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1 Introduction

In this paper we try to explain and to predict the endogenous cartelization of markets with public
projects.

We consider large market games in which the agents decompose into finitely many disjoint
groups, each of which holds a corner of the market (glove markets with public projects). In glove
games or markets, groups of agents of the same type have corners of different commodities. This
very simple but basic situation represents a significant example in which the structure of the market
seems to offer a strong incentive leading to the organization in cartels or syndicates (we assume that
contracts generating cartels can be legally enforced). Agents join forces in subcoalitions (cartels or
syndicates): they act intermediately as representative players of a short side market. The result
of bargaining is then implemented to the long side market.

A general equilibrium approach in exchange economies with public projects is not able to
predict, even in this simple situation, the formation of cartels. Specifically, results from bargaining
via cartels cannot be seen as consistent with the traditional solution concepts. This is the case
of the Foley core or of the core notions assuming a contribution measure. In the short side
market, cartels may accept distribution of profits under core allocations much more favorable
with respect to results obtained without cartelization. Using suitable equivalences between core
notions with a given contribution measure and linear cost-share equilibria (see for example [7]), we
conjecture a similar result in the case of non-cooperative behavior, that is results emerging from
the cooperation within cartels differ from what emerges if agents show price and cost-share taking
behavior. We expect a similar behavior for other game theoretical notions like the Shapley value
(see the discussion presented in [19]).

Consequently, we look at different solution concepts that are capable to assign profits towards
the long side of the markets, suggesting its endogenous cartelization. We introduce von Neumann-
Morgenstern solution concepts, suitably defined in connection to public goods provision, exhibiting
a markedly different behavior. We find as necessary the assumption that stability is defined with
respect to blocking procedures in which coalitions do not necessarily pay for the whole realization
of the project, but only for a fraction of it and that costs are distributed uniformly in each corner
of the market. Under this assumption, we obtain large games solutions by embedding procedures
in finite games (compare [16]).

In the second part of the paper, we go further in the investigation of vN-M stable sets in
exchange economies with public goods and a large number of traders of the same type: we shall
define stable sets following the ”sophisticated” approach suggested by Harsanyi proving that a
σ-sophisticated stable set corresponds to the solution in the associated payoff space (see [15], [17]).

We assume throughout the paper that private decisions of economic agents are influenced by
non-market variables that we call public environments or public projects: examples include the
public goods provision (transport, health, education, international public goods like the global
climate), the regulation of private economic activities (regulation of quality standard, safety of
labor conditions, trade institutions), social rules (laws, property rights) among the others. They
are common to all the agents and affect individual budget sets and private objectives.

It is worth noticing that in the investigated model, the concept of public project or environment
has to be considered as a very broad notion, allowing many different problems to be treated within
one common setting. Technical difficulties deriving from a little structure imposed on the set
of public projects represent a minor cost given the level of generality of our framework. Hence,
building on the model originally proposed in Mas-Colell ([18]), we allow the public project to range
over an abstract set, a priori with no special structure, each project being characterized by a cost
in terms of private goods. Differently by the case of Samuelsonian public goods, represented by
classical Euclidean structures, the great generality of the adopted model does not impose any kind
of homogeneity assumption on the personal perceptions that agents may have of the same public
good. Moreover, it better describes public decision problems in which a choice must be given
among a few projects and permits the discussion of non convexity in public sector decisions. For
the interpretation of the Mas-Colell approach to public goods economies we refer to [6], [7], [8],
[11], [13], [14], for the extension of the Mas-Colell model to allow multiple private goods to [6], [5],
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[12], [2].
The first part of the paper focuses on interactions among agents of the same type. In par-

ticular, the model aims to recognize and to anticipate the endogenous formation of cartels from
the predicting power of game theoretical cooperative solution concepts. The seminal paper [15]
discusses this problem in the case of large pure exchange economies in connection with the von
Neumann-Morgenstern stable sets. He argues that the coalitions predicted by this solution con-
cept do indeed reflect cooperation within cartels. He does not explicitly construct vNM-stable
sets. Recently [20], [21] classify all vNM-stable sets in the non-atomic context investigating fur-
ther versions of cartelization of markets. In particular, [20] allows for the actual construction of
vNM-stable sets showing that agents on the short side of the market benefit according to their
initial holdings. The theoretical basis developed in this paper are the premise in order to follow
the analogous construction in the case of public goods. For conditions ensuring the stability of
core allocations in non-atomic glove market games we shall refer to [9].

2 The Economic Model

We consider an economy EC in which:

• the space of agents is represented by a probability space (I, Σ, µ), where I = [0, 1] is the set
of agents, Σ is the set of all measurable subsets of I and µ is a nonatomic measure;

• the private commodity space is represented by positive cone of IRm, denoted by IRm
+ ;

• an abstract set Y without any mathematical structure represents the set of public projects.
The cost of any public project in terms of private goods is expressed by means of a vector-
valued function c : Y → IRm

+ , called cost function.

• the weight that a coalition has in the realization of any public project is described by a con-
tribution measure, that is a probability measure σ̂ : Σ → [0, 1] which is absolutely continuous
with respect to µ1.

We assume there are only finitely many types n of agents on the market, which means that we

refer to the decomposition I =
n⋃

i=1

Ii, where Ii =

[
i − 1

n
,

i

n

[
if i 6= n and In =

[
n − 1

n
, 1

]
. Agents

in the same set Ii share the same initial endowment and the same preference. In particular, we
assume, that, for any i = 1, . . . , n and for any t ∈ Ii:

(1) consumer t has an initial endowment ωt > 0 and the total initial endowment ω =
∫

I
ωtdµ �

c(y)2 , ∀y ∈ Y, to ensure that each private commodity is present on the market regardless to
the cost of the realized project.

(2) the preference of consumer t is represented by a function ut : IRm
+ ×Y → IR+. We say that,

ut is strictly monotone, continuous and quasi concave if, for any public project y ∈ Y, the
restriction ut(·, y) is strictly monotone, continuous and quasi concave.

(3) the contribution measure is uniform on agents of the same type, in the sense that, for any

coalition Ŝ it results:

σ̂(Ŝ) =

n∑

i=1

σ(Ii)
µ(Ŝ ∩ Ii)

µ(Ii)

1We mean that σ̂ (I) = 1 and for any coalition E ∈ Σ such that µ(E) = 0 it results σ̂ (E) = 0.
2We follow the standard notation according to which for two vectors x ≡ (x1, . . . xm) and z ≡ (z1, . . . zm) of IRm

+

x � z means that xi > zi, for each i = 1, . . . m.
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A feasible allocation for the economy EC is a couple (f, y) where f : I → IRm
+ is a µ-integrable

function and y ∈ Y, such that

∫

I

fdµ + ĉ(y) ≤

∫

I

ωdµ.

