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Abstract 
This paper studies the impact of intention-based reciprocity preferences on the free-riding problem arising in partnerships. 
Our results suggest a tendency of efficient partnerships to consist of members whose sensitivity to reciprocity is – individually 
or jointly – sufficiently high. Sufficient conditions for the implementation of the efficient strategy profile require a reciprocity 
based sharing rule such that each partner gets a fraction of the output that is a percentage of his own reciprocity with respect 
to the overall reciprocity in the team. Finally, we introduce the concept of psychological strong Nash equilibrium and show 
that it allows for the unique and collusion-proof implementation of the efficient strategy profile. 
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1 Introduction

It is widely believed and suggested by experimental evidence that social preferences exhibit
an important intention-based component.1 In this paper, we examine the impact of intention-
based reciprocity preferences on the partnership framework. We study partnerships where
partners jointly produce according to a non-stochastic technology, and share the resulting
output among themselves. Partnerships appear one of the most natural environment for
reciprocity to play a central role. In the partnership game, where the action sets represent
comparable choices (e¤orts), we use the level of e¤orts as a measure of kindness. In this case,
the reciprocity term in the psychological utility function does not depend on the material
payo¤s, capturing the idea that a partner may react badly to other partners free-riding
regardless of everyone�s rewards. It is generally accepted that partnerships are ine¢ cient if
the partners�actions are not veri�able. The argument is that some partner will shirk because
he must share the marginal bene�t of his e¤ort, but he alone bears its cost. Holmstrom (1982)
formalizes this argument showing that in certain di¤erentiable, monotonic partnerships, no
sharing rule can elicit an e¢ cient set of actions.
We present necessary and su¢ cient conditions to implement the symmetric e¢ cient

strategy pro�le as a psychological Nash equilibrium.2 Our �rst result, gives useful insights
for the optimal design of the team by describing the psychological attitudes of the team
members required to sustain a given strategy pro�le �for any given sharing rule. The second
result, instead, takes a psychological characteristic of the partners (namely the minimal level
of individual reciprocity) as given and �nds a condition on the overall level of reciprocity and
a sharing rule which implement the symmetric strategy pro�le as a psychological equilibrium.
This reciprocity based sharing rule is such that each partner gets a fraction of the output
that is a percentage of his own reciprocity with respect to the overall reciprocity in the
team. However, even if the e¢ cient strategy pro�le is sustained, there could be other
(ine¢ cient) strategy pro�les which are sustained as a Nash equilibrium or as a psychological
Nash equilibrium for the same set of sharing rules. Moreover, the conditions used to prove
the previous results are not su¢ cient to sustain e¢ ciency if some partners can collude. We
introduce the concept of psychological strong Nash equilibrium and show that it solves both
problems allowing for the unique and collusion-proof implementation of the e¢ cient strategy
pro�le.
Our paper builds on and extend three di¤erent literatures. First, after the seminal

contribution by Holmstrom (1982) successive papers on partnership have shown that
e¢ ciency or near e¢ ciency can be obtained in partnerships with a random technology
(Matsushima 1989, Legros and Matsushima 1991, and Williams and Radner 1995), with
risk-averse partners and random-sharing rules (Rasmusen 1987), with repeated play (Radner
1986), or �nally through the use of mixed strategies, provided the partners have unlimited
liability (Legros and Matthews 1993).
This is however, the �rst paper in which equilibrium-implementation results for e¢ cient

action pro�les are obtained in one-shot, non-stochastic partnerships with symmetric

1See for instance Charness and Rabin (2002); Falk, Fehr and Fischbacher (2003a) and (2003b); Falk and
Fischbacher (2006).

2Symmetric e¢ cient strategy pro�les arise naturally in partnerships with symmetric production functions.
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production functions3.
Second, the experimental evidence in Fehr, Gächter, and Kirchsteiger (1997) suggests

that reciprocal motives contribute to the enforcement of contracts. In this vein, Dufwenberg
and Kirchsteiger (2000), Englmaier and Leider (2008) and Netzer and Schmutzler (2010)
all show that e¢ ciency is generally increased when a materialistic principal interacts with a
reciprocal agent4. We show that the e¢ ciency-enhancing role of reciprocity, extends also to
partnerships.
Finally, we contribute to the theoretical literature on psychological games (Geanakoplos,

Pearce and Stacchetti 1989, Rabin 1993, Dufwenberg and Kirchsteiger 2004, Falk and
Fischbacher 2006, Battigalli and Dufwenberg 2009) by extending the de�nition of strong Nash
equilibrium that has been introduced by Aumann (1959) to environments with reciprocal
players.
The paper is organized as follows. Section 2 introduces the general framework. In section

3 we provide su¢ cient and necessary conditions to implement the e¢ cient strategy pro�le
as a psychological Nash equilibrium. Section 4 deals with multiplicity, collusion and unique
implementation of the e¢ cient strategy pro�le. Section 5 concludes. All proofs are relegated
to the Appendix.

2 The model

We �rst introduce our general set-up.

Material Payo¤s and E¢ ciency. A partnership consists of a set of partners N = f1; :::; ng
with n � 2; a set of e¤ort levels Ai for each partner, a disutility function vi : Ai ! R for
each partner and a symmetric production function f : A ! R; where A = �i2NAi. E¤ort
pro�le a results in output y = f(a): Moreover, we assume that Ai = f1; :::;mg for any i5. A
sharing rule is a map s : f(A)! Rn which determines each partner�s share of output si(y);
and satis�es budget balance for all possible outputs,X

si(y) = y for all y 2 f(A):

The material payo¤of partner i, is the function ui : A! R de�ned by ui(a) = si(f(a))�vi(ai)
for all a 2 A:6 E¢ cient actions are those which maximize the following welfare criterion,

W (a) � f(a)�
X

vi(ai):

An e¢ cient e¤ort pro�le always exists in our setting and for the sake of simplicity is assumed
to be unique7. We denote it as a�; and the corresponding output as y� = f(a�): Finally, a� is
said to be sustainable if there exists a sharing rule s such that a� is a Nash equilibrium of the

3The assumpton of symmetric production functions makes the problem interesting implying that neither
the identity of a shirker nor the one of a non-shirker is revealed after a deviation.

4Even if, as shown by Netzer and Schmutzler (2010), �rms may not want to employ reciprocal workers.
5Indeed, with the only exception of Proposition 3, this assumption is not necessary to our analysis; in

fact, what we really need is that \i2NAi 6= ;.
6To simplify notation we do not include in the utility function the dependence on the sharing rule s.
7When the psychological utility components are taken into account, the notion of overall utility e¢ ciency
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normal form game � = fN ; (Ai)i2N ; (ui)i2Ng. Notice that since the e¤ort is not observable,
compensation cannot be a direct function of ai: The assumption of a symmetric production
function implies that neither the identity of a shirker nor the one of a non-shirker is revealed
after a deviation. As shown by Legros and Mathews (1993), partnerships with �nite action
sets and symmetric production functions cannot sustain e¢ ciency in general.8

Next, we introduce some psychological features of our model as a �rst step in the
construction of the partners psychological utility functions.

