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The famous Harsanyi's (1973) Theorem states that generically a finite game has an odd number of Nash 
equilibria in mixed strategies. In this paper, we show that for finite multicriteria games (games with vector-valued 
payoffs) this kind of result does not hold. In particular, we show, by examples, that it is possible to find balls in the 
space of games such that every game in this set has uncountably many equilibria so that uncountable sets of 
equilibria are not nongeneric in multicriteria games. Moreover, we point out that, surprisingly, all the equilibria of 
the games cor- responding to the center of these balls are essential, that is, they are stable with respect to every 
possible perturbation on the data of the game. However, if we consider the scalarization stable equilibrium 
concept (introduced in De Marco and Morgan (2007) and which is based on the scalarization technique for 
multicriteria games), then we show that it provides an effective selection device for the equilibria of the games 
corresponding to the centers of the balls. This means that the scalarization stable equilibrium concept can provide 
a sharper selection device with respect to the other classical refinement concepts in multicriteria games. 
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1 Introduction

Harsanyi (1973) proved that generically a finite game has an odd number of Nash equilib-
ria in mixed strategies and that they are all regular. Regularity of an equilibrium implies
that the graph of the Nash equilibrium correspondence, that is, the set-valued map de-
fined in the space of games having the same strategy sets that associates to every game
the set of its Nash equilibria, is the graph of a continuous function in a neighborhood of
such equilibrium considered as a point in the graph (see also Ritzberger (1994) or van
Damme (1989)). Obviously, this property implies stability of the equilibrium with respect
to every possible perturbation on the data of the game.

However, when an equilibrium is not regular it might be “unstable” with respect
to perturbations on the strategies or on the payoffs and therefore refinements of the
Nash equilibrium concept have been introduced in order to select equilibria stable with
respect to particular classes of perturbation. Just to quote a few, we recall perfectness
(Selten 1975), properness (Myerson (1978), essentiality (Jiang and Wu (1965)), strategic
stability (Kohlberg and Mertens (1986)). In particular, essentiality is the property of an
equilibrium to be stable with respect to every possible perturbation on the payoffs of a
game.

In this paper, we show by examples that, when the payoffs of the game are vector-
valued (multicriteria games), the previous considerations about the non genericity of
infinite sets of equilibria do not hold anymore. Recall that multicriteria games describe
strategic interactions in which players have different goals whose relative values cannot be
ascertained a-priori, for example, representing a single individual with multiple objectives
or an organization of individuals which have to jointly take a single decision and where
each of the criteria corresponds to the concerns of a different faction of the organization.
Different extensions of the classical concept of Nash equilibrium have been adopted for
multicriteria games; the concepts of weak Pareto-Nash and Pareto-Nash equilibrium, as
introduced in Shapley (1959), play a fundamental role and satisfy existence theorems
under classical assumptions. We consider these concepts of equilibrium and find balls in
the space of games such that every element in this set has uncountably many equilibria so
that uncountable sets of equilibria are not nongeneric in multicriteria games. Moreover,
we show that, surprisingly, all the equilibria of the games corresponding to the centers of
these balls are essential, that is, they are stable with respect to every possible perturbation
on the data of the game. More precisely, we present two examples which independently
satisfy these properties; however, the first example is much easier from the mathematical
point of view (just two strategies for each player and only one vector-valued payoff) but
it is much less interesting from the game theoretic point of view since it involves a trivial
best reply correspondence of the first player which coincides with his strategy set for every
strategy of the second player. Therefore, the first example shows that the results hold in
the simplest class of multicriteria games and the second example (in which the first player
has three strategies instead of two) emphasizes that the results coming out from the first
example do not depend on the degenerate behavior of the best reply correspondences and
may arise in nontrivial games.

In the final part of the paper, we notice that, even though essentiality is usually a very
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sharp selection device, another kind of stability requirement (namely the scalarization-
stable equilibrium concept defined in De Marco and Morgan (2007)) provides an effective
selection device for the weak Pareto-Nash equilibria of the games in both the examples.
The scalarization-stable equilibrium concept is based on the following scalarization tech-
nique for finite multicriteria games studied in Shapley (1959): every weak Pareto-Nash
equilibrium is a Nash equilibrium of a scalar game in which the real-valued payoff is
obtained by weighting the components of the vector-valued payoff with weights in the
simplex (called trade-off game), and conversely. In other words, when an equilibrium x
of a multicriteria game is played, the choice of a strategy xi by a player i as a best reply
to his opponents’ strategy profile x−i implicitly implies that Player i is using particular
total order relations to implement xi as a maximum point and Player i is assuming the
others playing x−i and then, he is implicitly assuming the others using particular total
order relations. Therefore scalarization-stable equilibria are obtained by perturbing the
weights in the scalarization and by requiring a lower semicontinuity-like stability in the
equilibria, in order to capture the stability of the equilibrium with respect to perturba-
tions on the total order relations of every player and with respect to perturbations on
the expectations of each player about others’ total order relations. As a final remark,
the examples presented in this paper show also that essentiality in a multicriteria game
differs from essentiality in the corresponding trade-off games, since there exists (at least)
an essential (weak Pareto-Nash) equilibrium of the multicriteria game such that, for ev-
ery possible scalarization, it is not an essential (Nash) equilibrium of the corresponding
trade-off game. This latter result is in line with an analogous result obtained for perfect
equilibria in Borm, van Megen and Tijs (1999).