A feasible allocation (f, y) is called symmetric if it assigns identical bundles to agents of the same
type, that is f(t) = xi for any i = 1, . . . , n and for any t ∈ Ii.

Now we can consider a finite economy E which has the same data of EC, but consists of n agents.
For this economy a contribution measure is an additive function σ defined on the set of all the
agents N = {1, 2, . . . , n} such that σ (∅) = 0 and σ (N) = 1. Obviously, we have that

if σ is a contribution measure for E then σ̂ : Σ → [0, 1] defined as

σ̂(E) =

n∑

i=1

σ({i})
µ(E ∩ Ii)

µ(Ii)
, for all E ∈ Σ (1)

is a contribution measure for EC;

if σ̂ is a contribution measure for EC then σ : N → [0, 1] defined as

σ(S) =
∑

i∈S

σ̂(Ii), for all S ⊆ N (2)

is a contribution measure for E .

An assignment (x1, . . . , xn, y) ∈ IRm
+ ×Y is a feasible allocation in E if

n∑

i=1

xi + c(y) ≤
n∑

i=1

ωi.

Observe that an allocation (x1, . . . , xn, y) in E can be interpreted as a symmetric allocation
(f, y) in EC, where f is the function defined as f(t) = xi, if t ∈ Ii. Reciprocally, an allocation (f, y)

in EC can be interpreted as an allocation (x1, . . . , xn, y) in E , with xi =
1

µ(Ii)

∫

Ii

fdµ.

Consider the economy EC (or equivalently E) and assume that the sets

Mi =
{
k | ωk

i > 0
}

for all 1 ≤ i ≤ n (3)

are disjoint, that is each commodity is initially owned by only one type of trader.

We assume the existence of a distinguished project, denoted by 0, such that c(0) = 0. It is to be
interpreted as the ”status quo”, i.e., as the situation from which a change is being contemplated.

Definition 2.1 A feasible allocation (f, y) (or (x1, . . . , xn, y) ) is a individually rational allocation
if ut(f(t), y) ≥ ut(ω(t), 0) for almost all t ∈ I (or ui(xi, y) ≥ ui(ωi, 0) for all i = 1, . . . , n).

Definition 2.2 Given two allocations (f, y) and (g, z), a coalition Ŝ with nonnull measure and a

contribution measure σ̂, we say that (f, y) σ̂-dominates (g, z) on Ŝ if

∫

Ŝ

gdµ + σ̂(Ŝ)ĉ(z) ≤

∫

Ŝ

ωdµ and

ut(f(t), y) > ut(g(t), z) for almost all t ∈ Ŝ.

We say that (f, y) σ̂-dominates (g, z), if there exists a coalition Ŝ with nonnull measure such that

(f, y) σ̂-dominates (g, z) on Ŝ.
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Analogously in the finite economy E , if σ is a contribution measure, we say that the allocation
(x1, . . . , xn, y) σ-dominates (g1, . . . , gn, z) on a nonempty coalition S if

∑

i∈S

gi + σ(S)c(z) ≤
∑

i∈S

ωi and

ui(xi, y) > ui(gi, z) for all i ∈ S.

We say that (x1, . . . , xn, y) σ-dominates (g, z) if there exists a nonempty coalition S such that
(x1, . . . , xn, y) σ-dominates (g1, . . . , gn, z) on S.

Definition 2.3 Given a contribution measure σ̂, a solution of EC is a set A of individually rational
allocations such that:

- A is internally consistent, that is no two elements of A σ̂-dominate each other,
- A is extradominative, that is each individually rational allocation not in A is σ̂-dominated by

some element of A.

Analogously we can define a solution for the finite economy E .

A permutation in EC is a one-to-one µ-measure preserving function π from I to I, measurable
in both directions, such that for all t ∈ I, πt and t belong to Ii for the same i.

A set A of allocations is symmetric if for each permutation π and each (f, y) ∈ A, the allocation
(πf, y), defined as (πf)(t) = f(πt), is also in A.

Definition 2.4 A symmetric solution of EC is a solution that is a symmetric set.

Recalling that a feasible allocation (f, y) of EC is said to be symmetric if f(t) = xi for almost all
t ∈ Ii and for all i = 1, . . . , n, we can prove that

Lemma 2.5 Let (f, y) and (g, z) be symmetric allocations in EC with f(t) = xi and g(t) = gi for
almost all t ∈ Ii. If (f, y) σ̂-dominates (g, z) in EC , then (x1, . . . , xn, y) σ-dominates (g1, . . . , gn, z)
in E .

proof: Since (f, y) σ̂-dominates (g, z), there exists a coalition Ŝ with µ(Ŝ) > 0, such that

∫

Ŝ

fdµ + σ̂(Ŝ)ĉ(y) ≤

∫

Ŝ

ωdµ, and

ut(f(t), y) > ut(g(t), z) for almost all t ∈ Ŝ.

Let S =
{

i | Ŝ ∩ Ii 6= ∅
}

, then S is not empty and ui(xi, y) > ui(gi, z) for all i ∈ S. Moreover,

since σ̂(Ŝ) =
∑

i∈S σ({i})µ(Ŝ∩Ii)
µ(Ii)

, we have

∑

i∈S

(
xiµ(Ŝ ∩ Ii) + σ({i})

µ(Ŝ ∩ Ii)

µ(Ii)

c(y)

n

)
≤
∑

i∈S

ωiµ(Ŝ ∩ Ii)

that is ∑

i∈S

µ(Ŝ ∩ Ii)

(
xi +

σ({i})

µ(Ii)

c(y)

n

)
≤
∑

i∈S

ωiµ(Ŝ ∩ Ii)

so, for any k = 1, . . . , m

∑

i∈S

µ(Ŝ ∩ Ii)

(
xk

i +
σ({i})

µ(Ii)

ck(y)

n

)
≤
∑

i∈S

ωk
i µ(Ŝ ∩ Ii).
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If k /∈ ∪i∈SMi, then
∑

i∈S ωk
i µ(Ŝ ∩ Ii) = 0 and so xk

i +
σ({i})
µ(Ii)

ck(y)
n = 0 for all i ∈ S. Otherwise∑

i∈S ωk
i =

∑n
i=1 ωk

i , and, being (x1, . . . , xn, y) a feasible allocation, it results

∑

i∈S

[xk
i + σ({i})ck(y)] ≤

n∑

i=1

xk
i + σ({i})ck(y) ≤

n∑

i=1

ωk
i =

n∑

i∈S

ωk
i .