Beliefs and Reciprocity. Following the literature on intention-based reciprocity
preferences, we denote by bij 2 Aj partner i0s beliefs about partner j0s strategy, and by
ciji 2 Ai partner i0s beliefs about partner j0s beliefs about partner i0s strategy. We denote
by �ij(ai; bij) the kindness of i to j and by �iji(bij; ciji) partner i0s belief about how kind j
is to him. In the de�nition of �ij and �iji we will deviate from the previous literature that
uses the concept of player�s equitable payo¤ (see for instance Rabin (1993) or Dufwenberg
and Kirchsteiger (2004)) and we will instead use the partners�level of e¤ort as a more direct
measure of each agent contribution to the output of the partnership. Then, the kindness
terms are de�ned to be

�ij(ai; bij) = ai � bij
and

�iji(bij; ciji) = bij � ciji;
so that positive kindness from i to j arises if partner i contributes to the output with an e¤ort
level larger than the one he expects from partner j: Moreover, partner i will believe that j is
kind to him if the e¤ort he expects from partner j is larger than the one he believes partner
j expects from partner i. In the general model of reciprocity (Rabin 1993, Dufwenberg
and Kirchsteiger 2004), the strategy sets may represent choices of di¤erent nature so that
the natural way to measure kindness is to look at the players� payo¤s. Instead, in the
partnership game, where the action sets represent comparable choices (e¤orts), we adopt the
simpler approach to use the level of e¤orts as a more direct �and easier to test �measure
of kindness. In this case, the reciprocity term in the psychological utility function does not
depend on the material payo¤s, capturing the idea that a partner may react badly to other
partners free-riding regardless of everyone�s rewards.9

Psychological Utility. To specify the psychological utility function for each player, we now
introduce for every pair of players (i; j) the reciprocity term of i with respect to j. This

within the set of strategy pro�les is not unequivocally de�ned since the psychological utility depends also
on beliefs. For this reason the previous literature has focused on material e¢ ciency. While we also follow
this approach, Remark 1 below points out that for the functional form of the psychological payo¤s used in
our model, a symmetric strategy pro�le is e¢ cient regardless of the psychological terms whenever outcomes
are achieved by equilibrium beliefs. The previous argument implies that e¢ ciency of a symmetric strategy
pro�le is an unambiguous concept in our framework.

8Legros and Mathews (1993) also show that if partners can commit to pay �nes, approximate e¢ ciency
is sustainable. None of our results relies on the assumption that partners can adopt a sharing rule which
imposes a liability.

9Our de�nition of kindness, besides being better suited to our partnership application, has also the
advantage to be completely unrelated to Pareto e¢ ciency.
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function assigns to each combination of kindness �ij and belief about reciprocated kindness
�iji the disutility caused to player i by the mismatch between these two intentions. Let

hij(�ij; �iji) = �(!i�ij � �iji)2;

be the functional form of such reciprocity terms. Those single-peaked preferences depend
only on the distance between the kindness of i to j; and partner i0s belief about how kind j
is to him10. Then, the overall (psychological) utility function of player i is de�ned by

Ui(ai; a�i; (bi;j)j 6=i; (ci;j;i)j 6=i) = si(f(ai; a�i))� vi(ai) + �i

"X
j 6=i

hij(�ij(ai; bij); �iji(bij; ciji))

#
;

(1)
and is made up by the sum of the material payo¤ si(f(ai; a�i)) � vi(ai) and the reciprocity
term �i

hP
j 6=i hij(�ij(ai; bij); �iji(bij; ciji)

i
.

Parameters �i and !i summarize the psychological characteristics of each player i: �i > 0
measures the relative importance (the weight) of the psychological term with respect to
the material payo¤; instead, the parameter !i relates the relative importance of player i�s
intentions � towards the others � to his beliefs about other players� intentions. Each !i
is assumed to be positive, meaning that, for a given �iji, the optimal kindness of player i
(taking into account only hij) is �ij = �iji=!i, which reciprocates kind behavior (�iji > 0)
with kind behavior (�ij > 0) and unkind behavior (�iji < 0) with unkind behavior (�ij < 0).
Moreover, the magnitude of !i a¤ects the optimal kindness which increases in absolute value
as !i decreases to zero and, when !i = 1, perfectly reciprocates the believed kindness, i.e.
�ij = �iji.
Finally, key for our results is how those parameters a¤ect the psychological disutilities

caused by deviating from the optimal kindness for each pair of players (i; j). These disutilities
are related to the products �i!

2
i as follows: �x a pair of players (i; j) and the size " of a

deviation from the optimal kindness �ij = �iji=!i, then the player i�s disutility with respect
to j is given by

��i(!i(�iji=!i + ")� �iji)2 = ��i!2i "2

and it decreases to zero as �i!
2
i decreases to zero. Therefore, �i!

2
i measures the �sensitivity�

of partner i�s reciprocity. In other words, the greater is �i!
2
i the more sensible to the

psychological reciprocity is partner i: To keep the analysis as simple as possible we normalize
the parameters �i to one for every player i. Hence, the psychological utility function that
will be considered in this paper is

Ui(ai; a�i; (bi;j)j 6=i; (ci;j;i)j 6=i) = si(f(ai; a�i))� vi(ai) +
"X
j 6=i

hij(�ij(ai; bij); �iji(bij; ciji))

#
:

(2)
Assuming that �i = 1 does not alter qualitatively the results (see the concluding remarks)
and allows us to focus on the parameters !i which capture the relative sensibility of each
10In Dufwenberg and Kirchsteiger (2004), hij(�ij ; �iji) = �ij�iji; while Rabin (1993) chooses

hij(�ij ; �iji) = �iji(1 + �ij): In these functional forms the psychological term would disappear when �iji
is equal to zero � indipendently from �ij : Since in our model �iji is equal to zero in the focal case where
partners choose to exert the same level of e¤ort, multiplicative (in �iji) functional forms are not well suited.
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player with respect to others�kindness. Therefore, from now on, we will simply refer to !2i
as the measure of partner�s i reciprocity.

Psychological Equilibria. We conclude this section by de�ning our equilibrium concepts.
We will mainly use the following de�nition of psychological Nash equilibrium11:

De�nition 1 (Geanakoplos, Pearce and Stacchetti 1989). A strategy pro�le (a1; : : : ; an) 2 A
is a psychological Nash equilibrium if for all i 2 N
i) ai 2 argmaxai2Ai Ui(ai; a�i; (bi;j)j 6=i; (ci;j;i)j 6=i);
ii) bij = aj and ciji = ai for all j 6= i.

Moreover, to allow for the unique and collusion-proof implementation of the e¢ cient
strategy pro�le, we will also be interested in the concept of strong Nash equilibrium, that
has been introduced by Aumann (1959) for environments in which players can agree privately
upon a joint deviation. In that case, any meaningful agreement by the whole set of players
must be stable against deviations by all possible coalitions of players. Then, an equilibrium
is said to be a strong Nash equilibrium if no subset of players, taking the actions of the others
as �xed, can jointly deviate in a way that bene�ts all of them. More precisely:

De�nition 2 (Aumann 1959). A strategy pro�le (a1; : : : ; an) is a strong Nash equilibrium of
the material game � if for all subset of players J � N and for all aJ 2

Q
j2J Aj there exists

a player i 2 J such that ui(aJ ; a�J) � ui(aJ ; a�J), with a�J = (aj)j =2J .

Building upon the work of Aumann we introduce the de�nition of psychological strong
Nash equilibrium. The following de�nition is based on the idea that �since players commit
ex-ante to a deviation �the deviants�beliefs should be consistent with the deviation itself.

De�nition 3. A strategy pro�le (a1; : : : ; an) is a psychological strong Nash equilibrium if for
all subset of players J � N and for all aJ 2

Q
j2J Aj there exists a player i 2 J such that

i) Ui(ai; a�i; (bi;j)j 6=i; (ci;j;i)j 6=i) � Ui(aJ ; a�J ; (bij)j 6=i); (ciji)j 6=i)), with a�J = (aj)j =2J
ii) bij = aj and ciji = ai for all j 6= i,
iii) bij = aj and ciji = ai for all j 2 N n J ,
iv) bij = aj and ciji = ai for all j 2 J n fig.

Note that when we consider only deviations by singletons, this de�nition boils down to the
de�nition of psychological Nash equilibrium. Moreover, it generalizes the Aumann�s de�nition
of strong Nash equilibrium which can be easily obtained removing the psychological term from
the payo¤s. In the next two sections we will introduce our results on implementation and
unique implementation, respectively.

