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Abstract 
We consider quasi-variational problems (variational problems having constraint sets depending on their own solutions) 
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1 Introduction

The term ”quasi-variational” identifies a class of variational problems having constraint sets de-
pending on their own solutions and including several problems, among which

• Social Nash Equilibrium Problem in abstract economies (SNEP ) [13],

• Equilibrium Problem (EP ) [7],

• Variational Inequality (V I) [5],

• Complementarity Problem (CP ) [6],

• Implicit Variational Problem (IV P ) [36],

• Quasi-Variational Inequality (V I) [5],

• Generalized Variational Inequality (GV I) [11],

• Generalized Quasi-variational Inequality (GQV I) [17],

• Mixed Quasivariational-like Inequality (MQI) [9].

All these theoretical problems play an important role in concrete economic or engineering prob-
lems such as social and economic networks modelization [37], financial derivative models [15],
transportation network congestion [8], traffic equilibrium [12], electric power market modelization
[18], optimal shape design [16], topology optimization in structural mechanics [14],..
A more general formulation, considered in [36], [5], [22], [24], is the following one.
Given a real Banach space U with dual U∗, let K be a nonempty closed and convex subset of U ,
let f be a real-valued function defined in U × U and S be a set-valued map from K to K with
nonempty values.
Then, the quasi-variational problem (QV P ) (called in [38] and in [1] quasi-equilibrium problem)
looks for the solution set Q defined by

u ∈ Q ⇐⇒ u ∈ S(u) and f(u,w) ≤ 0 ∀ w ∈ S(u).

Each one of the above problems can be described considering an appropriate function and/or
set-valued map:

• (SNEP ) consider f(u,w) = (J1(u1, u2) + J2(u1, u2)) − (J1(u1, w2) + J2(w1, u2)) where J1
and J2 are functions from Y1 × Y2 to R and Y1 and Y2 are respectively nonempty subsets of
E1 and E2, reflexive real Banach spaces, S(u) = S(u1, u2) = Q1(u2)×Q2(u1) where Q1 and
Q2 are set-valued functions from Y2 to Y1 and from Y1 to Y2 respectively,

• (EP ) consider S(u) = K,

• (V I) consider S(u) = K and f(u,w) = 〈Au, u− w〉 where A : U → U∗ is an operator,

• (CP ) consider S(u) = C, where C is a convex, closed cone with apex in the origin 0 and
f(u,w) = 〈Au, u− v〉, where A : U → U∗ is an operator,

• (QV I) consider f(u,w) = 〈Au, u− w〉, where A : U → U∗ is an operator,
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• (IV P ) consider S(u) = K and f(u,w) = g(u,w) + φ(u, u)−̇φ(u,w) where g : U × U → R,
φ : U × U → R ∪ {+∞} and (+∞)−̇(+∞) = +∞,

• (GV I) consider S(u) = K and f(u,w) = min
u∗∈T (u)

〈u∗, u−w〉 where T is a set-valued operator

from U to U∗,

• (GQV I) consider f(u,w) = min
u∗∈T (u)

〈u∗, u − w〉 where T is a set-valued operator from U to

U∗,

• (EP ) consider S(u) = K,

• (MQV LI) consider f(u,w) = min
u∗∈T (u)

〈u∗, η(u,w)〉 + h(u) − h(w) where T is a set-valued

operator from U to U∗, η : K ×K → K and h : K → R are functions.

Classically, in order to avoid very restrictive assumptions in the investigation of variational inequal-
ities in infinite dimensional spaces, the following problem is considered [31]:

(LV I) find u ∈ K such that 〈Av, u− v〉 ≤ 0 ∀ v ∈ K

The equivalence between the problems (V I) and (LV I) is provided by the Minty Lemma [31] which
represents the prototype to obtain analogous results for most of the problems listed before (see
Section 2). Therefore, concerning quasi-variational problems (QV P ), it looks natural to introduce
the next problem

(LQV P ) find u ∈ S(u) and f(w, u) ≥ 0 ∀ w ∈ S(u)

whose solution set is denoted by LQ.
Problems depending on a parameter t are denoted by

(QV P )(t) find u ∈ S(t, u) and f(t, u, w) ≤ 0 ∀ w ∈ S(t, u)