So
∑

i∈S xi + σ(S)c(y) ≤
∑

i∈S ωi, and (x1, . . . , xn, y) σ-dominates (g1, . . . , gn, z) in E . 2

Lemma 2.6 Let (f, y) be an i.r. allocation such that the set

Si =

{
t ∈ Ii | f(t) 6= ξi =

1

µ(Ii)

∫

Ii

fdµ

}

has nonnull measure. Then there exists ηi ≤ ξi such that the set

Ui = {t ∈ Ii | ui(f(t), y) < ui(ηi, y) }

has nonnull measure and ui(ηi, y) > ui(ω(t), 0) on a subset of Ii having nonnull measure.

proof: Since (f, y) is an individually rational feasible allocation we have

∫

I

fdµ + ĉ(y) ≤

∫

I

ωdµ

ut(f(t), y) ≥ ut(ω(t), 0) for almost all t ∈ I.

Let us consider the set
Vi = {t ∈ Ii | ui(f(t), y) < ui(ξi, y) } .

If µ(Vi) = 0, then ui(f(t), y) ≥ ui(ξi, y) for almost all t ∈ Ii. The set

C =
{
l ∈ IRm

+ | ui(l, y) ≥ ui(ξi, y) with l 6= ξi

}

is not empty and convex and so
1

µ(Si)

∫

Si

fdµ ∈ C. Since

µ(Ii)ξi =

∫

Ii

fdµ =

∫

Si

fdµ +

∫

Ii\Si

fdµ =

∫

Si

fdµ + ξiµ(Ii \ Si)

then

ξi [µ(Ii) − µ(Ii \ Si)] =

∫

Si

fdµ

and so 1
µ(Si)

∫
Si

fdµ = ξi ∈ C, hence a contradiction. Then µ(Vi) > 0.

If ξi = 0 then f(t) = 0 almost everywhere on Ii and µ(Si) = 0, so ξi ≥ 0 and for almost a
component k it results ξk

i > 0. Since utility functions are continuous, we can find ε > 0 such that
if ηi = ξi − εek, then the set

Ui = {t ∈ Ii | ui(f(t), y) < ui(ηi, y) }

has nonnull measure and ui(ηi, y) > ui(f(t), y) ≥ ui(ω(t), 0) for all t ∈ Ui.
2

Lemma 2.7 Let (f, y) be an allocation in EC , let S ⊂ I and 0 ≤ α ≤ 1. Then there exists Sα ⊂ S
such that

µ(Sα) = αµ(S) σ̂(Sα) = ασ̂(S) and

∫

Sα

fdµ = α

∫

S

fdµ

5



proof: The proof follows from the Lyapunov convexity theorem. 2

Theorem 2.8 Let B be a solution of the economy E . If A denotes the set of symmetric allocations
of the economy EC associated to B, then A is a symmetric solution of EC.

proof: The set A is symmetric by construction, in light of lemma (2.5), is internally consistent
and its elements are obviously individually rational. We have to prove the extradominance.
Let (f, y) be an individually rational allocation not in A.

If (f, y) is symmetric, then f(t) = xi for almost all t ∈ Ii for all i = 1, . . . , n. Clearly, the
allocation (x1, . . . , xn, y) is not in B, and so there exists an allocation (g1, . . . , gn, z) ∈ B and a not
empty coalition S such that

∑

i∈S

gi + σ(S)c(z) ≤
∑

i∈S

ωi , and

ui(gi, z) > ui(xi, y) ∀i ∈ S.

Let Ŝ = ∪i∈SIi and g(t) = gi if t ∈ Ii, then (g, z) ∈ A and σ̂-dominates (f, y) since, dividing by n
the previous inequalities, we obtain

∫

Ŝ

gdµ + σ̂(Ŝ)ĉ(z) ≤

∫

Ŝ

ωdµ , and

ut(g(t), z) > ut(f(t), y) for almost all t ∈ Ŝ.

If (f, y) is not symmetric, then for all i ∈ S = {j ∈ {1, . . . , n} | µ(Sj) > 0 }, the set

Si =

{
t ∈ Ii | f(t) 6= ξi =

1

µ(Ii)

∫

Ii

fdµ

}

has nonnull measure, and so from lemma (2.6) there exists ηi ≤ ξi such that the set

Ui = {t ∈ Ii | ui(f(t), y) < ui(ηi, y) }

has nonnull measure and ui(ηi, y) ≥ ui(ω(t), 0) on Ui.
Let δ =

∑
i∈S ξi − ηi ≥ 0, and consider the allocation (η1, . . . , ηn, y) with ηi = ξi + 1

n−|S|
δ if i /∈ S,

then (η1, . . . , ηn, y) is i.r. and

n∑

i=1

ηi =
∑

i∈S

ηi +
∑

i/∈S

ηi =
∑

i∈S

ηi +
∑

i/∈S

ξi +
1

n − |S|
δ =

=
∑

i∈S

ηi +
∑

i/∈S

ξi +
n − |S|

n − |S|

∑

i∈S

ξi − ηi ≤
n∑

i=1

ωi − c(y)

Let be Ui =

{
Ui if i ∈ S
Ii if i /∈ S

, α = min1≤i≤nµ(Ui) and Vi ⊆ Ui with µ(Vi) = α.

If (η1, . . . , ηn, y) ∈ B, then the allocation (g, y) with g(t) = gi if t ∈ Ii belongs to A and, from
the previous inequalities, since

σ̂(∪n
i=1Vi) =

n∑

i=1

σ({i})
µ(Vi ∩ Ii)

µ(Ii)
=

n∑

i=1

σ({i})αn,

it follows that (g, z) σ̂-dominates (f, y) on the coalition ∪n
i=1Vi.

If (η1, . . . , ηn, y) /∈ B, then, being B a solution, there exists an allocation (h1, . . . , hn, z) in B
and a not empty coalition H , such that,

∑

i∈H

hi + σ(H)c(z) ≤
∑

i∈H

ωi, and

6



ui(hi, z) > ui(ηi, y) for any i ∈ H.

Then the allocation (h, z) with h(t) = hi if t ∈ Ii belongs to A and σ̂-dominates (f, y) on the

coalition Ĥ = ∪i∈HIi since σ̂(Ĥ) = σ(H).
In any case the property of extradominance is proved and A is a solution. 2

To prove the converse of theorem (2.8) we need the following lemma which does not make use of
assumption (3).

Lemma 2.9 Let A a symmetric solution of the economy EC . Then every allocation (f, y) in A is
symmetric.

proof: Suppose (f, y) ∈ A is not symmetric, then there is some i0 such that the set

{
t ∈ Ii0 | f(t) 6= εi0 =

1

µ(Ii0 )

∫

Ii0

fdµ

}

is nonnull. Using lemma (2.6) for this i0, we get ηi0 ≤ εi0 such that the set

Ŝi0 = {t ∈ Ii0 | ut(f(t), y) < ut(ηi0 , y)}

has a nonnull measure and ut(ηi0 , y) ≥ ut(ωi0 , 0) for almost all t ∈ Si0 .

