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Abstract 
We use a mixed market model for analyzing economies with public projects in which the condition of perfect competition 
is violated. We discuss core-equivalence results in the general framework of non-Euclidean representation of the 
collective goods. We show that if large traders are similar to each other, then they lose their market power and hence the 
equivalence theorem can be restored. This is possible assuming a cost distribution function to fix the fraction that each 
large or small agent is expected to cover of the total cost of providing the project. We show that, for each given individual 
and coalitional contribution scheme, the resulting core is equivalent to the corresponding linear cost share equilibria. 
Finally, we investigate on weaker equivalences when the assumption that all large traders are of the same type is 
dropped. An analysis of mixed markets with public goods via atomless economies is provided, joint with an extension of 
Schmeidler and Vind results on the measure of blocking coalitions. 
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1 Introduction

The purpose of this paper is to use a mixed market model for analyzing
economies in which the ideal state of perfect competition is violated and in
which the choice of a public project is also involved. In particular, we aim
to find conditions ensuring that the basic connections between cooperative
and competitive equilibrium notions can be restored despite of the presence
of large traders and collective goods.

One of the major focus of the literature in general equilibrium theory
during the 1970s and the 1980s has been the study of relations existing
between the solution concept of core and the set of competitive allocations.
An allocation of resources for a market economy is stable with respect to
coalition improvements (or a core allocation) if it has the property that
no group of people is able to achieve a preferred outcome for its members
using only its initial aggregate resources. Differently, a competitive, price-
taking, equilibrium outcome is the result of the simultaneous optimization
of individual targets under independent budget constraints.

The core-equivalence theorem shows the formal coincidence existing be-
tween Walrasian competitive allocations and the core: this would be in-
terpreted by saying that market choices emerging from individual private
behavior (according to the competitive scheme) are the only possible even if
agents are free to cooperate within coalitions in order to improve their own
welfare.

The price-taking behavior assumption that underlies the notion of com-
petitive equilibrium, implicitly assumes a high number of traders, so that
none of them is able to affect prevailing prices and aggregate demand. In par-
ticular, if the number of agents is large enough, none of them has monopoly
power. One of the major contribution to the literature is the idea, due to
Aumann, of formalizing perfect competition by means of nonatomic market
economies and the aggregation with the formal tool of Lebesgue integral
(see [2]). As a consequence of the presence of a continuum of small traders,
any change in individual behavior is negligible with respect to the aggregate
demand. Hence, nonatomic economies constitute the formal basis of the
economic intuition that, in markets embodying perfect competition, traders,
being small, are price-takers.

Starting from the seminal contribution of Aumann, several authors recog-
nized that the competition in the real economic activity is far form being
perfect. The reason could be identified in two different distortions, both be-
ing representable by means of the same formal model of market economies.
First, it is often the case that some traders may be present on the market
concentrating in their hands an initial ownership of commodities that is large
when compared with the total market endowment. This scenario includes
monopolistic or, more generally, oligopolistic markets. Second, even if the
initial endowment is spread over a continuum of negligible traders, it can be
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the case that some traders join groups (or coalitions) and decide to act on
the market only together. As consequence of such collusive processes (car-
tels, syndicates or other form of institutional agreements) the large number
of small traders may be not effective and trade may take place only between
large groups, violating the perfect competition scheme (see for example the
discussion in [18]).

Recently, models of international cooperation agreements aiming at the
provision of global public goods, like climate for example, have led to the
researchers attention the study of interaction amongst few large traders,
representative of rich countries, and many small traders, representative of
poor countries (see [3], [19] among the others). In particular, they have
stimulated the interest in the non-cooperative provision of public goods (to
describe the independent behavior of states), as well as the consideration of
cooperative solutions (due to the emergence of coordination throughout in-
ternational agreements to overcome inefficiency of non-cooperative policies).
Surprisingly, only very little attention has been paid to the analysis, under
a general equilibrium approach, of market models involving large traders
as well as public goods. We try to fill this gap introducing general mixed
models with public goods, defining suitable competitive and core notions,
establishing equivalence properties.

We use a mixed economy. Namely an economy with an atomless sec-
tor of consumers as an idealization of the many negligible agents and with
atoms (i.e. subsets with strictly positive mass containing no proper subsets
of strictly positive mass) to represent the few influential agents (compare
[18]). In this setting traders are faced with the problem of the unanimously
agreed choice of a public project to be realized. It is especially noteworthy
that we do not limit the choice of a public good to a set with an euclidean
structure. Instead, we allow public projects to be drawn from a set without
any mathematical structure. In [14], in contrast with the classical Samuel-
sonian Euclidean scheme, the choice of a public project takes place over a set
where no special mathematical structure is imposed. The absence of a linear
structure on the set of public projects allows in particular the treatment of
those public goods on which there is no reason to assume a commonly ac-
cepted order by traders. This is the case of public goods for which different
individuals may have different perceptions and hence different rankings (see
the discussion in [4], [5], [6], [9]). Moreover, if public projects are inter-
preted as public environments, i.e. collections of variables common to all
the agents but determined outside the market mechanisms, we end up with
a general framework incorporating many different economic problems. This
is the interpretation of the Mas-Colell approach given by [11], [12], where
non-market variables include legal systems (such as the assignment of prop-
erty rights), tax and benefits systems, but also private goods provided by
the public sector.

In exchange economies involving large traders and public goods one
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should not expect the core-equivalence theorem to hold. On one hand, the
presence of collusive agreements prevents the formation of some coalitions
and enlarges the core. On the other hand, well known counter-examples
show the failure of the core equivalence theorem in the public goods context
when the blocking mechanism is adapted from private goods economies (see
[15], [16], [22]). These negative results emerge even in nonatomic market
models and could be roughly reconducted to the assumption that the cost
for the public good provision has a uniform distribution among the agents
(that is tipical of the Lindahl competitive approach) combined with the Fo-
ley veto mechanism used to define the core (see [7]). Indeed, an enlargement
of the number of agents in order to achieve perfect competition, implies that
the per-capita cost decreases, making small coalitions weaker. According to
the Foley veto mechanism, a blocking coalition is expected to produce the
public project on its own, covering the whole cost necessary for the provision.
Hence, small coalitions lose their market power and the core enlarges.

The notion of competitive equilibrium we adopt originates in [14] and
in the subsequent papers by [4], [5], where the concept of linear cost share
equilibria for atomless markets with public goods has been introduced. In
a linear cost share equilibrium, everyone is faced with an equal provision,
but consumers may pay a different contribution according to a given cost
share function. Agents maximize utility over their own budget sets taking
into account the share of the cost of the project. Moreover, they are able to
maximize their welfare taking into account changes in the price of private
commodities deriving from changes in the public project. Indeed, the as-
sumption that prices may depend on collective projects makes the approach
different from the one based on the notion of Lindahl equilibrium. From the
point of view of cooperative notions, the veto mechanism defining the core
differs from the classical one due to Foley. Following [5] and [10], given an
individual cost share function, a measure is accordingly defined on the set of
all coalitions to fix the contribution that each blocking coalition is expected
to cover. For large traders, this contribution is obtained just multiplying
the trader size by the individual cost share.

To obtain our equivalence results, we adapt conditions of [18, Theorem
B]. We require that there are at least two large traders and moreover that
they are all of the same type (i.e. they have the same initial endowment
and the same utility function). It comes out that large traders exploit their
market power (and consequently a competitive price-taking equilibrium can
be sustained), provided that the same individual cost share is exogenously
fixed for each of them1. Thus, given that large agents have the same char-
acteristics, in order to restore perfect competition they are required to pay

1Notice that, since large traders are exogenously assumed in the model, contracts
generating cartels should be considered as being legally enforced and then institutionally
taxed.
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according to the same individual cost. Exactly like in [18, Theorem B], since
large traders may have a priori a different size even if they are of the same
type, large traders may be required to pay a different contribution in order
to block a given allocation of resources. That is the equivalence result holds
true regardless of the sizes of contribution of large traders2. In particular,
our analysis clarifies relations between large traders and large tax-payers in
mixed models with public goods.

Last part of the paper is devoted to the investigation, from a different
point of view, of equivalence results without imposing additional conditions
on the atomic sector. We turn our attention to the Aubin approach to the
core analysis, that has been proved to be useful in abstract mixed economies
by [17]. The latter extends the notion of coalition and the ordinary veto since
it is allowed a participation of the agents with a fraction of their endowments
when forming a blocking coalition. We show that in order to guarantee that
a price taking behavior emerges, the contribution to the realization of the
project for a blocking coalition has to be defined taking into account the
share of participation of each agent in the coalition itself. In particular, we
prove that the Aubin σ-core coincides with the σ-core of the associated split
market even when these two sets are not guaranteed to coincide with the
set of linear cost share equilibria.

Our main results in the paper are proved interpreting the public goods
economy with large traders as a nonatomic economy with public goods that
derives from the original one by splitting each large trader in a continuum.

The paper is organized as follows. In Section 2, we present the mathe-
matical model and the main equilibrium notions. In Section 3, we interpret
mixed economies with public goods as atomless economies obtained by split-
ting each atom into a continuum of small traders of the same type. Section 4
is devoted to the equivalence result under the assumption that large traders
are of the same type. In Section 5 we present some counterexamples, while
in Section 6 we show weaker equivalence results.

2 The Model

2.1 The Setting

We consider an economy E with public goods modeling it by means of the
following collection:

E =
{

(T,T , µ); (Y, c); IR�
+; (ut, et)t∈T

}
where:

2Hence, as for private market economies, the σ-core correspondence in the mixed setup
is not lower hemicontinuous (compare [8]).
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1. (T,T , µ) is a complete, finite measure space representing the space
of agents.

2. IR�
+ is the space of private commodities.

3. Y is an abstract set containing all public projects and c is a function
c : Y → IR�

+ which expresses the cost of any public project in terms of
private goods.

4.
(
ut, et

)
t∈T

is the profile of agents’ characteristics:

- an utility function

ut : IR�
+ × Y → IR

representing preferences of agent t

- an initial endowment of physical resources e(t) ∈ IR�
+ of t.

The reference to a measure space of agents deserves some comments and
specifications. Though topological considerations over the set T of agents
are by no means relevant for this paper, let us suppose that T is a second
countable Hausdorff space. µ is a Borel measure on T and furnishes the
economic weight, or influence, on the market of subsets, or groups, of agents.
The σ-field T is just the µ-null completion of the Borel σ-field of T .

The agents’ market influence is an issue of this paper and to deal with
an abstract measure space of agents allows us to investigate simultaneously
markets which are competitive and markets which are not. Indeed consider
the decomposition

T = T µ
0 ∪ T µ

1

where

T µ
0 = {t ∈ T : µ({t}) = 0}, T µ

1 = {t ∈ T : µ({t}) > 0}

in the light of [1, Lemma 12.18].
Then: a µ such that T µ

0 is µ-null describes classical discrete economies
while a µ ensuring that non agents may be influential, i.e. T µ

1 empty, gives
an atomless measure space of agents namely, as it is well known, the math-
ematical framework for proper treatment of perfect competition. If both
sets T µ

0 and T µ
1 are of positive µ-measure, beside a multitude T µ

0 of “small”
uninfluential agents we have (at most) countably many “large” influential
agents (monopolists, oligopolies, cartels, syndicates or institutional forms of
collusive agreements) forming the set T µ

1 . In such a situation we say that
we have a mixed market.