Remark 1: Turning back to the concept of e¢ ciency, we now clarify why in our framework,
when outcomes are achieved by equilibrium beliefs, this concept does not depend on
psychological terms. The reason being that for the functional form of the psychological
payo¤s used in our model a symmetric strategy pro�le a� remains e¢ cient even when, in the
de�nition of the welfare criterionW (�), material payo¤s are replaced by psychological payo¤s
with correct beliefs. Indeed, when beliefs are correct (that is, ai = ciji and aj = bi;j for every

11In the rest of the paper a will usually denote an equilibrium and a� a symmetric equilibrium.
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pair of players i; j 2 N), the psychological terms disappear for symmetric strategy pro�les
while they are negative for all other (asymmetric) strategy pro�les. Moreover, the de�nitions
of equilibrium above imply that beliefs are always correct when outcomes are achieved
in equilibrium. Hence, material e¢ ciency of symmetric pro�les coincides to psychological
e¢ ciency (achieved by equilibrium beliefs) and therefore provides an unambiguous e¢ ciency
notion in our framework.

3 Implementation

In this section we provide necessary and su¢ cient conditions for a symmetric strategy pro�le
(in particular the e¢ cient symmetric strategy pro�le) to be implemented as a psychological
Nash equilibrium of the partnership game with psychological utility functions de�ned as in
(2).
We begin the section with an example which illustrates how reciprocity sustains e¢ ciency.

Example 1: Consider a 2-player partnership model where each player has only two levels
of e¤ort Ai = f1; 2g for i = 1; 2, the production function is de�ned by f(2; 2) = 1=2,
f(1; 2) = f(2; 1) = 1=3 and f(1; 1) = 0, and the disutility functions are de�ned by
vi(2) = 1=10 and vi(1) = 0 for i = 1; 2. Denote with (s1(1=2); s2(1=2)) = (�1=2; �2=2),
(s1(1=3); s2(1=3)) = (�1=3; �2=3) with �1 + �2 = 1 and �1 + �2 = 1 and (s1(0); s2(0)) =
(
;�
). Then the partnership game is

a2 = 2 a2 = 1

a1 = 2
�1
2
� 1

10
; �2
2
� 1

10
�1
3
� 1

10
; �2
3

a1 = 1
�1
3
; �2
3
� 1

10

;�
:

The welfare function is given by W (2; 2) = 9=30, W (1; 2) = W (2; 1) = 7=30 and
W (0; 0) = 0. Now we show that the e¢ cient strategy pro�le (a�1; a

�
2) = (2; 2) cannot be

sustained by any sharing rule, i.e., there are no �1; �2; �1; �2 satisfying �1 + �2 = 1 and
�1 + �2 = 1 such that (a�1; a

�
2) is a Nash equilibrium of the game above. In fact suppose

(a�1; a
�
2) is a Nash equilibrium then

�1
2
� 1

10
� �1
3

and
�2
2
� 1

10
� �2
3
: (3)

Taking the sum of the two inequalities we get 1=2� 1=5 � 1=3 which is impossible.
However, the strategy pro�le (a�1; a

�
2) is a psychological Nash equilibrium for suitable

parameters !1 and !2. For the sake of simplicity assume that the two players have identical
psychological payo¤s, i.e. !1 = !2 = !, then, given the beliefs b�ij = a�j and c

�
iji = a�i , the

payo¤s in the psychological game are

Ui(ai; a
�
�i; b

�
ij; c

�
iji) = si(f(ai; a

�
�i))� vi(ai)� (!(ai � 2)� (2� 2))2 8ai 2 Ai:

Then, being

Ui(2; a
�
�i; b

�
ij; c

�
iji) =

�i
2
� 1

10
and Ui(1; a

�
�i; b

�
ij; c

�
iji) =

�i
3
� !2;

the e¢ cient e¤ort pro�le (a�1; a
�
2) = (2; 2) is sustained if and only if !

2 � 1
60
.
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Now we present some su¢ cient conditions to implement any symmetric strategy pro�le
(in particular the symmetric e¢ cient strategy pro�le) as a psychological Nash equilibrium.
The �rst result concern the case of a given sharing rule while in the second result the sharing
rule is endogenously given by the psychological characteristics of the team members. These
results give useful insights for the design of the team and for the design of the sharing rule,
respectively. Speci�cally, the �rst proposition describes the psychological attitudes of the
team members required to sustain a given strategy pro�le for any given sharing rule. The
second result, on the other hand, takes the minimal level of individual reciprocity as given
and �nds a condition on the overall level of reciprocity and a sharing rule which implement
the symmetric strategy pro�le as a psychological equilibrium.
For every sharing rule s we de�ne the maximum utility gain from partner�s i unilateral

deviation by
M s
i (a

�) = max
ai2Ai

�
ui(ai; a

�
�i)� ui(a�i ; a��i)

�
:

Then, the following result follows.

Proposition 1. Let a� be a symmetric strategy pro�le. If !2i � M s
i (a

�)=(n � 1) for every
player i then a� is a psychological Nash equilibrium of the game � with reciprocity parameters
(!i)i2N .

Intuitively, if the parameter measuring how reciprocator is each partner is su¢ ciently high,
then shirking �providing an e¤ort level di¤erent from the one of the other team members �
will cause a negative psychological e¤ect for each of the team members cheated, so that the
aggregated e¤ect will more than compensate the bene�t from deviation measured byM s

i (a
�):

To introduce the next su¢ cient condition for the sustainability of the symmetric strategy
pro�le we introduce the following notation. First, the maximum production gain from
unilateral deviation which �for a symmetric production function �is the same for all players
and is equal to

F (a�) = max
ai2Ai

�
f(ai; a

�
�i)� f(a�i ; a��i)

�
8i 2 N: (4)

Second, let
�(a�) = max

i2N; ai2Ai
[vi(a

�
i )� vi(ai)] ;

provides an upper bound to the incremental cost from unilateral deviation for the team�s
partners. Finally, we call reciprocity based sharing rule the one de�ned by

sj(y) =
!2jP
i2N !

2
i

y 8j 2 N; 8y 2 f(A); (5)

where each partner j gets a fraction of the output y that is a percentage of his own reciprocity
with respect to the overall reciprocity in the team.

Proposition 2. Let a� be a symmetric strategy pro�le and !2 = minf!21; : : : ; !2ng. IfX
i2N

!2i

�
1� �(a�)

!2(n� 1)

�
� F (a�)

n� 1 ; (6)

then a� is a psychological equilibrium for the reciprocity based sharing rule.

8



The previous proposition gives a su¢ cient condition on the overall reciprocity of the
team (6) for the sustainability of a symmetric strategy pro�le with the reciprocity based
sharing rule. Note that the left-hand side of (6) is always decreasing in �(a�), while it is
increasing in the overall reciprocity i¤ the ratio �(a�)=!2 is su¢ ciently small. This means
that more incremental costs �(a�) are needed to compensate lower maximum production
gain from unilateral deviation, �xed the overall reciprocity. Moreover, if the ratio �(a�)=!2

is su¢ ciently small (free riding does not reduce costs too much or the minimal level of
reciprocity is high enough), then more overall reciprocity is required to compensate a larger
maximum production gain from unilateral deviation. While, if the ratio �(a�)=!2 is large,
the percentage of the output to the player with the minimal level of reciprocity must increase
to compensate higher maximum production gain from unilateral deviation, implying that the
overall reciprocity has to decrease (remaining above n!2). In the next example we show how
those sharing rules can be constructed in a simple game.