Let us define δ = εi0 − ηi0 ≥ 0, α
n = µ(Ŝi0 ) and

g(t) =

{
f(t) + δ

n−1
∀t ∈ Ii with i 6= i0

ηi0 ∀t ∈ Ii0

.

Using lemma (2.7), for all i 6= i0 we find a set Ŝi ⊂ Ii such that µ(Ŝi) = αµ(Ii) and
∫
Ŝi

gdµ =

α
∫
Ii

gdµ. Then the allocation (g, y) σ̂-dominates (f, y) on the coalition S = ∪n
i=1Ŝi. In fact,

obviously, ut(g(t), y) > ut(f(t), y) for almost all t ∈ S. Moreover, since σ̂(S) ≤ 1, it results
∫

S

gdµ =

∫

∪i6=i0
Ŝi

gdµ +

∫

Ŝi0

gdµ = α

∫

∪i6=i0
Ii

gdµ + ηi0

α

n
=

= α

∫

∪i6=i0
Ii

fdµ + α
εi0 − ηi0

n − 1

n − 1

n
+ ηi0

α

n
= α

∫

I

fdµ ≤

≤ α

∫

I

ωdµ − ĉ(y) ≤

∫

∪
Ŝi

ωdµ − σ̂(S)ĉ(y)

Hence (g, y) is not a member of A, and there exists some (h, z) ∈ A which σ̂-dominates (g, y) on a
nonnull coalition U . Without loss of generality (we may choose U so that µ(U) arbitrarily small),
we assume that

µ(U ∩ Ii0) ≤ µ(Ŝi0)

If µ(U ∩ Ii0) = 0, then (h, z) σ̂-dominates (f, y) via U . If µ(U ∩ Ii0) > 0, let Vi0 ⊂ Ŝi0 such that
µ(U ∩ Ii0) = µ(Vi0), and define π to be a permutation interchanging Vi0 with U ∩ Ii0 , and being
otherwise the identity. Then π(f, y) = (πf, y) is also in A, since A is symmetric, and obviously
(h, z) σ̂-dominates π(f, y) via U . In any case we get domination between two members of A, hence
a contradiction since A is internally consistent. 2

Theorem 2.10 Let A be a symmetric solution of EC . If B denotes the set of allocations of the
economy E associated to A, then A is a solution of E .

proof: The set B is well defined by lemma (2.9). Its internal consistency and extradominance
follow easily from the same properties of A. 2
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Remark 2.11 We can give the stability definitions above using the classical concept of dominance
without involving contribution measure, that is an allocation (f, y) dominates (g, z) if there exists
a nonnull coalition S such that

∫

S

fdµ + ĉ(y) ≤

∫

S

ωdµ, and

ut(f(t), y) > ut(g(t), z) for almost all t ∈ S.

results hold also for this case.
We just point out that σ-stability and stability without contribution measure are independent

concepts. Indeed it is easy to show that

if the set A is σ-internally stable, then A is also internally stable;

if the set A is externally stable, then A is also σ-externally stable.

Our interest in σ-stability is motivated by the fact that the σ-dominance concept ensures core
equivalence results which do not hold using the classical concept of dominance.

The next results refer to a contribution measure σ which is not necessarily uniform on agents
of the same type.

Proposition 2.12 Let σ be a contribution measure and Aσ a stable set with respect to σ. Then
the allocations contained in Aσ are Pareto optimal.

proof: Assume that the allocation (f, y) ∈ Aσ is not Pareto optimal. Then there exists a feasible
allocation (g, z) such that ut(g(t), z) > ut(f(t), y) for almost all t ∈ I. If (g, z) ∈ Aσ, then we
contradict the internal σ-stability of Aσ, then (g, z) /∈ Aσ . If (g, z) is individually rational, then
we can find an allocation (h, s) ∈ Aσ which σ-dominates (g, z) and so also (f, y), a contradiction.
Hence (g, z) is not individually rational, that is there exists a coalition S with nonnull measure
such that ut(ω(t), 0) > ut(g(t), z) > ut(f(t), y) for almost all t ∈ S, a contradiction that completes
the proof. 2

Proposition 2.13 Let σ be a contribution measure and Aσ a stable set with respect to σ. Then
the σ-core is contained in Aσ.

proof: Let (f, y) be an allocation contained in the σ-core. If (f, y) is not individually rational, then
we can find a coalition S with nonnull measure such that ut(ω(t), 0) > ut(f(t), y) for almost all t ∈ S
and, being c(0) = 0,

∫
S

ωdµ+σ(S) ·0 =
∫

S
ωdµ. So (ω, 0) σ-dominates (f, y) on S, a contradiction.

Then (f, y) is individually rational. If (f, y) /∈ Aσ , we can find an allocation (g, z) ∈ Aσ which
σ-dominates (f, y), a contradiction since (f, y) is in the σ-core. Hence (f, y) ∈ Aσ. 2

Let us consider the economy EC and denote by P the set of all Pareto optimal allocations which
are symmetric and individually rational. If Aσ is a σ-solution (with σ not necessarily uniform on
agents), then in light of Lemma 1.9 and Proposition 2.12, Aσ ⊆ P . Let us assume that

(h1) the set Y of public projects is compact,

(h2) the σ-dominance is defined with respect to those coalition S such that µ(S∩Ii) > 0 for every
i = 1, · · · , n.

Then our assumptions ensure that P is the unique solution with respect to σ.
We have to prove that P is internally and externally σ-stable.

Proposition 2.14 Under the assumption (h1), the set P is σ-internally stable.
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proof: If P is not σ-internally stable, then we can find (f, y), (g, z) ∈ P and a coalition S with
µ(S ∩ Ii) > 0 for every i = 1, · · · , n, such that

ut(f(t), y) > ut(g(t), z) for almost all t ∈ S

∫

S

fdµ + σ(S)c(z) ≤

∫

S

ωdµ.

Being the allocations in P symmetric, it results f(t) ∼ fi and g(t) ∼ gi for almost all t ∈ Ii and for
every i = 1, · · · , n. So, being ui(fi, y) > ui(gi, z) for every i = 1, · · · , n, and since (f, y) is feasible
we obtain a contradiction since (g, z) is a Pareto optimal allocation. 2

Proposition 2.15 Under the assumption (h2), the set P is σ-externally stable.

proof: Let us consider an individually rational allocation (f, y) which is not in P . Then or

(1) (f, y) is symmetric but not Pareto optimal or

(2) (f, y) is a nonsymmetric Pareto optimal allocation.