We shall neglect groups of agents that as such do not effect aggregate
consumption. This parallels the measure theoretical custom of identifying
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two sets with µ-null symmetric difference or two functions when they are
equal µ-a.e. With such a convention in mind we reserve the term coalition
to subsets of agents of positive µ-measure and identify large agents with
atoms of the space (T,T , µ) ([1, Lemma 12.18]). We shall write T = T0 ∪T1

instead of T = T µ
0 ∪ T µ

1 and T1 = {A1, A2, . . . } if no ambiguity may occur.

2.2 Further Assumptions, Main Definitions and Inclusions

Throughout the paper we shall assume that

(A.1) the total endowment e =
∫
T e(t) dµ � 0 satisfies the inequality e �

c(y) for every y ∈ Y

(A.2) for each public project y ∈ Y, all agents have a measurable, continuous,
concave and strictly monotone utility function ut(·, y).

Assumption (A.1) asserts that no private commodity is totally absent from
the market regardless the cost of the project that is going to be realized.

Definition 1. A pair (f, y), where f is an integrable function from T to IR�
+

and y ∈ Y, is said to be an allocation. An allocation is said to be feasible
if the whole part of the total initial endowment not used for covering the cost
of the realized public project is redistributed among the agents, i.e.,∫

T
f(t) dµ + c(y) =

∫
T

e(t) dµ.

Definition 2. A cost distribution is function � : T ×Y → IR+ such that
for each public project y ∈ Y the partial function �(·, y) is integrable and∫

T
�(t, y) dµ = 1. We denote by Φµ the class of all cost distributions for the

economy E.

A cost distribution function describes how much each agent contributes (per
unit of weight) to the establishment of the provision level of each public good
(notice that, differently from Diamantaras-Gilles, we assume now that the
individual contribution varies across public projects). If � is the given cost
distribution, then an “infinitesimal”group of agents containing the individ-
ual t is expected to contribute �(t, y)p(y) dµ(t)·c(y), where p(y) is the market
price vector for private goods.

Definition 3. A contribution measure is a function σ : T × Y → [0, 1]
such that for each project y ∈ Y the partial function σ(·, y) ∈ Mµ, the
collection of all probability measures on T which are absolutely continuous
with respect to µ. The symbol Mµ will also denote the collection of all
contribution measures of E.
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Contribution measures fix the share of the total cost of the public project
provision for which each coalition is responsible. Again this share for a
coalition varies across projects. In the blocking mechanism a coalition S
must guarantee the cost σ(S, z)c(z) in order to block the allocation (f, y)
by means of a different allocation (g, z).
The natural correspondence that we expect to hold between cost distribution
functions and contribution measures follows. If � ∈ Φµ then the associated
σ� ∈ Mµ is given by

σ�(S, y) =
∫

S
�(t, y) dµ for all S ∈ T , for all y ∈ Y. (1)

Conversely, if σ ∈ Mµ then the associated �σ is the Radon-Nikodym deriv-
ative of σ(·, y) with respect to µ.

Though, from the analytical point of view, we merely register that µ-
atoms and σ-atoms (σ is, for short, σ(·, y) for a given contribution measure)
do not necessarily coincide 3, the market influential-uninfluential decomposi-
tion of the space of agents really effects a similar decomposition with respect
to the provision necessary to the realization of a public project.

Next to the decomposition of T into the sets T µ
0 and T µ

1 we also have
the analogous decomposition T = T σ

0 ∪ T σ
1 and the absolute continuity of σ

with respect to µ tells that T σ
1 ⊆ T µ

1 and that

σ({t}, y) = �σ(t, y)µ({t})

holds for any t of T µ
1 and µ-a.e. on T µ

0 . Therefore{
T σ

1 = T µ
1

T σ
0 = T µ

0

⇔ �σ(t, y) > 0, ∀t ∈ T µ
1 .

In other words, any contribution measure σ induces a decomposition of
T in large taxpayers and small or negligible taxpayers 4. The former are

3A µ-atom S may well not be a σ-atom, indeed just take σ(·) = µ(· \ S). A σ-atom
is not necessarily a µ-atom; nonetheless if µ is atomless then so is σ. The converse is
false and σ may be atomless even if µ does have atoms. To see all this, first consider
T = {1, 2, 3} and µ giving weight one third on each individual. Take the cost distribution
function equal to zero on the first agent then equal to one. The coalition S made of the
first two agents is a σ-atom which is not a µ-atom. To understand that an atomless µ
determines an atomless σ, note that an atom S with respect to σ contains a point of T
with positive σ-measure and therefore with positive µ-measure. Finally, if T = [0, 1

2
]∪{1},

the measure µ is the Lebesgue measure on [0, 1
2
] and gives weight one half to agent 1 and

the cost distribution function is constantly one on [0, 1
2
] and zero on agent 1, then σ is

atomless though µ is not.
4We can imagine that, similarly to the distinction between large and small traders

- according to the fact that a large trader is an agent whose consumption affects the
aggregate total consumption - there is a distinction between large and small contributors.
A contributor is then large if a change in its contribution affects the total provision for
the realization of the public project, otherwise he is small.
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necessarily agents with market power while the latter are not necessarily
small traders. Unless we assume that market power must necessarily entail
positive contribution to the public project, in which case we can perfectly
identify large traders with large taxpayers and small traders with small
taxpayers. This paper does not assume such hypothesis and therefore with
an arbitrary cost distribution we may well have that large traders do not
contribute to public projects.

Denote by ∆ the simplex of IR�
+, that is ∆ = {p ∈ R�

+ :
∑�

h=1 p� = 1}.
Definition 4. A feasible allocation (f, y) is said to be a linear cost share
equilibrium for the economy E if there exist a price system p : Y → ∆ and
a cost distribution � such that, for almost all t ∈ T , (f(t), y) maximizes the
utility function ut on the budget set{

(h, z) ∈ IR�
+ × Y : p(z) · h + �(t, z)p(z) · c(z) ≤ p(z) · e(t)

}
.

Let � be a cost distribution function. The set of linear cost share equilib-
ria whose corresponding cost distribution function is � will be denoted by
LCE�(E). Thus the set of all linear cost share equilibria of E , LCE(E), is
given by

LCE(E) =
⋃

�∈Φµ

LCE�(E).

If �(t, y) = constant for almost all t ∈ T and y ∈ Y, then we end up into
equal cost share equilibria.

Definition 5. Let (f, y), (g, z) be two feasible allocations. (f, y) is said to
be dominated by (g, z) if ut(g(t), z) > ut(f(t), y) for almost all t ∈ T . A
feasible, non-dominated allocation is said to be Pareto-optimal.

Definition 6. Given a contribution measure σ, we say that a coalition S ∈
T σ-blocks an allocation (f, y) if there exists a public project z ∈ Y and an
integrable assignment of private goods g : S → IR�

+ such that

(i) ut(g(t), z) > ut(f(t), y) for almost all t ∈ S,

(ii)
∫

S
g(t) dµ + σ(S, z)c(z) =

∫
S

e(t) dµ.

We denote by Cσ(E) the set of σ-core allocations, namely feasible allo-
cations that cannot be σ-blocked by any coalition. When the contribution
measure σ(·, y) coincide with µ for any y ∈ Y, then the corresponding core
Cµ(E) is called the proportional core.

It is clear that any σ-core allocation is Pareto optimal. One just need to
put S equal to T and notice that σ(T, ·) = 1.

In [4] and [5] a definition of core is introduced according to a veto mech-
anism of standard (Foley) type. It does not require a contribution measure,
as reported below.
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Definition 7. A coalition S ∈ T blocks an allocation (f, y) if there exists
a public project z ∈ Y and an integrable assignment of private goods g : S →
IR�

+ such that

(i) ut(g(t), z) > ut(f(t), y) for almost all t ∈ S,

(ii)
∫

S
g(t) dµ + c(z) =

∫
S

e(t) dµ.

We denote by C(E) the set of core allocations, i.e. feasible allocations
that cannot be blocked by any coalition. Notice that in the veto mechanism
a blocking coalition when dissenting from a given allocation, is required to
cover the whole cost of the alternative public project. It is easy to show
that Cσ(E) ⊆ C(E) for any σ, for any contribution measure σ.

Proposition 1. For any contribution measure σ, we have Cσ(E) ⊆ C(E).

proof: Let σ be a contribution measure and (f, y) be a σ-core allocation.
Assume, on the contrary, that there exist a coalition S and (g, z) such that

(i) ut(g(t), z) > ut(f(t), y) for almost all t ∈ S,

(ii)
∫

S
g(t) dµ + c(z) =

∫
S

e(t) dµ.

Since for any coalition S and public good z, σ(S, z) ≤ 1 and c(z) ∈ IR�
+,

then ∫
S

g(t) dµ + σ(S, z)c(z) ≤
∫

S
g(t) dµ + c(z) =

∫
S

e(t) dµ.

Define ε =
∫
S e(t) dµ −

∫
S g(t) dµ − σ(S, z)c(z) and notice that ε ≥ 0 and S

σ-blocks (f, y) via
(
g + ε

µ(S) , z
)
, which is a contradiction. �

The next example illustrates that the above inclusion may be strict.

Example 1. There exist a mixed market and a contribution measure σ such
that a core allocation need not be a σ-core allocation.

proof: Consider an economy with only two atoms A and B and µ such
that µ(A) = µ(B) = 1

2 . Fix e(A) = (3, 0), while e(B) = (0, 2). Assume
there are two private goods and two public projects Y = {y, z} such that
c(y) = (1

2 , 0) and c(z) = (0, 1
2 ). Moreover, suppose that agents have the

same utility functions defined as follows:

ut(f(t), y) = f1(t) + f2(t)

ut(f(t), z) =
1
3
f1(t) + f2(t).
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The allocation (f, y), where f(t) = (1, 1) for t = A,B, belongs to the core.
Notice that (f, y) is feasible, indeed

f1(A)µ(A) + f1(B)µ(B) + c1(y) =
1
2

+
1
2

+
1
2

=
3
2

=
3
2

+ 0 = e1(A)µ(A) + e1(B)µ(B)

f2(A)µ(A) + f2(B)µ(B) + c2(y) =
1
2

+
1
2

+ 0 = 1 = 0 +
2
2

= e2(A)µ(A) + e2(B)µ(B).

Assume that (f, y) is not a core allocation. Then there exist a coalition S
and a distribution of private goods g such that

I CASE : (i) ut(g(t), y) = g1(t) + g2(t) > 2 = f1(t) + f2(t) = ut(f(t), y) for all t ∈ S

(ii)
∫

S
g(t) dµ + c(y) =

∫
S

e(t) dµ,

or II CASE : (i) ut(g(t), z) =
1
3
g1(t) + g2(t) > 2 = f1(t) + f2(t) = ut(f(t), y) for all t ∈ S

(ii)
∫

S
g(t) dµ + c(z) =

∫
S

e(t) dµ.

Three subcases may occur according to the three possible coalitions S =
{A}, {B}, T .

If S = {A}, then

I CASE : g1(A) + g2(A) > 2
1
2
g1(A) +

1
2

=
3
2

that is g1(A) = 2

1
2
g2(A) + 0 = 0 that is g2(A) = 0.