Example 2: Consider the game in Example 1 and the e¢ cient strategy pro�le (a�1; a
�
2) =

(2; 2). One can check that F (a�) = �1=6 and �(a�) = 1=10. Fix for example !2 = 1=20,
then condition (6) becomesX

i2N
!2i

�
1� 1=10

1=20

�
� �1=6 =)

X
i2N

!2i � 1=6:

Therefore, if !2j = !
2 = 1=20 then

!2i +
1

20
� 1

6
=) !2i �

7

60
:

Fix !2i = 7=60, then the following sharing rule satis�es (5) and therefore sustains the
e¢ cient strategy pro�le a�:12

�i
2
=

!2i
!2i + !

2
j

f(2; 2) =
7

20
;

�j
2
=

!2j
!2i + !

2
j

f(2; 2) =
3

20

and
�i
3
=

!2i
!2i + !

2
j

f(2; 1) =
7

30
;

�j
2
=

!2j
!2i + !

2
j

f(2; 1) =
3

30
:

Finally, if we consider !1 = !2 = ! condition (6) becomes

2!2
�
1� 1=10

!2

�
� �1=6;

which gives back the su¢ cient condition !2 � 1=60 for the e¢ cient strategy pro�le to be
implemented by the equal sharing rule.
12This is easily checked since

7

20
� 1

10
=
�i
2
� vi(a�i ) �

�i
3
� !2i =

7

30
� 7

60

3

20
� 1

10
=
�i
2
� vj(a�j ) �

�j
3
� !2j =

3

30
� 1

20
:
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We now introduce some more notation. First, recall that jAij = m for all i 2 N , then if
a� is a symmetric strategy pro�leX
ai2Ai

X
j 6=i

(ai�a�j)2 =
X
ai2Ai

(n�1)(ai�a�i )2 = m(n�1)
X
ai2Ai

(ai � a�i )2
m

= m(n�1)V (a�) 8i 2 N

(7)
where V (a�) is a second-order moment with respect to a�: We also denote withX

ai2Ai

[vi(a
�
i )� vi(ai)] = m

X
ai2Ai

[vi(a
�
i )� vi(ai)]
m

= m�vi(a
�);

the mean incremental cost from unilateral deviation for partner i and withX
ai2Ai

�
f(ai; a

�
�i)� f(a�i ; a��i)

�
= mFM(a

�); (8)

the mean production gain from unilateral deviation. Then, the next proposition gives a
necessary condition for a symmetric strategy pro�le to be implemented by a psychological
equilibrium.

Proposition 3. If the symmetric strategy pro�le a� is a psychological Nash equilibrium for
some sharing rule then X

i2N
!2i �

FM(a
�) +

P
i2N �vi(a

�)

(n� 1)V (a�) : (9)

Note that the condition in the previous proposition does not depend on a speci�c sharing
rule. The next example shows that the necessary condition (9) is satis�ed in the simple game
of Example 1.

Example 3: Consider the game in Example 1 and the e¢ cient strategy pro�le (a�1; a
�
2) =

(2; 2). One can check that FM(a�) =
1=3�1=2

2
= �1=12, �vi(a�) = 1=10

2
and V (a�) = 1=2.

Condition (9) then becomes X
i2N

!2i �
�1=12 + 1=10

1=2
=
1

30
:

Therefore, if !1 = !2 = !, the previous necessary condition gives again !2 � 1=60.

4 Collusion and Unique Implementation

In the previous section, su¢ cient and necessary conditions were given in order to implement
the e¢ cient symmetric strategy pro�le as a psychological Nash equilibrium. However, even
if the e¢ cient strategy pro�le is sustained, there could be other (ine¢ cient) strategy pro�les
which are sustained as Nash equilibrium or as a psychological Nash equilibrium for the
same set of sharing rules.13 Moreover, as shown in Example 6, the conditions used to prove

13Multiplicity of equilibria obviously implies players�coordination problems on the e¢ cient strategy pro�le.

10



Propositions 1 and 2 are not su¢ cient to sustain e¢ ciency if some partners can collude. In
this section, we show that the concept of psychological strong Nash equilibrium solves both
problems allowing for the unique and collusion-proof implementation of the e¢ cient strategy
pro�le. More precisely, we show that there exists a set of psychological parameters !i; for
i = 1; : : : ; n and corresponding sharing rules, such that the e¢ cient strategy pro�le is the
unique psychological strong Nash equilibrium of the game.
We begin the section showing, by way of an example, that reciprocity may destroy

asymmetric equilibria.

Example 4: To show that reciprocity destroys asymmetric equilibria, consider again the
game in Example 1 and �x, for instance, !2 = 1

30
. It can be checked that the sharing rules

�1; �2; �1; �2 sustain the e¢ cient outcome (a
�
1; a

�
2) = (2; 2) if and only if they satisfy the

following conditions

2

30
� �1
2
� �1
3
� 3

30
and

�2
2
� �2
3
=
5

30
�
�
�1
2
� �1
3

�
: (10)

Moreover, (10) implies that

�1
2
� 1

10
� �1
3

and
�2
2
� 1

10
� �2
3
;

with at least one strict inequality. Therefore, for every �1; �2; �1; �2 satisfying the sharing
rules implied by (10), it results that �without reciprocity �at least one of the two strategy
pro�les (1; 2) and (2; 1) is a Nash equilibrium.14

Now we show that the psychological term destroys those asymmetric equilibria. Consider for
example the asymmetric strategy pro�le (1; 2), (the same arguments apply to the asymmetric
strategy pro�le (2; 1)), and let bij = aj and ciji = ai be the beliefs consistent with (a1; a2).
Then,

U1(a1; a2; b12; c121) = s1(f(a1; 2))� v1(a1)� (!(a1 � 2)� (2� 1))2 8a1 2 A1
and

U2(a2; a1; b21; c212) = s2(f(a2; 1))� v2(a2)� (!(a2 � 1)� (1� 2))2 8a2 2 A2:

Consider for instance player 1, the payo¤s for a1 = 1 and a1 = 2 are, respectively

U1(1; a2; b12; c121) =
�1
3
� (! + 1)2 and U1(2; a2; b12; c121) =

�1
2
� 1

10
� 1::

Then,

U1(2; a2; b12; c121) � U1(1; a2; b12; c121) ()
�1
2
� �1
3
� 11

10
� (! + 1)2:

For !2 = 1
30
and for every sharing rule �1; �2; �1; �2 satisfying (10), it results that

�1
2
� �1
3
� 2

30
>
11

10
� (! + 1)2:

Hence the strategy pro�le (1; 2) is not a psychological equilibrium.

14Suppose, for instance, that (1; 2) is not a Nash equilibrium. Then, it follows that �2
3 �

1
10 < 
 and that

�1
3 �

1
10 � �
 (otherwise we would get 1=3�1=5 < 0 which is impossible) so that (2; 1) is a Nash equilibrium.

Analogously, it can be shown that if (2; 1) is not a Nash equilibrium then (1; 2) has to be a Nash equilibrium.
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The previous example seems to show that the psychological Nash equilibrium concept
is su¢ cient to destroy asymmetric equilibria. However, this is true if the game has only
two players. When the game has three or more players, unilateral deviations are not always
enough to destroy asymmetric equilibria while, joint deviation of n � 1 players based on
psychological preferences can do the job. Below, we formalize this idea by providing su¢ cient
conditions for the non-existence of asymmetric psychological strong Nash equilibria. In
Proposition 4, the sharing rule is �xed and conditions are imposed on the players�reciprocity
parameters. In Proposition 5, a condition is imposed on the overall level of reciprocity, given
a minimal level of individual reciprocity (which can be considered as an exogenous parameter)
and the sharing rule is given endogenously.
Denote with Aa the subset of all asymmetric strategy pro�les of A and As the subset of

all symmetric strategy pro�les of A. Given a sharing rule s, denote with

�i(s) = max
a2Aa

si(f(a)); �i(s) = min
a�2As

si(f(a
�)) and � = max

a�2A
�(a�):

Then, the �rst su¢ cient condition is the following:

Proposition 4. Given a sharing rule s, if

(!i + 1)
2 > �i(s)� �i(s) + �+ (n� 1)(m� 1)2 8i 2 N (11)

then every asymmetric strategy pro�le is not a strong psychological equilibrium for the sharing
rule s.

