
i , x

∗
−i) ∀i ∈ I.

If the payoff function x → fi(mi(x−i), x) of player i is obtained replacing ϕi with mi

in (7) then we consider the game

ΓO(m) = {I; X1, . . . , Xn; f1(m1(·), ·), . . . , fn(mn(·), ·)}

and as a direct application of Lemma 3.7 we get

Corollary 4.5: A strategy profile x∗ ∈ X is a KS-s equilibrium with minimal expecta-
tions m if and only if x∗ is a Nash equilibrium of the normal form game ΓO(m).
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Recall that Pi : X−i Ã R2 the set-valued map where, for all x−i ∈ X−i, Pi(x−i) is the
set of all weak Pareto points in Ji(Xi, x−i) Then we have

Proposition 4.6: If the Assumptions 1 and 2 hold for the bargaining problems
(Ji(Xi, x−i),mi(x−i)) with i = 1, . . . , n an if, for every player i, there exists a convex cone
Ki ⊆ intR2

− such that

Ji(Xi, x−i) ⊂ Pi(x−i) + Ki ∀x−i ∈ X−i, (12)

then there exists a KS-s equilibrium with minimal expectations.

Proof. From the assumptions, the set-valued map Wi : X−i Ã R2 is continuous on X−i

(see, for example, Theorems 2.2 and 2.3 in Loridan, Morgan and Raucci (1999) and
references therein). Then each mh

i is continuous on X−i. Moreover, since mi satisfies
condition (5), the hypothesis of Theorem 3.9 hold true and hence the game admits at
least a KS-s equilibrium with minimal expectations.

Remark 4.7: Property (12), called Strong Domination Property and defined in Bednar-
czuk (1994), guarantees also that Wi(x−i) = Pi(x−i) for all x−i ∈ X−i.

Strong minimal expectation

Here we propose a slight modification of the previous model where the minimal expecta-
tions are taken over a larger set, that is, the set of all the values of the payoff function of
the player, for every given strategy profile of his opponents. It turns out also that in this
case the existence is obtained under relaxed assumptions.

For every player and every x−i ∈ X−i, let µi(x−i) ∈ R2 be defined by

µh
i (x−i) = min

yi∈Ji(Xi,x−i)
yh

i for h = 1, 2

If we consider the function µi : X−i → R2 as the disagreement point function of player i,
then

Definition 4.8: A strategy profile x∗ ∈ X is said to be a KS-s equilibrium with strong
minimal expectations if

κi(µi(x
∗
−i), x

∗
−i) = Ji(x

∗
i , x

∗
−i) ∀i ∈ I.

If the payoff function x → fi(µi(x−i), x) of player i is obtained replacing ϕi with µi in
(7) then we consider the game

ΓO(µ) = {I; X1, . . . , Xn; f1(µ1(·), ·), . . . , fn(µn(·), ·)}

and, as a direct application of Lemma 3.7, we get

Corollary 4.9: A strategy profile x∗ ∈ X is a KS-s equilibrium with strong minimal
expectations m if and only if x∗ is a Nash equilibrium of the normal form game ΓO(µ).
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Proposition 4.10: If the Assumptions 1 and 2 hold for the bargaining problems
(Ji(Xi, x−i), µi(x−i)) with i = 1, . . . , n, then there exists a KS-s equilibrium with strong
minimal expectations.

Proof. The set-valued map Ji(Xi, ·) : X−i Ã R2 is obviously continuous on X−i. Then
each µh

i is continuous on X−i. Moreover, since µi satisfies condition (5), then the hypoth-
esis of Theorem 3.9 hold true and hence the game admits at least a KS-s equilibrium
with strong minimal expectations.

5 Stability

In this section we focus on stability of the KS-s equilibrium concept with respect to
perturbations on the data. More precisely, given the game Γ, we consider a sequence of
perturbed games (Γν)ν∈N with

Γν = {I; X1,ν , . . . , Xn,ν ; J1,ν , . . . , Jn,ν} ∀ν ∈ N.

We investigate conditions of convergence of the data of the game which guarantee the
convergence of KS-s equilibria of perturbed games to a KS-s equilibrium of the original
game.