This means that 2 < g1(A) + g2(A) = 2, which is a contradiction. Similarly,

II CASE :
1
3
g1(A) + g2(A) > 2

1
2
g1(A) + 0 =

3
2

1
2
g2(A) +

1
2

= 0 which is a contradiction.

If S = {B}, then

I CASE : g1(B) + g2(B) > 2
1
2
g2(B) + 0 = 1

1
2
g1(B) +

1
2

= 0 which is a contradiction.

II CASE :
1
3
g1(B) + g2(B) > 2

1
2
g1(B) + 0 = 0 that is g1(B) = 0

1
2
g2(B) +

1
2

= 1 that is g2(B) = 1.
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This means that 2 < g1(B) + g2(B) = 1, which is a contradiction.

If S = T , we have the following.

I CASE : g1(A) + g2(A) > 2
g1(B) + g2(B) > 2

1
2
g1(A) +

1
2
g1(B) +

1
2

=
3
2

1
2
g2(A) +

1
2
g2(B) + 0 = 1.

Summing up, we get that 4 < [g1(A)+ g2(A)]+ [g1(B)+ g2(B)] = 2+2 = 4,
which is a contradiction. Similarly,

II CASE :
1
3
g1(A) + g2(A) > 2

1
3
g1(B) + g2(B) > 2

1
2
g1(A) +

1
2
g1(B) + 0 =

3
2

and hence
1
3
g1(A) +

1
3
g1(B) = 1

1
2
g2(A) +

1
2
g2(B) +

1
2

= 1.

Summing up, we get that 4 < [13g1(A)+g2(A)]+[13g1(B)+g2(B)] = 1+1 = 2,
which is a contradiction.

Once we have established that (f, y) belongs to the core, define the following
cost distribution function �(A, ·) = 1

2 and �(B, ·) = 3
2 . Notice that the

associated contribution measure σ� is such that σ�(A, ·) = 1
4 and σ�(B, ·) =

3
4 . Moreover, S = {A} σ�-blocks (f, y) via (g, y), where g(A) =

(
11
4 , 0

)
.

Indeed

uA(g(A), y) = g1(A) + g2(A) =
11
4

> 2 = uA(f(A), y)

g1(A)µ(A) + σ�(A, y)c1(y) =
11
8

+
1
8

=
12
8

=
3
2

= e1(A)µ(A)

g2(A)µ(A) + σ�(A, y)c2(y) = 0 = e2(A)µ(A).

This means that (f, y) ∈ C(E) \ Cσ�(E). �

Not surprisingly, any linear cost share equilibrium of E with cost distri-
bution function � is a σ�-core allocation.

Proposition 2. Let (f, y) be a linear cost share equilibrium in E with cost
distribution function � and let σ� be the corresponding contribution measure.
Then, (f, y) is a σ−core allocation and hence it is Pareto optimal.
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proof: Let (f, y) be a linear cost share equilibrium in E with cost distri-
bution function � and assume, on the contrary, that (f, y) is not a σ�-core
allocation. This means that there exist a coalition S ∈ T and an allocation
(g, z) such that

(i) ut(g(t), z) > ut(f(t), y) for almost all t ∈ S, and

(ii)
∫

S
g(t) dµ + σ�(S, z)c(z) =

∫
S

e(t) dµ.

Since (f, y) is a linear cost share equilibrium, by condition (i), there
exists a price system p : Y → ∆ such that for almost all t ∈ S,

p(z) · g(t) + �(t, z)p(z) · c(z) > p(z) · e(t).

This implies that

p(z) ·
∫

S
g(t) dµ +

∫
S

�(t, z) dµ p(z) · c(z) > p(z) ·
∫

S
e(t) dµ,

that is, by (1),

p(z) ·
∫

S
g(t) dµ + σ�(S, z)p(z) · c(z) > p(z) ·

∫
S

e(t) dµ,

which contradicts (ii). �

It is useful to remark that in suitable situations a σ-core allocation as-
signs equivalent bundles to agents that are of the same type (i.e. they have
the same economic characteristics: the same initial endowment and the
same utility function) and are also the same as taxpayers. This observation
is made precise in the next proposition.

Proposition 3. Let (f, y) be a σ�-core allocation. Suppose A is a coalition
such that T \ A does not contain any large trader. Assume further that for
t, s ∈ A one has

ut(·, y) = us(·, y), e(t) = e(s) and �(t, y) = �(s, y).

Then, µ-almost all individuals of A get the same utility under (f, y) namely
ut(f(t), y) is µ-a. e. constant on A.

proof: Let us fix for simplicity ut(·, y) = u(·), �(t, y) = � when t ∈ A and

σ(·) = σ�(·, y). Let g be the average value of f over A: g =
1

µ(A)

∫
A

f dµ.

Consider the two sets C = {t ∈ A : u(g) > u(f(t))} and D = {t ∈ A :
u(g) < u(f(t))}. If we show that none of them is of positive measure, then
we are done.

12



Claim 1. µ(C) = 0.

Suppose not and take α = µ(C)
µ(A) . From the continuity of u we derive that

there exists ε ∈]0, 1[ such that the set B = {t ∈ C : u(εg) > u(f(t))} is of
positive measure.

Since T \A is atomless, Liapunov convexity theorem applies to the mea-
sure

η(·) =

(∫
(·)

f dµ,

∫
(·)

e dµ, σ(·)
)

defined over members of T contained in T \ A. Take therefore S ⊆ T \ A
with η(S) = αη(T \A). Without loss of generality we assume that µ(S) > 05

and prove that the coalition R = S ∪ C blocks (f, y), against the fact that
the latter is a σ-core allocation.

Consider the assignment h(·) defined to be equal to εg on B, equal to g

on C \ B and equal to f(·) + (1 − ε)gµ(B)
µ(S) on S. By monotonicity of u:

ut(h(t), y) > ut(f(t), y), for a. e. t in R.

The equality ∫
R

hdµ + σ(R)c(y) =
∫

R
e dµ

will complete the argument. Now:∫
R

hdµ + σ(R)c(y) =

∫
S

f dµ+(1− ε)gµ(B)+ εgµ(B)+ gµ(C \B)+ c(y)ασ(T \A)+ c(y)�µ(C) =

α

∫
T\A

f dµ + gµ(C) + c(y)[ασ(T \ A) + �µ(C)] =

α

∫
T\A

f dµ + α

∫
A

f dµ + c(y)α[σ(T \ A) + σ(A)] = α

∫
T

e dµ.

but, since e is constant over A,

α

∫
T

e dµ = α

∫
A

e dµ + α

∫
T\A

e dµ = α

∫
A

e dµ +
∫

S
e dµ =

∫
C

e dµ +
∫

S
e dµ =

∫
R

e dµ.

Claim 2. µ(D) = 0.
5If not, it is trivial that coalition C already blocks (f, y) via (g, y).
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Suppose not and take α = µ(D)
µ(A) . Without loss of generality suppose

α < 1 or, what is the same, µ(A \D) > 0. Let a and b the average values of
f over D and A \ D respectively. By definition of D and concavity of u,we
have

u(a) ≥ 1
µ(D)

∫
D

u(f) dµ > u(g).

Similarly u(b) ≥ u(g). Since g = αa + (1 − α)b, we get u(g) = u(αa + (1 −
α)b) > u(g) (concavity again) which is a contradiction. �

3 Interpretation of mixed market via atomless
economies

In this section, we associate to a mixed economy an atomless economy ob-
tained by splitting each atom into a continuum of small traders of the same
type. The aim is to use the interpretation of the original economy as em-
bedded into an atomless one for deriving a corresponding interpretation
of core and competitive allocations.

Remind that large traders have been indicated by A1, A2, . . . and they
form the subset T1 of the set T of agents. Correspondingly, we split the
interval [µ(T0), µ(T )], to be denoted by T ∗

1 , as follows. T ∗
1 is the disjoint

union of the intervals A∗
i defined as

A∗
1 := [µ(T0), µ(T0) + µ(A1)[, ...,

A∗
i := [µ(T0) + µ{A1, ..., Ai−1}, µ(T0) + µ{A1, ..., Ai}[, ...

Now, given the economy

E =
{

(T,T , µ); (Y, c); IR�
+; (ut, et)t∈T

}
the associated atomless economy

E∗ =
{

(T ∗,T ∗, µ∗); (Y, c); IR�
+; (ut, et)t∈T ∗

}
is defined as follows.
The measure space (T ∗,T ∗, µ∗) of agents is the direct sum of (T0,T0, µ)
and the interval T ∗

1 endowed with the σ-algebra of its Lebesgue measurable
subsets and with the Lebesgue measure.

The set Y of public projects as well as the cost function c are unchanged.
Finally, the profile (ut, et)t∈T ∗ of agents’ characteristics extends the orig-

inal profile of members of T by assuming that ut and et, for t ∈ A∗
i , coincide

with uAi and eAi . We shall say that A∗
i is the split of the atom Ai.

It is worth to fix some notation.
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Given a real or vector-valued function ϕ ∈ L1(µ∗), call ϕAi the average

of ϕ over the interval A∗
i , i.e.

1
µ∗(A∗

i )

∫
A∗

i

ϕdµ∗.

Define the element
∼
ϕ ∈ L1(µ) by

∼
ϕ(t) =

{
ϕ(t), for t ∈ T0

ϕAi , for t = Ai.

Reciprocally, for a given real or vector-valued function f ∈ L1(µ) define
over T ∗ the function f∗ ∈ L1(µ∗) by

f∗(t) =
{

f(t), if t ∈ T0

f(Ai), if t ∈ A∗
i .

It is easily checked that for any f ∈ L1(µ),

‖f∗‖L1(µ∗) = ‖f‖L1(µ) and (f∗)∼ = f

while for any ϕ,
‖∼ϕ‖L1(µ) ≤ ‖ϕ‖L1(µ∗)

and clearly for nonnegative f, ϕ∫
T

f dµ =
∫

T ∗
f∗ dµ∗,

∫
T ∗

ϕdµ∗ =
∫

T

∼
ϕ dµ .

So L1(µ) is embedded, by means of the f �→ f∗ mapping, into L1(µ∗) being
isomorphic to the subspace Ls

1(µ
∗) of the latter consisting of functions ϕ

which are µ∗-a.e. constant over any interval A∗
i .

On the other hand, the mapping ϕ �→ ∼
ϕ maps continuously L1(µ∗)

onto L1(µ).
At this point an allocation (f, y) in the economy E can be interpreted

as an allocation (f∗, y) in E∗ preserving the total consumption of private
goods.

Reciprocally, an allocation (ϕ, y) in E∗ can be projected as an allocation
(
∼
ϕ, y) in E again preserving the total consumption of private goods.

Since in E∗ the initial endowment is just e∗, we can observe that under
operators ∗ and ∼, feasibility is preserved in the sense described in the next
proposition.

Proposition 4. Let (f, y) a feasible allocation of the mixed market E, then
the associated allocation (f∗, y) is feasible for E∗. Reciprocally, if (ϕ, y) is
a feasible allocation of the atomless economy E∗, the associated allocation
(
∼
ϕ, y) is feasible for E.