Denote with
� = max

a2Aa
f(a)� min

a�2As
f(a�):

Then, the second su¢ cient condition is

Proposition 5. Let !2 = minf!21; : : : ; !2ng. IfX
i2N

!2i

�
1� �+ (n� 1)(m� 1)

2

!2

�
> � (12)

then every asymmetric strategy pro�le is not a strong psychological equilibrium for the
reciprocity based sharing rule.

The next example puts Propositions 4 and 5 to work.

Example 5: Consider again the game in example 1. Using the equal sharing rule, then
�i(s) = 1=6, �i(s) = 0, � = 1=10. Condition (11) becomes

(!i + 1)
2 > 1=6 + 1=10 + 1 = 76=60 =) !2i > (

p
76=60� 1)2 ' 16=1000:

Note that if !21 = !22 = !2 = 1=60, not only the e¢ cient strategy pro�le is sustained but
there are no asymmetric equilibria since 1=60 > 16=1000.
Being � = 1=3, condition (12) becomesX

i2N
!2i

�
1� 11=10

!2

�
> 1=3

12



which, for !21 = !
2
2 = !

2, can be rewritten as

2!2
�
1� 11=10

!2

�
> 1=3 =) !2 > 76=60:

A condition much stronger than the one arising from (11).

Below we present examples and su¢ cient conditions showing that the symmetric e¢ cient
strategy pro�le is the unique symmetric psychological strong Nash equilibrium. These results
together with the previous results on the non-existence of asymmetric equilibria allow for
the unique implementation of the e¢ cient pro�le. More speci�cally, the �rst result shows
that �with no additional assumptions �if the overall reciprocity is strong enough then the
symmetric e¢ cient pro�le is a psychological strong Nash equilibrium for the reciprocity based
sharing rule. The second result instead, shows that, imposing symmetry of the partnership,
the e¢ cient strategy pro�le is the unique psychological strong Nash equilibrium for the
reciprocity based sharing rule. The next example gives the intuition for these results.

Example 6: This example illustrates that if reciprocity is strong enough then the e¢ cient
allocation is the unique strong Nash psychological equilibrium of the game. Consider a
3-player partnership model where each player has only two levels of e¤ort Ai = f1; 2g
for i = 1; 2; 3. The production function is de�ned by f(2; 2; 2) = 1, f(1; 1; 1) = 1=10
and f(a) = 1=3 for every a 2 A n f(2; 2; 2); (1; 1; 1)g, and the disutility functions are
de�ned by vi(2) = 1=4 and vi(1) = 0 for i = 1; 2; 3. Denote with (s1(1); s2(1); s3(1)) =
(�1; �2; �3), (s1(1=3); s2(1=3); s3(1=3)) = (�1=3; �2=3; �3=3), (s1(1=10); s2(1=10); s3(1=10)) =
(�1=10; �2=10; �3=10) with �1+�2+�3 = 1, �1+ �2+ �3 = 1 and �1+ �2+ �3 = 1. Then the
partnership game is

a2 = 2 a2 = 1

a1 = 2 �1 � 1
4
; �2 � 1

4
; �3 � 1

4
�1
3
� 1

4
; �2
3
; �3
3
� 1

4

a1 = 1
�1
3
; �2
3
� 1

4
; �3
3
� 1

4
�1
3
; �2
3
; �3
3
� 1

4

a2 = 2 a2 = 1
�1
3
� 1

4
; �2
3
� 1

4
; �3
3
� 1

4
�1
3
� 1

4
; �2
3
; �3
3

�1
3
; �2
3
� 1

4
; �3
3

�1
10
; �1
10
; �3
10

a3 = 2 a3 = 1
The welfare function is given by W (2; 2; 2) = 1=4, W (2; 1; 2) = W (1; 2; 2) = W (2; 2; 1) =

�1=12 , W (1; 1; 2) = W (1; 2; 1) = W (2; 1; 1) = 1=12 and W (1; 1; 1) = 1=10. Now we show
that the e¢ cient strategy pro�le (a�1; a

�
2; a

�
3) = (2; 2; 2) cannot be sustained by any sharing

rule, that is there are no (�1; �2; �3); (�1; �2; �3) satisfying �1+�2+�3 = 1 and �1+�2+�3 = 1
such that (a�1; a

�
2; a

�
3) is a Nash equilibrium of the game above. Suppose that (a�1; a

�
2; a

�
3) is a

Nash equilibrium then

�i �
1

4
� �i
3

for all i = 1; 2; 3:

Taking the sum of the three inequalities we get 1� 3=4 � 1=3 which is impossible.
However, the strategy pro�le (a�1; a

�
2; a

�
3) is a psychological Nash equilibrium for suitable

parameters !1, !2 and !3. Assume for simplicity that the three players have identical
psychological payo¤s, i.e. !1 = !2 = !3 = !, then, given the beliefs b�ij = a

�
j and c

�
iji = a

�
i ,

the partners�payo¤ in the psychological game is

Ui(ai; a
�
�i; (b

�
ij)j 6=i; (c

�
iji)j 6=i)

= si(f(ai; a
�
�i))� vi(ai)� (!(ai � 2)� (2� 2))2 � (!(ai � 2)� (2� 2))2 8ai 2 Ai:
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Then, being

Ui(2; a
�
�i; (b

�
ij)j 6=i; (c

�
iji)j 6=i) = �i �

1

4
and Ui(1; a

�
�i; (b

�
ij)j 6=i; (c

�
iji)j 6=i) =

�i
3
� 2!2;

the e¢ cient e¤ort pro�le (a�1; a
�
2; a

�
3) = (2; 2; 2) is sustained if and only if !2 � 1

72
. Fix

for instance !2 = 1
72
. It can be checked that the sharing rules �1; �2; �3; �1; �2; �3 sustain

(a�1; a
�
2; a

�
3) = (2; 2; 2) if and only if Ui(2; a

�
�i; (b

�
ij)j 6=i; (c

�
iji)j 6=i)) = Ui(1; a

�
�i; (b

�
ij)j 6=i; (c

�
iji)j 6=i))

for every player i. Therefore, they sustain e¢ ciency i¤

�i =
�i
3
+
2

9
for all i = 1; 2; 3: (13)

Replacing the previous sharing rules (13) in the partnership game we get
a2 = 2 a2 = 1

a1 = 2
�1
3
� 1

36
; �2
3
� 1

36
; �3
3
� 1

36
; �1

3
� 1

4
; �2
3
; �3
3
� 1

4

a1 = 1
�1
3
; �2
3
� 1

4
; �3
3
� 1

4
�1
3
; �2
3
; �3
3
� 1

4

a2 = 2 a2 = 1
�1
3
� 1

4
; �2
3
� 1

4
; �3
3

�1
3
� 1

4
; �2
3
; �3
3

�1
3
� 1

4
; �2
3
; �3
3

�1
10
; �1
10
; �3
10

a3 = 2 a3 = 1
We now show that this material game is not collusion-proof and for every pair of players

� say i and j � it is always pro�table a joint deviation from the e¢ cient strategy pro�le
(a�1; a

�
2; a

�
3) = (2; 2; 2) to the strategy pro�le in which both i and j exert e¤ort equal to 1

given that their opponent exerts e¤ort equal to 2.15 In other words, the conditions used to
prove Propositions 1 and 2 are not su¢ cient to sustain e¢ ciency if some partners can collude.
Indeed, we show that for !2 = 1

72
this joint deviation is pro�table also in the psychological

game. However, we also show that if !2 is high enough then (a�1; a
�
2; a

�
3) is the unique strong

Nash psychological equilibrium of the game. For every joint deviation of pairs of players, the
general payo¤ of the deviants (say i and j) is

Ui(ai = 1; aj = 1; ak = 2; bi;j = 1; bi;k = 2; ciji = 1; ciki = 2) =

si(f(1; 1; 2))� vi(1)� (!(1� 1)� (1� 1))2 � (!(1� 2)� (2� 2))2 =
�i
3
� !2

and
Uj(aj = 1; ai = 1; ak = 2; bj;i = 1; bj;k = 2; cjij = 1; cjkj = 2) =

sj(f(1; 1; 2))� vj(1)� (!(1� 1)� (1� 1))2 � (!(1� 2)� (2� 2))2 =
�j
3
� !2;

while the payo¤ from playing the equilibrium candidate is

Ui(a
�
i ; a

�
�i; (b

�
ij)j 6=1; (c

�
iji)j 6=1) = �i �

1

4
:

Consider a joint deviation of players 1 and 2 from (a�1; a
�
2; a

�
3) and �x !