(respectively (LQV P )(t) u ∈ S(t, u) and f(t, w, u) ≥ 0 ∀ w ∈ S(t, u) )

and it is useful to study the stability of the solution sets Q(t) and LQ(t) for t belonging to a
topological space (T, τ). In this paper we investigate sequential upper and/or lower stability of
Q(t) and LQ(t), meaning respectively that for every sequence (tn)n converging in T to t one has

Q(t) ⊆ lim inf
n→+∞

Q(tn) and/or lim sup
n→+∞

LQ(tn) ⊆ LQ(t),

where the lim inf and lim sup denote the lower and the upper limit in the sense of Painlevé-
Kuratowski [4] of a family of sets, whose definitions will be recalled in Section 2.
At our knowledge, when T is the set of positive integers N, the first upper stability results for
quasi-variational problems have been established by the authors in [22], while the first lower sta-
bility results have been presented by Morgan and Raucci in [32] and [33] for approximate social
Nash equilibria. See also, among the many, and more recent, stability results presented for quasi-
variational problems, [10], [34], [35], [1], [2]. In Section 3 we will show that upper stability results
for the solution maps Q and LQ can be obtained under mild assumptions on the data while the
lower stability of Q and LQ may not be achieved in general, even in very restrictive conditions.
This lack of stability of the exact solutions motivates to introduce approximate solutions that can
be simultaneously lower and upper stable.
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It is worth mentioning that the lower stability property plays a fundamental role in the investiga-
tion of hierarchical problems. Indeed, some examples show that the optimal solutions to perturbed
bilevel problems, as well as the optimal values, may not be stable (see Example 4.1 in [23], Ex-
ample 2.3 in [25]). Therefore, regularized models have been investigated when the lower level is
described by an Optimization problem [27], [28], [23], by generalized saddle point equilibria [32],
social Nash equilibria [33] or Nash equilibria in mixed strategies [30], considering approximate solu-
tions to the lower level problem which satisfy the lower stability property. This approach has been
proved to be fruitful, for instance, when applied to a class of bilevel optimization problems arising
in structural optimization [14]. Then, in this paper we aim to investigate approximate solutions
for quasi-variational problems (QVP) that turn out to be lower stable. In literature, for all of
the problems listed at the beginning, several concepts of approximate solutions have been defined
with different motivations and purposes. In particular we mention the papers by Lucchetti-Patrone
[29], Revalski [39], Lignola-Morgan [21] and [26], related to approximate solutions for variational
inequalities, Morgan-Raucci [33], related to approximate social Nash equilibria, and the papers
by Lignola [19] and Ceng-Hadjisavvas-Schaible-Yao [9] concerning approximate solutions for quasi-
variational inequalities and mixed quasi-variational-like inequalities. Inspired by these papers, we
define in Section 4 two concepts of approximate solutions, one for (QV P )’s and one for (LQV P )’s,
investigating, for each of them, upper and lower stability properties. Previously, in Section 2, after
preliminaries and notations, an overview of the behavior of the exact solutions sets is given.