We also register explicitly the useful fact that follows.
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Fact 1. Feasible allocations of the original economy E are in a one-to-one
correspondence with those allocations of E∗ which are (µ∗-) constant over
any set A∗

i .

A further step is to point explicitly out the embedding, made possible
by ∗ and ∼ operators, of (T , µ) into (T ∗, µ∗). Let us denote by ∗(T ) the
sub-sigma-algebra of T ∗ made of those sets X such that for any index i the
intersection X ∩ A∗

i is either empty or coincides with A∗
i . If we restrict the

operator ∗ to characteristic functions, the equation

(χS)∗ = χS∗

defines, for any S ⊆ T , the set

S∗ = (S ∩ T0) ∪
⋃

{i:Ai∈S}
A∗

i

belonging to ∗(T ). Notice that if we restrict ∼ to characteristic functions,
we do not necessarily get another characteristic function, therefore set for
any X ∈ T ∗

∼
X := (X ∩ T0) ∪ {Ai : i ∈ IX}

where IX := {i : X ∩ A∗
i = A∗

i }.
One can note the following trivial facts:

(S∗)∼ = S, [∪k Sk]∗ = ∪kS
∗
k, µ∗(S∗) = µ(S) for k ∈ IN, S, Sk ∈ T

(χX)∼ = χ∼
X

, (
∼
X)∗ = X, [∪kXk]∼ = ∪k

∼
Xk, for k ∈ IN,X,Xk ∈ ∗(T )

to say that

Fact 2. (T , µ) can be identified with (∗(T ), µ∗) by means of the mappings,

each inverse of the other, S �→ S∗ and X �→
∼
X.

and

Fact 3. The set of probabilities Mµ can be identified with the set of proba-
bilities ν defined on ∗(T ) which are absolutely continuous with respect to µ∗

by means of the two mappings

σ �→ ∗(σ), where ∗ (σ)(X) := σ(
∼
X), for X ∈ ∗(T )

and
ν �→ ∼

ν where
∼
ν(S) := ν(S∗), for S ∈ T

each other inverses.
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Cost distribution functions, as well as contribution measures, for E and
for E∗ can also be similarly connected, completing in this way the embedding.
Let us see first cost distribution functions.

Let � be a cost distribution function for E . The associated function �∗,
naturally defined by

�∗(·, y) = [�(·, y)]∗, ∀y ∈ Y

is a cost distribution function in the atomless economy E∗.
On the other hand, if γ is a cost distribution function for E∗ then the

associated function
∼
γ defined by

∼
γ(·, y) = [γ(·, y)]∼, ∀y ∈ Y

is a cost distribution function for the original mixed market E .

Fact 4. Cost distribution functions of the original economy E are in a one-
to-one correspondence with those cost distribution functions of E∗ which are,
for any public project, (µ∗-) constant over any set A∗

i .

Moving to contribution measure, let us introduce a proper subset Ms
µ∗

of Mµ∗ 6 we shall made use of.
Measures M s

µ∗ are those ν ∈ Mµ∗ for which

X ∈ T ∗, X ⊆ A∗
n ⇒ ν(X) =

µ∗(X ∩ A∗
n)

µ∗(A∗
n)

ν(A∗
n).

We shall say that measures ν of Mµ∗ belonging to M s
µ∗ are splitted. For a

given σ ∈ Mµ, define

σ∗(X) = σ(X ∩ T0) +
∑
n∈IN

µ∗(A∗
n ∩ X)

µ∗(A∗
n)

σ({An}), for X ∈ T ∗. (2)

Due to Fact 3 σ∗ can be interpreted as the unique splitted extension of σ
to T ∗. Naturally σ∗ 7 is also µ∗-absolutely continuous. Reciprocally, for any
ν ∈ Mµ∗ the probability

∼
ν 8 defined in Fact 3 may be seen as the restriction

of ν from T ∗ to T .
Straightforward calculations show that

[
∼
ν ]∗ = ν, for any ν ∈ M s

µ∗

6the collection of probability measures on T ∗ that are absolutely continuous with re-
spect to µ∗

7Obviously [∗(σ)]∗ is the same as σ∗.
8Notice that for any S ∈ T we have

∼
ν(S) = ν(S∗) = ν(S ∩ T0) +

∑
{i:Ai∈S}

ν(A∗
i ).
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and
if ν(·) =

∫
(·)

ϕdµ∗, then
∼
ν(·) =

∫
(·)

∼
ϕ dµ.

[σ∗]∼ = σ, for any σ ∈ Mµ

and
if σ(·) =

∫
(·)

� dµ, then σ∗(·) =
∫

(·)
�∗ dµ∗.

Then we can register what follows.

Fact 5. Mµ is in a one-to-one correspondence with Ms
µ∗ being maps

σ ∈ Mµ �→ σ∗ ∈ M s
µ∗

and
ν ∈ M s

µ∗ �→ ∼
ν ∈ Mµ

the each other inverses.

Now, let σ be a contribution measure for E . The associated function σ∗,
naturally defined by

σ∗(·, y) = [σ(·, y)]∗, ∀y ∈ Y

is a contribution measure in the atomless economy E∗.
On the other hand, if ν is a contribution measure for E∗ then the asso-

ciated function
∼
ν defined by

∼
ν(·, y) = [ν(·, y)]∼, ∀y ∈ Y

is a contribution measure for the original mixed market E .

Fact 6. Contribution measures of the original economy E are in a one-to-
one correspondence with those contribution measures of E∗ which are splitted,
for any public project.

Fact 7. If in the original economy E, the contribution measure σ is associ-
ated to the cost distribution function �, then in E∗ the contribution measure
σ∗ and the cost distribution function �∗ are associated too.

Reciprocally, if in the atomless economy E∗, the contribution measure ν
is associated to the cost distribution function ϕ, then in the original econ-
omy E the contribution measure

∼
ν and the cost distribution function

∼
ϕ are

associated too.

As a consequence of proposition 3, we have that
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Proposition 5. Let σ be a contribution measure for the economy E. If the
allocation (ϕ, y) of the economy E∗ is a σ∗-core allocation, then the allocation
(
∼
ϕ, y) is a σ-core allocation for E 9.

proof: Suppose, on the contrary, that (
∼
ϕ, y) is not a σ-core allocation and

let S be a coalition that blocks it so that for suitable g and z we have
ut(g(t), z) > ut(

∼
ϕ(t), y) for almost all t ∈ S and the equality∫

S
g dµ + σ(S, z)c(z) =

∫
S

e dµ

holds. We shall see that S∗ blocks (ϕ, y) via g∗ and z. Indeed,∫
S∗

g∗ dµ∗ =
∫

S
g dµ,

∫
S∗

e∗ dµ∗ =
∫

S
e dµ

and σ∗(S∗) = (σ∗)∼(S) = σ(S). Moreover ut(g∗(t), z) > ut(ϕ(t), y) for µ∗-all
t ∈ S∗. To check this consider t ∈ A∗

i with Ai ∈ S:

ut(g∗(t), z) = uAi(g(Ai), z) > uAi(ϕAi , y) ≥ 1
µ∗(A∗

i )

∫
A∗

i

uAi(ϕ(t), y) dµ∗.

Now apply proposition 3 to (T ∗,T ∗, µ∗), (ϕ, y) and for A = A∗
i . It follows

that uAi(ϕ(t), y) is µ∗-a. e. constant over the set A∗
i and the assertion

follows. �

Reversing the above proposition will be a task of the next session. Con-
cerning linear cost share equilibria we remark what follows.

Proposition 6. Let � be a cost distribution function for the economy E.
Then the following implications hold true.

(i) (f, y) ∈ LCE�(E) ⇒ (f∗, y) ∈ LCE�∗(E∗)

(ii) (ϕ, y) ∈ LCE�∗(E∗) ⇒ (
∼
ϕ, y) ∈ LCE�(E).

Consequently, for the given cost distribution function �, linear cost share
equilibria of the original economy E are (via f �→ f∗) in a one-to-one corre-
spondence with those of E∗, with respect to �∗, which are µ∗-a. e. constant
over any set A∗

i .

9In particular one has that

(f∗, y) ∈ Cσ∗(E∗) ⇒ (f, y) ∈ Cσ(E).

Note that the same proof shows that, given any contribution measure ν for the economy
E∗,

(f∗, y) ∈ Cν(E∗) ⇒ (f, y) ∈ C∼
ν
(E)

while it does not guarantee that (ϕ, y) ∈ Cν(E∗) ⇒ (
∼
ϕ, y) ∈ C∼

ν
(E∗).
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proof: (i) is trivial.
(ii) Take the price system p that ensures a. e. on T ∗

(+) ut(g, z) > ut(ϕ(t), y) ⇒ p(z) · g + �∗(t, z)p(z) · c(z) > p(z) · e∗(t).

Now for t ∈ T assume ut(g, z) > ut(
∼
ϕ(t), y). If t ∈ T0, because of (+), p(z) ·

g + �(t, z)p(z) · c(z) > p(z) · e(t). If t = Ai we have, because of concavity of

utility functions, uAi(g, z) > uAi(ϕAi , y) ≥ 1
µ∗(A∗

i )

∫
A∗

i

uAi(ϕ(t), y) dµ∗ and

on a subset of A∗
i of positive µ∗-measure, uAi(g, z) > uAi(ϕ(t), y). So,

for a t ∈ A∗
i , we have uAi(g, z) > uAi(ϕ(t), y) to be rewritten ut(g, z) >

ut(ϕ(t), y). From (+), we get p(z) · g + �∗(t, z)p(z) · c(z) > p(z) · e∗(t) ⇔
p(z) · g + �(Ai, z)p(z) · c(z) > p(z) · e(Ai).

�

4 Equivalence Theorem

This section focuses on the equivalence between σ-core allocations and lin-
ear cost share equilibria with respect to the cost distribution function �σ

associated to σ. In order to prove the equivalence theorem the following
hypotheses are needed.

(A.3) Compensation condition For every agent t ∈ T , every bundle
v ∈ IR�

+, and all public projects y, z ∈ Y, there exists a bundle g ∈ IR�
+ such

that ut(g, z) ≥ ut(v, y).

Setting

P (t, y, z, v) := {g ∈ IR�
+ : ut(g, z) ≥ ut(v, y)}

and
P s(t, y, z, v) := {g ∈ IR�

+ : ut(g, z) > ut(v, y)}

the above condition just says that P (t, y, z, v) �= ∅.

(A.4) Second essentially condition For any agent t ∈ T , for all y, z ∈ Y
and v ∈ IR�

+ the inequality ut(0, z) ≤ ut(v, y) holds, i.e. P (t, z, y, 0) = IR�
+.

Given an allocation (f, y) and a public project z, set

Ψ(t, z) := P s(t, y, z, f(t)) = {g ∈ IR�
+ : ut(g, z) > ut(f(t), y)}.

Observe that, because of monotonicity of utilities, under (A.3) Ψ is never
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empty10.

(A.5) Integrable preferred bundles For any allocation (f, y) and for all
z ∈ Y, there exists g such that (g, z) is feasible and moreover µ-a. e. on T
one has

v ∈ IR�
+, ut(v, z) > ut(f(t), y) ⇒ ut(g(t), z) ≥ ut(f(t), y).