In both cases we have to find an allocation in P which σ-dominates (f, y).
If (1) holds, then, there exists an allocation (g, z) (that we can assume to be a Pareto optimal by
compactness of Y), such that

ut(g(t), z) > ut(f(t), y) for almost all t ∈ I

∫

I

gdµ + c(z) ≤

∫

I

ωdµ.

So (g, z) is individually rational and if it is also symmetric, we can conclude that (g, z) ∈ P .
Otherwise, as in the case (2), (g, z) is a nonsymmetric Pareto optimal allocation. Consequently,
to complete the proof, we have to show the statement if the case (2) holds.
For every j = 1, · · · , n, let us define the set

Sj =

{
t ∈ Ij : ut(f̃j , y) > ut(f(t), y) with f̃j =

1

µ(Ij)

∫

Ij

fdµ

}

We claim that there exists at least one index j such that µ(Sj) > 0. If µ(Sj) = 0, then it results

ut(f(t), y) ≥ ut(f̃j , y) for almost all t ∈ Ij . Then,

ut(f(t), y) = ut(f̃j , y) for almost all t ∈ Ij , or

µ(Aj) > 0, with Aj =
{
t ∈ Ij : uj(f(t), y) > uj(f̃j , y)

}
.

Let be Bj = Ij \Aj , and assume µ(Bj) = 0. Then uj(f(t), y) > uj(f̃j , y) for almost all t ∈ Ij , and

so, by applying the Jensen’ s inequality, we obtain uj(
1

µ(Ij)

∫
Ij

fdµ, y) = uj(f̃j , y) > uj(f(t), y) and

a contradiction. Then it results µ(Bj ) > 0.
Now, let us denote by

A =
1

µ(Aj)

∫

Aj

fdµ , B =
1

µ(Bj)

∫

Bj

fdµ and α =
µ(Aj)

µ(Ij)
.

Then uj(A, y) > uj(f̃j , y), uj(B, y) > uj(f̃j , y) and αA + (1 − α)B = f̃j . Since utility functions

are convex, we have uj(αA + (1 − α)B, y) > uj(f̃j , y), a contradiction. Then µ(aj) = 0 and the
allocation (f, y) is symmetric, a contradiction. Hence, without loss of generality, we can assume
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that µ(S1) > 0.
By continuity, it results

S1 = ∪n∈IN

{
t ∈ S1 : u1(

n

n + 1
f̃1, y) > u1(f(t), y)

}

and, without loss of generality, we can assume that the set

P1 =

{
t ∈ S1 : u1(

n0

n0 + 1
f̃1, y) > u1(f(t), y)

}

has nonnull measure.
For any j = 2, · · · , n let us consider the set

Pj =
{
t ∈ S1 : uj(f̃j , y) ≥ uj(f(t), y)

}
.

If µ(Pj) = 0, then uj(f(t), y) > uj(f̃j , y) for almost all t ∈ Ij and so uj(f̃j , y) > uj(f̃j , y), a
contradiction. Hence µ(Pj) > 0 for every j = 1, . . . , n.

Let us define ε < min
{

µ(Pj)
µ(Ij)

: j = 1, · · · , m
}

, and consider

- the set Qj ⊂ Pj such that σ(Qj) = εσ(Pj) and µ(Qj) = εµ(Pj),

- the function h(t) =





n0

n0+1
f̃1 if t ∈ Q1

f̃j + 1
(m−1)(n0+1)

µ(Q1)
µ(Qj) f̃1 if t ∈ Qj and j 6= 1

f̃j if t ∈ Ij \ Qj.

It results

∫

I

hdµ =
n0

n0 + 1
f̃1µ(Q1) +

n∑

j=2

f̃jµ(Qj) +
1

n0 + 1
f̃1µ(Q1) +

n∑

j=1

f̃jµ(Ij \ Qj) =

=
n∑

j=1

f̃jµ(Qj) +
n∑

j=1

f̃jµ(Ij \ Qj) =
n∑

j=1

∫

Ij

fdµ =

∫

I

fdµ,

so
∫

I
hdµ + c(y) ≤

∫
I
ωdµ, and the allocation (h, y) is feasible. Moreover

σ(Q = ∪m
j=1Qj) =

n∑

j=1

σ(Qj) =

n∑

j=1

εσ(Ij ) = εσ(I) = ε

and also µ(Q) = ε. Hence

∫

Q

hdµ =
n0

n0 + 1
f̃1µ(Q1) +

n∑

j=2

f̃jµ(Qj) +
1

n0 + 1
f̃1µ(Q1) =

n∑

j=1

f̃jεµ(Ij ) = ε

∫

I

fdµ

and ∫

Q

hdµ + σ(Q)c(y) = ε

∫

I

fdµ + εc(y) ≤ ε

∫

I

ωdµ =

∫

Q

ωdµ.

By construction the allocation (h, y) is strictly preferred to (f, y) on Q, so if (h, y) is not individually

rational, then we have ut(ω(t), 0) > ut(f̃j , y) for almost all t ∈ Ij and j = 1, · · · , n, a contradiction.

Now let us consider the function h̃ defined as h̃j(t) = 1
µ(Ij)

∫
Ij

hdµ for all t ∈ Ij and j = 1, · · · , n.

By definition of h and choosing suitable ε̃ and aj, we can write h̃j = ε̃f̃j + (1 − ε̃)aj , so that the

allocation (h̃, y) is strictly preferred to (f, y) almost everywhere on Q. Moreover (h̃, y) is obviously

feasible on Q, individually rational and symmetric; so if (h̃, y) is also Pareto optimal the proof is

complete. If (h̃, y) is not Pareto optimal, then the corresponding allocation in the finite economy E ,
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(h̃1, · · · , h̃n, y) is not Pareto optimal, so there exists a Pareto optimal allocation (l1 , · · · , lm, s) such

that
∑m

j=1 lj + c(s) ≤
∑m

j=1 ωj and uj(lj , s) > uj(h̃j, y) for all j = 1, · · · , n. The corresponding
allocation (l, s) in the continuum economy EC is then symmetric, Pareto optimal and dominates
(h, y), a contradiction. 2

Using previous results we can conclude that

Proposition 2.16 Under assumptions (h1) and (h2) the set P is the unique σ-stable set.

3 σ-sophisticated stable sets in E

Let us denote by A the set of feasible allocations of the economy E and by V the set of feasible
payoffs that is

V = {u(x, y) = (u1(x1, y), . . . , un(xn, y)) | (x1, · · · , xn, y) ∈ A} .

Moreover for a set B ⊆ A, let

u(B) ≡ {u(x, y) | (x, y) = (x1, . . . , xn, y) ∈ B} .

