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1 Introduction

The “flash crash” of May 6, 2010 provides a striking illustration of how a drop in the liquidity

of one security can quickly propagate to other securities. As shown in the CFTC-SEC report

on the flash crash, buy limit orders for the E-mini futures contract on the S&P 500 index

vanished in a few minutes after 2:30 p.m. on May 6, 2010.1 This evaporation of liquidity in

the E-mini futures was soon followed by a similar phenomenon in the SPY Exchange Traded

Fund (another derivative security on the S&P 500 index) and in the S&P 500 index component

stocks (see Figure 1.12 in the joint CFTC-SEC report), resulting in a very high volatility in

transaction prices (with some stocks trading as low as a penny or as high as $100, 000).

Why do such liquidity spillovers arise? Addressing this question is of broad interest. It

can shed light on sudden and short systematic liquidity crises such as the flash crash. More

generally, it can explain why liquidity co-varies across securities.2 Co-movements in liquidity

have important implications for asset pricing since they are a source of systematic risk (see for

instance Acharya and Pedersen (2005), Korajczyk and Sadka (2008) and Amihud et al. (2005)

for a survey). Yet, their cause(s) is not well understood. Co-variations in liquidity may be

driven by systematic variations in the demand for liquidity (see Hendershott and Seasholes

(2009) or Koch, Ruenzi and Starks (2010)) or systematic variations in the supply of liquidity.

One possibility is that financing constraints constitute a systematic liquidity factor because

they bind liquidity providers in different securities at the same time. This mechanism is for-

malized by Gromb and Vayanos (2002) and Brunnemeier and Pedersen (2007) and has received

empirical support from analysis of NYSE stocks (see for instance, Coughenour and Saad (2004)

or Comerton-Forde et al. (2010)). Another related explanation is that a drop in the capital

available to financial intermediaries active in multiple securities can trigger an increase in risk

aversion, impairing the supply of liquidity in these securities (as in Kyle and Xiong (2001)).

In this paper we analyze a new mechanism that generates co-movements in the supply of

liquidity in different securities, even when dealers active in these securities are distinct and

not simultaneously hit by a market wide shock. Dealers in a security often rely on the prices

of other securities to set their quotes. For instance, dealers in a stock learn information from

the prices of other stocks in their industry or stock index futures. We show that cross-security

learning by dealers causes liquidity spillovers and thereby co-movements in liquidity.

To see this intuitively, consider a dealer in security X who uses the price of security Y as a

source of information. Movements in the price of security Y are informative because they reflect

news about fundamentals known to dealers in security Y . However, this signal is noisy since

price movements in security Y also reflect transient price pressures due to uninformed trades.

These transient price pressures account for a larger fraction of price volatility when the cost of

1See “Findings regarding the market events of May 6, 2010,” CFTC-SEC joint report available at http:
//www.sec.gov/news/studies/2010/marketevents-report.pdf

2Evidence of co-variations in liquidity are provided in Chordia et al. (2000), Hasbrouck and Seppi (2001),
Huberman and Halka (2001), Korajczyk and Sadka (2008), Corwin and Lipson (2011) for stocks and Chordia
et al. (2005) for bonds and stocks.
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liquidity provision for dealers in security Y is higher.3 For this reason, the informativeness of

the price of security Y for dealers in security X is smaller when security Y is less liquid.4 Now

suppose that a shock specific to security Y decreases the cost of liquidity provision for dealers

in this security (e.g., dealers in this security face less stringent limits on their positions). Thus,

security Y becomes more liquid and, for this reason, the price of security Y becomes more

informative for dealers in security X (transient price pressures in security Y contribute less to

its volatility relative to news about fundamentals). As a result, inventory risk for dealers in

security X is lower and the cost of liquidity provision for these dealers declines as well. In this

way, the improvement in liquidity for security Y spreads to security X, as shown in Figure 1.

[Insert Figure 1 about here]

To formalize this intuition, we consider a model with distinct pools of risk averse dealers

operating in two securities, X and Y , with a two-factor structure. Dealers in a given market

have identical information on one of the risk factors. However, dealers operating in different

markets are informed on different risk factors. For this reason, dealers in one market can learn

information about the risk factor on which they have no information by watching the price of

the other security. We explore two cases: the case in which learning is two-sided (dealers in

each security learn from each other’s price) and the case in which learning is one-sided (the

price of one security is informative for dealers in another security but not vice versa).5 We

refer to dealers who engage in cross-security price monitoring as being “pricewatchers.” The

fraction of pricewatchers associated with a security sets the dealers’ level of attention to the

other security.

The model generates the spillover mechanism portrayed in Figure 1 and a rich set of impli-

cations. First, when learning is two-sided, an exogenous shock to the cost of liquidity provision

in one security (say Y ) is amplified by the propagation of this shock to the cost of liquidity

provision in the other security (say X). Indeed, as learning is two-sided, the change in the

liquidity of security X feeds back on the liquidity of security Y , which sparks a chain reaction

amplifying the initial shock. Hence, liquidity is fragile in our model: a small exogenous drop

in the liquidity of one market can ultimately result in a disproportionately large drop in the

liquidity of this market and other related markets.

3For stocks listed on the NYSE, Hendershott, Li, Menkveld and Seasholes (2010) show that 25% of the
monthly return variance is due to transitory price changes. Interestingly, they also find that transient price
pressures are stronger when market-makers’ inventories are relatively large. This finding implies that price
movements are less informative when dealers’ cost of liquidity provision is higher, in line with our model.

4In this paper, we measure liquidity by the sensitivity of prices to market order imbalances, as in Kyle
(1985). The market is more liquid when this sensitivity is low. Empirically, this sensitivity can be measured
by regressing price changes on order imbalances (see for instance Glosten and Harris (1988) or Korajczyk and
Sadka (2008)).

5For instance, consider dealers in a stock and dealers in stock index futures. The stock return is determined
both by a systematic factor and an idiosyncratic factor whereas the stock index futures return is only driven
by the systematic factor. Suppose that dealers in the stock index futures are well informed on the systematic
factor. In this case, dealers in the stock can learn information about the systematic factor from the price of the
stock index futures whereas dealers in the stock index futures have nothing to learn from the price of individual
stocks. In this case learning is one sided.
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Second, when learning is two-sided, the model can feature multiple equilibria with differing

levels of liquidity. The reason is as follows. Suppose that dealers in security X expect a drop

in the liquidity of security Y . Then, dealers in security X expect the price of security Y to be

noisier, which makes the market for security X less liquid. But as a consequence, the price of

security X becomes less informative for dealers in security Y and the liquidity of security Y

drops, which validates the expectation of dealers in security X. Hence, dealers’ expectations

about the liquidity of the other security can be self-fulfilling. For this reason, there exist cases

in which, for the same parameter values, the liquidity of securities X and Y can be either

relatively high or relatively low.6 A sudden switch from a high to a low liquidity equilibrium is

an extreme form of co-variation in liquidity and fragility since it corresponds to a situation in

which the liquidity of several related securities dries up without an apparent reason.

Third, an increase in the fraction of pricewatchers in a security has an ambiguous impact on

the liquidity of this security. On the one hand, this increase improves liquidity because price-

watchers require a smaller compensation for inventory risk (as they have more information).

On the other hand, entry of new pricewatchers impairs liquidity because it exposes inattentive

dealers (i.e., dealers without price information) to adverse selection. Indeed, pricewatchers bid

relatively conservatively for the security when they receive bad signals and relatively aggres-

sively when they receive good signals. As a result, inattentive dealers are more likely to end up

with relatively large (small) holdings when the value of the security is low (large). In reaction

to this winner’s curse, inattentive dealers shade their bids, which reduces market liquidity. The

net effect on liquidity is always positive when dealers’ risk bearing capacity (i.e., dealers’ risk

tolerance divided by the variance of dealers’ aggregate dollar inventory) is low enough. Other-

wise, an increase in the fraction of pricewatchers can impair market liquidity when the fraction

of pricewatchers is small.

Fourth, the exposure of inattentive dealers to adverse selection implies that liquidity spillovers

can be negative. To see why, suppose that the liquidity of security Y improves. This improve-

ment implies that the price of security Y conveys more precise information to pricewatchers

in security X. Thus, the informational disadvantage of inattentive dealers increases and, as a

result, the liquidity of security X may drop. For this to happen, we show that the fraction of

pricewatchers must be small enough and dealers’ risk bearing capacity must be large.

In a last step, we endogenize the fraction of pricewatchers by introducing a cost of attention

to prices. There are several possible interpretations for this cost. It may simply reflect the

fact that monitoring the price of other securities requires attention (it is time consuming) and

human dealers have limited attention.7 More importantly maybe, real-time data on prices are

costly to acquire. Data vendors (Reuters, Bloomberg, etc. . . ) or trading platforms charge a fee

for real time datafeed.8 In particular, some market-makers can choose to pay a “co-location”

6There also exist cases in which the equilibrium is unique, even if learning is two-sided.
7Recent empirical papers (Corwin and Coughenour (2008), Boulatov et al. (2010) and Chakrabarty and

Moulton (2009)) find that attention constraints for NYSE specialists have an effect on market liquidity. Thus,
modelling dealer attention is important to understand liquidity.

8Market participants often complain about these data fees.For instance, the fee charged by Nasdaq for the
dissemination of corporate bond prices has been very controversial. For accounts of these debates, see, for in-
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fee to trading platforms in order to obtain the right to place their computers close to platforms’

matching engines. In this way, they possess a split second advantage in accessing and reacting

to changes in prices. Last, in the absence of real time price reporting (as for instance in some

OTC markets), real time price information is available only to a few privileged dealers and very

costly to collect for other participants.9

When learning is one-sided, the value of price information declines with the fraction of

pricewatchers. Thus, the equilibrium fraction of pricewatchers is unique and inversely related

to the cost of price information. When dealers’ risk bearing capacity is low, a decrease in

the cost of price information leads to an improvement in liquidity. Otherwise, liquidity is a U-

shaped function of this cost. Indeed, for relatively high values of the cost of price information, a

decrease in this cost triggers entry of a few pricewatchers, which is a source of adverse selection

risk and impairs liquidity, as explained previously.

In contrast, when learning is two-sided, the value of monitoring the price of, say, security

X for dealers in security Y can increase with the fraction of pricewatchers in either security

(for some parameter values). The reason is as follows. As explained previously, if dealers’ risk

bearing capacity is low enough, an increase in the fraction of pricewatchers in security Y makes

this security more liquid. This improvement in liquidity spreads to security X, which makes the

price of this security more informative. Thus, information on the price of security X becomes

more valuable for dealers in security Y . Furthermore, the value of information on the price of

security X for dealers in security Y also increases in the fraction of pricewatchers in security

X. Indeed, as the number of pricewatchers in security X increases, the price of this security

becomes more informative, which strengthens its informational value for dealers in security Y .

This finding is surprising since usually the value of financial information declines with the

number of investors buying information (Grossman and Stiglitz (1980) or Admati and Pfleiderer

(1986)). This principle does not necessarily apply to price information because the precision of

price information increases in the number of dealers buying this information.

One consequence is that dealers’ decisions to acquire price information on other securities

are self-reinforcing both within and across markets. As a result, there can be multiple levels

of attention in equilibrium for a fixed value of the cost of attention to prices. In particular,

for identical parameter values, the markets for the two securities can appear well integrated

(the fraction of pricewatchers is high) or segmented (the fraction of pricewatchers is low).

As an illustration we construct an example in which, for a fixed correlation in the payoffs of

both securities, the markets for securities X and Y are either fully integrated (all dealers are

pricewatchers) or segmented (no dealer is a pricewatcher). For dealers in security X, monitoring

the price of the other security does not have much value if there are no pricewatchers in security

Y and vice versa. Thus, the situation in which the two markets are segmented is self-sustaining

stance, “Latest Market Data Dispute Over NYSE’s Plan to Charge for Depth-of-Book Data Pits NSX Against
Other U.S. Exchanges,” Wall Street Technology, May 21, 2007; the letter to the SEC of the Securities Indus-
try and Financial Markets Association (SIFMA) available at http://www.sifma.org/regulatory/comment_
letters/41907041.pdf, and “TRACE Market Data Fees go to SEC,” Securities Industry News, 6/3/2002.

9For instance, a bond dealer may be an employee of a trading firm also active in credit default swaps (CDS).
In this way, the dealer may be privy of information on trades in CDSs written on the bond.
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and can persist even if the cost of attention declines.

The mechanism that leads to liquidity spillovers in our model generates predictions distinct

from the mechanisms based on funding constraints or systematic shifts in risk aversion described

in Brunnemeier and Pedersen (2008), Gromb and Vayanos (2002) or Kyle and Xiong (2001). In

our model, funding restrictions or an increase in risk aversion for dealers in one asset class (e.g.,

stocks) can initially spark a drop in the liquidity of this class of assets. However, in contrast

to other theories of co-variations in liquidity supply, our model predicts that this shock can

spread to other asset classes (e.g., bonds) even if there is no tightening of funding constraints for

dealers in other asset classes. The only requirement is that the prices of assets in the first class

are used as a source of information to value assets in other classes. Furthermore, as explained

previously, in our model liquidity spillovers can be negative while theories based on funding

constraints imply positive liquidity spillovers.

Isolating the role of cross-asset learning in liquidity spillovers is challenging empirically

because this mechanism can operate simultaneously with other sources of systematic variations

in liquidity. One way to address this difficulty consists in studying the effects of changes in

trading technologies that affect dealers’ ability to learn from the prices of other assets. One

strategy is to consider cases in which a security switches from an opaque trading system (e.g.,

an OTC market) to a more transparent trading system (a case in point is the implementation

of post trade transparency in the U.S. bond market in 2002). In this case, dealers in related

securities can more easily use the information conveyed by the price of the previously opaque

security. This is similar to a decrease in the cost of price information in our model. Another

approach is to study the effect of changes in co-location fees. Indeed, dealers who co-locate can

be seen as pricewatchers in our model (they have very quick access to prices of other securities

and can thereby make their strategies contingent on these prices). Hence, variations in co-

location fees should also affect the fraction of pricewatchers. We develop predictions about the

effects of such changes in trading technologies in the last part of the paper.

Our model is related to models of contagion (King and Wadhwani (1990), Kodres and

Pritsker (2002), or Pasquariello (2007)) and cross-asset price pressures (Andrade, Chang and

Seasholes (2008), Bernhardt and Taub (2008), Pasquariello and Vega (2009), Boulatov, Hen-

dershott and Livdan (2010). These models describe various mechanisms through which a shock

on investors’ information or liquidity traders’ demand in one security can affect the prices of

other securities.10 None of these models however studies the role of cross-asset learning in the

transmission of a liquidity shock (i.e., a change in the sensitivity of price to order imbalances)

in one security to other securities, as we do here. Our paper is also linked to the literature on

the value of financial information (e.g., Grossman and Stiglitz (1980), Admati and Pfleiderer

(1986)). We contribute to this literature by studying the value of securities price information.

As explained previously, we show that price information is special in the sense that its value

can increase with the number of investors buying this information, an effect which does not

arise in standard models of information acquisition. In this respect, our paper adds to the few

10Most of these models build upon the multi-asset pricing models of Admati (1985) and Caballe and Krishnan
(1994).
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papers identifying conditions under which the value of financial information may increase with

the number of informed investors (Barlevy and Veronesi (2000), Veldkamp (2006), Chamley

(2007), and Ganguli and Yang (2009)).