Of course the above implication can be rewritten as

P s(t, y, z, f(t)) �= ∅ ⇒ g(t) ∈ P (t, y, z, f(t))

leading to the interpretation11 of g as an integrable selection of P (t, y, z, f(t)).
A selection that certainly exists under the simultaneous validity of both
(A.3) and (A.5).

Our main aim is to prove that when atoms are of the same type, it gen-
erates such intense competition among them that we can consider a mixed
economy equivalent to an atomless one, and hence the Equivalence Theorem
can be restored. First notice that the following results hold true.

Theorem 1. There exists an atomless economy E∗ with public goods with
preferences represented by strictly monotone and quasi-concave utility func-
tions for which the set LCE(E∗) of linear cost share equilibria is non empty.

proof: See [5, Theorem 1]. �

Theorem 2. Let E be an atomless economy with public goods (i.e. T1 =
∅ and T = T0) satisfying the assumptions (A.1) − −(A.4). Let σ ∈ Mµ

be a contribution measure and let �σ be the corresponding cost distribution
function. Then Cσ(E) = LCE�σ .

proof: Let (f, y) be a σ-core allocation. Define for any z ∈ Y and t ∈ T ,

F (t, z) = {Ψ(t, z) − e(t)} ∪ {−�σ(t, z)c(z)}

F (z) =
∫

T
F (t, z) dµ(t) + c(z).

It is easy to show that 0 ∈ F (z) for any z ∈ Y. Indeed, since for all t,
−�σ(t, z)c(z) ∈ F (t, z) then∫

T
[−�σ(t, z)c(z)]dµ + c(z) = −c(z) + c(z) = 0 ∈ F (z).

Moreover the following holds true:
10Indeed, the compensation condition implies that for all t and z, there exists g ∈ R�

+

such that ut(g, z) ≥ ut(f(t), y). Then, define g̃ = g + 1�, where 1� = (1, . . . , 1) ∈ R�
+.

From monotonicity it follows that ut(g̃, z) > ut(f(t), y), that is g̃ ∈ Ψ(t, z).
11If we consider selection of a multifunction a function whose values belong to the

nonempty values of the multifunction.

21



Claim 3. F (z) ∩ Int(IR�−) = ∅ for all z ∈ Y.

Suppose, on the contrary, that there exist z ∈ Y and h ∈ F (z)∩Int(IR�−).
Take, for all t ∈ T , a suitable g(t) ∈ F (t, z) such that g(·) is integrable and

h =
∫

T
g(t) dµ + c(z). Define

S = {t ∈ T : g(t) = −�σ(t, z)c(z)} ,

and observe that if t ∈ T \ S, then g(t) ∈ Ψ(t, z) − {e(t)}, that is there
exists g̃(t) such that ut(g̃(t), z) > ut(f(t), y) and g(t) = g̃(t) − e(t). It is
easy to check that µ(T \ S) > 0. For if not, then g(t) = −�σ(t, z)c(z) for

almost all t ∈ T , and hence h =
∫

T
[−�σ(t, z)c(z)]dµ + c(z) = 0, which is a

contradiction since h ∈ IntIR�−. Furthermore,

0 > h =
∫

T
g(t)dµ + c(z) =

∫
S
[−�σ(t, z)c(z)]dµ +

∫
T\S

[g̃(t) − e(t)]dµ + c(z)

= −σ(S, z)c(z) +
∫

T\S
g̃(t)dµ −

∫
T\S

e(t)tdµ + σ(T, z)c(z)

=
∫

T\S
g̃(t)dµ + σ(T \ S, z)c(z) −

∫
T\S

e(t)dµ.

Hence ut(g̃(t), z) > ut(f(t), y) for almost all t ∈ T \ S and∫
T\S

g̃(t)dµ + σ(T \ S, z)c(z) <

∫
T\S

e(t)dµ.

It is easy to show that T \ S σ-blocks (f, y) via (ḡ, z). This completes the
proof the Claim 3 since it contradicts the hypothesis that (f, y) is a σ-core
allocation.

From Liapunov convexity theorem, it follows that for all z ∈ Y, the set
F (z) is convex. Therefore, by Minkowski’s separating hyperplane theorem,
for each z ∈ Y there exists p(z) ∈ ∆ such that p(z) · F (z) ≥ 0. Due to the
fact that 0 ∈ F (z), this implies that inf{p(z) · h |h ∈ F (z)} = 0 that is

inf
{

p(z) ·
∫

T
F (t, z)dµ + p(z) · c(z)

}
= 0. (3)

Since for all t ∈ T , −�σ(t, z)c(z) ∈ F (t, z), it follows that

inf p(z) · F (t, z) ≤ −�σ(t, z)p(z) · c(z). (4)

Therefore from (3) and (4) it follows that for almost all12 t ∈ T

inf p(z) · F (t, z) + �σ(t, z)p(z) · c(z) = 0.
12Let n(t) be inf p(z) ·F (t, z)+�σ(t, z)p(z) ·c(z). Condition (3) implies that

∫
T

n(t)dµ =
0, while (4) implies that n(t) ≤ 0 for all t ∈ T . Hence n(t) = 0 for almost all t ∈ T (see
Claim 2 in [5] and Proposition 6 in [13] p.63).
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This means that for almost all t ∈ T , for all z ∈ Y and v ∈ IR�
+, we have

that if ut(v, z) > ut(f(t), y), then p(z) · v + �σ(t, z)p(z) · c(z) ≥ p(z) · e(t).
Moreover for almost all t ∈ T , p(y) ·f(t)+�σ(t, y)p(y) · c(y) = p(y) · e(t).
Indeed, by continuity, p(y) · f(t) + �σ(t, y)p(y) · c(y) ≥ p(y) · e(t) for

almost all t ∈ T . Assume that there exists a coalition S ∈ T such that for
almost all t ∈ S, p(y) · f(t) + �σ(t, y)p(y) · c(y) > p(y) · e(t) and for almost
all t ∈ T \ S, p(y) · f(t) + �σ(t, y)p(y) · c(y) = p(y) · e(t). Thus,

p(y)·
[∫

T
f(t) dµ + c(y) −

∫
T

e(t) dµ

]
= p(y)·

[∫
S

f(t) dµ + σ(S, y)c(y) −
∫

S
e(t) dµ

]
+

+p(y) ·
[∫

T\S
f(t) dµ + σ(T \ S, y)c(y) −

∫
T\S

e(t) dµ

]
> 0,

which contradicts the feasibility of (f, y). Therefore, for almost all t ∈ T ,
p(y) · f(t) + �σ(t, y)p(y) · c(y) = p(y) · e(t).

Define B = {t ∈ T : �σ(t, z)p(z) · c(z) < p(z) · e(t)} and notice that µ(B) >

0, since otherwise p(z) · c(z) ≥ p(z) ·
∫

T
e(t)dµ and, since p(z) > 0, we con-

tradict the assumption that for any z ∈ Y, c(z) �
∫

T
e(t)dµ. Moreover,

for all z and t ∈ B, all v ∈ IR�
+, if ut(v, z) > ut(f(t), y), then p(z) · v +

�σ(t, z)p(z) · c(z) ≥ p(z) · e(t) > �σ(t, z)p(z) · c(z), and hence p(z) · v > 0.
Since utility functions are continuous, there exists ε ∈ (0, 1) such that if
ut(v, z) > ut(f(t), y), then ut(εv, z) > ut(f(t), y). Hence,

p(z) · e(t) ≤ p(z) · εv + �σ(t, z)p(z) · c(z) < p(z) · v + �σ(t, z)p(z) · c(z).

Thus for all t ∈ B and z ∈ Y if ut(v, z) > ut(f(t), y), then p(z) · v +
�σ(t, z)p(z) · c(z) > p(z) · e(t). This implies that for any t ∈ B and z ∈ Y,
there exists f̄ such that (f̄(t), z) maximizes ut(·, z) in13

Bt(p, z) = {g ∈ IR�
+ : p(z) · g + �σ(t, z)p(z) · c(z) ≤ p(z) · e(t)}.

Claim 4. For any z ∈ Y, p(z) � 0.

Let t be in B and assume on the contrary that there exists z ∈ Y such
that H(z) := {k ∈ {1, . . . , 
} : pk(z) = 0} is non empty. Define

g̃ =
{

f̄k if k /∈ H(z)
f̄k + δ otherwise,

13Notice that for all t ∈ B, Bt(p, z) is non empty. Indeed for all t ∈ B, ε(t) = p(z)·e(t)−
�σ(t, z)p(z) · c(z) > 0 and p(z) > 0, then put g =

(
ε(t)

∑�
k=1 pk(z)

, . . . , ε(t)
∑�

k=1 pk(z)

)
∈ IR�

+ and

notice that g ∈ Bt(p, z) �= ∅.
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where δ > 0 and notice that ut(g̃(t), z) > ut(f̄(t), z) and

p(z) · g̃ + �σ(t, z)p(z) · c(z) =
∑

k/∈H(z)

pk(z)f̄k(t) + �σ(t, z)p(z) · c(z)

= p(z) · f̄(t) + �σ(t, z)p(z) · c(z) ≤ p(z) · e(t).

This is a contradiction since f̄ is maximal. Therefore for any z ∈ Y, p(z) �
0. We already know that for all t ∈ T if ut(g, z) > ut(f(t), y), then p(z) ·
g + �σ(t, z)p(z) · c(z) ≥ p(z) · e(t). We just need to show that p(z) · g +
�σ(t, z)p(z) · c(z) > p(z) · e(t). Assume, on the contrary that for some t ∈ T ,
p(z)·g+�σ(t, z)p(z)·c(z) = p(z)·e(t), thus by continuity it follows that there
exists ε ∈ (0, 1) such that ut(εg, z) > ut(f(t), y). Moreover, since p(z) � 0
and assumption (A.4) holds, then

p(z) · e(t) ≤ εp(z) · g + �σp(z) · c(z) < p(z) · g + �σ(t, z)p(z) · c(z) = p(z) · e(t),

which is a contradiction. Therefore for all t ∈ T , if ut(g, z) > ut(f(t), y),
then p(z) · g + �σ(t, z)p(z) · c(z) > p(z) · e(t), that is (f, y) is a linear cost
share equilibrium. �

The next result reverses proposition 5

Proposition 7. Let E be a mixed market with public goods that satisfies the
hypotheses (A.1) − −(A.5). Let σ ∈ Mµ be a contribution measure and let
�σ be the corresponding cost distribution function for E. Moreover, assume
that there are at least two atoms and that all atoms are of the same type and
also the same as taxpayers under �σ. Then

(f, y) ∈ Cσ(E) ⇒ (f∗, y) ∈ Cσ∗(E∗).

To prove the above proposition some lemmas are useful. First we give a
straightforward extension of Schmeidler’s theorem to economies with public
projects.

Lemma 1. Let E be an atomless economy with public goods (i.e. T1 = ∅
and T = T0). Let σ be a contribution measure for E and S be a coalition
which σ-blocks the allocation (f, y) via (g, z). Suppose that µ(S∩P ) ≥ α > 0
for a coalition P . Then, there exists a coalition R ⊆ S that σ-blocks (f, y)
via (g, z) and with µ(R ∩ P ) = α .

proof: If S σ-blocks (f, y) via (g, z), so that:

(i) ut(g(t), z) > ut(f(t), y) for almost all t ∈ S

(ii)
∫

S
g(t) dµ + σ(S, z)c(z) =

∫
S

e(t) dµ,
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define the vector measure ν on the subsets of S which are in T by setting

ν(·) =

(∫
(·)

e(t) dµ ;
∫

(·)
g(t) dµ ; µ(· ∩ P ); σ(·, z)

)
.

