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Abstract 
In the presence of transactions costs, no matter how small, arbitrage activity does not necessarily render equal all 
riskless rates of return. When two such rates follow stochastic processes, it is not optimal immediately to arbitrage 
out any discrepancy that arises between them. The reason is that immediate arbitrage would induce a definite 
expenditure of transactions costs whereas, without arbitrage intervention, there exists some, perhaps sufficient, 
probability that these two interest rates will come back together without any costs having been incurred. Hence, 
one can surmise that at equilibrium the financial market will permit the coexistence of two riskless rates that are 
not equal to each other. For analogous reasons, randomly fluctuating expected rates of return on risky assets will 
be allowed to differ even after correction for risk, leading to important violations of the Capital Asset Pricing 
Model. The combination of randomness in expected rates of return and proportional transactions costs is a 
serious blow to existing frictionless pricing models. 
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1 Introduction

Investors, who have to pay transactions costs, optimally rebalance their port-

folio at points in times that are random and are not easily observable. In-

stead, the �nancial econometrician measures rates of return on �nancial as-

sets over regular, �xed intervals in time. Investors compare the rates of

return on assets over the forthcoming holding periods while the econometri-

cian testing the validity of an asset pricing model, arbitrarily attempts to

compare them over successive weeks, months or years.

We would like to know whether it is possible meaningfully to compare the

rates of return on two otherwise similar assets when the rates are measured

at regular intervals, while investors trade at random times. The question

cannot be addressed without a model of the way in which investors choose

to rebalance or not their portfolios. We �rst consider the case of two riskless

assets in a portfolio. Then we extend the analysis to risky, long-lived assets

such as equities.

If two interest rates on deposits were to remain unequal forever, it would

pay to arbitrage out their di¤erence immediately, even if transactions costs

had to be incurred in doing so. In the absence of discounting, and in the

absence of any costs for rolling over the deposits, the interest di¤erential
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earned by the arbitrage would eventually outweigh any �nite transactions

costs incurred at the outset of the arbitrage operation.

If, however, the spread between the two rates �uctuates randomly, it may

no longer pay to start an arbitrage. The interest di¤erential may not last long

enough to cover pro�tably the transactions costs. This basic idea was put

forth originally in Baldwin (1990) who argues that very small transactions

costs help in accounting for the failure of foreign exchange market e¢ ciency

tests and shows that the problem mathematically resembled Dixit�s (1989)

problem of stochastic entry and exit.

The purpose of the present paper is to re-formulate this idea of no-

arbitrage spread between the rates of return on two di¤erent types of assets

and exploit it in the context of an optimal portfolio choice problem with

transactions costs. We �rst examine the portfolio choice of an investor with

given relative risk aversion who has access to two riskless investments with

instantaneous returns (in�nitesimal maturity). One of these brings a rate of

interest that is constant over time while the other yields a rate that varies

according to a stochastic process. The process incorporates a reversion force,

which in the long run pulls the second rate towards the �rst one. We ap-

proach this problem of portfolio choice in the manner of Dumas and Luciano
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(1991), postponing �nal consumption to a point in�nitely into the future,

and computing the stationary optimal policy. For a given portfolio imbal-

ance, the investors allow some gap between the two rates to survive; this gap

is called �the hysteresis band�. We are interested in the size of this gap. We

intend to show that the gap is much larger than the transactions costs.

Because deposits are not forcibly refunded and can be rolled over cost-

lessly, the period over which a given investor holds the deposit - the �holding

period�- is a decision variable.1 As smaller and smaller transactions costs are

considered, the allowable gap (or spread) measured over the holding period

is gradually compressed but the anticipated optimal holding period shrinks

because smaller transactions make it less costly to switch from one asset to

the other. Depending on the rates at which these two variables approach

zero, the allowable annualized quoted spread may become small slowly or

quickly. We show that it becomes small at a cubic-root rate.