The rest of the paper is organized as follows. Section 2 describes the model. In Section 3,

we consider the case in which the fraction of pricewatchers is fixed and we show how liquidity

spillovers and multiple equilibria arise in this set-up. In Section 4, we study how the value

of price information depends on the fraction of pricewatchers and we endogenize this fraction.

Section 5 discusses testable implications of the model and Section 6 concludes. Proofs are

collected in the Appendix or the Internet Appendix.

2 The model

We consider two securities, denoted D and F . These securities pay-off at date 2 and their

payoffs, vD and vF , are given by a factor model with two risk factors δD and δF , i.e.,

vD = δD + dD × δF + η, (1)

vF = dF × δD + δF + ν. (2)

The random variables δD, δF , η and ν are independent and have a normal distribution, with

mean zero. The variance of η is denoted σ2
η. We make additional parametric assumptions that

simplify the exposition without affecting our conclusions. First, there is no idiosyncratic risk

for security F (i.e., ν = 0). Second, the variance of the factors is normalized to one. Third,

we assume that dF = 1 and dD ∈ [0, 1], so that the payoffs of the two securities are positively

correlated. To simplify notations, we therefore denote dD by d. When d = 0, the payoff of

security D does not depend on factor δF . Thus, the price of security F cannot convey new

information to dealers in security D. In this case, we say that learning is one-sided.

Trades in securities D and F take place at date 1. In each market, there are two types of

traders: (i) a continuum of risk-averse speculators and (ii) liquidity traders. The aggregate

demand of liquidity traders in market j is uj ∼ N(0, σ2
uj

). Liquidity traders’ demands in both

markets are independent and are absorbed by speculators. Hence, in the rest of the paper, we

refer to speculators as dealers and to uj as the size of the demand shock in market j.

Dealers are specialized: they are active in only one security. In this way, we rule out

co-movements in liquidity which arise simply because the same dealers are active in multiple

securities.11 Dealers specialized in security j have perfect information on factor δj and no

information on factor δ−j. However, they can follow the price of the other security to obtain

information on this factor. We denote by µj the fraction of dealers specialized in security j who

monitor the price of security −j and we refer to µj, as the level of attention to security −j.
11In reality, dealer firms are active in multiple securities. However, these firms delegate trade-related decisions

to individuals who operate on specialized trading desks. Naik and Yadav (2003) show empirically that the
decision-making of these trading desks is largely decentralized (e.g., dealers’ trading decisions within a firm are
mainly driven by their own inventory exposure rather than the aggregate inventory exposure of the dealer firm
to which they belong). Their results suggest that there is no direct centralized information sharing between
dealers within these firms.
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We refer to these dealers as being pricewatchers. Other dealers are called inattentive dealers.

We use W to index the decisions made by pricewatchers and I to index the decisions made by

inattentive dealers. The polar cases, in which there are either no pricewatchers in either market

(µD = µF = 0) or all dealers are pricewatchers (µD = µF = 1) are called the “no attention

case” and the “full attention case,” respectively. Table 1 summarizes the various possible cases

that will be considered in the paper.

Attention/Learning One-Sided: d = 0 Two-Sided: d > 0

No Attention µD = µF = 0 µD = µF = 0

Limited Attention µj > 0 and µ−j < 1 µj > 0 and µ−j < 1

Full Attention µD = µF = 1 µD = µF = 1

Table 1: Various Cases

Each dealer in market j has a CARA utility function with risk tolerance γj. Thus, if dealer

i in market j holds xij shares of the risky security, her expected utility is

E
[
U (πij) |δj,Pkj

]
= E

[
− exp

{
−γ−1

j πij
}
|δj,Pkj

]
, (3)

where πij = (vj − pj)xij and Pkj is the price information available to a dealer with type

k ∈ {W, I} operating in security j.

As dealers submit price contingent demand functions, they all act as if they were observing

the clearing price in their market. Thus, we have PWj = {pj, p−j} and PIj = {pj}. We denote

the demand function of a pricewatcher by xWj (δj, pj, p−j) and that of an inattentive dealer by

xIj (δj, pj).
12 In each period, the clearing price in security j, pj, is such that the demand for this

security is equal to its supply, i.e.,

µjx
W
j (δj, pj, p−j)di+ (1− µj)xIj (δj, pj)di+ uj = 0, for j ∈ {D,F}. (4)

As in many other papers (e.g., Kyle (1985) or Vives (1995)), we will measure the level of

illiquity in security j by the sensitivity of the clearing price to the demand shock (i.e., ∂pj/∂uj).

In equilibrium, the aggregate inventory position of dealers in security j after trading at date 1

is −uj and the total dollar value of this position at date 1 is −uj× vj. The risk associated with

this position for dealers in security j can be measured by its variance conditional on information

on risk factor δj, i.e., σ2
uj

Var[vj|δj]. Thus, the ratio of dealers’ risk tolerance to this variance

(the total amount of risk taken by the dealers) is a measure of the risk bearing capacity of the

12As pricewatchers observe the price in security −j, they can make their trading strategy in security j
contingent on this price. Alternatively, one can assume that pricewatchers do not observe directly the price of
security −j but are allowed to place limit orders (a demand function) in security j contingent on the price of
other securities. Such indexed limit orders have been proposed by Black (1995) but are typically not offered by
exchanges. See Cespa (2004) for an analysis of trading mechanisms that allow multi-price contingent orders.
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market. We denote this ratio by Rj:

Rj =
γ2
j

σ2
uj

Var[vj|δj]
. (5)

The higher is Rj, the higher is the risk bearing capacity of the dealers in security j. As we

shall see this ratio plays an important role for some of our findings.

There are several ways to interpret the two securities in our model. For instance, as in

King and Wadhwani (1990), securities D and F could be two stock market indexes for two

different countries. Alternatively, they could represent a derivative and its underlying security.

For instance, security D could be a credit default swap (CDS) and security F the stock of

the firm on which the CDS is written. When d = f = 1 and σ2
η = 0, the payoff of the two

securities is identical, as in Chowdry and Nanda (1991). In this case, the two securities can

be viewed as the stock of a cross-listed firm and its American Depository Receipt (ADR) in

the U.S. for instance. Factor δF can then be viewed as the component of the firm’s cash-flows

that comes from its sales in the U.S. In each of these cases, it is natural to assume that dealers

have specialized information. For instance, dealers in country j will be well informed on local

fundamental news but not on foreign fundamental news as in King and Wadhwani (1990).13

3 Attention and liquidity spillovers

3.1 Benchmark: No attention

We first analyze the equilibrium in the no attention case (µD = µF = 0). For instance, the

markets for securities D and F may be opaque so that dealers in each security can obtain

information on the price of the other security only after some delay. Alternatively, the prices

of each security are available in real time but accessing this information is so costly that no

dealer chooses to be informed on the price of the other security (see Section 4).

Lemma 1. (Benchmark) When µF = µD = 0, the equilibrium price in market j is:

pj = δj +Bj0uj, (6)

with BD0 = γ−1
D (σ2

η + d2) and BF0 = γ−1
F .

The sensitivity of the equilibrium price for security j to the aggregate demand shock in this

market, the illiquidity of security j, is given by Bj0 (we use index “0” to refer to the case in

which µF = µD = 0). In the no attention case, the illiquidity of security D is determined by

parameters σ2
η, d, and γD. We refer to these parameters as being the “liquidity fundamentals”

of security D. Similarly, we refer to γF as a liquidity fundamental of security F since it only

affects the illiquidity of security F . Illiquidity increases with dealers’ risk aversion (γj decreases)

and uncertainty on the securities’ payoffs (σ2
η increases).

13In the case of the CDS market, dealers in CDS are often affiliated with lenders and therefore better informed
on the likelihood of defaults (and size of associated losses) than dealers in the stock market (see Acharya and
Johnson (2007))
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Importantly, in the benchmark case, there are no liquidity spillovers: a change in the illiquid-

ity fundamental of one market does not affect the illiquidity of the other market. For instance,

an increase in the risk tolerance of dealers in security D makes this security more liquid but it

has no effect on the illiquidity of the other security.14 In contrast, with limited or full attention,

a change in the illiquidity fundamental of one security will affect the illiquidity of the other

security, as shown in the next sections.

3.2 Liquidity spillovers with full attention

In this section, we consider the case in which all dealers are pricewatchers, that is the full

attention case (µD = µF = 1). The analysis is more complex than in the benchmark case

as dealers in one security extract information about the factor that is unknown to them from

the price of the other security. To solve this signal extraction problem, dealers must form

beliefs on the relationship between clearing prices and risk factors. We will focus on equilibria

in which these beliefs are correct, i.e., the rational expectations equilibria of the model. We

first show that, in contrast to the benchmark case, the levels of illiquidity of both markets

are interdependent and this interdependence leads to multiple equilibria (Section 3.2.1). We

then provide an explanation for this finding and we show that that the interdependence in

the illiquidity of securities D and F leads to liquidity spillovers: a shock to the illiquidity

fundamental of one security propagates to the other security (Section 3.2.2). Finally, we show

that when learning is two-sided, the total effect of a small shock on the illiquidity fundamental

of one security can be much larger than the initial effect of such a shock (Section 3.2.3).

3.2.1 Equilibria with full attention

In our model, a linear rational expectations equilibrium is a set of prices {p∗j1}j∈{D,F} such that

p∗j1 = Rj1δj +Bj1uj + Aj1δ−j + Cj1u−j, (7)

and p∗j1 clears the market of asset j for each realization of {uj, δj, u−j, δ−j} when dealers

anticipate that clearing prices satisfy equation (7) and choose their trading strategy to maximize

their expected utility (given in equation (3)). We say that the equilibrium is non-fully revealing

if pricewatchers in security j cannot infer perfectly the realization of risk factor δ−j from

observing the price of security −j. The sensitivity of the price in market j to the demand

shock in this market, i.e., the “illiquidity of market j,” is measured by Bj1 in the full attention

case. Index “1” is used to refer to the equilibrium when µD = µF = 1.

Proposition 1. With full attention and σ2
η > 0, there always exists a non-fully revealing linear

rational expectations equilibrium. At any non-fully revealing equilibrium, Bj1 > 0, Rj1 = 1 and

14In our model, a variation in risk tolerance of dealers in one security is just one way to vary the cost of
liquidity provision for dealers in one asset class. In reality variations in this cost may be due to variations in
risk tolerance, inventory limits or financing constraints for dealers in this asset class. The important point is
that they do not directly affect dealers in other asset classes.
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the coefficients, Aj1 and Cj1 can be expressed as functions of Bj1 and B−j1. Moreover

BD1 = f1(BF1; γD, σ
2
η, d, σ

2
uF

) =
σ2
η

γD
+

d2B2
F1σ

2
uF

γD(1 +B2
F1σ

2
uF

)
, (8)

BF1 = g1(BD1; γF , σ
2
uD

) =
B2
D1σ

2
uD

γF (1 +B2
D1σ

2
uD

)
. (9)

Proposition 1 shows that the illiquidities of securities D and F are interdependent since BD1

is a function of BF1 and vice versa. Moreover, all coefficients in the equilibrium price function

can be expressed as functions of the illiquidity of securities D and F . Thus, the number of non-

fully revealing linear rational expectations equilibria is equal to the number of pairs {B∗D1,B∗F1}
solving the system of equations (8) and (9). In general, we cannot characterize these solutions

analytically and therefore cannot solve for the equilibria in closed-form. However, we can find

these solutions numerically. In Figure 2 we illustrate the determination of the equilibrium levels

of illiquidity by plotting the functions f1(·) and g1(·) for specific values of the parameters.

[Insert Figure 2 about here]

The equilibria are the values of BD1 and BF1 at which the curves representing the functions

f1(·) and g1(·) intersect. In panel (a) we set γj = d = 1, σuj = 2, and ση = 0.2. In this case, we

obtain three equilibria: one with a low level of illiquidity, one with a medium level of illiquidity

and one with a relatively high level of illiquidity. In panels (b) and (c), we pick values of ση or d

such that the correlation between the payoffs of securities D and F is smaller (ση = 1 in panel

(b) while d = 0.9 in panel (c)). In this case, we obtain a unique equilibrium. More generally,

when d is low relative to σ2
η, the model has a unique rational expectations equilibrium, as shown

in the next corollary.

Corollary 1. If 4d2 < σ2
η and µD = µF = 1 then there is a unique non-fully revealing rational

expectations equilibrium.

In particular, when learning is one sided (d = 0), there exists a unique non-fully revealing

linear rational expectations equilibrium. Furthermore, in this case, we can characterize the

equilibrium in closed-form (see Corollary 6 below).15

The case in which σ2
η = 0 requires a separate analysis. In this case, it is still true that if

there exists a non-fully revealing equilibrium then BD1 and BF1 solve the system of equations

(8) and (9). However, in this case, the unique solution to this system of equations can be

BD1 = BF1 = 0 so that a non-fully revealing equilibrium does not exist. As an example,

consider the case in which the two securities are identical: d = 1, σ2
η = 0, γF = γD = γ,

σ2
uj

= σ2
u. We refer to this case as the symmetric case.

15The condition given in Corollary 1 is sufficient to guarantee the existence of a unique rational expectations
equilibrium when all dealers are pricewatchers, but it is not necessary. Numerical simulations show that there
exist multiple equilibria when d is high relative to σ2

η. Moreover it can be shown formally that the model has
either one or three non-fully revealing rational expectations equilibria.

10



Lemma 2. In the symmetric case with full attention, if σ2
u > 4γ2, there are two non fully

revealing linear rational expectations equilibria: a “High” illiquidity equilibrium and a “Low”

illiquidity equilibrium. The levels of illiquidity in each of these equilibria are

High : BH∗ =
σu + (σ2

u − 4γ2)1/2

2γσu
, (10)

Low: BL∗ =
σu − (σ2

u − 4γ2)1/2

2γσu
, (11)

with BH∗ > BL∗. If σ2
u < 4γ2, a non-fully revealing equilibrium does not exist.

3.2.2 Cross-asset learning and liquidity spillovers

We now explain why cross-asset learning is naturally conducive to multiple equilibria and

liquidity spillovers. To this end, it is useful to analyze in detail how dealers in one security

extract information from the price of the other security. Our starting point is the following

lemma.

Lemma 3. With full attention, in any non-fully revealing linear rational expectations equilib-

rium,

p∗j = (1− Aj1A−j1)ωj + Aj1p
∗
−j, for j ∈ {F,D}. (12)

where ωj ≡ δj + Bj1uj for j ∈ {D,F}. Hence, ω−j is a sufficient statistic for the price

information, PWj = {p∗j , p∗−j}, available to pricewatchers operating in security j.

In other words, ω−j is the signal about the risk factor δ−j that pricewatchers operating in

security j extract from the price of security −j. In the absence of information on the price of

security −j, the precision of the forecast formed by dealers in security j about the payoff of

security j is (Var[vj|δj])−1. In contrast, with access to price information, the precision of this

forecast is16

Var[vj|δj, ω−j]−1 = (Var[vj|δj]
(
1− ρ2

j1

)
)−1, (13)

where

ρ2
j1

def
=

E[vjω−j |δj ]2

Var[vj |δj ]Var[ω−j]
. (14)

Hence, the higher ρ2
j1 is, the greater the informativeness of the signal conveyed by the price of

security −j to dealers in security j. For this reason, we refer to ρ2
j1 as the informativeness of

the price of security −j about the payoff of security j for dealers operating in security j. Using

the definition of ωj, we obtain

ρ2
D1 =

d2

(σ2
η + d2)(1 +B2

F1σ
2
uF

)
, (15)

ρ2
F1 =

1

1 +B2
D1σ

2
uD

. (16)

16This result follows from the fact that if X and Y are two random variables with normal distribution then
Var[X|Y ] = Var[X]− Cov2[X,Y ]/Var[Y ] and the fact that E[ω−j |δj ] = 0.