Since α
µ(S∩P ) ≤ 1, then, by Liapunov Theorem, there exists a coalition

R ⊆ S such that
ν(R) =

α

µ(S ∩ P )
ν(S).

The coalition R σ-blocks (f, y) via (g, z) and it is such that µ(R∩P ) = α.
�

Now we extend Vind’s theorem to economies with public projects.

Lemma 2. Let E be an atomless economy with public goods which satisfies
the hypotheses (A.1) −−(A.5). Given a contribution measure σ, if (f, y) is
not a σ-core allocation, then for any 0 < α < µ(T ) there exists a coalition
S ∈ T with µ(S) = α which σ-blocks (f, y).

proof: Since (f, y) is not a σ-core allocation, there exist a coalition S and
an allocation (g, z) such that

(i) ut(g(t), z) > ut(f(t), y) for almost all t ∈ S

(ii)
∫

S
g(t) dµ + σ(S, z)c(z) =

∫
S

e(t) dµ.

If α ∈ ]0, µ(S)], the previous lemma applies. Therefore let us suppose α >
µ(S).

Since utilities are continuous, there exist ε > 0 and B ⊆ S, with µ(B) > 0
such that ut(εg(t), z) > ut(f(t), y) for almost all t ∈ B. Define g(t) =
εg(t)χB + g(t)χS\B , and notice that ut(g(t), z) > ut(f(t), y) for almost all
t ∈ S. Moreover, thanks to the second essentially condition,∫

S
g(t) dµ + σ(S, z)c(z) −

∫
S

e(t) dµ = −γ < 0.

As we have seen, the joint action of assumptions (A.3) and (A.5) leads
to the existence of a distribution of private goods h̄ : T → IR�

+ such that
(h̄, z) is feasible and ut(h̄(t), z) ≥ ut(f(t), y) for all t ∈ T .

For any δ ∈ (0, 1), concavity assumption guarantees that for almost all
t ∈ S, ut(δg(t) + (1 − δ)h̄(t), z) > ut(f(t), y). Define the vector measure

λ(I) =
(∫

I
h̄(t) dµ,

∫
I
e(t) dµ, µ(I), σ(I, z)

)
,

on subsets I of T \ S which are members of T . Since δ ∈ (0, 1), there
exists Sδ ⊆ T \ S such that λ(Sδ) = (1 − δ)λ(T \ S). Define the following
distribution of private goods:
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ĝ(t) =

{
δg(t) + (1 − δ)h̄(t) if t ∈ S

h̄(t) + δ γ
µ(Sδ) if t ∈ Sδ

By monotonicity, ut(ĝ(t), z) > ut(f(t), y) for almost all t ∈ S ∪ Sδ.
Moreover ∫

S∪Sδ

ĝ(t) dµ + σ(S ∪ Sδ, z)c(z) −
∫

S∪Sδ

e(t) dµ =

= δ

∫
S

g(t) dµ+(1−δ)
∫

S
h̄(t) dµ+

∫
Sδ

h̄(t) dµ+δγ+[σ(S, z)+σ(Sδ , z)]c(z)+

−
∫

S
e(t) dµ −

∫
Sδ

e(t) dµ =

= −δγ + (1 − δ)σ(S, z)c(z) − (1 − δ)
∫

S
e(t) dµ + (1 − δ)

∫
S

h̄(t) dµ+

+(1 − δ)
∫

T\S
h̄(t) dµ + δ γ + (1 − δ)σ(T \ S, z)c(z) − (1 − δ)

∫
T\S

e(t) dµ =

= (1 − δ)σ(T, z)c(z) + (1 − δ)
∫

T
h̄(t) dµ − (1 − δ)

∫
T

e(t) dµ =

= (1 − δ)
[∫

T
h̄(t) dµ + c(z) −

∫
T

e(t) dµ

]
≤ 0.

Notice that µ(S ∪ Sδ) = µ(S) + (1 − δ)µ(T \ S).

Let ε =
∫

S∪Sδ

e(t) dµ −
∫

S∪Sδ

ĝ(t) dµ − σ(S ∪ Sδ, z)c(z) ≥ 0 and define

k(t) = ĝ(t) +
ε

µ(S ∪ Sδ)
.

By arbitrariness of δ, we have constructed a coalition of arbitrary measure
that σ-blocks (f, y) via (k, z). In particular we can set δ in such a way that
µ(S ∪ Sδ) = α. �

The proof above shows that a slightly more general formulation can be
given to the lemma.

Lemma 3. Let E be an atomless economy with public goods which satisfies
the hypotheses (A.1), (A.2) and (A.4). Let σ be a contribution measure for
E. Let (f, y) be an allocation such that, for any public project z, the corre-
spondence P (t, y, z, f(t)) admits a selection h̄ such that (h̄, z) is a feasible.
If (f, y) is not a σ-core allocation, then for any 0 < α < µ(T ) there exists a
coalition S ∈ T with µ(S) = α which σ-blocks (f, y).
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We give a counterexample to the validity of Vind’s theorem for the σ-core
of our model of cost sharing with a general cost function �(t, y).

Example 2. Consider an atomless economy with public goods with T =
[0, 1], two commodities, the set of public projects Y = {y, z}, the initial
endowment density uniform over agents and equal to et ≡ (1, 1), the cost
function defined by c(y) = (1

2 , 1
2) and c(z) = (3

4 , 3
4), utility functions defined

by ut(h1, h2, y) = ut(h1, h2, z) = h1 for each t ∈ T , the cost distribution
function equal to �(t, z) = 0.4 for each t ∈ [0, 1

2 ], �(t, z) = 2.4 for each
t ∈ (1

2 , 3
4 ] and �(t, z) = 0.8 for each t ∈ (3

4 , 1] while �(t, y) = 1 for each t ∈ T .
The allocation (f, y), defined by f(t) = (1

2 , 1
2) over T , is clearly feasible. It

does not belong to the σ�-core since it is blocked by the coalition [0, 1
2 ] via

the allocation (g, z) defined by g(t) = (0.7, 0.7). Indeed, it results

ut(g(t), z) = 0.7 > 0.5 = ut(f(t), y), for each t ∈ [0,
1
2
]

and ∫ 1
2

0
g(t)dµ +

∫ 1
2

0
�(t, z)c(z)dµ = (0.5, 0.5) =

∫ 1
2

0
e(t)dµ.

Observe now that (f, y) cannot be blocked by a coalition of measure 7
8 .

Indeed, assuming that a coalition S exists such that µ(S) = 7
8 and S σ-

blocks (f, y) by means of a suitable allocation (g, z), then the following
contradiction arises.

Denote by S1, S2 and S3 the intersections of such coalition with [0, 1
2 ],

(1
2 , 3

4 ] and (3
4 , 1] respectively. Then µ(Si) ≥ 1

8 for i = 1, 2, 3. From

ut(g(t), z) = g1(t) > 0.5 = ut(f(t), y), for each t ∈ S

and ∫
S

g(t)dµ +
∫

S
�(t, z)c(z)dµ =

∫
S

e(t)dµ

it follows, along the first coordinate, that the equality becomes

µ(S) =
∫

S
g1(t)dµ +

3
4

∫
S

�(t, z)dµ

that means
0.2µ(S1) − 1.3µ(S2) − 0.1µ(S3) > 0

and, considering that S2 and S3 measures at least 1/8, we get that µ(S1) > 7
8 .

Too much! On the other hand the allocation (f, y) can’t be blocked by a
coalition S under the same project y by construction. Hence the conclusion
follows.

Observe also that in this example the existence of an allocation under
the project z which is feasible and ensures at least the same levels of utilities
given by (f, y) (i.e. ut(g(t), z) = (g(t))1 ≥ 0.5 = ut(f(t), y) would imply,
due to feasibility, the contradiction 1 ≥ 1

2 + 3
4 .
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We are now ready to prove proposition 7. Then the equivalence between
the σ-core and the set of linear cost share equilibria in a mixed market
with public goods, stated below, is just an application of proposition 2,
proposition 7, theorem 2 and proposition 6.

Theorem 3. Let E be a mixed market with public goods that satisfies the
hypotheses (A.1) − −(A.5). Let σ ∈ Mµ be a contribution measure and let
�σ be the corresponding cost distribution function for E. Moreover, assume
that there are at least two atoms and that all atoms are of the same type and
also the same as taxpayers under �σ. Then Cσ(E) = LCE�σ(E).

proof of proposition 7: Let the allocation (f, y) be in the σ-core. Ap-
ply proposition 3 for A = T1 = {A1, A2, ...}. Since there are at least two
elements in T1, if B is any of the atoms, then µ(T ) > µ(T0) + µ({B}) and
uAi(f(Ai), y) = uB(f(B), y) for any i. Note also that uniqueness of type for
atoms says that on T ∗

1 we have ut = uB ∀t.
An appeal to lemma 3, for the economy E∗ under the assumption that

(f∗, y) /∈ Cσ∗(E∗) 14, says that a coalition R ⊆ T ∗ exists such that µ∗(R) =
µ(T0)+µ({B}) and such that it σ∗-blocks (f∗, y) via an allocation (ϕ, z). Ob-
viously µ∗(R∩T ∗

1 ) ≥ µ({B}) and lemma 1 gives us the possibility to assume
that µ∗(R ∩ T ∗

1 ) = µ({B}). Now we show that we violate the assumption
that (f, y) is in the σ-core. Indeed, let S be the coalition S = R ∩ T0 ∪ {B}
and g the distribution of private goods equal to ϕ on R∩T0 and in B equal

to the average value of ϕ over R ∩ T ∗
1 : g(B) =

1
µ({B})

∫
R∩T ∗

1

ϕdµ∗.

On S we have ut(g(t), z) > ut(f(t), y). This is clear for t ∈ R ∩ T0. For

t = B we have uB(g(B), z) ≥ 1
µ({B})

∫
R∩T ∗

1

uB(ϕ(t), z) dµ∗ for concavity.