Finally, for a coalition S, (x1, · · · , xn, y) ∈ A and ξ ∈ V , we denote by (xS , y) and ξS the restrictions
of (x1, · · · , xn, y) and ξ on S, respectively.
For a coalition S, the set of Sσ-feasible allocations is given by

A(S) =

{(
(xi)i∈S , y

)
∈ IR

m|S|
+ ×Y |

∑

i∈S

xi + σ(S)c(y) ≤
∑

i∈S

ωi

}
,

and the set of Sσ-feasible payoffs is given by

V (S) =
{

ξ ∈ IR
|S|
+ | ∃

(
(xi)i∈S , y

)
∈ A(S) such that ξi = ui(xi, y)

}
.

Proposition 3.1 Let CP denote the payoff σ-core, that is the set of all payoffs in V that are
undominated. Then

CP = {u(x, y) | (x, y) = (x1, · · · , xn, y) ∈ σ-core}

proof: Assume by contradiction that there exists ξ ∈ CP and (x, y) = (x1, · · · , xn, y) ∈ A such
that ξ = u(x, y) and (x, y) not belonging to the σ-core. Then there exists a not empty coalition S

and
(
(xi)i∈S , y

)
∈ A(S) such that

∑

i∈S

gi + σ(S)c(z) ≤
∑

i∈S

ωi , and

ui(gi, z) > ui(xi, y) for all i ∈ S.

But then, (ui(gi, z))i∈S dominates ξ on S, contradicting ξ ∈ CP .
Conversely, let (x, y) = (x1, · · · , xn, y) belong to the σ-core and assume u(x, y) /∈ CP . Then there

exists η ∈ V that dominates u(x, y), that is there exists a not empty coalition S and
(
(xi)i∈S , y

)

belonging to A(S) such that ηi = ui(gi, z) > ui(xi, y) for all i ∈ S. Then
(
(xi)i∈S , y

)
dominates

(x, y) on S, hence a contradiction. So the proposition is proved. 2

Since for every coalition S we have V (S) = u(A(S)), it seems plausible to expect that the
analogous of proposition 3.1 holds for σ-stable sets, namely, that is if HA is an allocation σ-stable
set then u(HA) is a payoff σ-stable set and conversely if HP is a payoff σ-stable set then u−1(HP )
is an allocation σ-stable set. However, as shown in [17] for the case of economies without public
projects and contribution measures, this result is not true. Because of such reasoning, in line with
[15], we suggest the following modification of the notion of σ-stability.
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Definition 3.2 For ξ and η in V , we say that η indirectly σ-dominates ξ and write η �� ξ,
if there exists a sequence of feasible payoff vectors and coalitions {{ξν}m

ν=0 , {Sν}m
ν=1} such that

ξ0 = ξ, ξm = η and for j = 1, . . . , m and for all i ∈ Sj the following three conditions hold:

ξj,Sj ∈ V (Sj), ξj−1
i < ξj

i , ξj−1
i < ξm

i , (4)

where ξj,Sj represents the restriction to coalition Sj of the feasible payoff ξj.
A set of payoffs HP ⊆ V is a payoff σ-sophisticated stable set if

ξ ∈ V \ HP ⇐⇒ there exists η ∈ HP such that η �� ξ.

Extending the definition to the allocations space, we have

Definition 3.3 For (x1, · · · , xn, y) and (g1, . . . , gn, z) in A, we say that (g1, . . . , gn, z) indirectly σ-
dominates (x1, · · · , xn, y) and write (g, z) �� (f, y), if there exists a sequence of feasible allocations
and coalitions {{(xν, yν)}m

ν=0 , {Sν}m
ν=1} such that (x0, y0) = (x, y), (xm, ym) = (g, z) and for

j = 1, . . . , m and for all i ∈ Sj the following three conditions hold:

(xj,Sj , yj) ∈ A(Sj), ui(x
j−1
i , yj−1) < ui(x

j
i , y

j), ui(x
j−1
i , yj−1) < ui(x

m
i , ym), (5)

where (xj,Sj , y) represents the restriction to coalition Sj of the feasible allocation (xj, y).

A set of allocations HA ⊆ A is an allocation σ-sophisticated stable set if

(x1, · · · , xn, y) ∈ A \ HA ⇐⇒ there exists (g1, . . . , gn, z) ∈ HA s.t. (g, z) �� (x, y).

An important feature of the σ-sophisticated stable sets is that every element in such a set is
individually rational.

Proposition 3.4 Assume that the set of linear cost share equilibria is not empty. If (g1, . . . , gn, z)
belongs to the allocations σ-sophisticated stable set HA, then (g1, . . . , gn, z) is individually rational.
If ξ belongs to the payoffs σ-sophisticated stable set HP , then ξ is individually rational.

proof: Let (g, z) = (g1, . . . , gn, z) ∈ A be not individually rational, that is there exists k ∈ I such
that uk(gk, z) < uk(ωk, 0). Since uk(·, 0) is continuous and strictly monotone, and ωk 6= 0, there
exists hk < ωk such that

uk(gk, z) < uk(hk, 0) < uk(ωk, 0).

Moreover, being c(0) = 0, we have that the allocation (h, 0) with hi = 0 if i 6= k σ-dominates
(g, z) on the coalition {k}. Let (x, y) = (x1, . . . , xn) be a linear cost share equilibrium, then (x, y)
is individually rational. If not, we can find a k ∈ I such that, denoted with p(·) the price system
corresponding to (x, y), it results

p(0) · ωk = p(0) · ωk + p(0) · ϕ(k)c(0) > p(0) · ωk,

hence a contradiction.
So (h, 0) is σ-dominated by (x, y) using the grand coalition.
So (x, y) �� (g, z). Since (x, y) in the σ-Aubin core, which is contained in the σ-core, external

stabilities implies (x, y) ∈ HA, so (g, z) /∈ HA.
An analogous argument used in the utility space shows that if ξ ∈ V is not individually rational
then ξ /∈ HP . 2

Lemma 3.5 Let η and ξ in V , and let η = u(x,y) be individually rational. If η �� ξ, then there
exists η = u(x, y) such that η �� ξ and ηi < ηi.
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proof: Since η �� ξ there exists a sequence of feasible payoff vectors and coalitions {{ξν}m
ν=0 , {Sν}m

ν=1}
such that ξ0 = ξ, ξm = η and for j = 1, . . . , m and for all i ∈ Sj conditions (4) hold. Being ωi 6= 0,
ηi = ui(xi, y) ≥ ui(ωi, 0) for all i and ui(·, y) continuous and strictly monotone, we can choose
α ∈ (0, 1) such that

{{
(ξν)m−1

ν=0 , u(αx, y)
}

, {Sν}m
ν=1

}
satisfies conditions (4). So the lemma is

proved with η = u(αx, y). 2

Lemma 3.6 Let (g1, . . . , gn, z) and (x1, . . . , xn, y) in A, ξ = u(g, z) and assume that η = u(x, y)
is individually rational. Then, η �� ξ if and only if (x, y) �� (g, z).