11



When d = 0, the price of security F does not convey information to dealers in security D

(ρ2
D1 = 0) since the payoff of security D does not depend on the risk factor known to dealers in

security F . Using the expressions for Bj1 given in Proposition 1, we obtain that

Bj1 = Bj0(1− ρ2
j1). (17)

This observation yields the following result.

Corollary 2. The markets for securities D and F are less illiquid with full attention than with

no attention, i.e., Bj1 ≤ Bj0. Moreover, with full attention, an increase in the informativeness

of the price of security −j for dealers in security j makes security j more liquid, i.e.,

∂Bj1

∂ρ2
j1

≤ 0. (18)

The intuition for this result is straightforward. By watching the price of another security,

dealers learn information. Hence, they face less uncertainty about the payoff of the security in

which they are active. For this reason, with full attention, dealers require a smaller premium

than with no attention to absorb a given demand shock (first part of the corollary) and this

premium decreases with the informativeness of prices (last part of the corollary).

Price movements in security j are driven both by news about factor δj and demand shocks

specific to this security. The contribution of demand shocks to price variations becomes rela-

tively higher when security j becomes more illiquid. As a consequence the price of security j

becomes less informative for dealers in other markets when security j becomes more illiquid.

To see this, remember that the signal about factor δj conveyed by the price of security j to

dealers in security −j is ωj = δj + Bj1uj. Clearly, this signal is noisier when Bj1 is higher,

which yields the following result.

Corollary 3. With full attention, an increase in the illiquidity of security j makes its price

less informative for dealers in security −j:

∂ρ2
−j1

∂Bj1

≤ 0. (19)

Corollaries 2 and 3 explain why the illiquidity of security D and F are interdependent when

dealers in the two securities learn from each other’s prices. Indeed, the illiquidity of security −j
determines the informativeness of the price of this security for dealers in security j (Corollary

3) and as a result the illiquidity of security j (Corollary 2).

This observation helps us to understand how multiple equilibria can arise when dealers

learn from each other’s prices. Consider dealers in security F . They do not directly observe the

sensitivity of the price to demand shocks in security D, i.e., the illiquidity of security D. Hence,

ultimately, the informativeness of the price of security D for dealers in security F depends on

their belief regarding the illiquidity of security D. Similarly, the informativeness of the price of

security F for dealers in security D depends on their belief regarding the illiquidity of security

F . In sum, the illiquidity of security j depends on the beliefs of the dealers active in this

12



security about the illiquidity of security −j, which itself depends on the beliefs of its dealers

about the illiquidity of security j. This loop leads to multiplicity as, for the same values of the

exogenous parameters, various systems of beliefs can be self-sustaining.17

This circularity breaks down when dealers in securityD do not use the information contained

in the price of security F (either because µD = 0 or because d = 0). In this case, the illiquidity

of security D is uniquely pinned down by its “fundamentals” (γD and σ2
η) and, as a result,

the beliefs of dealers in security F regarding the liquidity of security D are uniquely defined

as well (since dealers’ expectations about the illiquidity of the other security must be correct

in equilibrium). More generally, when d is low relative to σ2
η, security D is not much exposed

to factor δF . Thus, the beliefs of dealers in security D about the liquidity of security F play

a relatively minor role in the determination of the liquidity of security D and, for this reason,

the equilibrium is unique, as shown in Corollary 1.

The interdependence in the illiquidity of securities D and F has another implication. In

contrast to the benchmark case, an exogenous change in the illiquidity of one market (due for

instance to an increase in dealers’ risk tolerance in this market) affects the illiquidity of the

other market. We call this effect a liquidity spillover. To see this point, consider the effect of

an increase in the risk tolerance of dealers in security D. The immediate effect of this increase

is to make security D more liquid as in the benchmark case. Hence, its price becomes more

informative for dealers in security F (Corollary 3), which then becomes more liquid (Corollary

2) because inventory risk for dealers in security F is smaller when they are all better informed.

Thus, the improvement in the liquidity of security D spreads to liquidity F , although security

F experiences no change in its liquidity fundamentals.

More formally, consider the system of equations (8) and (9). Other things equal, an increase

in the risk tolerance of dealers in security D makes this security more liquid since ∂f1/∂γD <

0. In turn this improvement spreads to security F because ∂g1/∂BD1 6= 0. More generally,

any exogenous change in the illiquidity of security D will spill over to security F because

∂g1/∂BD1 6= 0. Similarly, an exogenous change in the illiquidity of security F will spill over to

security D when ∂f1/∂BF1 6= 0. The direction (positive/negative) of these liquidity spillovers

is determined by the signs of ∂g1/∂BD1 and ∂f1/∂BF1.

Corollary 4. With full attention, liquidity spillovers are always positive, i.e., ∂f1/∂BF1 ≥ 0

and ∂g1/∂BD1 > 0. Moreover when learning is one sided (d = 0), there is no spillover from

security F to security D because the price of security F conveys no information to dealers in

security D. In contrast, when learning is two-sided (d > 0), liquidity spillovers operate in both

directions.

Intuitively, positive liquidity spillovers generate positive co-movements in illiquidity across-

securities. In our model, illiquidity is not stochastic (it is a deterministic function of the

parameters). However, we can create variations in illiquidity by picking randomly the exogenous

17Ganguli and Yang (2009) consider a single security model of price formation similar to Grossman and
Stiglitz (1980). They show that multiple non-fully revealing linear rational expectations equilibria arise when
investors have private information both on the asset payoff and the aggregate supply of the security. The source
of multiplicity here is different since dealers have no supply information in our model.
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parameters of the model (e.g., the risk tolerance of dealers in security D) and compute the

resulting covariance for illiquidity of securities F and D. Figure 5 in Section 3.3 provides an

example that shows how positive liquidity spillovers result in positive covariation in liquidity.

3.2.3 Amplification: the illiquidity multiplier

With two-sided learning, liquidity spillovers operate in both directions. As a consequence, the

total effect of a small change in the illiquidity fundamentals of one security is higher than the

direct effect of these changes.

To see this consider the chain of effects that follows a small reduction, denoted by ∆γD < 0,

in the risk tolerance of dealers in security D. The direct effect of this reduction is to increase

the illiquidity of security D by (∂f1/∂γD)∆γD > 0. As a consequence, the price of this security

becomes less informative. Hence, dealers in security F face more uncertainty and security

F becomes less liquid as well, although its liquidity fundamental (γF ) is unchanged. The

immediate increase in the illiquidity of security F is equal to (∂g1/∂BD1)(∂f1/∂γD)∆γD > 0.

When learning is two sided (d > 0), this increase in illiquidity for security F leads to an even

larger increase in the illiquidity of security D, starting a new vicious loop (as the increase in

illiquidity for security D leads to a further increase in illiquidity for security F etc,. . . ). As a

result, the total effect of the initial decrease in the risk tolerance of dealers in security D is an

order of magnitude larger than its direct effect on the illiquidity of both securities. The next

corollary formalizes this discussion.

Corollary 5. Let

κ ≡ 1

(1− (∂g1/∂BD1)(∂f1/∂BF1))
, (20)

and assume that d > 0. With full attention, the total effects of a change in the risk tolerance

of dealers in security D is given by

dBD1

dγD︸ ︷︷ ︸
Total Effect

= κ
∂f1

∂γD︸︷︷︸
Direct Effect

< 0,

dBF1

dγD︸ ︷︷ ︸
Total Effect

= κ
∂g1

∂BD1

∂f1

∂γD︸ ︷︷ ︸
Direct Effect

< 0.

and there always exists at least one equilibrium in which κ > 1.

Thus, the initial effects of a small change in the risk tolerance of dealers in security D are

amplified by a factor κ. We call κ the “illiquidity multiplier.” This illiquidity multiplier can

be relatively large when the illiquidity of each market is very sensitive to the illiquidity of the

other market ((∂g1/∂BD1)(∂f1/∂BF1) is high). In this sense, cross-asset learning is a source of

fragility for financial markets.18

18Allen and Gale (2004) define a financial market as being fragile if “small shocks have disproportionately
large effects.” (Allen and Gale (2004), page 1015).
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Figure 3 illustrates this point for specific values of the parameters (in all our numerical

examples we choose the parameter values such that there is a unique rational expectations

equilibrium, except otherwise stated). It shows the value of κ for various values of the id-

iosyncratic risk of security D (ση) and the resulting values for the direct and total effects of a

change in this risk tolerance on the illiquidity of securities D and F , as a function of ση. In

this example, the total drop in illiquidity of each security after a decrease in risk tolerance for

dealers in security D can be up to ten times bigger than the direct effect of this drop.

Table 2 provides another perspective on the illiquidity multiplier by showing the elasticity,

denoted EBj1,γD , of illiquidity in each security to the risk tolerance of dealers in security D,

i.e., the percentage change in illiquidity in each security for a one percent increase in the risk

tolerance of dealers in security D. The table also shows the elasticity that would be obtained

(ÊBj1,γD) in the absence of the illiquidity multiplier (e.g., κ = 1 if µD = 0). For instance, when

γD = 1.8, a drop of 1% in the risk tolerance of dealers in security D triggers an increase of 9%

in the illiquidity of security D and 14.9% in the illiquidity of security F . This is much larger

than what would be obtained in the absence of bi-directional spillovers (e.g., if µD = 0) since in

this case the illiquidity of securities D and F would increase by only 1% and 1.5% respectively.

γD κ BD1 BF1

Elasticities

EBD1,γD ÊBD1,γD EBF1,γD ÊBF1,γD

2.2 1.54 0.19 2.11 −1.54 −1.00 −2.80 −1.81

2 2.16 0.23 2.87 −2.16 −1.00 −3.80 −1.76

1.8 9.94 0.36 5.94 −9.49 −1.00 −14.95 −1.50

1.62 2.35 0.57 11.01 −2.35 −1.00 −2.54 −1.08

1.46 1.65 0.70 13.41 −1.65 −1.00 −1.45 −0.88

1.31 1.39 0.82 15.29 −1.39 −1.00 −1.00 −0.72

Table 2: The table shows the impact of the illiquidity multiplier for different shocks to the
risk aversion of dealers in market D. Other parameter values are d = 1, ση = .62, σuF = .1,
σuD = 1.6, γD = 1.8, and γF = 1/24.

The corollary focuses on the effect of an increase in the risk tolerance of dealers in security

D but the effects of a change in the other exogenous parameters of the model (γF and σ2
η) are

also magnified for the same reasons.

Last, we note that when the equilibrium is unique, it is necessarily such that κ > 1 (an

implication of the last part of Corollary 5). When there are multiple equilibria, there is in

general one equilibrium for which κ < 0. This equilibrium delivers “unintuitive”comparative

statics.19 For instance, in this equilibrium, a reduction in the risk tolerance of dealers in, say,

security D increases the liquidity of both securities. Such an equilibrium may exist because,

19It is possible to show that the model has three equilibria when it admits multiple equilibria. The equilibrium
with κ < 0 is unstable whereas the two other equilibria (for which κ > 1) are stable.
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as explained previously, the illiquidity of each security is in part determined by dealers’ beliefs

about the illiquidity of the other market. These beliefs may be disconnected from the illiquidity

fundamentals of each security and yet be self-fulfilling.

3.3 Limited attention, adverse selection, and negative liquidity spillovers

We now turn our attention to the more general case in which 0 < µD ≤ 1 and 0 < µF ≤ 1. That

is, we allow for limited attention by dealers in either security. In this case, the pricewatchers

(dealers who monitor the price of the other security) have an informational advantage over

inattentive dealers (dealers who do not monitor this price). This advantage is a source of adverse

selection for inattentive dealers. This effect yields two new results: (a) liquidity spillovers can

be negative and (b) an increase in the fraction of pricewatchers in one security can reduce

the liquidity of this security when the fraction of pricewatchers is small. We now explain the

intuition for these two results in more details. We proceed as follows. We first generalize

Proposition 1 when attention is limited (Section 3.3.1). We then show that liquidity spillovers

can be negative with limited attention and we provide a sufficient condition on the parameters

for liquidity spillovers to be always positive (Section 3.3.2). Finally, we study the effect of a

change in the fraction of pricewatchers in a security on the liquidity of this security (Section

3.3.3).

3.3.1 Equilibria with limited attention

As with full attention, a linear rational expectations equilibrium is a set of prices {p∗j}j∈{D,F}
such that

p∗j = Rjδj +Bjuj + Ajδ−j + Cju−j, (21)

and p∗j clears the market of asset j for each realizations of {uj, δj, u−j, δ−j} when dealers antic-

ipate that clearing prices satisfy equation (21) and choose their trading strategies to maximize

their expected utility. The next proposition generalizes Proposition 1 when 0 < µD ≤ 1 and

0 < µF ≤ 1.

Proposition 2. Suppose σ2
η > 0. With limited attention (i.e., 0 < µD ≤ 1 and 0 < µF ≤ 1),

there always exists a non fully revealing linear rational expectations equilibrium. At any non-

fully revealing equilibrium, Bj > 0, Rj = 1 and the coefficients Aj and Cj can be expressed as

functions of Bj and B−j. Moreover

Bj = Bj0(1− ρ2
j)×

γ2
jµjρ

2
j + σ2

uj
Var[vj|δj](1− ρ2

j)

γ2
jµ

2
jρ

2
j + σ2

uj
Var[vj|δj](1− ρ2

j)(1− ρ2
j(1− µj))

, (22)

where ρ2
D ≡ d2/((σ2

η + d2)(1 +B2
Fσ

2
uF

)) and ρ2
F ≡ 1/(1 +B2

Dσ
2
uD

).

Proposition 2 generalizes Proposition 1 when attention is limited. As in the full attention

case, it can be shown that (i) pricewatchers in security j extract a signal ω−j = δ−j + B−ju−j

from the price of security −j and that (ii) variable ρ2
j is the informativeness of this signal. As
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the pricewatchers’ trading strategy depends on the information they obtain from watching the

price of security −j (i.e., ω−j), the price of security j partially reveals pricewatchers’ private

information.20 Equation (21) implies that observing the price of security j and risk factor δj

is informationally equivalent to observing ω̂j ≡ Ajδ−j + Bjuj + Cju−j. Thus, in equilibrium,

the information set of inattentive dealers, {δj, pj}, is informationally equivalent to {δj, ω̂j}. In

what follows, we refer to ω̂j as inattentive dealers’ price signal. Using the expressions for Aj

and Cj (given in the proof of Proposition 2), we obtain that ω̂j = Ajω−j +Bjuj. Hence, when

Bj > 0, inattentive dealers’ price signal is less precise than pricewatchers’ price signal, which

means that inattentive dealers in security j are at an informational disadvantage compared to

pricewatchers.

This disadvantage creates an adverse selection problem for the inattentive dealers. Indeed,

relative to inattentive dealers, pricewatchers will bid aggressively when the price of security −j
indicates that the realization of the risk factor δ−j is high and conservatively when the price

of security −j indicates that the realization of the risk factor δ−j is low. As a consequence,

inattentive dealers in one security will tend to have relatively large holdings of the security when

its value is low and relatively small holdings of the security when its value is large. This bias

in inattentive dealers’ portfolio holdings is a source of adverse selection, which is absent when

all dealers are pricewatchers. This new effect is key to understanding why liquidity spillovers

may be negative in the limited attention case (see below).