Then for t ∈ R ∩ T ∗
1 :

from uB(ϕ(t), z) = ut(ϕ(t), z) we get

uB(g(B), z) ≥ 1
µ({B})

∫
R∩T ∗

1

ut(ϕ(t), z) dµ∗,

from ut(ϕ(t), z) > ut(f∗(t), y) we get

uB(g(B), z) >
1

µ({B})

∫
R∩T ∗

1

ut(f∗(t), y) dµ∗,

and from ut(f∗(t), y) = uB(f(B), y) we get

uB(g(B), z) > uB(f(B), y)
14Assumptions (A.1), (A.2) and (A.4) are automatically inherited by E∗. As of the

existence of feasible selections of P (t, y, z, f∗(t)), note that because of (A.3) and (A.5),
on T the correspondence P (t, y, z, f(t)) has a feasible selection, say (g, z). As a conse-
quence (g∗, z) is a feasible allocation such that on T ∗ the function g∗ is a selection of
P (t, y, z, f∗(t)).
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as declared.
For simplicity just denote by � the cost distribution function associated

to σ, we know that �∗ is then associated to σ∗. Since all atoms are the same
as taxpayers, we have that �∗(t, ·) = �(B, ·) for all t ∈ T ∗

1 . Hence, starting

from equation
∫

R
ϕdµ∗ + σ∗(R, z)c(z) =

∫
R

e∗ dµ∗, we get a contradiction

by computing

∫
S

g(t) dµ + σ(S, z)c(z) =
∫

R∩T0

ϕ(t) dµ +

g(B)µ(B) + σ(R ∩ T0, z)c(z) + σ({B}, z)c(z) =
∫

R∩T0

ϕ(t) dµ∗ +
∫

R∩T ∗
1

ϕ(t) dµ∗

+σ∗(R ∩ T0, z)c(z) + µ({B}) �(B, z)c(z) =
∫

R
ϕ(t) dµ∗

+σ∗(R ∩ T0, z)c(z) +
∫

R∩T ∗
1

�∗(t, z) dµ∗c(z) =
∫

R
ϕ(t) dµ∗

+σ∗(R ∩ T0, z)c(z) + σ∗(R ∩ T ∗
1 , z)c(z) =

∫
R

ϕ(t) dµ∗ + σ∗(R, z)c(z) =∫
R

e∗(t) dµ∗ =
∫

R∩T0

e(t) dµ∗ +
∫

R∩T ∗
1

e∗(t) dµ∗

∫
R∩T0

e(t) dµ + µ({B})e(B) =
∫

S
e(t) dµ.

�

5 Some Counterexamples

Here, we underline the importance of hypotheses made on atoms in order
to get the Equivalence Theorem in mixed markets with public projects. We
present two examples. The first shows that if we assume the existence of
an unique atom, then the Equivalence Theorem is not valid anymore. The
second shows the failure of the Equivalence theorem in oligopolistic markets
if we admits that atoms may be different from each other.

Example 3. Consider a mixed market with only one atom A with µ({A}) =
1
2 . For example, let the measure space of agents be the direct sum of the
ordinary interval T0 = [0, 1

2 [ and the point A = 1
2 on which we concentrate a

weight equal to one half. Assume two private goods and two public projects
y, z with costs c(y) = (1, 1) and c(z) = (0, 1). Assume that e(t) = (5, 1)
for t < 1

2 and e(A) = (1, 5). The utility functions are the same for all
agents, that is for all t ∈ T, h ∈ IR2

+, we have ut(h, y) =
√

h1 +
√

h2 and
ut(h, z) =

√
h1 +

√
h2 − 2. Consider the cost distribution function � = 1
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constantly. The associated contribution measure σ� obviously coincide with
µ independently on the public project y or z.

We first notice that the allocation (f, y) where f(t) = (2, 2) for all t ∈ T
is the unique �-linear cost share equilibrium. An equilibrium price system
necessarily entails p(y) = (1

2 , 1
2 ).

Indeed, for agent A and public good y, we need to solve max
√

f1(A) +√
f1(A) subject to

p1(y)f1(A) + p2(y)f2(A) + p1(y) + p2(y) = p1(y) + 5p2(y).

The solution is f1(A) = 4[p2(y)]2

p1(y) and f2(A) = 4p1(y).

For any t ∈ T0 and y, we need to solve max
√

f1(t) +
√

f1(t) subject to

p1(y)f1(t) + p2(y)f2(t) + p1(y) + p2(y) = 5p1(y) + p2(y).

The solution is f1(t) = 4p2(y) and f2(t) = 4[p1(y)]2

p2(y) .
Imposing the feasibility condition we get that p(y) = (1

2 , 1
2) and hence

f(t) = (2, 2) for all t ∈ T .

On the other hand, for the agent A and public good z, we have to solve
max

√
f1(A) +

√
f1(A) − 2 subject to

p1(z)f1(A) + p2(z)f2(A) + p2(z) = p1(z) + 5p2(z).

The solution is f1(A) = p2(z)[p1(z)+4p2(z)]
p1(z) and f2(A) = p1(z)[p1(z)+4p2(z)]

p2(z) .

For any t ∈ T0 and z, we need to solve max
√

f1(t) +
√

f1(t) − 2 subject to

p1(z)f1(t) + p2(z)f2(t) + p2(z) = 5p1(z) + p2(z).

The solution is f1(t) = 5p2(z) and f2(t) = 5[p1(z)]2

p2(z) .

Imposing the feasibility condition we get that p(z) =
(√

6 − 2, 3 −
√

6
)

and

hence f(t) =
(
5(3 −

√
6), 10(3−√

6)
3

)
for all t ∈ T0 and f(A) =

(
5
√

6 − 9, 10
√

6−18
3

)
.

Notice that for all t ∈ T0, ut((2, 2), y) > ut

((
5(3 −

√
6), 10(3−√

6)
3

)
, z
)

and uA((2, 2), y) > uA

((
5
√

6 − 9, 10
√

6−18
3

)
), z
)
. Therefore, (f, y), with

f(t) = (2, 2) for all t ∈ T is the unique �-linear cost share equilibrium.
On the other hand the feasible allocation (h, y) with h(t) = (1, 1) for

all t < 1
2 and h(A) = (3, 3) is a µ-core allocation. Indeed, assume, on the

contrary, that there exist a coalition S, a public project x and a distribution
of private goods g such that

(i) ut(g(t), x) > ut(h(t), y) for almost all t ∈ S

(ii)
∫

S
g(t) dµ + µ(S)c(x) =

∫
S

e(t) dµ.
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The project x may be either y or z, in any case we get a contradiction.
If x = y we have

√
g1(t) +

√
g2(t) > 2 for almost all t ∈ S, t < 1

2√
g1(A) +

√
g2(A) > 2

√
3 if A ∈ S∫

S\{A} g1(t)dµ + µ(S ∩ {A})g1(A) = 4µ(S \ {A})∫
S\{A} g2(t)dµ + µ(S ∩ {A})g2(A) = 4µ(S ∩ {A})

and see that both components S \ {A} and S ∩{A} of S must have positive
measure. In particular the coalition S contains the agent A.

Since from
√

g1(t)+
√

g2(t) > 2 it follows that g1(t)+g2(t) > 2 and from√
g1(A) +

√
g2(A) > 2

√
3 it follows that g1(A) + g2(A) > 6, by summing

the last two conditions in the above system we get µ(S \ {A}) > 1
2 , which is

a contradiction.
If x = z we have
√

g1(t) +
√

g2(t) − 2 > 2 for almost all t ∈ S, t < 1
2√

g1(A) +
√

g2(A) − 2 > 2
√

3 if A ∈ S∫
S\{A} g1(t)dµ + µ(S ∩ {A})g1(A) = 5µ(S \ {A}) + µ(S ∩ {A})∫
S\{A} g2(t)dµ + µ(S ∩ {A})g2(A) = 4µ(S ∩ {A})

and again see that the coalition S contains the agent A.
Since from

√
g1(t) +

√
g2(t)− 2 > 2 it follows that g1(t) + g2(t) > 8, we

have, by summing the last two conditions in the above system, that

5µ(S\{A})+5
2

=
∫

S\{A}
(g1(t) + g2(t)) dµ+

g1(A) + g2(A)
2

> 8µ(S\{A})+g1(A) + g2(A)
2

and therefore

5 > 6µ(S \ {A}) + g1(A) + g2(A).

Now, if g1(A) ≤ 1, then
√

g2(A) > 1 + 2
√

3, that is g2(A) > 13 + 4
√

3,
which is impossible.

If g1(A) > 1, then 1 + g2(A) < g1(A) + g2(A) < 5, so g2(A) < 4 and√
g1(A) +

√
g2(A) − 2 <

√
g1(A). Finally 12 < g1(A) which is also impos-

sible.
Therefore, (h, y) is a µ-core allocation but it is not a �-linear cost share

equilibrium.

Example 4. Consider a mixed market with two different atoms B and A
with µ({B}) = 1

4 and µ({A}) = 1
2 just by making the following modification

to the previous example: [14 , 1
2 [ is now an atom B (to be identified with 1

4)
of weight one quarter and T0 is now the ordinary interval [0, 1

4 [. So agents
are now points in T = [0, 1

4 [∪{1
4 , 1

2}. All the rest is unchanged.
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Since budget sets result the same as in example 3, again the allocation
(f, y) where f(t) = (2, 2) for all t ∈ T is the unique �-linear cost share
equilibrium and an equilibrium price system necessarily entails p(y) = (1

2 , 1
2).

On the other hand the same feasible allocation (h, y) of example 3, i.e.
with h(t) = (1, 1) for all t ∈ T0 ∪B and h(A) = (3, 3) is a µ-core allocation.
For that assertion, the argument is exactly the same as in example 3.

Example 5. Consider a mixed market with two atoms A1 and A2, T =
A1 ∪ A2, with µ(A1) = µ(A2) = 1

2 , two private goods and two public
projects Y = {y, z}. Assume that e(A) = (3, 0) and e(A2) = (0, 3). No-
tice that atoms A1 and A2 are not of the same type, since they have
different initial endowment. The utility functions are defined as follows:
uA(f, y) = uB(f, z) = 3

√
f1(t) +

√
f2(t), uA(g, z) =

√
g1(t) +

√
g2(t) and

uB(g, z) = logg1(B) + g2(B). Moreover, assume that c(y) =
(

1
2 , 1

2

)
and

c(z) =
(

1
2 , 0
)
. Consider the following distribution cost function �(A, ·) =

�(B, ·) = 1 and notice that
∫
t �(t, ·) dµ = 1. The associated contribution

measure σ� is such that for each coalition S, σ(S, ·) = µ(S).

With the same arguments used in the previous example, it is easy to
prove that the allocation (f, y) where f(A) =

(
7
4 , 7

4

)
and f(B) =

(
1
4 , 1

4

)
is the

unique �-linear cost share equilibrium whose price is given by p(y) = (3p, p).
On the other have the allocation (h, y) with h(A) = h(B) = (1, 1) is a σ�-
core allocation. Indeed, if on the contrary there exist a coalition S and a
distribution of private goods g such that

(i) ut(g(t), y) > ut(h(t), y) for all t ∈ S

(ii)
∫

S
g1(t) dµ + σ(S, y)c1(y) =

∫
S

e1(t) dµ

(iii)
∫

S
g2(t) dµ + σ(S, y)c2(y) =

∫
S

e2(t) dµ,

or such that

(i) ut(g(t), z) > ut(h(t), y) for almost all t ∈ S

(ii)
∫

S
g1(t) dµ + σ(S, z)c1(z) =

∫
S

e1(t) dµ

(iii)
∫

S
g2(t) dµ + σ(S, z)c2(z) =

∫
S

e2(t) dµ.