The paper is organized as follows: Section 2 presents the basic definitions of equi-
librium in multicriteria games and introduces the genericity problem in finite games. In
Section 3, the two examples are analyzed. Section 4 presents the scalarization stable
equilibrium concept and its application to the examples.

2 Finite Multicriteria Normal Form Games

2.1 Equilibria

Multicriteria games describe interactions in which players’ payoff are vector-valued func-
tions; which means that players, having more than one criterion to take into account, don’t
have an a-priori opinion on the relative importance of all their criteria. Given a n-player
finite game Ω = {I; Ψ1, . . . , Ψn; H1, . . . , Hn} where Ψi = {ψ1

i , . . . , ψ
k(i)
i } is the (finite) pure

strategy set of player i, Ψ =
∏

i∈I Ψi and Hi : Ψ → Rr(i) is the vector-valued payoff func-
tion of player i, then in this section Γ = {I; X1, . . . , Xn; J1, . . . , Jn} denotes the mixed

extension of Ω. Therefore, each strategy xi ∈ Xi is a vector xi = (xi(ψi))ψi∈Ψi
∈ Rk(i)

+ such
that

∑
ψi∈Ψi

xi(ψi) = 1 and the expected payoff function Ji : X → Rr(i), with X =
∏n

i=1,
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is defined by:

Jh
i (x) =

∑

ψ∈Ψ

[∏
i∈I

xi(ψi)

]
Hh

i (ψ) for all x ∈ X and for all h = 1, . . . , r(i).

In case the players act non-cooperatively, different extensions of the classical concept of
Nash equilibrium have been adopted; however, the concepts of weak Pareto-Nash and
Pareto-Nash equilibrium, as introduced in Shapley (1959), play a fundamental role (see
Wang (1993) for more general existence theorems and Morgan (2005) for variational sta-
bility, well-posedness and for an extensive list of references). We recall here some classical
definitions and notations:

Definition 2.1: Given x−i ∈ X−i, the strategy x̂i ∈ Xi is said to be strongly (Pareto)
dominated by the strategy xi ∈ Xi if the vector Ji (x̂i, x−i) is strongly (Pareto) dominated
by the vector Ji (xi, x−i), that is

Ji (xi, x−i)− Ji (x̂i, x−i) ∈ intRr(i)
+ .

While, the strategy x̂i ∈ Xi is said to be (Pareto) dominated by the strategy xi ∈ Xi if
the vector Ji (x̂i, x−i) is (Pareto) dominated by the vector Ji (xi, x−i), that is

Ji (xi, x−i)− Ji (x̂i, x−i) ∈ Rr(i)
+ \ {0} .

Let Ji(Xi, x−i) = {Ji(xi, x−i) | xi ∈ Xi}, a vector yi is a weak Pareto point in Ji(Xi, x−i) if
it is not strongly dominated by any other vector in Ji(Xi, x−i), i.e. @zi ∈ Ji(Xi, x−i) such

that zi − yi ∈ intRr(i)
+ . A vector yi is a Pareto point in Ji(Xi, x−i) if it is not dominated

by any other vector in Ji(Xi, x−i), i.e. @zi ∈ Ji(Xi, x−i) such that zi − yi ∈ Rr(i)
+ \ {0}.

For every player i, let Wi : X−i Ã Rr(i) be the set-valued map where

Wi(x−i) is the set of all weak Pareto points in Ji(Xi, x−i) for all x−i ∈ X−i. (1)

and Pi : X−i Ã Rr(i) be the set-valued map where

Pi(x−i) is the set of all Pareto points in Ji(Xi, x−i) for all x−i ∈ X−i. (2)

Finally, for every player i and for every x−i ∈ X−i, a strategy xi is a weak Pareto solution
for the vector-valued function Ji (·, x−i) in Xi if

xi ∈ Arg wmax
xi∈Xi

Ji(xi, x−i) = {xi ∈ Xi | Ji(xi, x−i) ∈ Wi(x−i)} (3)

and a strategy xi is a Pareto solution for the vector-valued function Ji (·, x−i) in Xi if

xi ∈ Arg max
xi∈Xi

Ji(xi, x−i) = {xi ∈ Xi | Ji(xi, x−i) ∈ Pi(x−i)}. (4)

Note that

Pi(x−i) ⊆ Wi(x−i) and Arg max
xi∈Xi

Ji(xi, x−i) ⊆ Arg wmax
xi∈Xi

Ji(xi, x−i)
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Definition 2.2: (Shapley (1959)). A strategy profile x ∈ X is a weak Pareto-Nash
equilibrium if, for every player i, xi is a weak-Pareto solution for the vector-valued function
Ji (·, x−i) in Xi; while x ∈ X is a Pareto-Nash equilibrium if, for every player i, xi is a
Pareto solution for the vector-valued function Ji (·, x−i) in Xi.