2 Basic notations and background

The investigation of problems of variational or quasi-variational nature in infinite dimensional
spaces needs some continuity and monotonicity properties, [4] and [17], in order to avoid very
restrictive assumptions. So, we recall here the notions for bivariate functions and for set-valued
maps that will be used throughout the paper. We denote by w and s, respectively, the weak and the
strong convergence on a normed space U ; by intH the interior of a set H ; by G(F ) the graph of
a set-valued map F : U → V , where V is a topological space, i.e. the set {(y, v) : v ∈ F (y)} and,
given a positive number r, by B(H, r) the closed ball around H, i.e. the set {u ∈ E : d(u,H) ≤ r}.
A function f : U × U → R is said to be: monotone if f(u,w) + f(w, u) ≥ 0, pseudomonotone if
f(u,w) ≤ 0 implies f(w, u) ≥ 0, coercive if every net (uα, vα)α, such that f(uα, vα) ≤ k for every
α, has a convergent subnet.
A set-valued map F : (X, τ) → (Y, σ), where (X, τ) and (Y, σ) are topological spaces, is said to
be (τ, σ)-lower semicontinuous at xo ∈ X if for every yo ∈ F (xo) and every neighborhhood I
of yo there exists a neighborhood Q of xo such that F (x) ∩ I 6= ∅ for all x ∈ Q; F is said to be
(τ, σ)-closed at xo if for every y /∈ F (xo) there exist a neighborhood I of yo and a neighborhood
Q of xo such that F (x) ∩ I = ∅ for all x ∈ Q; F is said to be (τ, σ)-subcontinuous at xo if given a
net (xα)α∈A converging to xo, every net (yα)α∈A with yα ∈ F (xα) has a convergent subnet; F is
said to be (τ, σ)-lower semicontinuous (respectively closed or subcontinuous) over a set H ⊆ X if
it is (τ, σ)-lower semicontinuous (respectively closed or subcontinuous) at x for every x ∈ H. If τ
and σ are first countable then the above properties can be caracterized as follows: F is (τ, σ)-lower
semicontinuous at xo iff for every sequence (xn)n τ -converging to xo in X and every yo ∈ F (xo)
there exists a sequence (yn)n σ-converging to yo in Y such that yn ∈ F (xn) for sufficiently large
n ∈ N; F is (τ, σ)-closed at xo iff for every yo /∈ F (xo) there exist a sequence (xn)n τ -converging to
xo in X and a sequence (yn)n σ-converging to yo in Y such that yn /∈ F (xn) for sufficiently large
n ∈ N; F is (τ, σ)-subcontinuous at xo iff, given a sequence (xn)n τ -converging to xo in X, every
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sequence (yn)n such that yn ∈ F (xn) for all n ∈ N has a σ-convergent subsequence.
Let (Hn)n be a sequence of subsets of U . The Painlevé-Kuratowski upper and lower limit of the
sequence (Hn)n are defined as follows.

• z ∈ σ−lim sup
n

Hn if there exists a sequence (zk)k σ−converging to z in E such that zk ∈ Hnk
,

for a subsequence (Hnk
) of (Hn)n and for each k ∈ N;

• z ∈ σ − lim inf
n

Hn if there exists a sequence (zn)n σ−converging to z in E and such that

zn ∈ Hn for n sufficiently large.

During the whole paper we will assume that the set K is nonempty, closed and convex and that
the following assumptions are satisfied
(Ξ) f(u, u) = 0 ∀ u ∈ K,
and, for parametric problems,
(Ξt) f(t, u, u) = 0 ∀ t ∈ T and ∀ u ∈ K.

3 Stability of exact solutions

We start this section extending to quasi-variational problems the classical Minty lemma [31].

Lemma 3.1 If f is pseudomonotone on K, then every solution uo to the quasi-variational problem
(QV I) is also a solution to the problem

(LQV I) find u ∈ S(u) such that f(w, u) ≥ 0 ∀ w ∈ S(u).

If f(·, w) is lower semicontinous on the segments of K for every w ∈ K, f(u, ·) is concave on
K for every u ∈ K and S is convex and closed-valued, then every solution uo to the linearized
quasi-variational problem (LQV I) is also a solution to the problem (QV I).

Proof
The proof of the first part is straightforward, so it is omitted.
Let uo ∈ S(uo) such that

f(w, uo) ≥ 0 ∀ w ∈ S(uo)

and let wo ∈ S(uo) such that wo 6= uo. For every λ ∈ [0, 1] consider uλ = λuo + (1 − λ)wo. Since
f(·, wo) is lower semicontinuous on the segments one has

f(uo, wo) ≤ lim inf
λ→1

f(uλ, wo),

so, in order to prove that f(uo, wo) ≤ 0, it is sufficient to prove that f(uλ, wo) ≤ 0 for every
λ ∈]0, 1[. This inequality follows from the concavity of f in the second variable and observing that
λf(uλ, uo) ≥ 0:

f(uλ, wo) ≤ f(uλ, wo)+λf(uλ, uo)+λf(uλ, wo)−λf(uλ, wo) ≤ f(uλ, uλ)+λf(uλ, wo) ≤ λf(uλ, wo).