Substituting ρ2
D and ρ2

F by their expressions in equation (22), we can express Bj as a function

of B−j. Formally, we obtain:

BD = f(BF ;µD, γD, σ
2
η, d, σ

2
uF

), (23)

BF = g(BD;µF , γF , σ
2
uD

), (24)

where the expressions for the functions f(·) and g(·) are given in the Appendix (see equations

(A.26) and (A.28)). The linear rational expectations equilibria are completely characterized

by the solution(s) of this system of equations. As in the full attention case and for the same

reason, there might be multiple equilibria and we cannot in general provide an analytical

characterization of these equilibria. Of course, when µD = µF = 1, the solutions to the

previous system of equations are those obtained in the full attention case since this case is

nested in the limited attention case.

3.3.2 When are liquidity spillovers positive?

As mentioned previously, liquidity spillovers from one security to the other can be negative

when the fraction of pricewatchers in the latter security is relatively small. The intuition for

negative spillovers is more easily seen when learning is one sided (d = 0) or when no dealers

20Pricewatchers’ trading strategy (demand function) can be written as

xWj (pj , ω−j) = aWj (E[vj | δj , p−j ]− pj) = aWj (δj − pj) + bWj ω−j ,

where expressions for coefficients aWj and bWj are provided in the proof of Proposition 2.
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in security D are pricewatchers (µD = 0). Indeed, in these cases, the price of security F

conveys no information to dealers in security D. Thus, the level of illiquidity in security D

is as in the benchmark case (BD = BD0) and the level of illiquidity in security F is readily

obtained by substituting this expression for BD in equation (22). Hence, there is a unique

rational expectations equilibrium and we can characterize the equilibrium in closed form, which

considerably simplifies the analysis. Remember that RF is a measure of dealers’ risk bearing

capacity in security F (see equation (5)). We obtain the following result.

Corollary 6. With one-sided learning (d = 0) or no pricewacthers in security D (µD =

0), there is a unique linear rational expectations equilibrium where the levels of illiquidity of

securities D and F are

BD = BD0, (25)

BF =
B2
Dσ

2
uD

(B2
Dσ

2
uF
σ2
uD

+ µFγ
2
F )

γF (µ2
Fγ

2
F (1 +B2

Dσ
2
uD

) +B2
Dσ

2
uD
σ2
uF

(µF +B2
Dσ

2
uD

))
. (26)

In this equilibrium, liquidity spillovers from security D to security F are positive for all values

of µF if RF ≤ 1. In contrast, if RF > 1, liquidity spillovers from security D to security F are

negative when µF < µ̂F and positive when µF ≥ µ̂F , where µ̂F is strictly smaller than one and

defined in the proof of the corollary.

When µD = µF = 1, the corollary describes the equilibrium obtained with full attention and

one sided learning. In this case, as explained previously, liquidity spillovers from security D to

security F are always positive. In contrast, when µF is small enough and RF > 1, liquidity

spillovers from security D to security F can be negative.

To see why, consider a decrease in the risk tolerance of the dealers operating in security D

(γD decreases). This decrease makes security D less liquid and therefore less informative for

pricewatchers in security F . Thus, uncertainty about the payoff of security F increases. As

with full attention, this “uncertainty effect” increases the illiquidity of security F . However,

with limited attention, there is a countervailing effect that we call the “adverse selection effect.”

Indeed, as pricewatchers’ private information is less precise, their informational advantage is

smaller. As a consequence, inattentive dealers are less exposed to adverse selection. This effect

reduces the illiquidity of security F . Intuitively the reduction in uncertainty has a small effect

on illiquidity when (i) few dealers receive price information (µF < µ̂F ) and (ii) when dealers’

risk bearing capacity is high (i.e., RF > 1) since in this case uncertainty is not a big driver

of illiquidity. When these conditions are met, the adverse selection effect prevails over the

uncertainty effect. As a result the increase in the illiquidity of security D reduces the illiquidity

of security F . Otherwise, the uncertainty effect dominates and liquidity spillovers from security

D to F are positive.

We now consider the more general case in which learning is two-sided (d > 0). The next

corollary shows that liquidity spillovers in this case are positive if the fraction of pricewatchers

in securities D and F is high enough.
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Corollary 7. Let

µj = max

{
0,
Rj − 1

Rj

}
, for j ∈ {D,F}. (27)

If µD ∈ [µD, 1] and µF ∈ [µF , 1] then liquidity spillovers from security D to security F and vice

versa are positive for all values of d.

Thus, the model will feature positive liquidity spillovers if the level of attention is higher

than µj for j ∈ {D,F}. This threshold is always less than one and can be as low as zero if

dealers’ risk bearing capacity is small enough in both markets, i.e., if Rj ≤ 1 for j ∈ {D,F}.
In contrast, when the fraction of pricewatchers in security j is less than µj, liquidity spillovers

from security −j to security j can be negative for the reasons explained previously.

As an example, suppose that the parameter values are as follows: σuF = 0.1, σuD = 1,

γF = 1, d = 1, µD = µF = 0.1, and ση = 1. In this case, µD = 0 while µF = 0.9. Thus,

liquidity spillovers from security F to security D are positive while liquidity spillovers from

security D to security F can be negative since µF < µF (Corollary 7). For instance Figure 4

considers the effect of an increase in the risk tolerance of dealers in security D. This increase

reduces the illiquidity of security D but it increases the illiquidity of security F because liquidity

spillovers from security D to security F are negative in this case.

[Insert Figure 4 about here]

Our model predicts the existence of positive or negative liquidity spillovers between secu-

rities. Empirically, these spillovers should translate into positive or negative co-movement in

liquidity. We illustrate this point with the following experiment. For a given value of µF , we

compute the illiquidity of securities F and D assuming that γD is uniformly distributed in

[0.5, 1] and setting σuF = σuD = 1/2, ση = 2, γF = 1/2. For these values of the parameters

µj = 0 and liquidity spillovers are therefore positive. We then compute the covariance between

the resulting equilibrium values for BD and BF . Figure 5, Panel (a) and Panel (b) show this co-

variance as a function of µF when d = 0 and d = 0.9, respectively (for µD = 0.1 and µD = 0.9).

In both cases, the covariance between the illiquidity of securities D and F is positive because

illiquidity spillovers are positive. In panel (c) we set σuF = 0.1, d = 0.9 and µD = 0.9 while

other parameters are unchanged. In this case liquidity spillovers from security D to security F

can be negative when µF is smalle enough. As a result the covariance between the illiquidity of

security D and the illiquidity of security F is negative for relative low values of µF and positive

otherwise.

[Insert Figure 5 about here]

3.3.3 Is attention good for market liquidity?

We now study the relationship between the illiquidity of a security and the fraction of price-

watchers in this security. We already know that the illiquidity of security j is always smaller

with full attention than with no attention (see Corollary 2). However, as shown below, for small
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values of the fraction of pricewatchers, the illiquidity of a security may be strictly higher than

with no attention. Hence, the relationship between illiquidity and attention is non monotonic.

Again it is easier to establish this result when learning is one sided (d = 0) or when µD = 0

since in these cases the equilibrium is unique and we can characterize it in closed-form. We

obtain the following result.

Corollary 8. Consider the cases in which learning is one sided (d = 0) or in which there are

no pricewacthers in security D (µD = 0).

1. If RF ≤ 1, an increase in attention by dealers in security F reduces the illiquidity of this

security.

2. If RF > 1, an increase in attention by dealers in security F reduces the illiquidity of this

security if µF ≥ µF
F and increases its illiquidity if µF < µF

F where 0 < µF
F < 1 (see the

appendix for the analytical expression of µF
F ).

The impact of a change in the fraction of pricewatchers in security F on the liquidity of this

market is determined by both the adverse selection effect and the uncertainty effect, which play

in opposite directions. On the one hand, an increase in the fraction of pricewatchers in security

F raises the exposure to adverse selection for inattentive dealers in security F . On the other

hand, more dealers have relatively low inventory holding costs because more dealers are better

informed about the payoff of security j. The first effect raises illiquidity while the second effect

decreases illiquidity. As shown in Corollary 8, the second effect always prevails when the risk

bearing capacity of dealers in security F is less than one. When this condition is not satisfied,

the adverse selection effect dominates when the fraction of pricewatchers is small (µF < µF
F ).

Hence, the relationship between the liquidity of security F and the fraction of pricewatchers is

non monotonic: it increases in the fraction of pricewatchers when this fraction is less than µF
F ,

reaches a maximum when this fraction is equal to µF
F and then decreases.

When learning is two-sided, i.e., d > 0, the analysis of the impact of a change in attention in

one market is more complex because liquidity spillovers operate in both directions. Hence, as

explained in Section 3.2.3, the total impact of a change in the fraction of pricewatchers in one

security on the illiquidity of this security is determined both by the direct impact of this change

on illiquidity (measured by (∂f/∂µD) or (∂g/∂µF )) and the indirect impact which accounts for

the spillover effects described in the previous section. This indirect impact can be positive or

negative depending on the direction of liquidity spillovers between the two markets. Signing

the total impact of an increase in attention in one market on the level of illiquidity in both

markets is therefore challenging. However, the next corollary shows that if Rj ≤ 1 then more

attention leads to a more liquid market for both securities in at least one of the possible rational

expectations equilibria of the model. When the equilibrium is unique, it must therefore have

this property if Rj ≤ 1.

Corollary 9. If Rj ≤ 1 for j ∈ {D,F} then, other things equal, an increase in attention by

dealers in security j reduces the illiquidity of this security ((∂f/∂µD) < 0 and (∂g/∂µF ) < 0).

20



Furthermore, there is always an equilibrium in which an increase in attention by dealers in

security j reduces the illiquidity of both securities in equilibrium.

To save space, we provide the proof of this result in the Internet Appendix. We illustrate

this corollary with a numerical example. We set ση = 0.77, σuj = 1, γj = 1 and d = 1, so that

learning is two-sided. In Figure 6, we plot the relationship between the illiquidity of security D

and the fraction of pricewatchers in this security for µD ∈ {0.001, 0.002, . . . , 1} when µF = 0.5

(panel (a)) and µF = 0.9 (panel (b)) when BF is fixed at its equilibrium value for µD = 0.001

(bold curve) and when BF adjusts to its equilibrium value for each value of µD (dotted curve).

Thus, the bold curve represents the direct effect of a change in the fraction of pricewatchers

in security D (i.e., the effect holding constant the liquidity of security F ) while the dotted

curve represents the evolution of the equilibrium value of the illiquidity of security D, after

accounting for spillover effects. The difference between the two curves shows the amount by

which spillover effects magnify the direct effect of a change in attention on illiquidity.

[Insert Figure 6 about here]

Table 3 provides a summary of our main results when the level of attention in each market

is exogenous.

Panel A – One-sided learning d = 0

Attention Risk bearing capacity Spillovers from from D to F ↑ µF on BD ↑ µF on BF

No No spillovers No effect No effect

Limited
RF ≤ 1 + No Effect −
RF > 1 + iff µF ≥ µ̂F No Effect − iff µF ≥ µF

F

Full + N.A. N.A.

Panel B – Two-sided learning d > 0

Attention Risk bearing capacity Spillovers from from j to −j ↑ µj on Bj ↑ µj on B−j

No No spillovers No effect No effect

Limited
Rj ≤ 1 + − −
Rj > 1 Ambiguous/can be negative Ambiguous Ambiguous

Full + N.A. N.A.

Table 3: Summary of the main findings with exogenous attention.

4 Endogenous attention

We now endogenize the level of dealers’ attention to the prices of other securities, i.e., µj. To

this end we introduce a cost of attention, C (see the introduction of the paper for interpretations
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of this cost).21 We assume that dealers simultaneously make their decision to be a pricewatcher

at date 0, before trades take place at date 1. Dealers who become pricewatchers pay the cost

C. Other dealers do not pay this cost and cannot make their strategy contingent on the price

in the other market. Once these decisions have been made, trades take place as described in

the previous section.

Dealers’ decisions to be a pricewatcher hinges on a comparison between the cost of attention

and the value of attention, i.e., the informational value of the price of the other security. Let

φj be the value of the information contained in the price of security −j for dealers in security

j when a fraction µj of dealers in security j are informed about the price of security −j. This

value is the maximum fee that a dealer in security j is willing to pay in order to observe the

price of security −j, p−j. This fee solves:

E
[
U
(
(vj − pj)xWj − φj

)]
= E

[
U
(
(vj − pj)xIj

)]
. (28)

In general, the solution to this equation depends on the level of illiquidity in security −j since

this level determines the informational content of the price of security −j. We stress this feature

by explicitly writing φj as a function of the illiquidity of security −j: φj = φj(µj, B−j). In

making their monitoring decisions, dealers take the fraction of pricewatchers as given. Hence,

for a given fraction of pricewatchers in each market, a dealer in security j chooses to monitor the

price of security −j if φj(µj, B−j) > C and abstains from monitoring this price if φj(µj, B−j) <

C. When φj(µj, B−j) = C, the dealer is indifferent between monitoring the price of security

−j or not.

The fraction of pricewatchers in each market results from this cost-benefit analysis and

is ultimately determined by the cost of attention. In the rest of this section, we study the

effect of varying the cost of attention on the equilibrium fraction of pricewatchers and market

illiquidity. This analysis yields two new insights. First, a decrease in the cost of attention can

impair market liquidity. Second, when learning is two-sided, the value of attention for dealers

in one security can increase both in the level of attention by dealers in the same security and

dealers in the other security. As a consequence, dealers’ attention decisions reinforce each other

and multiple equilibria with differing levels of attention can arise for the same level of the cost

of attention.

4.1 Attention decisions with one-sided learning

When d = 0, learning is one-sided: dealers in security D learn no information from the price of

security F . In this case, monitoring the price of security F for dealers in security D is worthless

(φD(µD, BF ) = 0) and as a result all dealers in security D optimally abstain from paying the

cost of attention, i.e., µD = 0. Thus, the level of illiquidity in security D is as given in the

21In our analysis we take the cost of attention as being exogenous. In reality, part of this cost is determined
by pricing decisions of data vendors (Bloomberg, Reuters, exchanges, etc. . . ). An interesting extension of our
paper would be to endogenize this cost by studying the optimal pricing policy of sellers of price information
in our set-up. Cespa and Foucault (2009) study the optimal pricing policy for a monopolist seller of price
information. But they restrict their attention to the case with a single security.
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benchmark case, i.e., BD = σ2
η/γD for all possible values of µF . Hence, in this section we write

φF (µF , BD) as φF (µF ) to simplify notation.

Using the specification of dealers’ utility functions and the fact that all variables have a

normal distribution, we obtain that22

φF (µF ) =
γF
2

ln

(
Var[vF |δF , ω̂F ]

Var[vF |δF , ωD]

)
> 0. (29)

As explained in Section 3.3, pricewatchers in security F obtain a signal ωD about factor δD from

monitoring the price of security D. The price information privately observed by pricewatchers

leaks partially through the price of security F as pricewatchers trade on this information, which

conveys a signal ω̂F to inattentive dealers. However, this signal is less informative than the

signal obtained by pricewatchers since price movements in security F are also affected by the

demand shock in this security. For this reason, pricewatchers can form a more precise forecast

of the payoff of security F than inattentive dealers, that is Var[vF |δF , ω̂F ] > Var[vF |δF , ωD] and

the value of being a pricewatcher is always strictly positive. Intuitively, the value of monitoring

the price of security D for dealers in security F decreases in the fraction of pricewatchers in

security F because the leakage effect is stronger when the fraction of pricewatchers in security

F is higher. We establish this result in the next corollary.