Moreover, we recall that different interesting attempts have been made to generalize
some refinement concepts for Nash equilibria to the above solution concepts (see Puerto
and Fernandez (1995) or Borm, van Megen and Tijs (1999) for perfect equilibria, Yang
and Yu (2002) for essential equilibria).

2.2 Genericity

Scalar Games

In order to illustrate the genericity problem for multicriteria games, we first recall the basic
genericity arguments for the class of scalar games. Let P = {I; Ψ1, . . . , Ψn; v1, . . . , vn}
denote a finite game, where vi : Ψ → R is the payoff function of player i. In this case, we
denote with G = {I; X1, . . . , Xn; f1, . . . , fn} its mixed extension where the expected payoff
function fi : X → R is defined by: fi(x) =

∑
ψ∈Ψ

[∏
i∈I xi(ψi)

]
vi(ψ) for all x ∈ X. Let

|Ψ| = K denote the cardinality of the set of all pure strategy profiles, then every payoff
function vi : Ψ → R has finite range, in particular yi = (vi(ψ))ψ∈Ψ is a K-dimensional
vector for every player i. Then, it is possible to identify the mixed extension G of the
game P with the point y = (y1, . . . , yn) ∈ RnK . Therefore, denoting with G(X1, . . . , Xn)
the set of n-player finite games with mixed strategy sets (X1, . . . , Xn), there is a one to
one correspondence between RnK and G(X1, . . . , Xn). Then, one can define a distance,
denoted by d(G′, G′′), between the games G′ and G′′ using the classical Euclidean distance
between the corresponding vectors in RnK . Following this approach, it has been proved
(see Harsanyi (1973) or Ritzberger (1994)) that almost all games in RnK have an odd
number of Nash equilibria and that they are all regular. More precisely, the graph of the
Nash equilibrium correspondence N : G(X1, . . . , Xn) Ã X is given by the union of an
odd number of graphs of continuous functions outside a residual in G(X1, . . . , Xn). We
will show in the next section that this kind of characterization does not hold in the case
of multicriteria games.

Moreover, we recall that

Definition 2.3: (Wu and Jiang (1962)). An equilibrium in mixed strategies x∗ of G is
said to be an essential equilibrium for G if for every η > 0 there exists δ > 0 such that
for every game G′ with d(G,G′) < δ there exists an equilibrium x′ with d(x∗, x′) < η.

Multicriteria games

If Ω = {I; Ψ1, . . . , Ψn; H1, . . . , Hn} denotes a n-player finite game in pure strategies and
Γ = {I; X1, . . . , Xn; J1, . . . , Jn} denotes the mixed extension of Ω. For every player i, wi =
(Ji(ψ))ψ∈Ψ is a r(i)K-dimensional vector for every player i. Then, it is possible to identify
the mixed extension Γ of the game Ω with the point w = (w1, . . . , wn) ∈ R(

∑
i∈I r(i))K .

Therefore, denoting with MG(X1, . . . , Xn) the set of n-player finite multicriteria games
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with mixed strategy sets (X1, . . . , Xn) and payoff dimensions r(i) with i = 1, . . . , n,
there is a one to one correspondence between R(

∑
i∈I r(i))K and MG(X1, . . . , Xn). Then,

analogously to the scalar case, one can define a distance, denoted by d(Γ′, Γ′′), between the
games Γ′ and Γ′′ using the classical Euclidean distance between the corresponding vectors
in R(

∑
i∈I r(i))K . Then, we can define the weak Pareto-Nash equilibrium correspondence

WPN : MG(X1, . . . , Xn) Ã X. We show below, by an example, that the images of
the set-valued map of weak Pareto-Nash equilibria have uncountably many elements for
every point in a particular open ball in MG(X1, . . . , Xn) and that WPN is continuous
in the sense of Painlevé-Kuratowski in the center of the ball. This implies that every
weak Pareto-Nash equilibrium of this game is essential (see Yang and Yu (2002) for the
natural extension to multicriteria games of the essential equilibrium concept). We recall
that a set-valued map K : MG(X1, . . . , Xn) Ã X is continuous (in the sense of Painlevé-
Kuratowski) in w ∈MG(X1, . . . , Xn) if and only if K is lower semicontinuous and closed
in w (see for example Aubin and Frankowska (1990) or Border (1985)).