The above lemma can be suitably used to get analogous statements for generalized quasi-variational
or variational inequalites, for implicit variational problems and for equilibrium problems.
The next two results, that can be proved using standard arguments, concern the topological prop-
erties of the solution set-valued maps Q : t ∈ T → Q(t) ⊆ U and LQ : t ∈ T → LQ(t) ⊆ U .
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Proposition 3.1 Given t ∈ T , the set Q(t) is closed when f(t, ·, ·) is lower semicontinuous on
K ×K and S(t, ·) is lower semicontinous and closed-valued.
If f is lower semicontinuous on T ×K ×K and S is closed and lower semicontinous on T ×K,
then the set-valued map Q is closed.
If f(·, ·, w) is coercive on T ×K, for every w ∈ K, then the set-valued map Q is subcontinuous.

Proposition 3.2 Given t ∈ T , the set LQ(t) is closed when f(t, ·, ·) is upper semicontinuous on
K ×Kand S(t, ·) is lower semicontinous and closed-valued.
If f is upper semicontinuous on T ×K ×K and S is closed and lower semicontinous on T ×K,
then the set-valued map LQ is closed. If −f(·, ·, w) is coercive on T ×K, for every w ∈ K, then
the set-valued map LQ is subcontinuous.

Unfortunately, both propositions contain a semicontinuity assumption on the function f at the
couple (u,w), that could be a very restrictive assumption in the case where f(u,w) = 〈Au, u−w〉.
For instance, if U is an infinite dimensional Hilbert space and 〈·, ·〉 denotes the scalar product in
U , it is known that the function f(u,w) = 〈u, u− w〉 is not weakly upper semicontinuous on the
unitary ball.
Therefore, results avoiding a so restrictive assumption would be desirable. To this end, we recall
the following lemma [20] concerning lower convergent sequences of convex sets having nonempty
interior.

Lemma 3.2 ([20], Lemma 3.1)
Let (Hn)n∈N∪{0} be a sequence of nonempty subsets of a Banach space E such that:

i) Hn is convex for every n ∈ N ;

ii) Ho ⊆ LiminfnHn;

iii) there exists m ∈ N such that int
⋂
n≥m

Hn 6= ∅.

Then, for every u ∈ intHo there exists a positive real number δ such that
B(u, δ) ⊆ Hn ∀ n ≥ m.

If E is a finite dimensional space, then assumption iii) can be substituted by: iii’) intHo 6= ∅.

Now, we present closedness results for the solution maps Q and LQ under ”nicer” assumptions.

Proposition 3.3 Assume that the following assumptions hold:
i) S is convex-valued, (τ × s, s)-lower semicontinuous and (τ × s, s)-closed on T ×K;
ii) f(t, u, ·) is concave on K for every t ∈ T and u ∈ K;
iii) f(t, ·, w) is lower semicontinuous on the segments of K for every t ∈ T and w ∈ K;
iv) for every (t, u, w) ∈ T ×K ×K, for every sequence (tn, un, wn)n such that (tn)n τ -converges to
t, (un, wn)n (s× s)-converges to (u,w) one has

− f(t, w, u) ≤ lim inf
n

f(tn, un, wn).

Then, the set-valued map Q is (τ, s)-closed.

Proof
Let (tn)n and (un)n be sequences converging to to and uo, respectively in T and in K, such that
for every n ∈ N un ∈ Q(tn), that is

un ∈ S(tn, un) and f(tn, un, w) ≤ 0 ∀ w ∈ S(tn, un).
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Since the closedness of S implies that uo ∈ S(to, uo), in order to prove that uo ∈ Q(to) it takes
only to prove that for every w ∈ S(to, uo) one has f(to, uo, w) ≤ 0. Being S lower semicontinuous,
given w ∈ S(to, uo), there exists a sequence (wn)n converging to w such that wn ∈ S(tn, un) for n
sufficiently large and, by condition iv), one gets −f(to, w, uo) ≤ 0.
Therefore uo ∈ LQ(to) and the proof can be completed adapting the proof of Lemma 3.1 to
parametric quasi-variational problems.

Proposition 3.4 Assume that the following assumptions hold:
i) S is convex-valued, (τ × s, s)-lower semicontinuous and (τ × s, s)-closed on T ×K;
ii) f(·, u, ·) is upper semicontinuous on T ×K for every u ∈ K;
iii) f(t, ·, w) is upper semicontinuous on the segments of K for every t ∈ T and w ∈ K;
iv) for every sequence (tn, un)n, tn ∈ T and un ∈ K for all n ∈ N, such that (tn)n τ -converges in
T and (un)n s-converges in K, there exists m ∈ N such that

int
⋂
n≥m

S(tn, un) 6= ∅.