proof: Assume that η �� ξ, by lemma 3.5 there exists η = u(x, y) such that η �� ξ and ηi < ξi.
That is, there exists a sequence of feasible payoff vectors and coalitions {{ξν}m

ν=0 , {Sν}m
ν=1} such

that ξ0 = ξ, ξm = η and for j = 1, . . . , m and for all i ∈ Sj conditions (4) hold. So, for every
j = 1, . . . , m − 1 there exists a feasible allocation (xj, yj) such that (xj,Sj , yj) ∈ A(Sj) and ξj

i =

ui(x
j
i , y

j). We now consider the sequence
{
(xj, yj)

}m+1

j=0
of allocations in A with (x0, y0) = (g, z),

(xm, ym) = (x, y) and (xm+1, ym+1) = (x, y). Obviously
{
{(xν , yν}m+1

ν=0 , {(Sν )m
ν=1, I}

}
satisfies

conditions (5), thus (x, y) �� (g, z). Conversely, assume that (x, y) �� (g, z). Then there exists a
sequence of feasible allocations and coalitions {{(xν , yν)}m

ν=0 , {Sν}m
ν=1} such that (x0, y0) = (g, z),

(xm, ym) = (x, y) and for j = 1, . . . , m and for all i ∈ Sj conditions (5) hold. It is easy to check
that, by using the sequence {{ξν}m

ν=0 , {Sν}m
ν=1} with ξj = u(xj, yj), we can conclude that η �� ξ.

2

Theorem 3.7 If HA is an allocation σ-sophisticated stable set then u(HA) is a payoff σ-sophisticated
stable set and conversely, if HP is a payoff σ- sophisticated stable set then u−1(HP ) is an allocation
σ-sophisticated stable set.

proof: Let HA an allocation σ-sophisticated stable set, we need to prove that ξ ∈ V \u(HA) if and
only if there exists η in u(HA) such that η �� ξ. Let ξ ∈ V \ u(HA) and assume that ξ = u(x, y)
with (x, y) = (x1, . . . , xn, y) ∈ A. Then (x, y) /∈ HA and, since HA is a σ-sophisticated stable set,
there exists (g, z) = (g1, . . . , gn, z) ∈ HA such that (g, z) �� (x, y). Then η = u(g, z) ∈ u(HA)
indirectly dominates ξ. Conversely assume by contradiction that there exists ξ and η in u(HA)
such that η �� ξ. Then there exists (x, y) = (x1, . . . , xn, y) and (g, z) = (g1, . . . , gn, z) in HA such
that ξ = u(x, y) and η = u(g, z). By lemma 3.6 and proposition 3.4, it follows that (g, z) �� (x, y)
which contradicts the internal stability of HA. An analogous argument proves the property in the
utility space. 2

4 σ-sophisticated stable sets in EC

It is the aim of this section to extend the previous results to the continuum economy EC. Recall
that, if we consider the associated economies EC and E , then conditions (1) and (2) define the
natural relation existing between the contribution measures σ̂ and σ.

Let us denote by AC the set of feasible allocations of the economy EC and by VC the set of
feasible payoffs that is

V = {ξ : I → IR+ | ξ(t) = ut(f(t), y)∀t ∈ I with (f, y) ∈ AC} .

Moreover for a set B ⊆ AC, let

u(B) ≡ {ξ : I → IR+ | ξ(t) = ut(f(t), y)∀t ∈ I with (f, y) ∈ B} .

Finally, for a coalition S, (f, y) ∈ AC and ξ ∈ VC , we denote by (fS , y) and ξS the restrictions of
(f, y) and ξ on S, respectively.
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For a coalition S, the set of Sσ-feasible allocations is given by

AC(S) =

{
(f, y) with f intergable function and y ∈ Y |

∫

S

fdµ + σ(S)c(y) ≤

∫

S

ωdµ

}
,

and the set of Sσ-feasible payoffs is given by

VC(S) = {ξ : S → IR+ | ∃(f, y) ∈ AC(S) such that ξ(t) = ut(f(t), y) ∀t ∈ S} .

Proposition 4.1 Let CP
C denote the payoff σ-core, that is the set of all payoffs in VC that are

undominated. Then

CP
C = {ξ : I → IR+ | ξ(t) = ut(f(t), y) ∀t ∈ I and (f, y) ∈ σ-core}

proof: Assume by contradiction that there exists ξ ∈ CP
C and (f, y) ∈ AC such that ξ(t) =

ut(f(t), y) and (f, y) does not belong to the σ-core. Then there exist a coalition S with nonnull
measure, a µ-integrable function g : S → IRm

+ , and a public project z such that

∫

S

gdµ + σ(S)c(z) ≤

∫

S

ωdµ , and

ut(g(t), z) > ut(f(t), y) for almost all t ∈ S.

But then, η(t) = ut(g(t), z) dominates ξ on S, contradicting ξ ∈ CP
C .

Conversely, let (f, y) belong to the σ-core and assume that the function ξ : I → IR+ defined as
ξ(t) = ut(f(t), y) /∈ CP

C . Then there exists η ∈ VC that dominates ξ, that is there exists a coalition
S with nonnull measure and (g, z) belonging to AC(S) such that η(t) = ut(g(t), z) > ut(f(t), y) for
almost all t ∈ S. Then (g, z) dominates (f, y) on S, hence a contradiction. So the proposition is
proved. 2

Since the analogous of proposition 4.1 does not hold for σ-stable sets, in line with Harsanyi
(1974), we suggest the following modification of the notion of σ-stability.

Definition 4.2 For ξ and η in V , we say that η indirectly σ-dominates ξ and write η �� ξ, if there
exists a sequence of feasible payoff functions and coalitions with nonnull measure {{ξν}m

ν=0 , {Sν}m
ν=1}

such that ξ0 = ξ, ξm = η and for j = 1, . . . , m and for all t ∈ Sj the following three conditions
hold:

ξj,Sj ∈ VC(Sj), ξj−1
i (t) < ξj

i (t), ξj−1
i (t) < ξm

i (t). (6)

A set of payoffs HP ⊆ VC is a payoff σ-sophisticated stable set if

ξ ∈ VC \ HP ⇐⇒ there exists η ∈ HP such that η �� ξ.