3 The Examples

Example 3.1: We consider the following multicriteria game Γ1 in which Player 1 has two
criteria, selects rows and has two strategies, Player 2 has one criterion, selects columns
and has two strategies. The payoffs are given as follows

L R
T (1,0) (1,0)
B (0,1) (0,1)

L R
T 1 0
B 0 1

Payoffs of Player 1 Payoffs of Player 2

We consider mixed strategies and we denote with p = Prob(T ) and q = Prob(L). With
an abuse of notation, we denote with Xi the set of strategies of player i defined as follows
X1 = [0, 1] and X2 = [0, 1], since there is a one to one correspondence between the set of
mixed strategies of player i and Xi.

For every q ∈ [0, 1], J1(T, q) = (1, 0), J1(B, q) = (0, 1) so the set W1(q) of weak Pareto
points in J1(X1, q) coincides with J1(X1, q). Then, the best reply correspondence of Player
1 is given by:

Arg wmax
p∈X1

J1(p, q) = X1 ∀q ∈ [0, 1]

and the best reply correspondence of Player 2 is given by

arg max
q∈X2

J2(p, q) =




{1} if p > 1/2
X2 if p = 1/2
{0} if p < 1/2

.

Denoted with V1 = {(p, 0) | p ∈ [0, 1/2[}, V2 = {(1/2, q) | q ∈ [0, 1]}, V3 = {(p, 1) | p ∈
]1/2, 1]}, the set of weak Pareto-Nash equilibria WPN = V1 ∪ V2 ∪ V3. Consider now a
perturbation of the previous game:

6



L R
T (1+ε1,1,ε1,2) (1+ε2,1 , ε2,2)
B (ε3,1,1+ε3,2) (ε4,1, 1+ε4,2)

L R
T 1+δ1 δ2

B δ3 1+δ4

Payoffs of Player 1 Payoffs of Player 2

Denoted with gδ(p) = p(2 + δ1− δ2− δ3 + δ4)− (1 + δ4− δ3), the payoff function of Player
2 takes the following form

Jδ
2 (p, q) = gδ(p)q + hδ(p).

Let δi, with i = 1, . . . , 4, be sufficiently small, there exists a unique element pδ in [0, 1]
such that gδ(pδ) = 0. Therefore the best reply correspondence of Player 2 is given by

arg max
q∈X2

Jδ
2 (p, q) =




{1} if p > pδ

X1 if p = pδ

{0} if p < pδ

;

In order to calculate the best replies of Player 1, note that, for every q ∈ [0, 1],

Jε
1(T, q) = (1 + q(ε1,1 − ε2,1) + ε2,1, q(ε1,2 − ε2,2) + ε2,2) ,

Jε
1(B, q) = (q(ε3,1 − ε4,1) + ε4,1, 1 + q(ε3,2 − ε4,2) + ε4,2)

It can be checked that, for εi,j sufficiently small, the set Wε
1(q) of weak Pareto points in

Jε
1(X1, q) coincides with Jε

1(X1, q). Therefore

Arg wmax
p∈X1

Jε
1(p, q) = X1 ∀q ∈ [0, 1]

Denoted with Vδ
1 = {(p, 0) | p ∈ [0, pδ[}, Vδ

2 = {(pδ, q) | q ∈ [0, 1]}, Vδ
3 = {(p, 1) | p ∈

]pδ, 1]}, the set of weak Pareto-Nash equilibria of the perturbed game is WPN ε,δ =
Vδ

1 ∪Vδ
2 ∪Vδ

3 . Then pδ → 1/2 as the vector δ → 0, so that WPN ε,δ →WPN in the sense
of Painlevé-Kuratowski as ε → 0 and δ → 0.

Example 3.2: We consider the following multicriteria game Γ2 in which Player 1 has two
criteria, selects rows and has three strategies, Player 2 has one criterion, selects columns
and has two strategies and where the payoffs are given as follows

L R
T (1,1) (0,0)
M (0,0) (1, 1)
B (3,-1) (2,-1)

L R
T 1 0
M 0 1
B 0 0

Payoffs of Player 1 Payoffs of Player 2

We consider mixed strategies and we denote with p1 = Prob(T ), p2 = Prob(M), 1− p1−
p2 = Prob(B) and q = Prob(L), 1− q = Prob(R). With an abuse of notation, we denote
with Xi the set of strategies of player i defined as follows

X1 = {(p1, p2) ∈ R2 | p1, p2 ≥ 0; p1 + p2 ≤ 1}, X2 = {q ∈ R | 0 ≤ q ≤ 1},
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since there is a one to one correspondence between the set of mixed strategies of player i
and Xi.

For every q ∈ [0, 1], J1(T, q) = (q, q), J1(M, q) = (1−q, 1−q) and J1(B, q) = (2+q,−1)
so for every q ∈ [0, 1] the set J1(X1, q) of the images of the vector-valued expected payoff of
Player 1 is given by the convex hull of the points (q, q), (1−q, 1−q), (2+q,−1). Denote with
γ1(q) the segment joining J1(T, q) to J1(M, q), with γ2(q) the segment joining J1(M, q) to
J1(B, q) and with γ3(q) the segment joining J1(T, q) with J1(B, q). Then one can check
that the set W1(q) of weak Pareto points in J1(X1, q) is given by the following:

W1(q) =





γ2(q) if q ∈ [0, 1/2[
γ1(q) ∪ γ2(q) ∪ γ3(q) = γ2(q) = γ3(q) if q = 1/2
γ3(q) if q ∈]1/2, 1]

.