Then, the set-valued map LQ is (τ, s)-closed.
If U is a finite dimensional space, then assumption iv) can be substituted by: iv’) for every t ∈ T
and u ∈ K, int S(t, u) 6= ∅.

Proof
Let (tn)n and (un)n be sequences converging to to and uo, respectively in T and in K, such that
for every n ∈ N

un ∈ S(tn, un) and − f(tn, w, un) ≤ 0 ∀ w ∈ S(tn, un).

Since the closedness of S implies that uo ∈ S(to, uo), in order to prove that uo ∈ LQ(to) it takes only
to prove that for every w ∈ S(to, uo) one has −f(to, w, uo) ≤ 0. Given w ∈ intS(to, uo), the lower
semicontinuity of S, assumption iv) and Lemma 3.2 imply that w ∈ intS(tn, un) for n sufficiently
large and, by condition ii), one gets −f(to, w, uo) ≤ 0. When w ∈ S(to, uo) − int S(to, uo), being
S(to, uo) a convex set, there exists a sequence (wn)n converging to w such that wn ∈ intS(to, uo).
Therefore −f(to, wn, uo) ≤ 0 and assumption iii) implies that uo ∈ LQ(to).

Remark 3.1 Propositions 3.3 and 3.4 also provide a (τ, w)-closedness result for the solution maps
Q and LQ if in iv) the weak convergence of the sequence (un)n is required instead of the strong
convergence and in i) the set-valued map S is assumed to be convex-valued, (τ × w, s)-lower
semicontinous and (τ × w,w)-closed on T ×K.

Remark 3.2 The assumptions of Proposition 3.3 imply that Q(t)=LQ(t) for every t ∈ T , since
Lemma 3.1 holds for the function f(t, ·, ·). Thus, Proposition 3.3 gives also a τ × s-closedness
result for the map LQ that is not comparable with Proposition 3.4 in which assumption iv) on the
constraint map S (that is not present in Proposition 3.3) plays an essential role.

As announced in the Introduction, the maps LQ and Q may fail to be lower semicontinuous even
in presence of very regular data.

Example 3.1 Let T = [−1, 1], U = R, S(t, u) = K = [−1, 1], f(t, u, w) = t(u−w), for each t ∈ T .
With such data, the problem (QV P )(t) consists of finding u ∈ [−1, 1] such that t(u − w) ≤ 0 for
any w ∈ [−1, 1]. So, the solutions map Q is

Q(t) =

 {1} if t < 0
[−1, 1] if t = 0
{−1} if t > 0
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which is not lower semicontinuous at t = 0. More precisely, there exist a sequence (tn)n converging
to 0 and an element u ∈ Q(0), for example u = 0, such that every sequence (un)n, un ∈ Q(tn) for
n large, does not converge to u. Observing that −f(t, w, u) = f(t, u, w), one gets Q(t) = LQ(t)
for every t ∈ T , so also the set-valued map LQ is not lower semicontinuous at t = 0.

This lack of lower semicontinuity leads us to introduce suitable concepts of approximate solution
maps for quasi-variational problems.

4 Upper and lower stability of approximate solutions

Given a positive real number r, consider the set-valued maps defined on the parameters set T by

Q r(t) = {u ∈ K : u ∈ B(S(t, u), r) and f(t, u, w) ≤ r ∀ w ∈ S(t, u)}

LQ r(t) = {u ∈ K : u ∈ B(S(t, u), r) and − f(t, w, u) ≤ r ∀ w ∈ S(t, u)}

for every t ∈ T .
It is easy to see that the maps Qr and LQr are ”upper stable” in the same assumptions of Propo-
sition 3.1 and Proposition 3.2. However, a result in line with Proposition 3.3 cannot be expected
for the map Qr since, in general, a Minty Lemma type does not hold for Qr and Lr.

Example 4.1 Consider U = R, S(t, u) = K = [0, 1] and f(u,w) = u(u − w). Then one easily

cheks that Q r = [ 1−
√
4r+1
2 ,

√
r] ⊂ LQ r = [−r, 2

√
r].