Proposition 3. If d = 0,

φF (µF ) =
γF
2

ln

(
1 +

σ2
uF
σ2
uD
B2
D

γ2
Fµ

2
F (1 +B2

Dσ
2
uD

) + σ2
uF
σ4
uD
B4
D

)
. (30)

with BD = σ2
η/γD. Thus, the value of monitoring the price of security D for dealers in security

F decreases in the fraction of pricewatchers in security F .

Hence, with one sided learning, the value of acquiring price information declines with the

fraction of dealers buying this information, as usual in models of information acquisition (e.g.,

Grossman and Stiglitz (1980) or Admati and Pfleiderer (1986)). Let µ∗F (C) be the fraction of

dealers in security F who decide to pay the cost of attention. As φF (µF ) decreases in µF , there

are three possible cases:

1. If φF (1) > C, then the value of monitoring the price of security D for dealers in security

F exceeds the cost of monitoring even when all dealers pay the cost of monitoring. Thus,

µ∗F (C) = 1.

2. If φF (0) < C, then the value of monitoring the price of security D for dealers in security

F is always lower than the cost of monitoring. Thus, µ∗F (C) = 0.

3. Otherwise, the equilibrium fraction of pricewatchers is such that dealers in security F are

just indifferent between monitoring the price of security D or not. That is, µ∗F (C) is the

unique solution of φF (µF ) = C.

22Our expression for the value of information is standard in models of information acquisition with normally
distributed variables and CARA utility functions (see for instance Admati and Pfleiderer (1986)). Thus, for
brevity we omit the derivation of this result, which can be obtained upon request.
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We obtain the following result.

Proposition 4. With one sided learning (d = 0), the fraction µ∗F (C) of dealers in security

F who monitor the price of security D in equilibrium decreases in the cost of attention. This

fraction is:

1. µ∗F (C) = 0, if C > C.

2. µ∗F (C) =

√
σ2
uF
σ2
uD

B2
D(1−B2

Dσ
2
uD

(e2C/γF−1))

γ2
F (1+B2

Dσ
2
uD

)(e2C/γF−1)
, if C ≤ C ≤ C.

3. µ∗F (C) = 1, if C < C,

where closed-form solutions for the thresholds C and C are given in the proof of the propo-

sition and BD = σ2
η/γD.

The illiquidity of security F is in part determined by the fraction of pricewatchers in this

security (see Section 3.3). As this fraction is itself determined by the cost of attention, the

illiquidity of security F is ultimately determined by the cost of attention. The next corollary

describes the effect of a change in the cost of attention on the illiquidity of security F .

Corollary 10. With one sided learning (d = 0):

1. If RF ≤ 1 then the illiquidity of security F increases in the cost of attention for dealers

active in this security.

2. If RF > 1 , there exists a value of C∗ ∈ (C,C) such that the illiquidity of security F

increases in the cost of attention for dealers active in this security when C ≤ C∗ and

decreases in the cost of attention otherwise (the closed-form solution for C∗ is given in

the proof of the corollary).

A decrease in the cost of attention leads to an increase in the fraction of pricewatchers

in security F when learning is one-sided. As explained in Section 3.3, this evolution has an

ambiguous effect on the illiquidity of security F . On the one hand, more attention reduces the

uncertainty on the payoff of security F . On the other hand, inattentive dealers are more exposed

to adverse selection if the attention of their competitors increases. As shown in Corollary 6,

the uncertainty effect always dominates when RF ≤ 1. Thus, in this case, a reduction in

the cost of monitoring for dealers in security F always improves the liquidity of this security.

When RF > 1, the adverse selection effect dominates as long as the fraction of pricewatchers

remains small, i.e., when C is greater than C∗. Indeed, for this range of values for the cost of

attention, only a few dealers choose to be pricewatchers. As a result, a small decline in the cost

of attention reinforces the adverse selection risk for inattentive dealers and market liquidity

deteriorates. Figure 7 illustrates the impact that a change in the cost of attention has on the

fraction of pricewatchers, illiquidity, and the value of information with one-sided learning.

[Insert Figure 7 about here]
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4.2 Attention decisions with two sided learning

We now consider the case in which d > 0, so that dealers in each security can learn information

from the price of the other security. In this case, our main finding is that the value of price

information for dealers in a given market can be increasing in the fraction of pricewatchers in

both markets. This finding is counterintuitive since usually the value of financial information

declines with the fraction of investors acquiring this information (see Grossman and Stiglitz

(1980) or Admati and Pfleiderer (1986)). The value of price information has this property when

learning is one-sided, as we have just shown in Proposition 4. In contrast, when learning is

two-sided, price information is special : its value can increase in the number of investors who

buy this information. As we shall see the main reason for this counter-intuitive result is that the

value of price information tends to be higher for securities that are more liquid and securities

tend to be more liquid when the fraction of pricewatchers is large enough.

Using again the dealers’ utility functions specification and the fact that all variables are

normally distributed, we obtain that the value of monitoring the price of security −j for dealers

in security j is

φj(µj, B−j(µj, µ−j)) =
γj
2

ln

(
Var[vj|δj, ω̂j]

Var[vj|δj, ω−j]

)
, (31)

where we stress the fact that the illiquidity of each market in equilibrium is a function of the

fraction of pricewatchers in either market. To save space we provide the explicit expression for

φj(µj, B−j(µj, µ−j)) in the Internet Appendix. For a fixed fraction of pricewatchers in market

−j, we have
dφj
dµj

= Lj︸︷︷︸
Leakage effect

+ Λj︸︷︷︸
Feedback effect

. (32)

with Lj ≡ (∂φj/∂µj) and Λj ≡ (∂φj/∂B−j)(∂B−j/∂µj). Thus, the total effect of an increase in

the fraction of pricewatchers in security j on the value of being a pricewatcher is the sum of two

effects: the leakage effect (that we described in the previous section) and the feedback effect,

which is new as it arises only when learning is two-sided. To understand this feedback effect,

consider an increase in the fraction of pricewatchers in security D (the reasoning is symmetric

for an increase in µF ). When d > 0, this increase affects the liquidity of security D and thereby

the liquidity of security F . In turn, the change in the liquidity of security F feeds back on the

value of monitoring this security since, as explained before, it affects the informativeness of the

price of security F for dealers in security D if d > 0. The change in the value of information

due to this feedback effect is measured by ΛD. It is zero when learning is one-sided because

in this case dealers in security D learn no information from the price of security F (hence

∂φD/∂BF = 0).23

The total effect of an increase in the fraction of pricewatchers in security j on the value of

information in this market is positive if and only if the feedback effect outweighs the leakage

effect

Λj > −Lj > 0. (33)

23Moreover, ∂BD/∂µF = 0 when d = 0 since the illiquidity of security D is independent of µF in this case
(BD = (σ2

η/γD)). Thus, ΛF = 0 as well when learning is one-sided.
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If the feedback effect dominates (i.e., condition (33) holds true), the value of being a price-

watcher in security j increases in the fraction of pricewatchers in this security. Obviously, a

necessary condition for this to happen is that the feedback effect is positive, which is a possibil-

ity when Rj ≤ 1. To see this, consider again the value of monitoring security F for dealers in

security D. When RD ≤ 1, as shown in Corollary 9, an increase in the fraction of pricewatchers

in security D reduces the illiquidity of security F (∂BF/∂µD < 0). As a consequence, the price

of security F becomes more informative for dealers in security D and the value of monitoring

this price is higher (∂φD/∂BF < 0), at least for some parameter values. In this case, the

feedback effect for security D is positive: ΛD > 0.

We have not been able to delineate the set of parameters under which the feedback effect

dominates the leakage effect. However, numerical simulations show that this set is not empty.

To see this, consider Figure 8. Panel (a) on this figure plots the value of monitoring security F

for pricewatchers in security D (i.e., φD(µD, BF )) for two values of µF . In both cases the value

of observing the price of security F increases with the fraction of pricewatchers in security D,

which means that the feedback effect dominates the leakage effect.

[Insert Figure 8 about here]

Now consider the effect of a change in the fraction of pricewatchers located in market −j on

the value of monitoring this market for dealers in asset j. This cross-market monitoring effect

is measured by
dφj
dµ−j

=

(
∂φj
∂B−j

∂B−j
∂µ−j

)
. (34)

As shown in Corollary 9, an increase in the fraction of pricewatchers in, say, security D reduces

the illiquidity of this security ((∂BD/∂µD) < 0) if RD ≤ 1. In turn this effect makes the price

of security D more informative for dealers in security F and increases the value of monitoring

this price for dealers in security F ((∂φF/∂BD) < 0). In this case, (dφF/dµD) > 0. That is, an

increase in the fraction of pricewatchers in security D makes the value of monitoring the price

of security D higher for dealers in security F .

Figure 8 illustrates the cross-market monitoring effect as well. First, consider panel (a)

again. It shows that the value of monitoring the price of security F for dealers in security D

is higher, all else being equal when µF = 0.9 than when µF = 0.1. Moreover, panel (b) shows

that an increase in the fraction of pricewatchers in security D makes the value of monitoring

security D higher for dealers in security F .

Thus, price information is special because the decision of each dealer to buy this information

can reinforce each other both in the same market and across different markets.24 The model

shows that this happens in two distinct ways: (i) the value of being informed about the price of

another security can increase in the fraction of dealers who follow this security (“within market

24The leakage effect implies that dealers’ decisions to buy price information are “strategic substitutes”: the
acquisition of price information by one dealer reduces the value of being a pricewatcher for other dealers. In
contrast, when positive, the feedback effect works to make dealers’ decisions to buy price information “strategic
complements”: the acquisition of price information by one dealer strengthens the value of being a pricewatcher
for other dealers operating in the same market.
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complementarity”) and (ii) the value of being informed about the price of another security

can increase in the fraction of pricewatchers in this security (“cross market complementarity”).

Both types of complementarity in dealers’ monitoring decisions are absent when d = 0 and they

do not necessarily both operate when d > 0 (in particular the leakage effect may prevail over

the feedback effect even though the cross-market complementarity operates).

Now consider whether a dealer in market j should become a pricewatcher. In making

this decision, the dealer takes the fraction of pricewatchers in both markets as given. If

φj(µj, B−j(µD, µF )) > C, it is optimal for the dealer to be a pricewatcher since the value

of monitoring the price in the other market is higher than the cost. If φj(µj, B−j(µD, µF )) <

C, it is optimal for the dealer not to monitor the price in the other market and finally, if

φj(µj, B−j(µD, µF )) = C, the dealer is just indifferent. Given these observations, the equilib-

rium fractions of pricewatchers in each market, (µ∗D, µ
∗
F ), are displayed in Table 4.

µ∗j , µ
∗
−j When

µ∗j = µ∗−j = 1 φj(1, B−j(1, 1)) > C for j ∈ {D,F}
µ∗j = 1, µ∗−j ∈ (0, 1) φj(1, B−j(1, µ

∗
−j)) > C and φ−j(µ

∗
−j, B−j(1, µ

∗
−j)) = C

µ∗j , µ
∗
−j ∈ (0, 1) φj(µ

∗
j , B−j(µ

∗
j , µ

∗
−j)) = C for j ∈ {D,F}

µ∗j = 0, µ∗−j ∈ (0, 1) φj(0, B−j(0, µ
∗
−j)) < C and φ−j(µ

∗
−j, B−j(1, µ

∗
−j)) = C

µ∗j , µ
∗
−j = 0 φj(0, B−j(0, 0)) < C for j ∈ {D,F}.

Table 4: The equilibrium fraction of pricewatchers in markets j and −j.

Complementarities in attention decisions among dealers located in different markets lead

to multiple equilibria for the levels of attention. Indeed, these complementarities imply that

the value of cross-market monitoring will be relatively high when the fraction of pricewatchers

in both markets is high and relatively low when the fraction of pricewatchers in both markets

is low. Thus, for intermediate values of the cost of monitoring, there is room for multiple

equilibria with various levels of market integration for the same values of the parameters (in

particular the correlation of the payoffs of the two securities being fixed).

It is worth stressing that the multiplicity of possible attention levels in equilibrium is a

phenomenon distinct from the multiplicity of rational expectations equilibria. Indeed, one may

have a single linear rational expectations equilibrium for each possible level of attention in each

security and yet multiple equilibrium levels of attention. As an example, consider the parameter

values of Figure 8 again and suppose C = 0.06. For the parameter values in Figure 8, there

is a unique non-fully rational expectations equilibrium for each value of µD and µF . However,

there are three possible pairs of equilibrium values for the levels of attention in each market: (i)

µ∗D = µ∗F = 1, (ii) µ∗D = 0, µ∗F = 1 and (iii) µ∗D ' 0.3, µ∗F = 1. In all these equilibria, all dealers

in security F pay attention to the price of security D. In contrast, for the same parameter

values, we can have an equilibrium in which dealers in security D do not follow security F

27



(µ∗D = 0), an equilibrium in which all dealers in security D follow security F (µ∗D = 1) or an

equilibrium in which only a fraction of dealers in security D buy price information on security

F (µ∗D ' 0.3). Thus, for the same fundamentals, dealers in security D can appear to neglect

the information contained in the price of security F or to be very sensitive to this information.

We may also have situations in which, for the same parameter values, the markets for the two

securities appear fully segmented because dealers in either market pay no attention to the other

market (µ∗D = µ∗F = 0) or fully integrated because all dealers are pricewatchers (µ∗D = µ∗F = 1).

To see this, consider the case in which the two markets are perfectly symmetric: γF = γD = γ,

d = 1, ση = 0 and σuF = σuD = σu. In this case, we obtain (see the Internet Appendix for a

derivation):

φj(µj, B−j) =
γ

2
ln

(
1 +

B2
−jσ

4
u

γ2µ2
j(1 +B2

−jσ
2
u) +B4

−jσ
6
u

)
. (35)

In this symmetric case, there are two non-fully revealing rational expectations equilibria if

µD = µF = 1 (see Section 3.2). For the discussion, we focus on the high illiquidity equilibrium

in which the level of illiquidity in markets D and F is BH∗ (given in equation (10)). In the

symmetric case, parameters are identical in the two markets. Hence, by symmetry, we have

φF (1, BH∗) = φD(1, BH∗) and φF (0, BF0) = φD(0, BD0). That is, the value of price information

is identical in each market in the full attention case and in the no attention case, respectively.

Let φ0 be the value of price information in the no attention case and let φ1 be the value of price

information in the full attention case. Using equation (35), we obtain the following result.

Proposition 5. In the symmetric case (i.e., γF = γD = γ, d = 1, ση = 0 and σuF = σuD = σu):

1. The value of monitoring prices in market −j for dealers in market j is strictly higher

when µD = µF = 1 than when µD = µF = 0, that is, φ1 > φ0 for j ∈ {H,L}.

2. Moreover if the cost of attention is such that φ0 < C < φ1, then the cases in which all

dealers are pricewatchers (µ∗D = µ∗F = 1) and no dealers are pricewatchers (µ∗D = µ∗F = 0)

are possible equilibria.

The first part of the proposition shows that in the symmetric case the value of monitoring

is always higher when all dealers are pricewatchers than when no dealers are pricewatchers.