The best reply correspondence of Player 1 is given by:

Arg wmax
(p1,p2)∈X1

J1(p1, p2, q) =




{(p1, p2) ∈ X1 | p1 = 0} if q ∈ [0, 1/2[
X1 if q = 1/2
{(p1, p2) ∈ X1 | p2 = 0} if q ∈]1/2, 1]

and the best reply correspondence of Player 2 is given by

arg max
q∈X2

J2(p1, p2, q) =




{1} if p1 > p2

X2 if p1 = p2

{0} if p1 < p2

.

Denoted with
P1 = {(0, p2, 0) | p2 ∈]0, 1]}
P2 = {(0, 0, q) | q ∈ [0, 1]}
P3 = {(p1, p2, 1/2) | p2 = p1, p1 ∈]0, 1/2]}
P4 = {(p1, 0, 1) | p1 ∈]0, 1]}

,

the set of weak Pareto-Nash equilibria WPN is

WPN = P1 ∪ P2 ∪ P3 ∪ P4.

Consider now a perturbation of the previous game:

L R
T (1+ε1,1,1+ε1,2) (ε2,1 , ε2,2)
M (ε3,1,ε3,2) (1+ε4,1, 1+ε4,2)
B (3+ε5,1,-1+ε5,2) (2+ε6,1,-1+ε6,2)

L R
T 1+δ1 δ2

M δ3 1+δ4

B δ5 δ6

Payoffs of Player 1 Payoffs of Player 2

Denoted with

gδ(p1, p2) = p1(1 + δ1 − δ2 − δ5 + δ6)− p2(1− δ3 + δ4 + δ5 − δ6)− (δ6 − δ5),

the payoff function of Player 2 takes the following form

Jδ
2 (p1, p2, q) = gδ(p1, p2)q + hδ(p1, p2)
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and the best replies of Player 2 are given by

arg max
q∈X2

Jδ
2 (p1, p2, q) =




{1} if gδ(p1, p2) > 0
X2 if gδ(p1, p2) = 0
{0} if gδ(p1, p2) < 0

;

In order to calculate the best replies of Player 1, note that, for every q ∈ [0, 1],

Jε
1(T, q) = (q(1 + ε1,1 − ε2,1) + ε2,1, q(1 + ε1,2 − ε2,2) + ε2,2) ,

Jε
1(M, q) = (q(ε3,1 − ε4,1 − 1) + 1 + ε4,1, q(ε3,2 − ε4,2 − 1) + 1 + ε4,2))
Jε

1(B, q) = (q(1 + ε5,1 − ε6,1) + 2 + ε6,1, q(ε5,2 − ε6,2)− 1 + ε6,2)

For every q ∈ [0, 1], the set Jε
1(X1, q) of the images of the vector-valued expected payoff of

Player 1 is the convex hull of the points Jε
1(M, q), Jε

1(T, q), Jε
1(B, q). Denote with γε

1(q) the
segment joining Jε

1(T, q) to Jε
1(M, q), with γε

2(q) the segment joining Jε
1(M, q) to Jε

1(B, q)
and with γε

3(q) the segment joining Jε
1(T, q) with Jε

1(B, q). Denote also with

qε =
1 + ε4,1 − ε2,1

2 + ε1,1 − ε2,1 − ε3,1 + ε4,1

and

qε =
1 + ε4,2 − ε2,2

2 + ε1,2 − ε2,2 − ε3,2 + ε4,2

.

where qε is such that the first components of Jε
1(T, qε) and Jε

1(M, qε) coincide and qε is
such that the second components of Jε

1(T, qε) and Jε
1(M, qε) coincide.

Case 1: Assume that qε < qε. For εi,j sufficiently small, if q < qε then Jε
1(M, q)

strongly dominates Jε
1(T, q), if qε ≤ q ≤ qε then Jε

1(M, q) and Jε
1(T, q) are not comparable,

finally if qε < q then Jε
1(T, q) strongly dominates Jε

1(M, q). Moreover, there exists a point
q̂ε ∈ [qε, qε] such that Jε

1(T, q), Jε
1(M, q), Jε

1(B, q) lie on the same line. A simple geometric
analysis shows that even when q ∈ [qε, q̂ε[ the set γε

1(q) \ {Jε
1(M, q)} is strongly Pareto

dominated by γε
2(q) and therefore it is easy to check that the set Wε

1(q) of weak Pareto
points in Jε

1(X1, q) is given by the following:

Wε
1(q) =





γε
2(q) if q ∈ [0, q̂ε[

γε
2(q) = γε

1(q) ∪ γε
3(q) if q ∈ q = q̂ε

γε
3(q) if q ∈]q̂ε, 1]

.