Now, we give a closedness result for the map LQr under ”nice” assumptions.

Proposition 4.1 Assume that the following assumptions hold:
i) S is convex-valued, (τ × s, s)-lower semicontinuous, (τ × s, s)-closed and (τ × s, s)-subcontinuous
on T ×K;
ii) f(·, u, ·) is upper semicontinuous on T ×K for every u ∈ K;
iii) f(t, ·, w) is upper semicontinuous on the segments of K for every t ∈ T and w ∈ K;
iv) for every sequence (tn, un)n, tn ∈ T and un ∈ K for all n ∈ N, such that (tn)n τ -converges in
T and (un)n s-converges in K, there exists m ∈ N such that

int
⋂
n≥m

S(tn, un) 6= ∅.

Then, the set-valued map LQr is (τ, s)-closed.
If U is a finite dimensional space, then assumption iv) can be substituted by:
iv’) for every t ∈ T and u ∈ K, int S(t, u) 6= ∅.

Proof
Let (tn)n and (un)n be sequences converging, respectively in T and in K to to and uo, such that
for every n ∈ N

un ∈ B(S(tn, un), r) and − f(tn, w, un) ≤ r ∀ w ∈ S(tn, un).

The closedness and the subcontinuity of S imply that uo ∈ B(S(to, uo), r). Indeed, if we assume
that d(uo, S(to, uo)) > a > r ≥ d(un, S(tn, un)) for every n ∈ N, there exists a sequence (vn)n
such that vn ∈ S(tn, un) and ||un − vn|| < a for every n ∈ N. A subsequence (vnk

)k must strongly
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converge to a point vo ∈ S(to, uo) and this leads to a contradiction.
Then, in order to show that uo ∈ LQr(to) it takes to prove that for every w ∈ S(to, uo) one has
−f(to, w, uo) ≤ r.
Observing that the lower semicontinuity of S allows to apply Lemma 3.2 taking Hn = S(tn, un)
for n ∈ N and Ho = S(to, uo), whenever w ∈ intS(to, uo) one has that w ∈ intS(tn, un) for n
sufficiently large and condition ii) implies that −f(to, w, uo) ≤ r.
If w ∈ S(to, uo) − intS(to, uo), there exists a sequence (wn)n converging to w such that wn ∈
intS(to, uo) for every n ∈ N. Therefore one has −f(to, wn, uo) ≤ ||uo − wn|| and assumption iii)
implies that uo ∈ LQr(to).

As observed in Remark 3.1, results concerning the (τ × w)-closedness of the set-valued map LQr,
can be also achieved.
Now, we investigate the lower stability of the approximate solution maps and we start proving a
lower semicontinuity result for a kind of approximate fixed points.

Proposition 4.2 Assume that the following assumptions hold:
i) the set-valued map S is closed-valued, convex-valued and (τ × s, s)-lower semicontinuous on
T ×K;
ii) for every sequence (tn, un)n, tn ∈ T and un ∈ K for all n ∈ N, such that (tn)n τ -converges in
T and (un)n s-converges in K, there exists m ∈ N such that

int
⋂
n≥m

S(tn, un) 6= ∅.

Then we get:
- for every t ∈ T , for every sequence (tn)n τ -converging to t, every u ∈ K such that u ∈
B(S(t, u), r), there exists a sequence (un)n strongly converging to u such that un ∈ intB(S(tn, un), r)
for n sufficiently large;
- the set-valued map

Fr : t ∈ T → {u ∈ K : d(S(t, u), u) ≤ r}
is lower semicontinuous.
If U is a finite dimensional space, then assumption ii) can be substituted by:
ii’) for every t ∈ T and u ∈ K, int S(t, u) 6= ∅.
Proof
We start considering u ∈ intB(S(t, u), r), i.e. d(u, S(t, u)) < r. Let z ∈ S(t, u) and ||z − u|| < r
there exists a sequence (zn)n converging to z such that zn ∈ S(tn, u). Since ||zn − u|| < r for n
sufficiently large, one can put un = u for every n ∈ N.
Now, we assume that ||u − z|| = r for some z ∈ S(t, u) starting by the case where z ∈ int S(t, u).
If (λn)n is a sequence of nonnegative real numbers in [0,1] converging to 0, the sequence obtained
setting un = λnz + (1− λn)u converges to u, ||un − z|| = (1− λn)||u− z|| < r for every n ∈ N and
z ∈ int S(tn, un) for n large in light of condition ii) and Lemma 3.2.
Finally, assume that z ∈ S(t, u)− int S(t, u). Let (zn)n a sequence strongly converging to z whole
contained in int S(t, u). Then, for every n ∈ N there exists a sequence (ũ nk )k strongly converging
to u and such that d(ũ nk , S(tk, ũ