Later on, we consider an arbitrage between a riskless asset with a constant

rate and a risky asset with a stochastic mean-reverting conditionally expected

1The analysis is not limited to bank deposits. In fact, it applies to all assets. Shares
of stock that pay no dividend are automatically �rolled over�until the investor explicitly
sells them. Section 3 will be devoted to the analysis of rates of returns on equities. The
analysis could, but will not, be generalized to shares that pay a dividend. Bonds would
require a separate study because they are 100% refunded at the maturity date. That is
one �transaction�that is forced on the bondholder.
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rate of return. We �nd that, as transaction costs approach zero, the size of the

hysteresis bands converges to zero at a slower pace and we conclude that the

CAPM must be badly violated because of the existence of transactions costs.

Moreover, our model is able to generate an expected time from purchase

to sell one order of magnitude smaller than the holding period shown in

Constantinides (1986). The di¤erence in the two results is traceable to the

di¤erence in the assumed behavior of the conditionally expected return on

the risky asset. Constantinides considers an expected return that is constant;

we consider a stochastic, mean reverting one.

Mean reversion in expected stock returns has been �rst studied empiri-

cally by Fama and French (1988), Poterba and Summers (1988), and Bekaert

and Hodrick (1992) among others.2 We contribute to the asset-allocation lit-

erature solving a portfolio-choice problem with transaction costs and mean-

reverting expected returns. In this sense, we extend the works of Davis and

Norman (1990), Dumas and Luciano (1991), Akian et al. (1996), Eastham

and Hastings (1988), Liu (2004) who determine the optimal portfolio policy

in case of proportional transaction costs and constant investment set, and

2In particular, Fama and French have shown that long-holding period returns display
mean reversion. The behavior of long-period returns is the combined result of short-period
mean behavior and volatility behavior. In our model, short-period volatility is assumed
constant.
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Kim and Omberg (1996), Campbell and Viceira (1999), and Wachter (2002)

who instead consider mean reverting expected returns but no transaction

costs.

More recently, Jang et al. (2007) propose a regime-switching model of

portfolio choice with transaction costs and show that jumps in regime, by

entailing time-varying investment opportunity set, generate �rst-order e¤ects

on liquidity premia. Moreover, Lynch and Tan (2011) investigate the magni-

tude of liquidity premia using a �nite-horizon discrete-time portfolio choice

problem with return predictability, wealth shocks, and state-dependent trans-

action costs. They �nd that adding these real-world complications to the

canonical problem can cause liquidity premia that are no longer an order of

magnitude smaller than the transactions cost rate, but are instead the same

order of magnitude. Finally, Bacchetta and van Wincoop (2010) contribute

to this literature by examining the impact of infrequent portfolio decisions

on the forward discount puzzle. They show that asset management costs

discourage investors from active trade, accounting for large deviations from

the uncovered interest parity.

The paper is organized as follows. In Section 1 we solve the basic portfolio

problem considered by Baldwin (1990) in which investors are constrained to
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investing their entire wealth in one riskless asset or the other; we measure the

resulting gap in interest rates. In Section 2, we allow continuous adjustment

of the portfolio while still considering only two riskless assets. In Section 3,

we optimize a portfolio made up of one riskless asset with a constant rate

and one risky asset with a mean reverting expected return; we evaluate the

deviation from the costless CAPM. Finally, Section 4 concludes.

2 The case of two riskless assets and all-or-

nothing portfolio holdings

2.1 Problem Formulation

Consider two assets. One of them has a constant riskless rate of return,

which, without loss of generality in our context, we can set equal to zero.

The other brings, over a small, �xed period of time, a rate of return �, which

is also riskless but follows a mean-reverting stochastic process:

d� = ���dt+ �dz: (1)

At any given time t, the dollar value of an investor�s holding of the �rst
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asset is denoted x and the dollar value of his holding of the second asset is

denoted y. Proportional transactions costs at the rate 1 � s are incurred

when exchanging one asset into the other; these costs are proportional to the

dollar value of the trade.