The best reply correspondence of Player 1 is given by:

Arg wmax
(p1,p2)∈X1

Jε
1(p1, p2, q) =




{(p1, p2) ∈ X1 | p1 = 0} if q ∈ [0, q̂ε[
X1 if q = q̂ε

{(p1, p2) ∈ X1 | p2 = 0} if q ∈]q̂ε, 1]
;

Let Pε,δ
3 be the subset of X1 ×X2 such that

Pε,δ
3 = {(p1, p2, q̂

ε) |gδ(p1, p2) = 0}.
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Then, the set of weak Pareto-Nash equilibria WPN ε,δ in the perturbed game is

WPN ε,δ = P1 ∪ P2 ∪ Pε,δ
3 ∪ P4.

As the vector ε → 0, then qε → 1/2, q̂ε → 1/2, qε → 1/2 so that, as ε → 0 and δ → 0,

WPN ε,δ →WPN in the sense of Painlevé-Kuratowski.
Case 2: Assume that qε < qε. For εi,j sufficiently small, if q < qε then Jε

1(M, q) strongly
dominates Jε

1(T, q), if qε ≤ q ≤ qε then Jε
1(M, q) and Jε

1(T, q) are not comparable, finally
if qε < q then Jε

1(T, q) strongly dominates Jε
1(M, q). Also in this case there exists a point

q̂ε ∈ [qε, qε] such that Jε
1(T, q), Jε

1(M, q), Jε
1(B, q) lie on the same line; however, differently

from the previous case, here when q ∈ [qε, q̂ε[ the set γε
1(q) \ {Jε

1(M, q)} is not strongly
Pareto dominated by γε

2(q) and therefore the set Wε
1(q) of weak Pareto points in Jε

1(X1, q)
is given by the following:

Wε
1(q) =





γε
2(q) if q ∈ [0, qε[

γε
1(q) ∪ γε

2(q) if q ∈ [qε, q̂ε[
γε

1(q) ∪ γε
2(q) = γε

3(q) if q ∈ q = q̂ε

γε
3(q) if q ∈]q̂ε, 1]

then, the best reply correspondence of Player 1 is given by:

Arg wmax
(p1,p2)∈X1

Jε
1(p1, p2, q) =





{(p1, p2) ∈ X1 | p1 = 0} if q ∈ [0, qε[
{(p1, p2) ∈ X1 | p1 = 0} ∪ {(p1, p2) ∈ X1 | p1 + p2 = 1} if q ∈ [qε, q̂ε[
X1 if q = q̂ε

{(p1, p2) ∈ X1 | p2 = 0} if q ∈]q̂ε, 1]

.

Let Pε,δ

5 be the subset of X1 ×X2 such that

Pε,δ

5 = {(p1, p2, q) |gδ(p1, p2) = 0, p1 + p2 = 1, q ∈ [qε, q̂ε]} .

In this case, the set of weak Pareto-Nash equilibria WPN ε,δ in the perturbed game is

WPN ε,δ = P1 ∪ P2 ∪ Pε,δ
3 ∪ P4 ∪ Pε,δ

5 .

Since as ε → 0 we get qε → 1/2, q̂ε → 1/2, qε → 1/2, then also in this case WPN ε,δ →
WPN , as ε → 0 and δ → 0.

Case 3: Assume that qε = qε = q̂ε; then the best reply of Player 1 is

Arg wmax
(p1,p2)∈X1

Jε
1(p1, p2, q) =




{(p1, p2) ∈ X1 | p1 = 0} if q ∈ [0, q̂ε[
X1 if q = q̂ε

{(p1, p2) ∈ X1 | p2 = 0} if q ∈]q̂ε, 1]
;

then the set of weak Pareto-Nash equilibria WPN ε,δ in the perturbed game is

WPN ε,δ = P1 ∪ P2 ∪ Pε,δ
3 ∪ P4.

and, also in this case, WPN ε,δ →WPN , as ε → 0 and δ → 0.
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Summarizing, in each example, we found a game Γh (h = 1, 2) and an open neigh-
borhood (in the space of multicriteria games having the same set of strategies and the
same number of criteria) of Γh such that every game in this set have uncountably many
weak Pareto-Nash equilibria. Moreover, the equilibria of each Γh are all essential, that
is “stable” with respect to every perturbation on the data of the game. It could also
be checked that all the equilibria of each Γh are trembling hand perfect (see Borm, van
Megen and Tijs (1999) for the definition of perfect in multicriteria games).

Note that the first example is much easier from the mathematical point of view but
it is much less interesting from the game theoretic point of view because in the game Γ1

the best reply correspondence of the first player coincide with his strategy set for every
strategy of the second player. Therefore, it shows that the results hold in the simplest class
of multicriteria games. The second example shows that the results coming out from the
first example do not depend on the degenerate behavior of the best reply correspondences
and may arise in nontrivial games.