n
k )) < r for every k ∈ N. Applying a diagonalization argument (see

[3] Corollary 1.18), there exists an increasing sequence (k(n))n such that (ũnk(n))n converges to u

and d(ũ nk(n), S(tk(n), ũ
n
k(n))) < r. The second point can be obviously deduced from the first one.

The next two propositions are concerned with the lower semicontinuity of the set-valued map LQr
and Qr.
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Proposition 4.3 Assume that the following assumptions hold:
i) the set-valued map S is convex-graph;
ii) the set-valued map S is (τ×s, s)-lower semicontinous, (τ×s, s)-closed and (τ×s, s)-subcontinuous
on T ×K;
iii) the function f(t, ·, ·) is strictly quasi-concave on K ×K, for every t ∈ T ;
iv) for every (t, u) ∈ T ×K, for every sequence (tn)n converging to t in τ , there exists a sequence
(u′n)n which strongly converges to u in K such that for every w ∈ K and every sequence (wn)n
strongly converging to w in K one has

f(t, w, u) ≤ lim inf
n

f(tn, wn, u
′
n);

v) for every t ∈ T there exists z ∈ K such that

d(z, S(t, z)) < r and − f(t, w, z) < r ∀ w ∈ S(t, z).

Then, the set-valued map LQr is (τ, s)-lower semicontinuous on T .

Proof
The proof consists in two steps.
Step 1 - For every t ∈ T ,

LQr(t) ⊆ cl L̃Qr(t),

where
L̃Qr(t) = {u ∈ K : d(u, S(t, u)) < r and − f(t, w, u) < r ∀w ∈ S(t, u)} .

Assume that there exist to ∈ T and uo ∈ LQr(to) such that uo /∈ clL̃Qr(to). Assumption v) says
that there exists zo ∈ K such that

d(zo, S(to, zo)) < r and − f(to, w, zo) < r ∀ w ∈ S(to, zo).

Given a sequence (λn)n converging to 0 in [0,1], consider, for every n ∈ N, the point

un = λnzo + (1− λn)uo

and observe that, in light of assumptions i) and ii), one has d(un, S(to, un)) < r, since, for every
t ∈ T, the function u ∈ K → d(u, S(t, u)) turns to be convex.
Moreover, for every n ∈ N, S(to, un) = λnS(to, zo) + (1 − λn)S(to, uo) so, if wn ∈ S(to, un), there
exist pn ∈ S(to, zo) and qn ∈ S(to, uo) such that wn = λnpn + (1−λn)qn. Therefore, being uo 6= zo
since uo /∈ L̃Qr(to), assumption iii) implies that

−f(to, wn, un) < max {−f(to, pn, zo),−f(to, qn, uo)} ≤ r

and one gets a contradiction considering that un ∈ L̃Qr(to) for every n ∈ N and uo = lim
n
un ∈

clL̃Qr(to).
Step 2 - The set-valued map

L̃Qr : t ∈ T → L̃Qr(t)
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is (τ, s)-lower semicontinuous on T .

Assume that the set-valued map L̃Qr is not lower semicontinuous on T and find t′ ∈ T , u′ ∈ L̃Qr(t′)
and a sequence (t′n)n τ -converging to t′ in T such that u′ /∈ lim inf

n
L̃Qr(t′n).

Consequently, for the sequence (u′n)n in assumption iv) there exists a subsequence (u′nk
)k such that

u′nk
/∈ L̃Qr(t′nk

) ∀ k ∈ N.