Theorem 5.1: Given the multicriteria game Γ and a disagreement point function ϕ sat-
isfying (5), assume that, for every player i:

i) (Xi,ν)ν∈N is a sequence of sets converging to Xi in the sense of Painlevé-Kuratowski,
that is

Lim sup
ν→∞

Xi,ν ⊆ Xi ⊆ Lim inf
ν→∞

Xi,ν where (13)

Lim inf
ν→∞

Xi,ν =
{
xi ∈ Rm(i) | ∀ε > 0 ∃ν s.t. forν ≥ ν Bi(xi, ε) ∩Xi,ν 6= ∅} , (14)

Lim sup
ν→∞

Xi,ν =
{
xi ∈ Rm(i) | ∀ε > 0 ∀ν ∈ N ∃ν ≥ ν s.t. Bi(xi, ε) ∩Xi,ν 6= ∅} . (15)

ii) (Ji,ν)ν∈N is a sequence of functions from Xν to R2 for every ν ∈ N, such that Ji,ν

continuously converges to Ji, i.e., for every x ∈ X and for every sequence (xν)ν∈N
converging to x, with xν ∈ Xi,ν for every ν ∈ N, it follows that

lim
ν→∞

Ji,ν(xν) = Ji(x).

iii) (ϕi,ν)ν∈Nis a sequence of functions from X−i,ν to R such that:

a) ∀x−i ∈ X−i,ν ∃yν(x−i) ∈ Ji,ν(Xi,ν , x−i) such that yν(x−i)−ϕi,ν(x−i) ∈ intR2
+;

b) (ϕi,ν)ν∈N continuously converges to ϕi, i.e., for every x−i ∈ X−i and for every
sequence (x−i,ν)ν∈N converging to x−i, with x−i,ν ∈ X−i,ν for every ν ∈ N, it
follows that

lim
ν→∞

ϕi,ν(x−i,ν) = ϕi(x−i).
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If x∗ν is a KS-s equilibrium of the game Γν with disagreement point function ϕν for every
ν ∈ N and the sequence (x∗ν)ν∈N converges to x∗ ∈ X, then x∗ is a KS-s equilibrium of
the game Γ with disagreement point function ϕ.

Proof. We prove the result for equilibria with Leontief preferences and with disagreement
point functions ϕ and then the assertion follows from Proposition 3.7.

For every player i and every ν ∈ N, consider the functions αh
i,ν : X−i,ν → R, for

h = 1, 2, defined by:

αh
i,ν(x−i) = max

xi∈Xi,ν

Jh
i,ν(xi, x−i) ∀x−i ∈ X−i,ν

From Berge’s Theorem it follows that the sequence (αh
i,ν)ν continuously converges to αh

i

for every h ∈ {1, 2}. Therefore, for every player i and every h = 1, 2, it follows that the
sequence of functions (F h

i,ν)ν∈N defined by

F h
i,ν(x) =

Jh
i,ν(x)− ϕh

i,ν(x−i)

αh
i,ν(x−i)− ϕh

i,ν(x−i)

continuously converges to the function F h
i defined by

F h
i (x) =

Jh
i (x)− ϕh

i (x−i)

αh
i (x−i)− ϕh

i (x−i)
.

Again, in light of the Berge’s Theorem, the sequence of functions (Fi,ν)ν defined by
Fi,ν(x) = min

{
F 1

i,ν(x), F 2
i,ν(x)

}
continuously converges to Fi defined by Fi(x) = min {F 1

i (x), F 2
i (x)} .

If (x∗ν)ν is a sequence of KS-s equilibria of Γν with disagreement point functions ϕν con-
verging to x∗, then, for every ν and every player i, it follows that x∗i,ν ∈ arg max

zi∈Xi,ν

Fi,ν(zi, x
∗
−i,ν).

Therefore, in light of the Berge’s Theorem , it follows that x∗i ∈ arg max
zi∈Xi

Fi(zi, x
∗
−i). Hence

x∗ is a KS-s equilibrium and the assertion follows.

6 Perfectness

In this section we refine the KS-s equilibrium concept by considering the perfectness
approach in Selten (1975), in the context of games in mixed strategies with a finite
number of pure strategies. Selten’s idea is to consider the possibility that agents make
mistakes playing their equilibrium strategies. When such mistakes occur, it may happen
that equilibria are not stable, therefore, the concept of trembling hand perfect equilibrium
for normal form games is defined by a limit process and it is based on the idea that players
coordinate their choices on a Nash equilibrium which is stable with respect to mistakes
in the choice of their equilibrium strategies. More precisely, if an equilibrium is not
perfect then it is unstable with respect to every Selten’s perturbation on the strategies.
Different interesting contributions have been provided to generalize this solution concepts
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to the multicriteria case (see Puerto and Fernandez (1995) or Borm, van Megen and
Tijs (1999)); in this section we propose to combine perfectness with the game between
organizations approach of Roemer. It turns out that not only it is possible to combine
the KS-s equilibria with perfect equilibria, but also that this selection device is sharper
than perfectness and KS-s equilibrium concept.