4 Scalarization stable equilibria

As already mentioned in the Introduction, in this section we show that is possible to
refine the set of weak Pareto-Nash equilibria of the games in the previous section by
considering a non-classical property of stability with respect to perturbations, even if all
these equilibria are essential. Moreover, since this result holds in both the examples,
then it does not depend on the particular form of the best reply correspondences in the
first example. More precisely, we consider a property of stability which deals with the
scalarization technique which is a peculiarity of the vector-valued payoffs case.

Given a system of weights λ = (λ1, . . . , λn), where each λi is a r(i)-dimensional vector

(λ1
i , . . . , λ

r(i)
i ) in the (r(i)-1)-dimensional simplex ∆(r(i)), it is possible to consider the

scalar game
Γ(λ) = {I; X1, . . . , Xn; λ1J1, . . . , λnJn}

called trade-off game, where for every player i, the payoff function is defined as λiJi(x) =∑r(i)
k=1 λk

i J
k
i (x) for every x ∈ X. In Shapley (1959), it has been proved that:

Proposition 4.1: Let Γ be the mixed extension of a finite multicriteria game. The
strategy profile x is a weak Pareto-Nash equilibrium (resp. Pareto-Nash equilibrium) for
Γ if and only if there exists a system of weights λ ∈ ∆(r(1)) × · · · × ∆(r(n)) (resp.
λ ∈ relint (∆(r(1))× · · · ×∆(r(n)))) such that x is a Nash equilibrium (Nash (1950),
(1951)) of the trade-off game Γ(λ).

To obtain a refinement concept which captures the idea of stability shown in the
previous example, we give the following:

Definition 4.2 (De Marco and Morgan (2007)): Let Γ be a multicriteria game and x′

be a weak Pareto-Nash equilibrium of Γ. Then, x′ is said to be a scalarization-stable
equilibrium (s-stable equilibrium for short) if there exists λ′ ∈ ∏n

i=1 ∆(r(i)) such that:

i) x′ is a Nash equilibrium of Γ(λ′)

11



ii) for every ε > 0 there exists δ > 0 such that for every λ ∈ ∏n
i=1 ∆(r(i)) verifying

d(λ, λ′) < δ there exists x ∈ E(λ) such that d(x, x′) < ε.

Example 4.3: Consider the game Γ1 in the Example 3.1. Let λ ∈ [0, 1], with an abuse
of notation denote with λ1 = (λ1

1, λ
2
1) = (λ, 1−λ). Then, we consider the trade-off games

Γ1(λ) with λ ∈ [0, 1]:

Play. 1, Play. 2 L R
T λ,1 λ,0
B 1-λ,0 1-λ,1

The best reply correspondences of the Player 1 in the trade off games are given by:

arg max
p∈X1

λ1J1(p,q) =




{0} ∀q ∈ [0, 1] if λ ∈ [0, 1/2[
X1 ∀q ∈ [0, 1] if λ = 1/2
{0} ∀q ∈ [0, 1] if λ ∈]1/2, 1]

The set valued function E1(·) which associates to every λ the set of Nash equilibria of the
trade off game Γ1(λ) is given by:

E1(λ) =




{(0, 0)} if λ ∈ [0, 1/2[
V1 ∪ V2 ∪ V3 if λ = 1/2
{(1, 1)} if λ ∈]1/2, 1]

The equilibrium correspondence E1(·) is not lower semicontinuous in λ = 1/2 . Since
(0, 0) and (1, 1) are the only equilibria which belong to E1(λ) for some λ 6= 1/2 then they
are the only scalarization stable equilibria, that is, Es = {(0, 0), (1, 1)}.
Example 4.4: Consider the game Γ2 in the Example 3.2. Let λ ∈ [0, 1], with an abuse of
notation denote with λ1 = (λ1

1, λ
2
1) = (λ, 1−λ). Then, we consider the following trade-off

games Γ2(λ) with λ ∈ [0, 1]:

Play. 1, Play. 2 L R
T 1,1 0,0
M 0,0 1,1
B 4λ-1,0 3λ-1,0

For every λ ∈ [0, 1] and for every q ∈ [0, 1], let J1(T, q), J1((M, q), J1((B, q), λ) be the
expected payoff of Player 1 when he plays respectively T, M or B.

Let m(q) = max{J1(T, q), J1(M, q)} for all q ∈ [0, 1] then

m(q) =

{
1− q if q ∈ [0, 1/2]
q if q ∈]1/2, 1]

then, being λ1J1(B, q) = qλ + 3λ− 1, we get




i) @q ∈ [0, 1] such that λ1J1(B, q) ≥ m(q) ifλ ∈ [0, 3/7[
ii) λ1J1(B, q) ≥ m(q) ∀q ∈ [