This means that


3
√

g1(t) +
√

g2(t) > 4 for all t ∈ S
µ(S ∩ A)g1(A) + µ(S ∩ B)g1(B) + 1

2µ(S ∩ A) + 1
2µ(S ∩ B) = 3µ(S ∩ A)

µ(S ∩ A)g2(A) + µ(S ∩ B)g2(B) + 1
2µ(S ∩ A) + 1

2µ(S ∩ B) = 3µ(S ∩ B)
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or


√

g1(A) +
√

g2(A) > 4
logg1(B) + g2(B) > 4
µ(S ∩ A)g1(A) + µ(S ∩ B)g1(B) + 1

2µ(S ∩ A) + 1
2µ(S ∩ B) = 3µ(S ∩ A)

µ(S ∩ A)g2(A) + µ(S ∩ B)g2(B) = 3µ(S ∩ B)

First, notice that in both cases S cannot equal to A neither to B, thus
S must be T = A ∪ B. Assume that

3
√

g1(A) +
√

g2(A) > 4
3
√

g1(B) +
√

g2(B) > 4
g1(A) + g1(B) = 2
g2(A) + g2(B) = 2,

From the first two conditions it follows that

9[g1(A) + g1(B)] + [g2(A) + g2(B)] + 6
√

g1(A)g2(A) + 6
√

g1(B)g2(B) > 32.

From the last two condition it follows that 6
√

(2 − x)(2 − y) + 6
√

xy > 12,
where x = g1(B) and y = g2(B). Making the calculations it follows that
(x− y)2 < 0, which is a contradiction. On the other hand if we consider the
second system 

√
g1(A) +

√
g2(A) > 4

logg1(B) + g2(B) > 4
g1(A) + g1(B) = 2
g2(A) + g2(B) = 3

then if g1(A) > 1, it follows that g1(B) < 1, that is logg1(B) < 0 and hence
g2(B) > 4, which implies that g2(A) + 4 < 3, a contradiction. Otherwise, if
g1(A) ≤ 1, then g2(A) > 9 and hence g2(B) + 9 < 3, which is impossible.
This allows us to conclude that (h, y) is a σ− core allocation, which is
trivially not a �-linear cost share equilibrium.

6 A weaker equivalence result

We have proved that in a mixed market with more than two atoms which are
all of the same type, the equivalence between the core and the set of linear
cost share equilibria can be restored. This interesting result fails in an
economy with only one atom or with “different”large traders. In particular,
Theorem 3 does not provide a characterization of linear cost share equilibria
for finite economies whose traders have different characteristics. However,
it is possible to characterized the set of linear cost share equilibria with a
weaker cooperative notion involving generalized coalitions. To this aim, let
us recall the definition of Aubin core in an economy with public projects
introduced by [10].
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Definition 8. Define the set

A = {γ : T → [0, 1] : γ is simple and measurable}.

Any element γ of A such that µ(supp γ) = µ({t ∈ T : γ(t) > 0}) > 0 is
said to be a generalized coalition.

The contribution of a generalized coalition γ to the realization of a public
project is defined by

σ̃(γ, ·) =
∫

T
γ(t) dσ =

∫
T

γ(t)�(t, ·) dµ. (5)

Notice that since γ(t) = 0 for all t /∈ supp γ, (5) can be replaced by

σ̃(γ, ·) =
∫

supp γ
γ(t) dσ =

∫
supp γ

γ(t)�(t, ·) dµ.

Definition 9. Given a contribution measure σ, a generalized coalition γ σ-
blocks an allocation (f, y) if there exist a public project z and a distribution
of private goods g : T → IR�

+ such that

(i) ut(g(t), z) > ut(f(t), y) for almost all t ∈ supp γ

(ii)
∫

T
γ(t)g(t) dµ + σ̃(γ, z)c(z) =

∫
T

γ(t)e(t) dµ.

A feasible allocation (f, y) is said to be an Aubin σ-core allocation if it can-
not be σ-blocked by any generalized coalition. According to [10], we denote
by CA

σ (E) the Aubin σ-core.

It is easy to see that any Aubin σ-core allocation is in the σ-core. In the
case of atomless economies the reverse inclusion can be proved.

Proposition 8. Let E be an atomless economy with public goods which sat-
isfies the hypotheses (A.1)−−(A.4). Let σ be a contribution measure for E.
Then the Aubin σ-core CA

σ (E) of E coincides with the σ-core Cσ(E).

proof: We have already observed that the inclusion CA
σ (E) ⊆ Cσ(E) holds

true. Consider now an allocation (f, y) in the σ-core and assume by contra-
diction that it does not belong to CA

σ (E). Then there exists a generalized
coalition γ ∈ A and an assignment (g, z) such that

(i) ut(g(t), z) > ut(f(t), y) for almost all t ∈ supp γ

(ii)
∫

T
γ(t)g(t) dµ + σ̃(γ, z)c(z) =

∫
T

γ(t)e(t) dµ.

Since γ is a simple function, there exists the measurable sets Si ⊆ T and
the real numbers γi ∈ [0, 1] such that

0 =
∫

T
γ(t) (g(t) + �(t, z)c(z) − e(t)) dµ =

∑∫
Si

γi (g(t) + �(t, z)c(z) − e(t)) dµ
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and consequently, applying the Lyapunov convexity Theorem to the nonatomic

vector measures
∫

Si

γi (g(t) + �(t, z)c(z) − e(t)) dµ when Si ⊆ suppγ, we get

the existence of coalitions Ŝi ⊆ suppγ such that

0 =
∑∫

̂Si

(g(t) + �(t, z)c(z) − e(t)) dµ.

By means of the coalition Ŝ =
⋃
i

Ŝi we infer a contradiction. �

In the case of a general mixed market with public goods, we can show
that the Aubin σ-core CA

σ (E) can be identified with the σ-core of the asso-
ciated nonatomic economy E∗, Cσ∗(E∗), without additional assumptions on
the large traders.

Proposition 9. Let E be a mixed market with public goods which satisfies
assumptions (A.1) − −(A.4). Let σ ∈ Mµ be a contribution measure. The
following statements hold true.

(i) If the allocation (f, y) of the economy E is an Aubin σ-core allocation,
then the allocation (f∗, y) is a σ∗-core allocation for E∗;

(ii) if the allocation (ϕ, y) of the economy E∗ is a σ∗-core allocation, then
the allocation (

∼
ϕ, y) is an Aubin σ-core allocation for E.

proof: Let (f, y) be an Aubin σ-core allocation. Let us prove that the
corresponding allocation (f∗, y) in the associated atomless economy is in
the σ∗-core, where σ∗ is defined by (2). Assume on the contrary that there
exist a coalition S∗ ∈ T ∗ and an allocation (g∗, z) such that

(i) ut(g∗(t), z) > ut(f∗(t), y) for almost all t ∈ S∗

(ii)
∫

S∗
g∗(t) dµ∗ + σ∗(S∗, z)c(z) =

∫
S∗

e(t) dµ∗.

Define

S∗
i = S∗ ∩ A∗

i ,

I = {i ∈ IN : µ∗(S∗
i ) > 0},

S = (S∗ ∩ T0) ∪
(⋃

i∈I

Ai

)
,

g(t) = g∗(t) for all t ∈ S∗ ∩ T0,

g(Ai) =
1

µ∗(S∗
i )

∫
S∗

i

g∗(t) dµ∗ for all i ∈ I,

where A∗
i denotes the split atom of Ai.
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First notice that from the above definitions and from (i) it follows that
for almost all t ∈ S, ut(g(t), z) > ut(f(t), y). Indeed, in the atomless part
S∗ ∩ T0 there is no change, while for each i ∈ I and t ∈ S∗

i

uAi(g(Ai), z) = ut(g(Ai), z) = ut

(
1

µ∗(S∗
i )

∫
S∗

i

g∗(t) dµ∗, z

)
≥

1
µ∗(S∗

i )

∫
S∗

i

ut(g∗(t), z) dµ∗ >
1

µ∗(S∗
i )

∫
S∗

i

ut(f∗(t), z) dµ∗ =

1
µ∗(S∗

i )

∫
S∗

i

uAi(f(Ai), z) dµ∗ = uAi(f(Ai), y).

Moreover, define

γ(t) = 1 for all t ∈ S∗ ∩ T0

γ(Ai) =
µ∗(S∗

i )
µ(Ai)

for all i ∈ I,

and notice that supp γ = S. Furthermore,∫
S

γ(t)g(t) dµ + σ̃(γ, z)c(z) −
∫

S
γ(t)e(t) dµ =∫

S∗∩T0

γ(t)g∗(t) dµ∗+
∑
i∈I

γ(Ai)g(Ai)µ(Ai)+
∫

S
γ(t)�(t, z) dµc(z)−

∫
S∗∩T0

γ(t)e(t) dµ∗+

−
∑
i∈I

γ(Ai)e(Ai)µ(Ai) =
∫

S∗∩T0

g∗(t) dµ∗+
∑
i∈I

µ∗(S∗
i )

µ(Ai)
1

µ∗(S∗
i )

∫
S∗

i

g∗(t) dµ∗µ(Ai)+

+
∫

S∗∩T0

�(t, z) dµ∗c(z)+
∑
i∈I

�(Ai, z)µ(Ai)
µ∗(S∗

i )
µ(Ai)

c(z)−
∫

S∗∩T0

e(t) dµ∗−
∑
i∈I

µ∗(S∗
i )

µ(Ai)
e(Ai)µ(Ai) =

∫
S∗

g∗(t) dµ∗+
∫

S∗∩T0

�(t, z) dµ∗c(z)+
∑
i∈I

∫
S∗

i

�∗(t, z) dµ∗c(z)−
∫

S∗
e(t) dµ∗ =

∫
S∗

g∗(t) dµ∗ + σ∗(S∗, z)c(z) −
∫

S∗
e(t) dµ∗ = 0.

This means that (f, y) is σ-blocked by the generalized coalition γ de-
fined above via the allocation (g, z), which is a contradiction. Therefore the
associated allocation (f∗, y) is in the σ∗-core of the atomless economy E∗.

Suppose now that (ϕ, y) is a σ∗-core allocation of the economy E∗ and
assume by contradiction that (

∼
ϕ, y) is not in the Aubin σ-core. Let γ be

a generalized coalition that blocks it so that for suitable g and z we have
ut(g(t), z) > ut(

∼
ϕ(t), y) for almost all t ∈ S = suppγ and the equality
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∫
S

γ(t)g dµ + σ̃(S, z)c(z) =
∫

S
γ(t)e dµ

holds.
Let us define the generalized coalition γ∗ on E∗ by γ = γ∗ on S ∩ To,

γ∗(t) = γ(Ai), for each t ∈ A∗
i such that Ai ∈ S. Similarly to the proof of

Proposition 5 we shall see that γ∗ blocks (ϕ, y) via g∗ and z, since σ̃(S, z) =
σ̃∗(S∗, z). Then the assertion follows from Proposition 8. �

The next proposition relates linear cost share equilibria to Aubin σ-core
allocations.

Proposition 10. Let (f, y) be a linear cost share equilibrium in E with cost
distribution function � and let σ� be the corresponding contribution measure.
Then, (f, y) belongs to the Aubin σ�-core of E.

proof: See [10, Proposition 3.7].
Notice that Proposition 2 is a direct consequence of Proposition 6.
We are now ready to prove the equivalence between the Aubin σ-core

and the set of linear cost share equilibria in a mixed market without any
additional requirements on large traders.

Theorem 4. Let E be a mixed market with public goods which satisfies as-
sumptions (A.1) − −(A.4). Let σ ∈ Mµ be a contribution measure and let
�σ be the corresponding Radon-Nikodym derivative. Then

CA
σ (E) = LCE�σ(E).

proof: The proof follows from Proposition , Proposition 8 and Theorem 2.
�
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