Given a n-player finite game Ω = {I; Φ1, . . . , Φn; H1, . . . , Hn} where Φi = {ϕ1
i , . . . , ϕ

k(i)
i }

is the (finite) pure strategy set of player i, Φ =
∏

i∈I Φi and Hi : Φ → R2 is the vector-
valued payoff function of player i, then in this section Γ = {I; X1, . . . , Xn; J1, . . . , Jn}
denotes the mixed extension of Ω. Therefore, each strategy xi ∈ Xi is a vector xi =
(xi(ϕi))ϕi∈Φi

∈ Rk(i)
+ such that

∑
ϕi∈Φi

xi(ϕi) = 1 and the expected payoff function

Ji : X → R2 is defined by:

Jh
i (x) =

∑
ϕ∈Φ

[∏
i∈I

xi(ϕi)

]
Hh

i (ϕ) for all x ∈ X for all h = 1, 2

We recall the following definition

Definition 6.1 (Selten (1975)): Let Ω be a finite game and Γ its mixed extension. For
every player i, let ηi : Φi → ]0, 1[ be a function satisfying

∑
ϕi∈Φi

ηi (ϕi) < 1

Let η = (η1, . . . , ηn) and Xi,η = {xi ∈ Xi | xi(ϕi) ≥ ηi(ϕi) ∀ϕi ∈ Φi}. The game
(Γ, η) = {I; X1,η, . . . , Xn,η; J1, . . . , Jn} will be called Selten’s perturbed game.

The natural extension to multicriteria games of the trembling hand perfect equilib-
rium concept (Puerto and Fernandez (1995) or Borm, van Megen and Tijs (1999)) is the
following:

Definition 6.2: Let Ω be a finite game and Γ its mixed extension. A weak Pareto-Nash
equilibrium x of Γ is a trembling hand perfect equilibrium of Γ if there exist a sequence of
perturbed games {(Γ, ην)}ν∈N and a sequence of strategy profiles {xν}ν∈N such that:

i) for all ν ∈ N, xν is a weak Pareto-Nash equilibrium of (Γ, ην)

ii) limν→∞ xν = x, limν→∞ ην = 0

So, the perfectness approach for KS-s equilibria reads naturally as follows

Definition 6.3: Let Ω be a finite game and Γ its mixed extension. A strategy profile
x ∈ X is said to be a perfect KS-s equilibrium of Γ with disagreement point functions
ϕ satisfying (5) if there exist a sequence of perturbed games {(Γ, ην)}ν∈N, a sequence
of strategy profiles {xν}ν∈N and, for every player i, a sequence of disagreement point
functions {ϕi,ν}ν∈N from X−i,ην to R satisfying (iii),a)) in Theorem (5.1), such that

i) xν is a KS-s equilibrium of (Γ, ην) with disagreement point function ϕν , for all
ν ∈ N;
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ii) (α): limν→∞ xν = x;
(β): limν→∞ ην = 0,
(γ): {ϕi,ν}ν∈N continuously converges to ϕi for every i ∈ I.

Theorem 6.4: Let Ω be a finite game, Γ be its mixed extension and ϕ be a profile of
disagreement point functions satisfying condition (5). Then there exists a perfect KS-s
equilibrium with disagreement point functions ϕ.

Proof. For every Selten’s perturbation η, each set Xi,η is compact and contained in the
simplex Xi. Therefore, given a sequence of perturbations {ην}ν∈N, it follows that

Ji(Xi,ην , x−i) ⊆ Ji(Xi, x−i) ∀x−i ∈ X−i, ∀ν ∈ N

holds for every player i. For every x−i ∈ X−i, Ji(Xi, x−i) is compact, then

ϕi(x−i) + R2
+ ⊃ Ji(Xi, x−i) ⊇ Ji(Xi,ην , x−i) ∀ν ∈ N

So, for every player i and for every ν, the disagreement point function from X−i,ην to R
satisfies (iii),a)) in Theorem 5.1, for all ν, and (5). Let {xν}ν∈N be a sequence of KS-s
equilibria with disagreement point functions ϕ for the games (Γ, ην); since the sequence
is compact then it admits a subsequence converging to x∗ ∈ X. Then x∗ is, by definition,
perfect KS-s equilibrium of Γ with disagreement point functions ϕ.