2 = 1=72, we have that

�i
3
� !2 > �i

3
� 1

36
; for i = 1; 2

15Notice that in this case their payo¤ would be �i
3 =

�j
3 >

�i
3 �

1
36 =

�j
3 �

1
36 :
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then we have that for sharing rules satisfying (13)

U1(1; 1; 2; b1;2 = 1; b1;3 = 2; c121 = 1; c131 = 2) > U1(a
�
1; a

�
�1; (b

�
1j)j 6=1; (c

�
1j1)j 6=1)

and

U2(1; 1; 2; b2;1 = 1; b2;3 = 2; c212 = 1; c232 = 2) > U2(a
�
2; a

�
�2; (b

�
2j)j 6=2; (c

�
2j2)j 6=2):

In words, for !2 = 1=72, (a�1; a
�
2; a

�
3) cannot be a psychological strong Nash equilibrium.

More generally, a joint deviation of players i and j is not pro�table if

�i
3
� !2 � �i �

1

4
or

�j
3
� !2 � �j �

1

4
:

This latter condition is achieved, for instance, if �i = �i = 1=3 and !
2 � 1=36. Therefore,

for every !2 � 1=36, the equal sharing rule prevents the joint deviation of any pair of players
from the e¢ cient strategy pro�le. Moreover, in the joint deviation of the grand coalition
(the three players) the psychological payo¤s consistent with the deviation are equal to the
material payo¤s in the deviation. Hence, it can be checked that the equal sharing rule prevents
also from the deviation of the grand coalition. Finally, since the psychological payo¤s tend
to destroy asymmetric equilibria, it is possible to �nd !2 � 1=36 such that there are no
asymmetric psychological equilibria. Thus, for such !2 the e¢ cient strategy pro�le is the
unique strong Nash psychological equilibrium for the equal sharing rule.

We now introduce the maximum production gain from deviating for coalitions of size k
which �for a symmetric production function �is equal across players, that is

Fk(a
�) = max

aJ2AJ

�
f(aJ ; a

�
�J)� f(a�J ; a��J)

�
8J � N with jJ j = k: (14)

Then, the next result follows.

Proposition 6. Let a� be a symmetric e¢ cient strategy pro�le. IfX
i2N

!2i

�
1� �(a

�)

!2

�
� max

k2f1;:::;n�1g
Fk(a

�) (15)

then a� is a psychological strong Nash equilibrium for the reciprocity based sharing rule.

Notice that condition (15) is stronger than condition (6) sinceX
i2N

!2i

�
1� �(a�)

!2(n� 1)

�
�
X
i2N

!2i

�
1� �(a

�)

!2

�
� max

k2f1;:::;n�1g
Fk(a

�) � F (a�)

n� 1 ;

so that for a� to be a psychological strong Nash equilibrium the condition that must be
imposed on the team�s psychological traits are more demanding than the ones needed to
implement a� as a simple psychological Nash equilibrium.
The following proposition shows that once we impose symmetry the equilibrium will be

unique.
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Proposition 7. Let a� be a symmetric e¢ cient strategy pro�le and assume that condition
(15) holds. If the following conditions hold:

i) Costs are symmetric, i.e., vi(y) = v(y) for every i 2 N and for every y 2 f(A);

ii) Reciprocity is equal across players, i.e., !i = ! for every i 2 N .

then a� is the unique symmetric psychological strong Nash equilibrium for the reciprocity
based sharing rule.

Example 7: Here we apply the conditions of Propositions 6 and 7 to the game in Example
(6). Being F1(a�) = F2(a�) = �2=3, �(a�) = 1=4, the su¢ cient condition (6) for symmetric
psychological Nash equilibria givesX

i2N
!2i

�
1� 1=4

2!2

�
� (�2=3)

2
;

which becomes !2 � 1=72 when !2 = !2i for all i 2 N . This previous condition is also
necessary since, being FM(a�) = �1=3, �vi(a�) = 1=8 and V (a�) = 1=2, the necessary
condition (9) gives X

i2N
!2i �

�1=3 + 3=8
2(1=2)

that becomes !2 � 1=72 when !2 = !2i for all i 2 N . The su¢ cient condition (15) for
symmetric psychological strong Nash equilibria givesX

i2N
!2i

�
1� 1=4

!2

�
� �2=3;

which simpli�es to !2 � 1=36 when !2 = !2i for all i 2 N . Therefore, in light of the previous
Propositions, if !2 � 1=36 the e¢ cient strategy pro�le a� is the unique symmetric strong
Nash equilibrium.

5 Concluding remarks

Even the best people do not always work together as well as they could. Simply assigning a
group of people to a task, does not magically turn them into a well-functioning team. Basic
skills for managing a team may include: how to set agendas, leading priority setting, leading
without dominating, project management skills, encouraging and facilitating a discussion,
monitoring team progress, and so on. However, our results indicate that, how well a
partnership can overcome free riding depends between other things on the set of partners. In
a world in which this choice is endogenous, there should be a tendency for the most e¢ cient
partnerships to form. Our e¢ ciency results suggest a tendency of partnerships to consist of
members whose sensitivity to reciprocity is �individually or jointly �su¢ ciently high.
Our theory is a �rst step in understanding the impact of intention-based reciprocity

preferences on the design of a team and on the design of sharing rules that lead to e¢ ciency
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in the simple and relevant partnership framework where the e¢ cient strategy pro�le is
symmetric. The peculiarity of the partnership model is that it allows to consider measures
of kindness which depend only on e¤ort and not on the particular material preferences
representation. This captures the idea that a partner may react badly to other partners
free-riding regardless of rewards. To conclude we discuss some possible extensions.

Contingent reciprocity
To focus on the fact that kindness depends only on e¤ort and not on the particular

material preferences representation, in the previous analysis, we considered constant
reciprocity parameters and �nd conditions on such parameters which allow for the (unique)
implementation of the e¢ cient strategy pro�le. A more general analysis could take into
account reciprocity parameters which depend on the sharing rule. However, this approach
would require to use the concept of dynamic psychological equilibrium (Battigalli and
Dufwenberg 2009) and its re�nements.

Weighted psychological utility
When, in the psychological utility functions, �i is not normalized to 1 (as in (1)), similar

results for the implementation and the unique implementation of the symmetric e¢ cient
strategy pro�le can also be obtained by mimicking the arguments contained in the proofs
and imposing the same conditions on the terms �i!

2
i (instead of !

2
i ). For instance, in this

case, the reciprocity based sharing rule takes the following form

sj(y) =
�j!