Since d(u′, S(t, u′)) < r, from assumption ii) one can infer that d(u′nk
, S(tnk

, u′nk
)) < r for k ∈ N

sufficiently large, so, for such indexes k there exist w′k ∈ S(t′nk
, u′nk

) such that −f(t′nk
, w′k, u

′
nk

) ≥ r.
Since the map S is closed and subcontinuous, the sequence (w′k)k has a subsequence, still denoted
by (w′k)k, converging to w′ ∈ S(t′, u′), and, using assumption iv), one gets −f(t′, w′, u′) ≥ r that

is in contradiction with u′ ∈ L̃Qr(t′).
Finally, whatever is the sequence (tn)n τ -converging to t ∈ T , one gets

LQr(t) ⊆ cl L̃Qr(t) ⊆ cl lim inf
n
L̃Qr(tn) = lim inf

n
L̃Qr(tn) ⊆ lim inf

n
LQr(tn)

and the proof is complete.

Similarly one can prove:

Proposition 4.4 Assume that the following assumptions hold:
i) the set-valued map S is convex-graph;
ii) the set-valued map S is (τ×s, s)-lower semicontinuous, (τ×s, s)-closed and (τ×s, s)-subcontinuous
on T ×K;
iii) the function f(t, ·, ·) is strictly quasi-convex on K ×K, for every t ∈ T ;
iv) for every (t, u) ∈ T ×K, for every sequence (tn)n converging to t in τ , there exists a sequence
(u′n)n which strongly converges to u in K such that for every w ∈ K and every sequence (wn)n
strongly converging to w in K one has

f(t, u, w) ≥ lim sup
n

f(tn, u
′
n, wn);

v) for every t ∈ T there exists z ∈ K such that

d(z, S(t, z)) < r and f(t, z, w) < r ∀ w ∈ S(t, z).

Then, the set-valued map Qr is (τ, s)-lower semicontinuous on T .

Corollary 4.1 Assume that the following assumptions hold:
i) the set-valued map S is convex-graph;
ii) the set-valued map S is (τ×s, s)-lower semicontinuous, (τ×s, s)-closed and (τ×s, s)-subcontinuous
on T ×K;
iii) the function f(t, ·, ·) is strictly quasi-concave on K ×K, for every t ∈ T ;
iv) for every (t, u) ∈ T ×K, for every sequence (tn)n converging to t in τ , there exists a sequence
(u′n)n which strongly converges to u in K such that for every w ∈ K and every sequence (wn)n
strongly converging to w in K one has

f(t, w, u) ≤ lim inf
n

f(tn, wn, u
′
n);
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v) the function f(·, u, ·) is upper semicontinuous on T ×K, for every u ∈ K;
vi) the function f(t, ·, w) is upper semicontinuous on the segments of K, for every t ∈ T and w ∈ K;
vii) for every sequence (tn, un)n, tn ∈ T and un ∈ K for all n ∈ N, such that (tn)n τ -converges in
and (un)n s-converges in K, there exists m ∈ N such that

int
⋂
n≥m

S(tn, un) 6= ∅;

viii) for every t ∈ T there exists z ∈ K such that

d(z, S(t, z)) < r and − f(t, w, z) < r ∀ w ∈ S(t, z).

Then, the set-valued map LQr is (τ, s)-lower semicontinuous and (τ, s)-closed on T .

Corollary 4.2 Assume that the following assumptions hold:
i) the set-valued map S is convex-graph;
ii) the set-valued map S is (τ×s, s)-lower semicontinuous, (τ×s, s)-closed and (τ×s, s)-subcontinuous
on T ×K;
iii) the function f(t, ·, ·) is strictly quasi-convex on K ×K, for every t ∈ T ;
iv) the function f is lower semicontinuous on T ×K ×K;
v) for every (t, u) ∈ T ×K, for every sequence (tn)n converging to t in τ , there exists a sequence
(u′n)n which strongly converges to u in K such that for every w ∈ K and every sequence (wn)n
strongly converging to w in K one has

f(t, u, w) ≥ lim sup
n

f(tn, u
′
n, wn);

vi) for every t ∈ T there exists z ∈ K such that

d(z, S(t, z)) < r and − f(t, w, z) < r ∀ w ∈ S(t, z).

Then, the set-valued map Qr is (τ, s)-lower semicontinuous and (τ, s)-closed on T .
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