Remark 6.5: From the final part of the previous proof, we can deduce that, if a con-
stant function ϕ satisfies (5) and (iii),a)) in Theorem (5.1) along a sequence of Selten’s
perturbed games, then there exists a perfect KS-s equilibrium of Γ with disagreement
point functions ϕ.

Proposition 6.6: Let Ω be a finite game and Γ its mixed extension. Then, every per-
fect KS-s equilibrium with disagreement point functions ϕ of Γ is a perfect Pareto-Nash
equilibrium of Γ and a KS-s equilibrium with disagreement point functions ϕ of Γ .

Proof. Assume x∗ is a perfect KS-s equilibrium of Γ with disagreement point functions ϕ.
Then there exists a sequence {xν}ν∈N converging to x such that xν is a KS-s equilibrium
of (Γ, ην) with disagreement point function ϕν , for all ν ∈ N and ii) in Definition 6.3 are
satisfied. In light of the definition of the KS-s, xν is a weak Pareto-Nash equilibrium of
(Γ, ην) for all ν ∈ N, therefore x is a trembling hand perfect equilibrium of Γ. Moreover,
from Theorem 5.1 it also follows that x is a KS-s equilibrium of Γ with disagreement
point functions ϕ. Hence the assertion follows.

7 An example

Now we show with an example that not only KS-s equilibria refine Pareto-Nash equilibria
but also that perfect KS-s equilibria refine perfect Pareto-Nash equilibria.

Consider the following two player game.
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L R
T 1,0 0,0
M 0,0 0, 1
B -1,2 -1,0

L R
T 1 0
M 1 1
B 0 0

payoffs of Player 1 payoffs of Player 2

We consider mixed strategies and we denote with p1 = Prob(T ), p2 = Prob(M), 1− p1−
p2 = Prob(B) and q = Prob(L), 1 − q = Prob(R). Denote with Xi the set of mixed
strategies of player i, i.e.,

X1 = {(p1, p2) ∈ R2 | p1, p2 ≥ 0; p1 + p2 ≤ 1}, X2 = {q ∈ R | 0 ≤ q ≤ 1}.

Note that, for every q ∈ [0, 1], J1(T, q) = (q, 0), J1(M, q) = (0, 1 − q) and J1(B, q) =
(−1, 2q) so for every q ∈ [0, 1] the set J1(X1, q) of the images of the vector-valued expected
payoff of Player 1 is given by the convex hull of the points (q, 0), (0, 1 − q), (−1, 2q).
Denote with γ1(q) the segment joining J1(T, q) to J1(M, q), with γ2(q) the segment joining
J1(M, q) to J1(B, q) and with γ3(q) the segment joining J1(T, q) with J1(B, q), i.e.

γ1(q) =
{(

sq, (1− s)(1− q)
)
, ∀s ∈ [0, 1]

}
,

γ2(q) =
{(− s, 2qs + (1− s)(1− q)

)
, ∀s ∈ [0, 1]

}
γ3(q) =

{(− s + (1− s)q, 2qs
)
, ∀s ∈ [0, 1]

}

It is easy to check that the set W1(q) of weak Pareto points in J1(X1, q) is given by the
following:

W1(q) =





γ1(q) if q ∈ [0, 1/3[

γ1(q) ∪ γ2(q) if q ∈ [1/3, 1/
√

3[

γ3(q) if q ∈ [1/
√

3, 1]

where for q = 1/
√

3 it results that γ1(q) ∪ γ2(q) = γ3(q); then, the best reply correspon-
dence of Player 1 is given by:

Arg wmax
(p1,p2)∈X1

J1(p1, p2, q) =





{(p1, p2) ∈ X1 | p1 + p2 = 1} if q ∈ [0, 1/3[

{(p1, p2) ∈ X1 | p1 + p2 = 1} ∪ {0} × [0, 1] if q ∈ [1/3, 1/
√

3[

X1 if q = 1/
√

3

[0, 1]× {0} if q ∈]1/
√

3, 1]

;

the best reply correspondence of Player 2 is given by

arg max
q∈[0,1]

J2(p1, p2, q) =

{
q = 1 if p1 > 0
q ∈ [0, 1] if p1 = 0

Denoted with
P1 = {(0, 1, q) | q ∈ [0, 1/3[}
P2 = {(0, p2, q) |p2 ∈ [0, 1], q ∈ [1/3, 1/

√
3]}

P3 = {(0, 0, q) | q ∈ [1/
√

3, 1[}
P4 = {(p1, 0, 1) | p1 ∈ [0, 1]}.
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Then the set of weak Pareto-Nash equilibria WPN is

WPN = P1 ∪ P2 ∪ P3 ∪ P4.