For this reason, for the same parameters value, the markets for securities F and D can be

either fully integrated (all dealers in each market account for the price information available in

the other market) or fully segmented, as claimed in the second part of the proposition. As an

illustration, suppose that σδ = σu = 1, γ = 1/2. In this case, we have

φ0 =
γ

2
ln

(
1 +

γ2

σ2
u

)
≈ 0.055, φ1 =

γ

2
ln

(
1 +

(BH∗)2σ4
u

γ2(1 + (BH∗)2σ2
u) + (BH∗)4σ6

u

)
≈ 0.127.

Thus, for any value of C ∈ [0.055, 0.127], the markets for securities F and D can be either fully

segmented or fully integrated, depending on whether dealers in both markets coordinate on the

high or the low attention equilibrium. The liquidity of both markets and the informativeness

of prices are higher if dealers coordinate on the high attention equilibrium. Interestingly, in
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this case, the markets can remain segmented even if the cost of attention decreases, unless it

falls below C = 0.055.

In summary, when learning is two sided, the value of price information can increase in the

fraction of pricewatchers. This property means that dealers’ decisions to monitor the price of

another security are complements both within and across markets. That is, they reinforce each

other. As a consequence, multiple equilibria with differing levels of attention are sustainable

and two securities may appear segmented even though the correlation of their payoffs is high

and the cost of monitoring is relatively low.

This result has interesting implications. First, it implies that fads, traditions, or other coor-

dination devices may determine the degree of integration between two securities, independently

of the correlation in the payoffs of these securities. Second, a decrease in the cost of attention

(due for instance to better information linkages between markets) does not necessarily entail

greater market integration, unless the cost is very low. Third, dealers operating in related

but opaque segments may undervalue the benefit of greater market integration. Indeed, in the

low attention equilibrium, the value of getting price information is low. Thus, data vendors

will perceive a weak demand and will therefore lack incentives to collect and disseminate price

information. In this case, regulatory intervention is needed. A case in point is the U.S. corpo-

rate bond market where real time dissemination of bond prices took off only under regulatory

pressure (see Bessembinder et al. (2006)).

5 Testable implications

One way to test whether cross-security learning is a source of liquidity spillovers is to consider

changes in trading technologies that affect dealers’ ability to learn from the prices of other

securities. According to our model, these changes should affect the extent of liquidity spillovers

across securities and the levels of liquidity for these securities. In contrast, theories of liquidity

co-movements based on market wide changes in dealers’ risk bearing capacity (e.g., Brunner-

meier and Pedersen (2009)) make no predictions on such changes in trading technologies. In

the rest of the paper, we illustrate this approach with two thought experiments.

5.1 From opaque to transparent markets

Suppose that the markets for securities D and F are opaque so that the cost of obtaining

information on the prices of securities D and F is high. In this case, the fraction of pricewatchers

in both securities is low. Let us denote the fraction of pricewatchers in this environment by

µbj for j ∈ {D,F}. Now suppose that the market for security D becomes transparent while

the market for security F remains opaque. After this switch, the fraction of pricewatchers in

security D remains unchanged whereas the fraction of pricewatchers in security F is higher

since transparency reduces the cost of acquiring information on the price of security D. That

is µbD = µaD but µaF > µbF where µaj is the fraction of pricewatchers in security j after the

switch to a new trading system for security F . To simplify the discussion, let us assume that
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µbD = µaD = 0. In this case the model has a unique rational expectations equilibrium for all

values of µF and we can use Corollaries 6 and 8 to develop predictions about the effects of this

change in market design.

In this case, if dealers’ risk bearing capacity in security F is relatively low (RF ≤ 1), the

liquidity of security F should increase after the market for security D becomes transparent (see

Corollary 8), even though the market structure for security F is identical before and after the

change affecting the other security. Moreover, co-variation in liquidity between securities D

and F should be positive and greater than before the change in market design as explained in

Section 3.3 (Corollary 6).

If instead, dealers’ risk bearing capacity in security F is relatively large (RF > 1) and the

fraction of pricewatchers in security F remains small (µaF < µF
F ) then the liquidity of security F

should decrease after the market for security D becomes transparent (Corollary 8). The reason

is that the transparency of security D exposes inattentive dealers active in security F to adverse

selection by giving an informational advantage to pricewatchers (see Section 3.3.3). Moreover,

in this case, liquidity spillovers from security D to security F will be negative (Corollary 6).

The implementation of the TRACE system in the U.S. corporate bond market is a field

experiment close to the thought experiment we just described. Until 2002, the U.S. corporate

bond market was very opaque: the price of each transaction was known only to the parties

involved in the transaction. This situation changed when the SEC required dissemination

of transaction prices for a subset of bonds through a reporting system called TRACE. This

requirement initially applied to 498 bonds and was implemented in July 2002. Bessembinder et

al. (2006) study the effects of this reform of the bond market on the liquidity of TRACE eligible

bonds (security D in our thought experiment) and non-TRACE-eligible bonds (security F ).25

Interestingly, Bessembinder et al. (2006) find a significant increase in liquidity for non-TRACE

eligible bonds, as predicted by our model (see Table 3, page 272 in Bessembinder et al.(2006)).

The model makes the additional prediction, which to our knowledge has yet to be tested, that

the liquidity of non-TRACE bonds should become more sensitive to changes in the liquidity of

TRACE bonds after the implementation of TRACE. This prediction can be tested by analyzing

the lead-lag relationships between measures of liquidity for TRACE-eligible bonds and non-

TRACE bonds. The model implies that a shock to the liquidity of TRACE bonds should have

a greater effect in absolute value on the liquidity of non-TRACE bonds after the implementation

of TRACE and that the direction of this effect might be negative if few dealers in non-TRACE

bonds watch the prices of TRACE bonds.

Bessembinder et al.(2010) also finds that the liquidity of the TRACE eligible bonds increases.

This finding is consistent with the model as well. To see this suppose now that both the markets

for securities D and F become transparent. If Rj ≤ 1 for both securities or µj is high enough

then the liquidity of both securities is higher in the transparent system, for all values of the

fraction of pricewatchers (see Corollary 9).

25Edward et al. (2005) and Goldstein et al. (2007) also consider the effects of greater transparency in the
U.S. bond markets. However, they do not analyze the effects of greater transparency on non-eligible bonds.
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5.2 Co-location fees

The recent years have witnessed a growth of so called “high frequency market-makers” (e.g.,

GETCO, Optiver, etc. . . ), who use highly automated strategies. These market-makers often

use price information available about one security to take positions in other securities. For

instance, they monitor quote updates in stock index futures and use this information to set

their quotes in other securities.

The case in which d = 0 can be used to analyze this type of trading strategy. Indeed, in this

case we can interpret security D as providing information on a market wide risk factor (δD)

and security F as a security that loads on this factor and another factor (δF ). We interpret

pricewatchers in security F as high frequency market-makers: they watch in real-time the price

of security D and use this information to determine their position in security F .

As explained in the introduction, high frequency market-makers obtain price information

faster than other market participants by co-locating their computers close to trading platforms’

matching engines, at a cost equal to the co-location fee charged by the platform.26 Thus, the

co-location fee is one component of the cost of price information.

Now suppose that the co-location fee declines. In this case, Proposition 4 implies that the

number of high frequency market-makers should increase since the cost of price information

declines. If the risk bearing capacity of high-frequency market-makers is low (RF ≤ 1), entry

of new pricewatchers should improve the liquidity of security F . Moreover, liquidity spillovers

from security D to security F should be positive and stronger after the reduction in the co-

location fee (see Corollary 10 and Figure 5).

If instead the risk bearing capacity of high-frequency market-makers is high (RF > 1), the

scenario is more complex. If C > C∗, entry of new high frequency market-makers increases the

exposure to adverse selection for other dealers in security F . Thus, the liquidity of security F

should drop after the reduction in the co-location fee (see Corollary 10). Moreover, liquidity

spillovers from security D to security F can be negative in this case. Indeed, an improvement in

liquidity for security D allows pricewatchers in security F to obtain more precise information.

Thus, if the fraction of pricewatchers remains small, the risk of adverse selection for inattentive

dealers increases and the liquidity of security F drops following an increase in liquidity for

security D.

Jovanovic and Menkveld (2010) study entry of a high frequency market-maker in Dutch

stocks traded on Chi-X (a European trading platform). They show empirically that following

this entry, quotes in Chi-X become relatively more informative on price innovations in the Dutch

index futures.27 Moreover, the liquidity of the stocks in which the high frequency market-maker

is active improves. This is consistent with the model when RF ≤ 1. In this case the model

makes the additional prediction that the liquidity of Dutch shares should become more sensitive

26This fee can be significant. For instance, the monthly fee for this service for stocks listed on NYSE Amex
is as high as $61,000 per month in 2011. See NYSE Amex equities price list 2011 at http://www.nyse.com/
pdfs/amex-equities-prices.pdf.

27Hendershott and Riordan (2010) also find empirically that high frequency traders make the market more
informationally efficient.
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to changes in the liquidity of the Dutch index futures after entry of the high-frequency market-

maker.

6 Conclusions

In this paper we analyze a new mechanism that explains the transmission of liquidity shocks

in one market to another market (“liquidity spillovers”). Central to this mechanism is the fact

that dealers in one security often use the price of other securities as a source of information

to set their quotes. The price of a security conveys a noisier signal about fundamentals when

the market for this security is less liquid. As a result, a drop in the liquidity of one security

propagates to other securities because it increases the level of uncertainty for dealers in all

other securities. This propagation of the initial liquidity shock makes all prices less informative,

which amplifies the initial drop in liquidity. For this reason, even small initial shocks on market

liquidity in one asset class can ultimately result in large market wide changes in liquidity.28

The model provides several additional insights:

1. Liquidity spillovers are not necessarily positive. The direction of these spillovers depends

on the fraction of dealers with price information on other securities. When this fraction

is large, liquidity spillovers are positive. In contrast, liquidity spillovers can be negative

when price information is only available to a relatively small number of dealers and dealers’

risk bearing capacity is large.

2. A decrease in the cost of price information can increase market illiquidity if it triggers

too small an increase in the fraction of dealers who acquire information on the price of

other securities.

3. The value of price information can increase, for some parameter values, with the fraction of

dealers buying this information. For this reason, for the same parameter values, multiple

levels of segmentation (high, medium or low) between securities can be sustained in

equilibrium.

Future work should study the implications of our model for asset pricing. The model implies

that the extent of liquidity co-movements between assets is in part determined by the cost of

acquiring price information. Hence, liquidity risk and therefore risk premia should be sensitive

to changes in trading technologies that affect this cost, as explained in the last part of our

paper. Moreover the model implies that the liquidity of some securities could covary negatively

28In line with this transmission mechanism, the CFTC-SEC report on the Flash crash emphasizes the role that
uncertainty on the cause (transient price pressures or changes in fundamentals) of the large price movements in
the E-mini futures on the S&P500 played in the evaporation of liquidity during the Flash crash. The authors of
this report write (on page 39): “market makers that track the prices of securities that are underlying components
of an ETF are more likely to pause their trading if there are price-driven or data-driven integrity questions about
those prices. Moreover extreme volatility in component stocks makes it very difficult to accurately value an ETF
in real-time. When this happens, market participants who would otherwise provide liquidity for such ETFs may
widen their quotes or stop providing liquidity [...].” This is consistent with our model in which the liquidity of
a security drops when prices of other securities become less reliable as a source of information.
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with the liquidity of other securities. These securities should therefore provide a good hedge

against market wide variations in liquidity and offer negative risk premia for this risk. Do such

securities exist in reality? Do they have the characteristics that our model predicts (relatively

few well informed dealers with high risk bearing capacity)? We leave these questions for future

research.
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A Appendix

Proof of Lemma 1

If µD = 0 then all dealers in security D only observe factor δD when they choose their demand

function. As dealers have a CARA utility function, it is immediate that their demand function

in this case is

xID(δD) = γD
E[vD|δD]− pD

Var[vD|δD]
= γD

δD − pD
σ2
η + d2

. (A.1)

Using the clearing condition, we deduce that the clearing price is such that:

pD = δD +

(
σ2
η + d2

γD

)
uD = δD +BD0uD.

A similar reasoning yields the expression of the clearing price for security F . 2

Proof of Proposition 1

This proposition is a special case of Proposition 2, which considers the more general case in

which µj can take any value. This proposition is proved below. 2

Proof of Lemma 2

In the symmetric case, we can proceed as in the proof of Proposition 2 to show that a non-fully

revealing linear rational expectations equilibrium exists if and only if the system of equations

(8) and (9) has at least one strictly positive solution. Solving this sytem shows that this is

the case if and only if σ2
u ≥ 4γ2 and that in this case the system of equations (8) and (9) has

two solutions: B∗D = B∗F = BH∗ and B∗D = B∗F = BL∗. Otherwise, the unique solution of

this system is B∗D1 = 0 and BF1 = 0. Hence, there is no non-fully revealing linear rational

expectations equilibria when σ2
u < 4γ2. 2

Proof of Lemma 3

See Step 1 in the proof of Proposition 2. 2

Proof of Corollary 1

From Step 3 in the proof of Proposition 2, we deduce that when µD = µF = 1, there is a unique

non-fully revealing equilibrium if and only if Ψ′1(BD1) < 0, ∀BD1. Using the expression for

Ψ1(·) (equation (A.32)), we obtain

Ψ′1(BD1) = −γDγ2
F (1 +B2

D1σ
2
uD

)2+

4BD1σ
2
uD

(σ2
η − γDBD1)

(
γ2
F (1 +B2

D1σ
2
uD

) +B2
D1σ

2
uD
σ2
uF

)
+B3

D1σ
4
uD
σ2
uF
γD(4γ−1

D d2 −BD1).

Remember that when µD = µF = 1, BD1 > σ2
η/γD (see Step 3 in the proof of Proposition 2).

Hence, if 4d2/γD ≤ σ2
η/γD then Ψ′1(BD1) < 0.

2

Proof of Corollary 2

The result follows immediately from equation (17) 2
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Proof of Corollary 3

The result follows immediately from equations (15) and (16). 2

Proof of Corollary 4

The result follows immediately from the definition of functions f1(·) and g1(·) in Proposition 1.

2

Proof of Proposition 2

Step 1. We show below (Step 2) that if p∗j = Rjδj + Bjuj + Ajδ−j + Cju−j is a rational

expectations equilibrium then Rj = 1 and Cj = AjB−j. Hence, in a rational expectations

equilibrium, the price in market j can be written p∗j = ωj + Ajω−j, where ωj = δj + Bjuj.

Thus, {δj, ω−j} is a sufficient statistic for {δj, p−j, pj}. Clearly, the equilibrium is non-fully

revealing if and only if Bj > 0. Moreover, {δj, ω̂j} is a sufficient statistic for {δj, pj}, where

ω̂j = Bjuj + Ajω−j and since ω−j = p∗−j − A−jωj, we can also write the equilibrium price in

market j as

p∗j = ωj + Aj(p
∗
−j − A−jωj) = (1− AjA−j)ωj + Ajp

∗
−j.

These observations prove Lemma 3.

Step 2. Equilibrium in market j.

Pricewatchers’ demand function. A pricewatcher’s demand function in market j, xWj (δj, pj, p−j),

maximizes

E
[
− exp

{
−
(
(vj − pj)xWj

)
/γj
}
|δj, pj, p−j

]
.