Lemma 4.3 i) Assume that u(f, y) indirectly σ̂-dominates u(g, z) and consider the associated
payoffs in E , (u1(x1, y), . . . , un(xn, y)) and (u1(g1, z), . . . , un(gn, z)) with xi = 1

µ(Ii)

∫
Ii

fdµ

and gi = 1
µ(Ii)

∫
Ii

gdµ. If in the economy E assumption (3) is satisfied, then (u1(x1, y), . . . , un(xn, y)) ��

(u1(g1, z), . . . , un(gn, z)).

ii) Assume that, in the economy E , the payoff (u1(x1, y), . . . , un(xn, y)) σ-dominates (u1(g1, y), . . . , un(gn, z)),
and consider the associated payoffs in EC, u(f, y) and u(g, z) with f(t) = xi and g(t) = gi

for all t ∈ Ii and i = 1, . . . , n. Then u(f, y) σ̂-dominates u(g, z).

proof: i) Let us consider the sequence of feasible payoffs and coalitions with nonnull measure
{{ξν}m

ν=0 , {Sν}m
ν=1} with ξν = u(fν , y) satisfying conditions (6), and define

the payoff (u1(x
ν
1 , yν), . . . , un(xν

n, yν)) with xν
i = 1

µ(Ii)

∫
Ii

fνd, for any ν = 0, . . . , m;

the coalition Sν = ∪{Ii∩Sν 6=∅}Ii, for any ν = 1, . . . , m.

14



In light of Liapunov arguments and previous results, we can immediately prove that, using the
sequence of feasible payoffs and coalitions

{
{(u1(x

ν
1 , yν), . . . , un(xν

n, yν))}m
ν=0 ,

{
Sν
}m

ν=1

}
,

the payoff (u1(x1, y), . . . , un(xn, y)) indirectly σ-dominates (u1(g1, z), . . . , un(gn, z)).
ii) Let us consider the sequence {{(u1(x

ν
1 , y

ν), . . . , un(xν
1 , y

ν))}m
ν=0 , {Sν}m

ν=1} satisfying conditions
(4), and define

the payoff u(fν , yν) with fν (t) = xν
i , for any ν = 0, . . . , m and t ∈ Ii;

the coalition Ŝν = ∪i∈Sν Ii, for any ν = 1, . . . , m.

We can immediately prove that, thanks to sequence
{
{u(fν , yν)}m

ν=0 ,
{
Ŝν
}m

ν=1

}
, the payoff u(f, y)

σ̂-dominates u(g, z).
2

From the previous lemma, it follows that

Proposition 4.4 Assume (3). If HP
C is a payoffs σ̂-sophisticated stable set in EC , then the corre-

sponding set

HP =

{
(u1(x1, y), . . . , un(xn, y)) | xi =

1

µ(Ii)

∫

Ii

fdµ and u(f, y) ∈ HP
C

}

is a payoffs σ- sophisticated stable set in E . Reciprocally, if HP is a payoffs σ-sophisticated stable
set in E , then the corresponding set

HP
C =

{
u(f, y) | f(t) = xi ∀t ∈ Ii and (u1(x1, y), . . . , un(xn, y)) ∈ HP

}

is a payoffs σ̂- sophisticated stable set in E .

Extending the definition to the allocations space, we have

Definition 4.5 For (f, y) and (g, z) in AC, we say that (g, z) indirectly σ-dominates (f, y) and
write (g, z) �� (f, y), if there exists a sequence of feasible allocations and coalitions with nonnull
measure {{(fν , yν)}m

ν=0 , {Sν}m
ν=1} such that (f0 , y0) = (f, y), (fm , ym) = (g, z) and for j =

1, . . . , m and for all t ∈ Sj the following three conditions hold:

(fj,Sj , yj) ∈ AC(Sj ),

ut(f
j−1(t), yj−1) < ut(f

j(t), yj),

ut(f
j−1(t), yj−1) < ut(f

m(t), ym)

(7)

A set of allocations HA ⊆ AC is an allocation σ-sophisticated stable set if

(g, z) ∈ AC \ HA ⇐⇒ there exists (g, z) ∈ HP such that (f, y) �� (g, z).

Lemma 4.6 i) Assume (f, y) indirectly σ̂-dominates (g, z) and consider the associated alloca-
tions in E , (x1, . . . , xn, y) and (g1, . . . , gn, z) with xi = 1

µ(Ii)

∫
Ii

fdµ and gi = 1
µ(Ii)

∫
Ii

gdµ. If

in the economy E assumption (3) is satisfied, then (x1, . . . , xn, y) σ-dominates (g1, . . . , gn, z).

ii) Assume that, in the economy E , (x1, . . . , xn, y) σ-dominates (g1, . . . , gn, z), and consider the
associated allocations in EC , (f, y) and (g, z) with f(t) = xi and g(t) = gi for all t ∈ Ii. Then
(f, y) σ̂-dominates (g, z).

proof:

15



i) Let us consider the sequence of feasible allocations and coalitions with nonnull measure
{{(fν , yν)}m

ν=0 , {Sν}m
ν=1} satisfying conditions (7), and define

the allocation (xν, yν) with xν
i = 1

µ(Ii)

∫
Ii

fνdµ, for any ν = 0, . . . , m;

the coalition Sν = ∪{Ii∩Sν 6=∅}Ii, for any ν = 1, . . . , m.

In light of Liapunov arguments and previous results (as in the proof of lemma 2.5), we can im-

mediately prove that, using the sequence of feasible allocations and coalitions
{
{(xν , yν)}m

ν=0 ,
{
Sν
}m

ν=1

}
,

the allocation (x1, . . . , xn, z) indirectly σ-dominates (g1, . . . , gn, z).

ii) Let us consider the sequence {{(xν , yν)}m
ν=0 , {Sν}m

ν=1} satisfying conditions (5), and define

the allocation (fν , yν) with fν(t) = xν
i , for any ν = 0, . . . , m;

the coalition Ŝν = ∪i∈Sν Ii, for any ν = 1, . . . , m.

We can immediately prove that, thanks to sequence
{
{(fν , yν)}m

ν=0 ,
{
Ŝν
}m

ν=1

}
, the alloca-

tion (f, y) σ̂-dominates (g, z).

2

From the previous lemma, it follows that

Proposition 4.7 Assume (3). If HA
C is an allocations σ̂-sophisticated stable set in EC , then the

corresponding set HA =
{

(x1, . . . , xn, y) | xi = 1
µ(Ii)

∫
Ii

fdµ and (f, y) ∈ HA
C

}
is an allocations σ-

sophisticated stable set in E . Reciprocally, if HA is an allocation σ-sophisticated stable set in E ,
then the corresponding set

HA
C =

{
(f, y) | f(t) = xi ∀t ∈ Ii and (x1, . . . , y) ∈ HA

}

is an allocations σ̂- sophisticated stable set in E .

Theorem 4.8 If HA
C is an allocations σ̂-sophisticated stable set then u(HA

C ) is a payoffs σ̂-sophisticated
stable set and conversely, if HP

C is a payoff σ̂- sophisticated stable set then u−1(HP
C ) is an alloca-

tions σ̂-sophisticated stable set.

proof: The theorem follows from propositions 4.4 and 4.4. 2
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