In order to find the KS-s equilibria, observe that the ideal point function α1(q) of Player
1 is

α1(q) =

{
(q, 1− q) if q ∈ [0, 1/3[
(q, 2q) if q ∈ [1/3, 1]

.

Consider the strong minimal expectation disagreement point function of Player 1 (which
in this case coincides with the minimal expectation disagreement point function), that is,

ϕ1(q) = (−1, 0) ∀q ∈ [0, 1]. (16)

Therefore, for every q ∈ [0, 1], the KS-s κi(q) to J1(X1, q) is the maximal element (with
respect to Pareto dominance) in J1(X1, q) on the line l(q) joining ϕ1(q) to α1(q), where
it can be checked that

l(q) =

{ {(z1, z2) ∈ R2 | l1(q) = (1− q)z1 − (q + 1)z2 + 1− q = 0} if q ∈ [0, 1/3[
{(z1, z2) ∈ R2 | l2(q) = 2qz1 − (q + 1)z2 + 2q = 0} if q ∈ [1/3, 1]

.

Therefore it can be checked that the KS-s κ1(q) is given by:

κ1(q) =





γ1(q) ∩ l1(q) if q ∈ [0, 1/3[

γ1(q) ∩ l2(q) if q ∈]1/3,−1 +
√

2[

γ2(q) ∩ l2(q) if q ∈ [−1 +
√

2, 1/
√

3[

γ3(q) ∩ l2(q) if q ∈ [1/
√

3, 1]

.

where for q = −1 +
√

2 the line l2(q) passes through the point (0, 1 − q). It can be
calculated that

κ1(q) =





(
q2

1+2q
, (1−q2)

1+2q

)
if q ∈ [0, 1/3[(

q(1−2q−q2)
q2+1

, 2q(1−q2)
q2+1

)
if q ∈ [1/3,−1 +

√
2[(

q2+2q−1
1−4q−3q2 ,

−4q2

1−4q−3q2

)
if q ∈ [−1 +

√
2, 1/

√
3[(

q−1
2

, q
)

if q ∈]1/
√

3, 1]

.

Therefore, denoted with BRκ
1(q) the best reply correspondence of Player 1 when he runs

a KS-s within his criteria then, denoted with vt the transpose of the row vector v,

(pκ
1(q), p

κ
2(q)) ∈ BRκ

1(q) if and only if pκ
2(q), p

κ
2(q) ≥ 0, pκ

1(q) + pκ
2(q) ≤ 1, and





i) pκ
1(q)J1(T, q)t + pκ

2(q)J1(M, q)t =
(

q2

1+2q
, (1−q2)

1+2q

)t

if q ∈ [0, 1/3[

ii) pκ
1(q)J1(T, q)t + pκ

2(q)J1(M, q)t =
(

q(1−2q−q2)
q2+1

, 2q(1−q2)
q2+1

)t

if q ∈ [1/3,−1 +
√

2[

iii) pκ
2(q)J1(M, q)t + (1− pκ

2(q))J1(B, q)t =
(

q2+2q−1
1−4q−3q2 ,

−4q2

1−4q−3q2

)t

if q ∈ [−1 +
√

2, 1/
√

3]

iv) pκ
1(q)J1(T, q)t + pκ

2(q)J1(M, q)t+

+(1− pκ
1(q)− pκ

2(q))J1(B, q)t =
(

q2+2q−1
1−4q−3q2 ,

−4q2

1−4q−3q2

)t

if q = 1/
√

3

v) pκ
1(q)J1(T, q)t + (1− pκ

1(q))J1(B, q)t =
(

q−1
2

, q
)t

if q ∈]1/
√

3, 1]

.
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Therefore i), ii), iii) iv), v) are linear systems which can be rewritten as

i)

{
pκ

1(q)q = q2

1+2q

pκ
2(q)(1− q) = (1−q2)

1+2q

, ii)

{
pκ

1(q)q = q(1−2q−q2)
q2+1

pκ
2(q)(1− q) = 2q(1−q2)

q2+1

iii)

{
−(1− pκ

2(q)) = q2+2q−1
1−4q−3q2

pκ
2(q)(1− q) + 2q(1− pκ

2(q)) = −4q2

1−4q−3q2

,

iv)

{
1√
3
pκ

1(q)− (1− pκ
1(q)− pκ

2(q)) = 1−√3
2
√

3

pκ
2(q)

√
3−1√
3

+ 2√
3
(1− pκ

1(q)− pκ
2(q)) = 1√

3

, v)

{
pκ

1(q)q − (1− pκ
1(q)) = q−1

2

2q(1− pκ
1(q)) = q

.