We seek an optimal portfolio policy in which the objective is to maximize

the utility of terminal consumption at some later date T . The utility of

terminal consumption is logarithmic so that the objective is stated as:

L (x; y; t;T ) � max Et [ln(cT )] ; (2)

where cT = xT :

In an attempt to discover a stationary optimal policy, we take T to in-

�nity. Furthermore, we assume that the function L asymptotically exhibits

linear growth, at some rate, �; to be determined:

L (x; y; �; t;T )� �(T � t) ! J (x; y; �) : (3)

as T ! 1

In this section we restrict the investor to holding all his wealth in the

form of one asset or the other. Hence, the portfolio, apart from its size, can
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only be in one of two states. The only decision to be made at any given time

is whether to switch or not the entire portfolio from one asset to the other.

The investor will make that switch when � and the �xed rate are su¢ ciently

far apart from each other. We seek the optimal choice of the trigger values

� and � on each side of the constant value, 0, of the �xed rate of interest.

Exploiting the obvious homogeneity of the problem, de�ne:

J (x; y; �) = ln (x+ y) + I (�; �) ; where � � y

x+ y
: (4)

In light of the restrictions imposed on the portfolio, � is a binary variable

which takes the value 0 or the value 1. For the remainder of this section we

denote: I0 (�) � I (0; �) and I1 (�) � I (1; �) : I1 is the discounted utility

function for a unit wealth that obtains when the investor is invested in the

variable-rate asset; I0 is the discounted utility for a unit wealth that obtains

when he is invested in the �xed interest-rate asset.

2.2 Probabilistic approach: backward induction

The relationship between these two functions I1 and I0 is given by Equations

(5) and (6) below. In Equation (5) a backward probabilistic reasoning gives
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the current value, I1 (�) of I1. It is equal to:

- the value, I0 (�), of utility when the next switch out of the variable-rate

asset occurs,

- plus the logarithm of the per-unit loss in wealth produced by the trans-

actions costs,

- plus the expected extra log-earnings, E
�R �
0
�tdt j�

�
, produced by the

variable-rate asset during the time until the switch,

- minus the e¤ect of discounting over the expected time till the switch:

I1 (�) = I0 (�) + ln(s) + E
�R �
0
�tdt j�

�
� �E [� j� ] ; � > �: (5)

Here, � is the �rst-passage time of � to �. A similar backward reasoning,

in (6), gives the current value, I0 (�), of the utility function I0 when not

invested:

I0 (�) = I1 (�) + ln(s)� �E [� j� ] ; � < �: (6)

In (6), � is the �rst-passage time of � to �:
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2.3 Equivalent analytical approach

Parenthetically, Equations (5) and (6) can equivalently be obtained by im-

posing the condition that the value of the function L, de�ned in (2), executes

a martingale process and subsequently introducing the changes of unknown

function (3) and (4).

Hence, L has zero growth; J grows linearly at the unknown rate �; I1

grows at the rate ��� because the log of earnings grows at the rate � when

the portfolio is entirely made up of the variable-rate asset; similarly I0 grows

at the rate �.

These restrictions are written successively as follows:

Lt � ��L� +
1

2
�2L�� = 0; (7)

���J� +
1

2
�2J�� = �; (8)

8>><>>:
���I 01 + 1

2
�2I 001 = � � �;

���I 00 + 1
2
�2I 00 = �:

(9)

Equations (9), plus Value-Matching boundary conditions, are equivalent
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to (5) and (6) by virtue of the Feynman-Kac formula, but they are more easily

generalizable to the cases of Sections 2 and 3 below than the probabilistic

approach would be.

2.4 Solution

Returning to the backward, probabilistic approach, we �rst calculate the

expected-earnings integral, E
�R �
0
�tdt j�

�
, which appears in Equation (5).

An analogous calculation is performed in Karlin and Taylor (1981).3 The

answer in our case is:

E
�R �
0
�tdt j�

�
=
�� �
�

; � > �: (10)

For the purpose of interpretation, recall that the value of this integral is

the expected cumulative earnings on the variable-rate asset until the next

switch to the �xed-rate asset, which will occur at time � , the �rst time that

� reaches � from above.4

These expected earnings are always non negative, which may be surpris-

ing. In order to understand this result, it is important to keep in mind that

3On pages 196-197.
4We expect that � < 0:
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the event � = � stops the sample paths over which the integral is calculated.