We deduce that

xWj (δj, pj, p−j) = γj

(
E[vj|δj, p−j, pj]− pj

Var[vj|δj, p−j]

)
= aWj (E[vj|δj, p−j, pj]− pj), (A.2)

with aWj = γjVar[vj|δj, p−j]−1.

As {δD, ωF} is a sufficient statistic for {δD, pF , pD}, we deduce (using well-known properties

of normal random variables) that

E[vD|δD, pF , pD] = E[vD|δD, ωF ]

= δD +
d

(1 +B2
Fσ

2
uF

)
ωF , (A.3)

and

aWD =
γD

Var[vD | δD, ωF ]
(A.4)

= γD

(
1 +B2

Fσ
2
uF

d2B2
Fσ

2
uF

+ σ2
η(1 +B2

Fσ
2
uF

)

)
(A.5)

=
γD

Var[vD|δD](1− ρ2
D)
, (A.6)
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where ρ2
D ≡ d2/((σ2

η + d2)(1 +B2
Fσ

2
uF

)). Thus,

xWD (δD, ωF ) = aWD (δD − pD) + bWD ωF ,

where

bWD =
γD

Var[vD|δD, ωF ]

Cov[vD, ωF ]

Var[ωF ]

= daWD

(
1

1 +B2
Fσ

2
uF

)
. (A.7)

Similarly, for pricewatchers in security F we obtain

xWF (δF , ωD) = aWF (δF − pF ) + bWF ωD, (A.8)

where ωD = δD +BDuD, and

aWF = γF

(
1 +B2

Dσ
2
uD

B2
Dσ

2
uD

)
=

γF
Var[vF |δF ](1− ρ2

F )
, bWF = aWF

1

1 +B2
Dσ

2
uD

, (A.9)

where ρ2
F ≡ (1 +B2

Dσ
2
uD

)−1.

Inattentive Dealers. An inattentive dealers’ demand function in market j, xIj (δj, pj), maxi-

mizes:

E
[
− exp

{
−
(
(vj − pj)xIj

)
/γj
}
|δj, pj

]
.

We deduce that

xIj (δj, pj) = γj

(
E[vj|δj, pj]− pj
Var[vj|δj, p−j]

)
= aIj (E[vj|δj, pj]− pj), (A.10)

with aIj = γjVar[vj|δj, p−j]−1.

As {δD, ω̂D} is a sufficient statistic for {δD, pD}, we deduce (using well-known properties of

normal random variables) that

E[vD|δD, pD] = E[vD|δD, ω̂D]

= δD +
dAD

A2
D(1 +B2

Fσ
2
uF

) +B2
Dσ

2
uD

ω̂D, (A.11)

and

aID =
γD

Var[vD | δD, ω̂D]
(A.12)

=γD
A2
D(1 +B2

Fσ
2
uF

) +B2
Dσ

2
uD

d2(A2
DB

2
Fσ

2
uF

+B2
Dσ

2
uD

) + σ2
η(A

2
D(1 +B2

Fσ
2
uF

) +B2
Dσ

2
uD

)
. (A.13)

Thus,

xID(δD, ω̂D) = aID(δD − pD) + bIDω̂D,
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where

bID =
γD

Var[vD|δD, ω̂D]

Cov[vD, ω̂D]

Var[ω̂D]

= aID
dAD

A2
D(1 +B2

Fσ
2
uF

) +B2
Dσ

2
uD

. (A.14)

Similarly, for market F we obtain:

xIF (δF , ω̂F ) = aIF (δF − pF ) + bIF ω̂F , (A.15)

where

aIF = γF
A2
F (1 +B2

Dσ
2
uD

) +B2
Fσ

2
uF

A2
FB

2
Dσ

2
uD

+B2
Fσ

2
uF

, bIF = aIF
AF

A2
F (1 +B2

Dσ
2
uD

) +B2
Fσ

2
uF

. (A.16)

Clearing price in market j. The clearing condition in market j ∈ {D,F} imposes

µjx
W
j (δj, pj, p−j) + (1− µj)xIj (δj, pj) + uj = 0.

Let aj = µja
W
j + (1− µj)aIj . Using equations (A.2) and (A.10), we solve for the clearing price

and we obtain

p∗j = δj +

(
µbWj + (1− µj)bIjAj

aj

)
ω−j +

(
(1− µj)bIjBj + 1

aj

)
uj, (A.17)

Remember that we are searching for an equilibrium such that p∗j = Rjδj+Bjuj+Ajδ−j+Cju−j.

We deduce from equation (A.17) that in equilibrium, we must have Rj = 1,

Bj =

(
(1− µj)bIjBj + 1

aj

)
, Aj =

(
µbWj + (1− µj)bIjAj

aj

)
, and Cj = AjB−j.

Thus

Bj =
1

aj − (1− µj)bIj
, for j ∈ {D,F}, (A.18)

Aj = µjBjb
W
j , for j ∈ {D,F}. (A.19)

Coefficients Aj and Cj ultimately depend on the coefficients {Bj, B−j}. Hence, the equilibrium

is fully characterized once coefficients Bj and B−j are known as claimed in the proposition.

Substituting (A.6) in (A.7) and rearranging we obtain

bWD = dγD
1

d2B2
Fσ

2
uF

+ σ2
η(1 +B2

Fσ
2
uF

)
. (A.20)

Using (A.19) (for j = D) and (A.20), we can rewrite (A.14) as

bID = aID
d2µDγD(d2B2

Fσ
2
uF

+ σ2
η(1 +B2

Fσ
2
uF

))

BD(µ2
Dd

2γ2
D(1 +B2

Fσ
2
uF

) + σ2
uD

(d2B2
Fσ

2
uF

+ σ2
η(1 +B2

Fσ
2
uF

))2)
. (A.21)
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Similarly, using (A.19) (for j = D) and (A.20), we can rewrite (A.13) as

aID =
γD
(
µ2
Dd

2γ2
D(1 +B2

Fσ
2
uF

) + σ2
uD

(d2B2
Fσ

2
uF

+ σ2
η(1 +B2

Fσ
2
uF

))2
)

(d2B2
Fσ

2
uF

+ σ2
η(1 +B2

Fσ
2
uF

))(µ2
Dd

2γ2
D + σ2

uD
(σ2

η + d2)(σ2
η(1 +B2

Fσ
2
uF

) + d2B2
Fσ

2
uF

))

(A.22)

=
γD
(
µ2
Dγ

2
Dρ

2
D + σ2

uD
(d2 + σ2

η)(1− ρ2
D)2
)

(d2 + σ2
η)(1− ρ2

D)(µ2
Dγ

2
Dρ

2
D + σ2

uD
(d2 + σ2

η)(1− ρ2
D))

. (A.23)

Inserting (A.23) in (A.21) yields after some algebra

bID = γ2
D

d2µD
BD(µ2

Dd
2γ2

D + σ2
uD

(σ2
η + d2)(σ2

η(1 +B2
Fσ

2
uF

) + d2B2
Fσ

2
uF

))
. (A.24)

We can now replace (A.6), (A.23) and (A.24) in (A.18) and, after some tedious algebra, we

obtain

BD = f(BF ;µD, γD, σ
2
η, d, σ

2
uF

), (A.25)

where

f(BF ;µD, γD, σ
2
η, d, σ

2
uF

) =
BD0(1− ρ2

D)
(
µDγ

2
Dρ

2
D + (σ2

η + d2)σ2
uD

(1− ρ2
D)
)

ρ2
Dµ

2
Dγ

2
D + σ2

uD
(σ2

η + d2)(1− ρ2
D)(1− ρ2

D(1− µD))
, (A.26)

with ρ2
D = d2/((σ2

η + d2)(1 +B2
Fσ

2
uF

)) and BD0 = (σ2
η + d2)/γD. In a similar way we obtain

BF = g(BD;µF , γF , σ
2
uD

), (A.27)

where

g(BD1;µF , γF , σ
2
uD

) =
BF0(1− ρ2

F )
(
µFγ

2
Fρ

2
F + σ2

uF
(1− ρ2

F )
)

ρ2
Fµ

2
Fγ

2
F + σ2

uF
(1− ρ2

F )(1− ρ2
F (1− µF ))

, (A.28)

with ρ2
F = (1 + B2

Dσ
2
uD

)−1 and BF0 = γ−1
F . Last, as Var[vD|δD] = σ2

η + d2 and Var[vF |δF ] = 1,

we obtain that

Bj = Bj0(1− ρ2
j)×

γ2
jµjρ

2
j + σ2

uj
Var[vj|δj](1− ρ2

j)

γ2
jµ

2
jρ

2
j + σ2

uj
Var[vj|δj](1− ρ2

j)(1− ρ2
j(1− µj))

, (A.29)

as claimed in the proposition.

Step 3. Existence of a non-fully revealing equilibrium with full attention (µj = 1).

Let f1(BF1; γD, σ
2
η, d, σ

2
uF

) ≡ f(BF ; 1, γD, σ
2
η, d, σ

2
uF

) and g1(BD1; γF , σ
2
uD

) ≡ g(BD1; 1, γF , σ
2
uD

).

When µD = µF = 1, we deduce from equations (A.25) and (A.27) that a non-fully rational

expectations equilibrium exists if and only if the following system of equations has a strictly

positive solution

BD1 = f1(BF1; γD, σ
2
η, d, σ

2
uF

) =
σ2
η

γD
+

d2B2
F1σ

2
uF

γD(1 +B2
F1σ

2
uF

)
, (A.30)

BF1 = g1(BD1; γF , σ
2
uD

) =
B2
D1σ

2
uD

γF (1 +B2
D1σ

2
uD

)
. (A.31)

Note that BF1 > 0 if and only if BD1 > 0. Let

Ψ1(BD1) ≡ f1(g1(BD1; γF , σ
2
uD

); γD, σ
2
η, d, σ

2
uF

)−BD1.
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Substituting the expression for BF1 in equation (A.30), we deduce that the equilibrium levels

for the illiquidity of security BD1 solve Ψ1(BD1) = 0. Thus, a non-fully revealing equilibrium

exists if and only if Ψ1(BD1) = 0 has at least one strictly positive root. Using the expression

for g1(BD1; γF , σ
2
uD

), we obtain

Ψ1(BD1) =
(
σ2
η − γDBD1

) (
γ2
F (1 +B2

D1σ
2
uD

)2 +B4
D1σ

4
uD
σ2
uF

)
+ d2B4

D1σ
4
uD
σ2
uF
, (A.32)

which is a polynomial of degree 5 in BD1. Observe that Ψ1(·) is continuous and

Ψ1

(
σ2
η

γD

)
≥ 0, Ψ1

(
σ2
η + d2

γD

)
< 0.

Thus, (A.32) has at least one solution B∗D1 in the interval [σ2
η/γD, (σ

2
η + d2)/γD]. As σ2

η > 0,

this proves existence of a non-fully revealing equilibrium when µD = µF = 1.

Step 4. Existence of a non fully revealing equilibrium with limited attention (µj <

1).

With limited attention, we deduce from equations (A.25) and (A.27) that a non-fully revealing

equilibrium exists if and only if the following equation has one strictly positive solution

Ψ(BD) ≡ f(g(BD;µF , γF , σ
2
uD

);µD, γD, σ
2
η, d, σ

2
uF

)−BD = 0.

Calculations show that Ψ(·) is an odd-degree polynomial in BD with negative leading coefficient.

Hence,

lim
BD→∞

Ψ(BD) = −∞,

while, for σ2
η > 0,

Ψ(0) = γ12
F µ

8
Fσ

2
η(d

2γ2
DµD + σ2

ησ
2
uD

(d2 + σ2
η)) > 0.

Thus, there always exists a strictly positive value B∗D, such that Ψ(B∗D) = 0 when σ2
η > 0. 2

Proof of Corollary 5

Step 1: The total effect of a change in γD on the illiquidity of security D is given by

dBD1

dγD
=

∂f1

∂γD
+

∂f1

∂BF

dBF

dγD
.

As
dBF1

dγD
=

∂g1

∂BD

dBD1

dγD
,

and (∂g1/∂BD1)(∂f1/∂BF1) > 0 (since d > 0), we deduce that:

dBD1

dγD
= κ

∂f1

∂γD
,

dBF1

dγD
= κ

(
∂g1

∂BD1

∂f1

∂γD

)
,

with κ = 1− ((∂g1/∂BD1)(∂f1/∂BF1)).
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Step 2: Now we prove that there alwauys exists at least one non fully revealing rational

expectations equilibrium for which κ > 1. Let

h1(BD1) ≡ f1(g1(BD1; γF , σ
2
uD

); γD, σ
2
η, d, σ

2
uF

).

Note that
∂h1

∂BD1

=
∂f1

∂BF1

∂g1

∂BD1

.

Hence, if h′1(BD1) < 1 at an equilibrium value for BD1 then there exists at least one equilibrium

in which κ > 1. Remember that the equilibrium values for BD1 solve (see Step 3 in the proof

of Proposition 2)

Ψ1(BD1) ≡ h1(BD1)−BD1 = 0.

Hence, the roots of the polynomial Ψ1(BD1) are the possible equilibrium values for the illiquidity

of security D. Using equation (A.32), we obtain

Ψ1(BD1) = −B5
D1γDσ

4
uD

(γ2
F + σ2

uF
) +B4

D1σ
4
uD

(γ2
Fσ

2
η + (d2 + σ2

η)σ
2
uF

)

− 2B3
D1γDγ

2
Fσ

2
uD

+ 2BD1γ
2
Fσ

2
ησ

2
uD
−BD1γDγ

2
F + γ2

Fσ
2
η.

Using Descartes’ rule of signs, we obtain that Ψ1(·) has five, three or one positive root. These

roots correspond to the intersections of the function h1(BD1) with the 45-degree line. As

h1(0) = σ2
η/γD > 0 and,

h′1(BD1) =
4B3

Dd
2γ2

Fσ
4
uD
σ2
uF

(1 +B2
Dσ

2
uD

)

γD(γ2
F (1 +B2

Dσ
2
uD

)2 +B4
Dσ

4
uD
σ2
uF

)2
> 0,

the function h1(BD1) cuts for the first time the 45-degree line from above. Hence, at this

intersection point, we must have h′1(BD1) < 1. Let BL∗
D1 be this intersection point. When

the equilibrium is unique, the equilibrium level of illiquidity must be BL∗
D1 as otherwise h1(·)

would never cut the 45-degree line and therefore an equilibrium would not exist. When there

are multiple equilibria, BL∗
D1 is the lowest level of illiquidity for security D among all non-fully

revealing equilibria since this is the lowest positive root of Ψ1(BD1). Thus, there always exists

an equilibrium in which h′1(BD1) < 1 at the equilibrium value for BD1.

2

Proof of Corollary 6

Step 1: For the expressions for the illiquidity levels in securities D and F , see the paragraph

that precedes the corollary.

Step 2: For the second part, we differentiate BF with respect to BD and we obtain that

∂BF

∂BD

=
2BDµF σ

2
uD

(γ4
Fµ

2
F +B2

Dγ
2
Fσ

2
uD
σ2
uF

(2µF −B2
D(1− µF )σ2

uD
) +B4

Dσ
4
uD
σ4
uF

)

γF ((γFµF )2(1 +B2
Dσ

2
uD

) +B2
Dσ

2
uD
σ2
uF

(µF +B2
Dσ

2
uD

))2
. (A.33)

The numerator of this expression contains a quadratic polynomial in µF with two real roots.