Therefore, solving the systems we get,

BRκ
1(q) =





(
q

1+2q
, (1+q)

1+2q

)
if q ∈ [0, 1/3[(

1−2q−q2

q2+1
, 2q(1+q)

q2+1

)
if q ∈ [1/3,−1 +

√
2[(

0, −2q(q+1)
1−4q−3q2

)
if q ∈ [−1 +

√
2, 1/

√
3[

(p1, p2) s.t. 2p1 +
(

2
√

3√
3+1

)
p2 = 1, p1 ∈ [0, 1/2] if q = 1/

√
3

(1/2, 0) if q ∈]1/
√

3, 1]

.

Finally, the set K(µ) of KS-s equilibria is

K(µ) = {(0, 1, 0)} ∪
{(

0,
−2q(q + 1)

1− 4q − 3q2
, q

)
| q ∈ [−1 +

√
2, 1/

√
3]

}
∪

{(
1

2
, 0, 1

)}
.

The set of the multicriteria trembling hand perfect equilibria ET of this game is
ET = {(p1, 0, 1) | p1 ∈ [0, 1]}. In fact consider a Selten’s perturbation η on the set of
strategy profiles, that is a pair of functions η = (η1, η2), where η1 : {T, M, B} →]0, 1[ and
η2 : {L,R} →]0, 1[ such that:

η1(T ) + η1(M) + η1(B) < 1 η2(L) + η2(R) < 1.

Let (Γ, η) = {2; X1,η, X2,η; J1, J2} be the corresponding perturbed multicriteria game,
where

X1,η = {(p1, p2) ∈ X1 | η1(T ) ≤ p1 ≤ 1−(η1(M)+η1(B)), η1(M) ≤ p2 ≤ 1−(η1(T )+η1(B))}

X2,η = {q ∈ X2 | η2(L) ≤ q ≤ 1− η2(R)}.
The best reply correspondences in the perturbed games are:

(p1, p2) ∈ Arg wmax
(p1,p2)∈X1,η

J1(p1, p2, q) if and only if
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i){(p1, p2) | p1 ≥ η1(T ), p2 ≥ η1(M), p1 + p2 = 1− η1(B)} if q ∈ η2(L), 1/3[
ii){(p1, p2) | p1 ≥ η1(T ), p2 ≥ η1(M), p1 + p2 = 1− η1(B)} and

{(η1(T ), p2) | p2 ∈ [η1(T ), 1− η1(T )− η1(B)]} if q ∈ [1/3, 1/
√

3[

iii){(p1, p2) | p1 ≥ η1(T ), p2 ≥ η1(M), p1 + p2 ≤ 1− η1(B)} if q = 1/
√

3

iv){(p1, η1(M)) | p1 ∈ [η1(T ), 1− η1(M)− η1(B)]} if q ∈]1/
√

3, 1− η2(R)]

;

the best reply correspondence of Player 2 is given by

q ∈ arg max q ∈ X2,ηJ2(p1, p2, q) ⇐⇒
{

q = 1− η2(R) for all (p1, p2) ∈ X1,η

Then, the set WPEη of the weak Pareto-Nash equilibria of (Γ, η) is:

WPEη = {(p1, η1(M), 1− η2(R)) | p1 ∈ [η1(T ), 1− η1(M)− η1(B)]}

Therefore, the set ET of the multicriteria trembling hand perfect equilibria of this game
is

ET = WPE ∩ Lim sup
η→0

WPEη = {(p1, 0, 1) | p1 ∈ [0, 1]}

In light of Theorem (6.4) and Proposition (6.6), the set PK(µ) of perfect KS-s equilibria
satisfies

∅ 6= PK(µ) ⊆ K(µ) ∩ ET =

{(
1

2
, 0, 1

)}
.

Therefore there exists a unique perfect KS-s equilibrium with the disagreement point
function defined in (16).
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