2
jP

i2N �i!
2
i

y 8j 2 N; 8y 2 f(A): (16)

Non-symmetric or stochastic production
The assumption of symmetric production functions makes the problem interesting

implying that neither the identity of a shirker nor the one of a non-shirker is revealed after
a deviation. However, the shirker�s identity might remain unrevealed even for some non-
symmetric or stochastic production functions. We highlight that the unique, collusion-proof
implementation of the symmetric e¢ cient strategy pro�le does not depend on the symmetry
of the production function. Indeed, �mimicking the arguments contained in the proofs �
Proposition 1, 2 and 6 can be generalized substituting the new (non-symmetric or stochastic)
production function in M s

i (a
�) and Fk(a�).

6 Appendix

Proof of Proposition 1. From the assumptions it follows that, for every player i,X
j 6=i

!2i (ai � b�i;j)2 � (n� 1)!2i �M s
i (a

�) � ui(ai; a��i)� ui(a�i ; a��i) 8ai 2 Ai:

Hence
ui(a

�
i ; a

�
�i) � ui(ai; a��i)�

X
j 6=i

!2i (ai � b�i;j)2 8ai 2 Ai:
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Being
Ui(a

�
i ; a

�
�i; (b

�
i;j)j 6=i; (c

�
i;j;i)j 6=i) = ui(a

�
i ; a

�
�i)

and
Ui(ai; a

�
�i; (b

�
i;j)j 6=i; (c

�
i;j;i)j 6=i) = ui(ai; a

�
�i)�

X
j 6=i

!2i (ai � b�i;j)2

we get the assertion.
The following Lemma is required for the proofs of the main Propositions.

Lemma 1. Let a� be a symmetric strategy pro�le, 1 � k � n � 1 and !2k =
minf!21; : : : ; !2n�k+1g. If X

i2N
!2i

�
1� �(a�)

!2k(n� k)

�
� Fk(a

�)

n� k (17)

then, given the sharing rule de�ned by

sj(y) =
!2jP
i2N !

2
i

y 8j 2 N; 8y 2 f(A):

for all subset of players J � N with jJ j = k and for all aJ 2
Q
j2J Aj there exists a player

i 2 J such that i)-iv) in De�nition 3 are satis�ed.

Proof of Lemma 1. Let J � N with jJ j = k, then there obviously exists a player
i 2 f1; : : : ; n� k + 1g \ J . From (17), it follows that

(n� k)
X
i2N

!2i � Fk(a�) +
�(a�)

P
i2N !

2
i

!2k

Then

(n� k) � Fk(a
�)P

i2N !
2
i

+
�(a�)

!2k
:

Let (b�i;j)j 6=i and (c
�
i;j;i)j 6=i be the beliefs of player i consistent with the symmetric strategy

pro�le a�, i.e., b�ij = a
�
j = c

�
iji = a

�
i for all j 6= i. Let ai 6= a�i , then (n�k) �

P
j2NnJ(ai�b�i;j)2.

It follows that for every player i 2 f1; : : : ; n� k + 1g \ J ,

!2i
X
j2NnJ

(ai � b�i;j)2 �
!2iP
i2N !

2
i

Fk(a
�) +

�(a�)!2i
!2k

� !2iP
i2N !

2
i

Fk(a
�) + �(a�): (18)

By de�nition

Fk(a
�) � f(aJ ; a��J)� f(a�J ; a��J) 8aJ 2 AJ and �(a�) � vi(a�i )� vi(ai) 8ai 2 Ai:

Hence from (18)

!2i
X
j2NnJ

(ai � b�i;j)2 �
!2iP
i2N !

2
i

�
f(aJ ; a

�
�J)� f(a�J ; a��J)

�
+ vi(a

�
i )� vi(ai) 8aJ 2 AJ :

18



Therefore

!2iP
i2N !

2
i

f(a�J ; a
�
�J)� v(a�i ) �

!2iP
i2N !

2
i

f(aJ ; a
�
�J)� v(ai)�

X
j2NnJ

!2i (ai � b�i;j)2 8aJ 2 AJ :

Being

Ui(a
�
J ; a

�
�J ; (b

�
i;j)j 6=i; (c

�
i;j;i)j 6=i) =

!2iP
i2N !

2
i

f(a�J ; a
�
�J)� v(a�i )

and being

Ui(ai; a
�
�i; (bi;j)j 6=i; (ci;j;i)j 6=i) =

!2iP
i2N !

2
i

f(ai; a
�
�i)� v(ai)�

X
j2NnJ

!2i (ai � b�i;j)2 8ai 2 Ai;

where
1)bij = a�j and ciji = a

�
i for all j 2 N n J

2) bij = aj and ciji = ai for all j 2 J n fig,
the assertion follows.
Proof of Proposition 2. The proof is a direct application of Lemma 1 with k = 1,

F1(a
�) = F (a�) and !21 = !

2:
Proof of Proposition 3. Suppose a� is a symmetric psychological equilibrium for a

sharing rule s then, for player i 2 J it results that

!2i
X
j 6=i

(ai � b�i;j)2 � si(f(ai; a��i))� si(f(a�i ; a��i)) + vi(a�i )� vi(ai) 8ai 2 Ai

thereforeX
ai2Ai

!2i
X
j 6=i

(ai � b�i;j)2 �
X
ai2Ai

�
si(f(ai; a

�
�i))� si(f(a�i ; a��i))

�
+
X
ai2Ai

[vi(a
�
i )� vi(ai)] :

Hence

X
i2N

"X
ai2Ai

!2i
X
j 6=i

(ai � b�i;j)2
#
�
X
i2N

"X
ai2Ai

�
si(f(ai; a

�
�i))� si(f(a�i ; a��i))

�
+
X
ai2Ai

[vi(a
�
i )� vi(ai)]

#
::

(19)
Since X

i2N

"X
ai2Ai

!2i
X
j 6=i

(ai � b�i;j)2
#
=
X
i2N

!2i [m(n� 1)V (a�)] ;

X
i2N

"X
ai2Ai

�
si(f(ai; a

�
�i))� si(f(a�i ; a��i))

�#
=
X
ai2Ai

�
f(ai; a

�
�i)� f(a�i ; a��i)

�
= mFM(a

�)

and X
i2N

"X
ai2Ai

[vi(a
�
i )� vi(ai)]

#
=
X
i2N

m�vi(a
�);
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from (19) it follows thatX
i2N

!2i [(n� 1)V (a�)] � FM(a�) +
X
i2N

�vi(a
�):

Hence the assertion follows.
Proof of Proposition 4. Consider an asymmetric strategy pro�le a, let aq = maxi2N ai

and J = fi 2 N j ai 6= aqg. Consider the joint deviation a�J of coalition J where a�j = aq for
all j 2 J and, with an abuse of notation, denote with a� the symmetric strategy pro�le in
which a�i = aq for every i 2 N . From (11) it follows that for every player i

(!i+1)
2 > �i(s)��i(s)+�+(n�1)(m�1)2 � si(f(a))� si(f(a�))+�+(n�1)(m�1)2 �

si(f(a))� si(f(a�)) + vi(a�i )� vi(ai) + (n� 1)(m� 1)2

which �nally implies that

si(f(a
�))� vi(a�i )� (n� 1)(m� 1)2 > si(f(a))� vi(ai)� (!i + 1)2 (20)

Now, let i 2 J and consider the psychological payo¤ of player i consistent with the strategy
pro�le a:

Ui(a; (bi;j)j 6=i; (ci;j;i)j 6=i) = si(f(a))� v(ai)�
X
j 6=i

(!i(ai � bij)� (bij � ciji))2

with bij = aj and ciji = ai for all j 6= i, therefore

Ui(a; (bi;j)j 6=i; (ci;j;i)j 6=i) = si(f(a))� v(ai)�
X
j 6=i

(!i(ai � aj)� (aj � ai))2 =

= si(f(a))� v(ai)�
X
j 6=i

((!i + 1)(ai � aj))2 � si(f(a))� v(ai)� (!i + 1)2: (21)