2−3λ
1+λ

, 3λ−1
1−λ

]
ifλ ∈ [3/7, 1/2]

iii) λ1J1(B, q) ≥ m(q) ∀q ∈ [
2−3λ
1+λ

, 1
]

ifλ ∈]1/2, 2/3]

iv) λ1J1(B, q) ≥ m(q) ∀q ∈ [0, 1] ifλ ∈]2/3, 1]
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Denote with α(λ) = 2−3λ
1+λ

and β(λ) = 3λ−1
1−λ

. Then, as α(λ), β(λ) ∈ [0, 1], λ1J1(B, q)
intersects J1(M, q) for q = α(λ), and λ1J1(B, q) intersects J1(T, q) for q = β(λ), that is

λ1J1(B,α(λ)) = J1(M, α(λ)) λ1J1(B, β(λ)) = J1(T, β(λ))

Moreover, since α(·) and β(·) are increasing in the interval [0, 1] and α(3/7) = β(3/7) =
1/2, β(1/2) = 1 and α(2/3) = 1, the best reply of the Player 1 in the trade off game is:

arg max
(p1,p2)∈X1

λ1J1(p1, p2, q) =








{(0, 1)} if q ∈ [0, 1/2[
{(p1, p2) ∈ X1 | p1 + p2 = 1} if q = 1/2
{(1, 0)} if q ∈]1/2, 1]

if λ ∈ [0, 3/7[




{(0, 1)} if q ∈ [0, 1/2[
X1 if q = 1/2
{(1, 0)} if q ∈]1/2, 1]

if λ = 3/7





{(0, 1)} if q ∈ [
0, 2−3λ

1+λ

[
{(p1, p2) ∈ X1 | p1 = 0} if q = 2−3λ

1+λ

{(0, 0)} if q ∈ ]
2−3λ
1+λ

, 3λ−1
1−λ

[
{(p1, p2) ∈ X1 | p2 = 0} if q = 3λ−1

1−λ

{(1, 0)} if q ∈ ]
3λ−1
1−λ

, 1
]

if λ ∈]3/7, 1/2]




{(0, 1)} if q ∈ [

0, 2−3λ
1+λ

[
{(p1, p2) ∈ X1 | p1 = 0} if q = 2−3λ

1+λ

{(0, 0)} if q ∈ ]
2−3λ
1+λ

1
] if λ ∈]1/2, 2/3]

{(0, 0)} if q ∈ [0, 1] if λ ∈]2/3, 1]

The set valued function E2(·) which associates to every λ the set of Nash equilibria of the
trade off game Γ2(λ) is given by:

E2(λ) =





{(0, 1, 0), (1/2, 1/2, 1/2), (1, 0, 1)} if λ ∈ [0, 3/7[

{(0, 1, 0), (1, 0, 1)} ∪ {(p1, p2, 1/2) |p2 = p1, p1 ∈]0, 1/2]} if λ = 3/7

{(0, 1, 0), (1, 0, 1)} ∪ {
(0, 0, q) | q ∈ [

2−3λ
1+λ

, 3λ−1
1−λ

]}
if λ ∈]3/7, 1/2[

{(0, 1, 0} ∪ {
(0, 0, q) | q ∈ [

2−3λ
1+λ

, 1
]} ∪ {(p1, 0, 1) | p1 ∈ ]0, 1]} if λ = 1/2

{(0, 1, 0} ∪ {
(0, 0, q) | q ∈ [

2−3λ
1+λ

, 1
]}

if λ ∈]1/2, 2/3[

{(0, 0, q) | q ∈ [0, 1]} ∪ {(0, p2, 0) | p2 ∈ ]0, 1]} if λ = 2/3

{(0, 0, q) | q ∈ [0, 1]} if λ ∈]2/3, 1]
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It follows that the equilibrium correspondence E2(·) is not lower semicontinuous in λ =
3/7, λ = 1/2 and λ = 2/3.

Since the set of equilibria {(p1, p2, 1/2) |p2 = p1, p1 ∈]0, 1/2]} belongs only to E2(3/7),
{(p1, 0, 0) | p1 ∈ ]0, 1]} belongs only to E2(1/2) and {(0, p2, 0) | p2 ∈ ]0, 1]} belongs only to
E2(2/3), then they are not scalarization stable equilibria and the set of scalarization stable
equilibria is a proper subset of WPN , i.e..

Es = P2 ∪ {(0, 1, 0), (1/2, 1/2, 1/2), (1, 0, 1)} .

Remark 4.5: In De Marco and Morgan (2007) it has been shown that if x is an essential
equilibrium of the trade-off game Γ(λ) (derived from the multicriteria game Γ) for some
λ ∈ ∆(r(1))×· · ·×∆(r(n)) then it is a scalarization stable equilibrium for the multicriteria
game Γ. On the other hand, the previous example shows that there exists (at least)
an essential (weak Pareto-Nash) equilibrium for Γ which is not a scalarization stable
equilibrium for Γ. Then, it follows that essentiality in a multicriteria game Γ differs from
essentiality in the trade off games Γ(λ) derived from Γ, since there exists (at least) an
essential (weak Pareto-Nash) equilibrium for Γ which is not an essential equilibrium of
the trade-off game Γ(λ) for every λ ∈ ∆(r(1))× · · · ×∆(r(n)).
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