Let P(µF ) be this polynomial. One root of P(µF ) is always negative. The other root is
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µ̂F =
B2
Dσ

2
uD
σuF

(
−(2 +B2

Dσ
2
uD

)σuF +
√

4γ2
F +B2

Dσ
2
uD
σ2
uF

(4 +B2
Dσ

2
uD

)
)

2γ2
F

.

As the leading coefficient on P(µF ) (i.e., the coefficient on µ4
F ) is positive, we deduce that

(∂BF/∂BD) is positive if and only if µF > µ̂F . Direct calculations show that µ̂F ≤ 0, if

RF ≤ 1. Thus, in this case, (∂BF/∂BD) is positive for all values of µF . Otherwise µ̂F > 0

and (∂BF/∂BD) < 0 if and only if µF < µ̂F . This implies that µ̂F < 1, as otherwise liquidity

spillovers would be negative even when µF = 1 (which we know is impossible from Corollary

4). 2

Proof of Corollary 7

First observe that a change in B−j only affects the illiquidity of security j through its effect on

ρ2
j . As ρ2

j decline in B−j, we deduce that liquidity spillovers from security j to security −j are

positive if and only if (∂Bj/∂ρ
2
j) < 0. Now we show that µj ≥ µj is a sufficient condition for

this to be the case. Observe that Bj = Bj0(1− ρ2
j)G(µj, ρ

2
j) with

G(µj, ρ
2
j) ≡

γ2
jµjρ

2
j + σ2

uj
Var[vj|δj](1− ρ2

j)

γ2
jµ

2
jρ

2
j + σ2

uj
Var[vj|δj](1− ρ2

j)(1− ρ2
j(1− µj))

. (A.34)

Therefore, we have:
∂Bj

∂ρ2
j

= −B0jG(µj, ρ
2
j) +B0j(1− ρ2

j)
∂G

∂ρ2
j

, (A.35)

Now observe that:

∂G(µD, ρ
2
D)

∂ρ2
D

=

(σ2
η + d2)(1− µD)(1− ρ2

D
)σ2

uD
(γ2

DµD(1 + ρ2
D

) + (σ2
η + d2)(1− ρ2

D
)σ2

uD
)

(γ2
Dµ

2
Dρ

2
D

+ σ2
uD

Var[vD|δD](1− ρ2
D)(1− ρ2

D(1− µD)))2
> 0.

Inserting this expression and the expression for G(µD, ρ
2
D) in equation (A.35), we obtain after

some algebra

∂BD

∂ρ2
D

= − Var[vD|δD]µD
γD(γ2

Dµ
2
Dρ

2
D

+ σ2
uD

Var[vD|δD](1− ρ2
D)(1− ρ2

D(1− µD)))2
×

(γ4µ2
Dρ

4
D

+ σ2
uD

Var[vD|δD](1− ρ2
D)(Var[vD|δD](1− ρ2

D
)σ2

uD
− γ2

D(1− µD − ρ2
D(1 + µD)))).

As ρ2
D < 1, we deduce that the sign of (∂BD/∂ρ

2
D

) is the opposite of the sign of

µD −
(
RD − 1

RD

)(
1− ρ2

D

1 + ρ2
D

)
,

which is positive if µD ≥ µD. We deduce that (∂f/∂BF ) > 0 if µD > µD. A similar reasoning

shows that (∂g/∂BD) > 0 if µF > µF . 2
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Proof of Corollary 8

Using the expression for BF in the one sided case (see equation (25)), we obtain

∂BF

∂µF
= −

B2
Dσ

2
uD

(γ4
Fµ

2
F −B4

Dσ
4
uD
σ2
uF

(γ2
F (1− 2µF )− σ2

uF
) +B2

Dγ
2
FµFσ

2
uD

(γ2
FµF + 2σ2

uF
))

γF ((γFµF )2(1 +B2
Dσ

2
uD

) +B2
Dσ

2
uD
σ2
uF

(µF +B2
Dσ

2
uD

))2
.

(A.36)

The sign of this derivative is the same as the sign of its numerator, which is a quadratic

polynomial in µF with a positive leading coefficient. Hence, its sign is positive for all values

of µF that are larger, in absolute value, than the two real roots of this polynomial. Upon

inspection, the first of these roots is always negative, whereas the other root is

µF
F =

−B2
Dσ

2
uD
σuF

(
σuF (1 +B2

Dσ
2
uD

)− ((1 +B2
Dσ

2
uD

)(γ2
F +B2

Dσ
2
uD
σ2
uF

))1/2
)

γ2
F (1 +B2

Dσ
2
uD

)
.

We observe that µF
F ≤ 0 if and only if RF ≤ 1. Thus, in this case, (∂BF/∂µF ) < 0, as claimed

in Part 1 of the corollary. When RF > 1, we have µF
F > 0 and (∂BF/∂µF ) > 0 if and only

if µF < µF
F , as claimed in the second part of the corollary. Last we observe that µF

F < 1

as otherwise the illiquidity of security F would be smaller with full attention than with no

attention, which is never true (see Corollary 4). 2

Proof of Proposition 3

Using the notations introduced in the proof of Proposition 2, we have

Var[vF |δF , ω̂F ] = γF (aIF )−1,

Var[vF |δF , ωF ] = γF (aWF )−1,

where

aWF = γF

(
1 +B2

Dσ
2
uD

B2
Dσ

2
uD

)
, aIF = γF

(
µ2
Fγ

2
F (1 +B2

Dσ
2
uD

) +B4
Dσ

4
uD
σ2
uF

B2
Dσ

2
uD

(µ2
Fγ

2
F +B2

Dσ
2
uD
σ2
uF

)

)
.

We deduce that

φF (µF , BD) =
γF
2

ln

(
aWF
aIF

)
,

and the expression for φF (µF , BD) given in the corollary follows. It is then immediate that

∂φF (µF )/∂µF < 0. 2

Proof of Proposition 4

As explained in the text, the fraction of pricewatchers in equilibrium is zero iff φF (0) < C.

Using equation (30), we deduce that this condition is satisfied iff C > C where

C =
γF
2

ln

(
1 +

1

σ2
uD
B2
D

)
.

Similarly, the fraction of pricewatchers in equilibrium is one iff φF (1) > C. Using equation

(30), we deduce that this condition is satisfied iff C < C where:

C =
γF
2

ln

(
1 +

σ2
uF
σ2
uD
B2
D

γ2
F (1 +B2

Dσ
2
uD

) + σ2
uF
σ4
uD
B4
D

)
.
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Otherwise the fraction of pricewatchers in equilibrium solves φF (µF , BD) = C and we obtain

the expression for µ∗F (C) by inverting φF (µF ) given in equation (30). 2

Proof of Corollary 10

For a given value of C, the level of illiquidity of security F is given by BF (µ∗F (C)) where BF (·)
is given in equation (26) when d = 0. Thus:

∂BF

∂C
=
∂BF

∂µF

∣∣∣∣
µF=µ∗F (C)

(
∂µ∗F (C)

∂C

)
.

We know that (∂µ∗F (C)/∂C) ≤ 0 (Proposition 4). Moreover, using equation (26), we deduce

that when d = 0, (∂BF/∂µF ) < 0 if and only if µF > µ̂F where

µ̂F =

(
σ4
ησ

2
uD
σuF

γF

)√
max{γ2

F − σ2
uF

Var[vF |δF ], 0}
γ2
D + σ4

ησ
2
uD

.

Thus, when γ2
F ≤ σ2

uF
Var[vF |δF ], µ̂F = 0 and (∂BF/∂µF )|µF=µ∗F (C) < 0. It follows that

(∂BF/∂C) > 0. When γ2
F > σ2

uF
Var[vF |δF ] then µ̂F > 0. As µ∗F (C) decreases with C from

one to zero over [C, C], there exists a value C∗ ∈ (C, C) such µ∗F (C) = µ̂F and µ∗F (C) < µ̂F

iff C > C∗. Thus, in this case, (∂BF/∂µF ) < 0 iff C < C∗. The second part of the corollary

follows. 2

Proof of Proposition 5

We have

φj(1, B
H∗) =

γ

2
ln

(
1 +

(BH∗)2σ4
u

γ2(1 + (BH∗)2σ2
u) + (BH∗)4σ6

u

)
, (A.37)

and

φj(0, Bj0) =
γ

2
ln

(
1 +

σ2
δ

B2
j0σ

2
u

)
=
γ

2
ln

(
1 +

γ2

σ2
u

)
Thus,

φj(1, B
H∗) > φj(0, Bj0)⇔ (BH∗)2σ4

u

γ2(1 + (BH∗)2σ2
u) + (BH∗)4σ6

u

>
γ2

σ2
u

. (A.38)

We deduce that φj(1, B
H∗) > φj(0, B

∗(0)) if and only if

− γ2σ6
u(B

H∗)4 + (σ4
u − γ4)σ2

u(B
H∗)2 − γ4 > 0. (A.39)

Using the expression for BH∗ given in equation (10), we obtain that

(BH∗)2 =
(BH∗σ2

u − γ)

γσ2
u

. (A.40)

Thus, we can rewrite condition (A.39) as

−γσ2
u(B

H∗σ2
u − γ)2 + (σ4

u − γ4)(BH∗σ2
u − γ)− γ5 > 0.

It can be checked that this inequality holds true if BH∗ belongs to(
γ

σ2
u

+
σ4
u − γ4 − ((σ4

u − γ4)2 − 4γ6σ2
u)

1/2

2γσ4
u

,
γ

σ2
u

+
σ4
u − γ4 + ((σ4

u − γ4)2 − 4γ6σ2
u)

1/2

2γσ4
u

)
.
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Straighforward calculations show that this is the case when σ2
u > 4γ2, which is required for the

existence of a symmetric equilibrium.

Part 2: Suppose that µ∗D = µ∗F = 1. Then in this case, the value of monitoring market j for a

dealer in security −j, given the actions of other dealers, is φ1. As this value is higher than C,

monitoring is optimal. Hence µ∗D = µ∗F = 1 is an equilibrium. Now suppose that µ∗D = µ∗F = 0.

Then in this case, the value of monitoring market j for a market-maker in market −j, given

the actions of other dealers, is φ0. As this value is lower than C, not monitoring is optimal.

Hence µ∗D = µ∗F = 0 is an equilibrium. 2

References

[1] Acharya V.V. and T. Johnson (2007). “Insider trading in credit derivatives,” Journal of

Financial Economics, 84, 110–141.

[2] Acharya V.V. and Pedersen L.H. (2005). “Asset pricing with liquidity risk,” Journal of

Financial Economics, 77, 375-410.

[3] Admati, A. R. (1985). “A noisy rational expectations equilibrium for multiple asset secu-

rities markets,” Econometrica, 53, 629–657.

[4] Admati, A. R. and P. Pfleiderer (1986). “A monopolistic market for information,” Journal

of Economic Theory, 39, 400–438.

[5] Amihud, Y., Mendelson, H. and L. H. Pedersen (2005). “Liquidity and asset prices,”

Foundations and Trends in Finance, 1, 269–364.

[6] Allen, F. and Gale, D. (2004). “Financial fragility, liquidity, and asset prices,” Journal of

the European Economic Association, 6, 1015–1048.

[7] Andrade, S., Chang, C., and M. Seasholes (2008). “Trading imbalances, predictable rever-

sals, and cross-stock price pressure,” Journal of Financial Economics, 88, 406–423.

[8] Barlevy, G., and P. Veronesi, (2000). “Information acquisition in financial markets,” Review

of Economic Studies, 67, 79–90.

[9] Bernhardt, D. and D. Taub (2008). “Cross-asset speculation in stock markets,” Journal of

Finance, 63, 2385–2427.

[10] Bessembinder, H., Maxwell, W., and K. Venkataraman (2006). “Market transparency,

liquidity externalities, and institutional trading costs in corporate bonds,” Journal of

Financial Economics, 82, 251–288.

[11] Black, F. (1995).“Equilibrium Exchanges,” Financial Analysts Journal, 51, 23–29.

[12] Boulatov, A., Hatch, B., S. Johnson, and A. Lei (2009). “Dealer attention, the speed of

quote adjustments to information, and net dealer revenue,” Journal of Banking and

Finance, 33, 1531–1542.

44



[13] Boulatov, A., Hendershott, T., and Livdan, D. (2010). “Informed trading and portfolio

returns,” Working paper, Haas School of Business, University of California, Berkeley.

[14] Brunnermeier, M. and L. H. Pedersen (2009). “Market liquidity and funding liquidity,”

Review of Financial Studies, 22, 2202–2236.
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Figure 1: Cross-asset learning and liquidity spillovers.
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Figure 2: Equilibrium determination with full attention: multiplicity (panel (a)) and uniqueness
(panel (b) and (c)). Parameters’ values are as follows: γj = d = 1, σuj = 2, and ση = .2 (panel
(a)), while in panel (b) we set ση = 1 and in panel (c) we set d = 0.9.
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Figure 3: Illiquidity multiplier. In panel (a) we plot κ as a function of ση. Panels (b) and (c)
show the direct effect (dotted line) and total effect (plain line) of a change in the risk tolerance
of the dealers in security D on the illiquidity of securities D and F , respectively as a function
of ση. Other parameter values are σuF = .1, σuD = 1.6, γD = 1.8, and γF = 1/24.
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Figure 4: Negative liquidity spillovers. Parameters’ values are as follows: σuF = .1, σuD = 1,
γF = 1, d = 1, µF = µD = .1, ση = 1, and γD ∈ {.01, .02, . . . , 1}.

50



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
µF

Cov[BD, BF ]

(a)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

Cov[BD, BF ]

µF
(b)

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1

Cov[BD, BF ]

µF
(c)

Figure 5: Comovement in illiquidity. The figure displays the covariance between the illiquidity
of security F and the illiquidity of security D as a function of µF when d = 0 (panel (a)) and
d = 0.9 (panels (b) and (c)). In panel (b) the covariance between the illiquidity of the two
securities is higher when µD = 0.9 (light curve) than when µD = 0.1 (bold curve), for all values
of µF > 0. Other parameter values are σuF = σuD = 1/2, ση = 2, γF = 1/2, and µD ∈ {0.1, 0.9}
for panels (a) and (b), while in panel (c) we set σuF = 0.1, d = µD = 0.9 and keep the other
parameters’ values fixed.
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Figure 6: The figure displays the illiquidity of security D as a function of µD when µF = 0.5
(in panel (a)) and when µF = 0.9 (panel (b)) when BF is fixed at its equilibrium value for
µD = 0.001 (bold curve) and when instead it adjusts to its equilibrium value for each value of
µD (dotted curve). The difference between the two curves shows the amount by which spillover
effects magnify the direct effect of a change in attention on illiquidity. Parameters’ values are
as follows: σuD = σuF = 1, ση = 0.77 and d = γD = γF = 1.
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Figure 7: Impact of a change in the cost of attention on the fraction of pricewatchers, illiquidity,
and the value of information with one-sided learning. Case with RF ≤ 1 (panels (a), (c), and
(e)), and case with RF > 1 (panels (b), (d), and (f)). Parameters’ values are as follows:
σuD = 1, γF = γD = 1, d = 0, and ση = 1, with σuF = 1 in panels (a), (c), and (e) whereas
σuF = 0.5 in panels (b), (d), and (f).
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Figure 8: Positive feedback effect and cross-market monitoring effect. In panel (a) we plot
φD as a function of µD, for µF ∈ {0.1, 0.9}. In panel (b) we plot φF as a function of µD, for
µF ∈ {0.1, 0.9}. Other parameter values are as follows: ση = 1, σuF = σuD = 1, γF = γD = 1,
and d = 1.
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