Consider the psychological payo¤ of player i consistent with the deviation a�:

Ui(a
�; (b�i;j)j 6=i; (c

�
i;j;i)j 6=i) = si(f(a

�))� v(a�i )�
X
j 6=i

(!i(a
�
i � b�ij)� (b�ij � c�iji))2

where a�i = aq, b
�
ij = aq and c

�
iji = aq if j 2 J and b�ij = aj and c�iji = ai if j =2 J . ThereforeX

j 6=i

(!i(a
�
i �b�ij)�(b�ij�c�iji))2 =

X
j2J
(!i(a

�
i �b�ij)�(b�ij�c�iji))2+

X
j =2J

(!(a�i �b�ij)�(b�ij�c�iji))2 =

X
j =2J

(!i(a
�
i � b�ij)� (b�ij � c�iji))2 =

X
j =2J

(�(aq � aj))2 �
X
j =2J

(m� 1)2 � (n� 1)(m� 1)2

Hence
Ui(a

�; (b�i;j)j 6=i; (c
�
i;j;i)j 6=i) � si(f(a�))� v(a�i )� (n� 1)(m� 1)2 (22)
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Hence from (20,21,22) it follows that

Ui(a
�; (b�i;j)j 6=i; (c

�
i;j;i)j 6=i) > Ui(a; (bi;j)j 6=i; (ci;j;i)j 6=i) 8i 2 J

and therefore a is not a strong Nash psychological equilibrium.
Proof of Proposition 5. Consider an asymmetric strategy pro�le a, let aq = maxi2N ai

and J = fi 2 N j ai 6= aqg. Consider the joint deviation a�J of coalition J where a�j = aq for
all j 2 J and, with an abuse of notation, denote with a� the symmetric strategy pro�le in
which a�i = aq for every i 2 N . From (12) it follows that

1 >
�P
i2N !

2
i

+
�+ (n� 1)(m� 1)2

!2
=) !2i >

!2i�P
i2N !

2
i

+
!2i (�+ (n� 1)(m� 1)2)

!2

Since (!i + 1)2 > !2i then

(!i + 1)
2 >

!2i�P
i2N !

2
i

+
!2i (�+ (n� 1)(m� 1)2)

!2
�

!2iP
i2N !

2
i

[f(a)� f(a�)] + vi(a�i )� vi(ai) + (n� 1)(m� 1)2

which �nally implies that

!2iP
i2N !

2
i

f(a�)� vi(a�i )� (n� 1)(m� 1)2 >
!2iP
i2N !

2
i

f(a)� vi(ai)� (!i + 1)2 (23)

Following the same steps in the proof of Proposition (4), let i 2 J and consider the
psychological payo¤ of player i consistent with the strategy pro�le a:

Ui(a; (bi;j)j 6=i; (ci;j;i)j 6=i) =
!2iP
i2N !

2
i

f(a)� vi(ai)�
X
j 6=i

(!i(ai � bij)� (bij � ciji))2

with bij = aj and ciji = ai for all j 6= i; then

Ui(a; (bi;j)j 6=i; (ci;j;i)j 6=i) �
!2iP
i2N !

2
i

f(a)� vi(ai)� (!i + 1)2: (24)

The psychological payo¤ of player i consistent with the deviation a� is

Ui(a
�; (b�i;j)j 6=i; (c

�
i;j;i)j 6=i) =

!2iP
i2N !

2
i

f(a�)� vi(a�i )�
X
j 6=i

(!i(a
�
i � b�ij)� (b�ij � c�iji))2

where a�i = aq, b
�
ij = aq and c

�
iji = aq if j 2 J and b�ij = aj and c�iji = ai if j =2 J . Hence

Ui(a
�; (b�i;j)j 6=i; (c

�
i;j;i)j 6=i) �

!2iP
i2N !

2
i

f(a�)� vi(a�i )� (n� 1)(m� 1)2 (25)

Hence from (23,24,25) it follows that

Ui(a
�; (b�i;j)j 6=i; (c

�
i;j;i)j 6=i) > Ui(a; (bi;j)j 6=i; (ci;j;i)j 6=i) 8i 2 J
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and therefore a is not a strong Nash psychological equilibrium.
Proof of Proposition 6. Since !2 = !21 � !22 � � � � � !2n�1 and �(a

�) � 0 then for
every 1 � k � n� 1 it follows that

1� �(a
�)

!2
� 1� �(a�)

!2k(n� k)
:

Hence condition (15) implies that for every k 2 f1; : : : ; n� 1gX
i2N

!2i

�
1� �(a�)

!2k(n� k)

�
�
X
i2N

!2i

�
1� �(a

�)

!2

�
� max

k2f1;:::;n�1g
Fk(a

�) � Fk(a�):

Therefore condition (17) in Lemma holds and therefore for all subset of players J � N with
jJ j � n� 1 and for all aJ 2

Q
j2J Aj there exists a player i 2 J such that i)-iv) in De�nition

3 are satis�ed for the sharing rule de�ned by

sj(y) =
!2jP
i2N !

2
i

y 8j 2 N; 8y 2 f(A):

Now we prove that for this sharing rule any deviation of the grand coalition (coalition N)is
not pro�table, in fact suppose that there exist a strategy pro�le a with ai 6= a�i for every
player i such that for every player i 2 N

Ui(a
�
J ; a

�
�J ; (b

�
i;j)j 6=i; (c

�
i;j;i)j 6=i) < Ui(ai; a�i; (bi;j)j 6=i; (ci;j;i)j 6=i) 8i 2 N

where

Ui(a
�; (b�i;j)j 6=i; (c

�
i;j;i)j 6=i) =

!2iP
i2N !

2
i

f(a�)� vi(a�i )

with b�ij = a
�
j and c

�
iji = a

�
i for all j 6= i and

Ui(a; (bi;j)j 6=i; (ci;j;i)j 6=i) =
!2iP
i2N !

2
i

f(a)� vi(ai) 8ai 2 Ai;

where bij = aj and ciji = ai for all j 6= i; thereforeX
i2N

Ui(a
�; (b�i;j)j 6=i; (c

�
i;j;i)j 6=i) <

X
i2N

Ui(a; (bi;j)j 6=i; (ci;j;i)j 6=i) =)

f(a�)�
X
i2N

vi(a
�
i ) < f(a)�

X
i2N

vi(ai)

which is a contradiction since a� is an e¢ cient strategy pro�le.
Proof of Proposition 7. In light of Proposition 6, a� is a psychological strong Nash

equilibrium. Let a be any other symmetric strategy pro�le, then for every player i, denote
with

Ui(a
�; (b�i;j)j 6=i; (c

�
i;j;i)j 6=i) =

!2iP
i2N !

2
i

f(a�)� vi(a�i ) =
f(a�)

n
� v(a�i )
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where b�ij = a
�
j and c

�
iji = a

�
i for all j 6= i, the psychological utility of player i consistent with

a� and with

Ui(a; (bi;j)j 6=i; (ci;j;i)j 6=i) =
!2iP
i2N !

2
i

f(a)� vi(ai) =
f(a)

n
� v(ai)

where bij = aj and ciji = ai for all j 6= i, the psychological utility of player i consistent with
a. Since a� is the e¢ cient strategy pro�le, it follows that

f(a�)� nv(a�i ) > f(a)� nv(ai) =)
f(a�)

n
� v(a�i ) >

f(a)

n
� v(ai)

which obviously implies that

Ui(a
�(b�i;j)j 6=i; (c

�
i;j;i)j 6=i) > Ui(a; (bi;j)j 6=i; (ci;j;i)j 6=i) 8i 2 N

and hence a is not a psychological strong Nash equilibrium.
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