Hence, earnings that are below � are censored out, whereas excursions of

large positive earnings are included in the sum. It may also be surprising

to the reader that these expected earnings increase as � is set to a lower,

presumably negative value. The answer to this puzzle is again that setting

� lower takes the earnings into a somewhat lower negative zone but also al-

lows some additional, possibly long excursions into positive values that would

otherwise be censored out.5

The calculation of the expected �rst-passage time of an Ornstein-Uhlenbeck

process, E [� j� ], is performed in Ricciardi and Sato (1988). In contrast to

a standard Brownian motion, an Ornstein-Uhlenbeck process always has a

�nite expected hitting time. Ricciardi and Sato de�ne a function �1 as fol-

lows:

�1 (�) =
1

2�

1X
n=1

"
2
p
�

�
�

#n
� (n=2)

n!
; (11)

where � is the gamma function. Depending on the situation, �1 (�) or

��1 (��) serve to compute expected hitting time.

5The reader might also wonder why the investor would ever want to switch to a zero-
rate of return asset when the value of his earnings on the variable-rate asset till the next
switch is currently expected to be negative. He will do this (see optimization below) when
� is negative enough because that will enhance his expected earnings. Earnings of the
near future are negative; by switching he avoids those. Later, the switch back to the
variable-rate asset will occur only when � is positive and large enough again (� = �):
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In Equation (5), the expected earnings and the expected hitting time are

inserted as follows:

I1 (�) = I0 (�) + ln(s) +
�� �
�

� � [��1 (��) + �1 (��)] ; (12)

while, in Equation (6), the correct expression is:

I0 (�) = I1 (�) + ln(s)� � [�1 (�)� �1 (�)] : (13)

The functions I0 and I1 given by (12) and (13) are solutions of the di¤erential

equations (9).

The values of I1 (�) and I0 (�) are easily eliminated between equations

(12) and (13) to get a single equation:

0 = 2 ln(s) +
�� �
�

� � [�1 (�)� �1 (��)� �1 (�) + �1 (��)] (14)

This equation lends itself to a satisfactory interpretation. The sum of the

�rst two terms of the right-hand side, 2 ln(s) + ���
�
; equals the expected net

log-earnings (per unit of wealth) from a round-trip between the two assets:
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2 ln(s) is the per unit log-transactions costs and ���
�
is the expected log-

earnings during the part of the round trip where the variable-rate asset is

held. � is, of course, the expected rate of growth of wealth (or the expected

increment of log utility per unit of time). � is multiplied by the term between

square brackets, which is simply equal to the expected duration of a round

trip.

Hence, Equation (14) serves to calculate the expected rate of growth of

wealth produced by a given (�; �) switching policy; it is equal to the expected

net earnings during a round trip divided by the expected time that the round

trip takes:

� =
2 ln(s) + ���

�

�1 (��)� �1 (��) + �1 (�)� �1 (�)
: (15)

2.5 Optimization

We need to write that the choice of � and � is optimal. Two Smooth-pasting

conditions will accomplish that task. They are:

I 01 (�) = I
0
0 (�) ;
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and

I 01 (�) = I
0
0 (�) ;

otherwise written (based on (12) and (13)) as:

1

�
� ��01 (��) = ��01 (�) (16)

and

1

�
� ��01 (��) = ��01 (�) : (17)

It is easy to check that Equations (16) and (17) are the straightforward �rst-

order conditions of the maximization of the rate of growth, �; calculated as

in (15), with respect to the choice of � and �:

Because we have been able to express the functions I1 and I0 explicitly

in (12) and (13), the di¢ cult variational problem that we were facing has

been reduced to the solution of a system of three algebraic equations (14, 16

and 17) in three real numbers. Furthermore, in that system the unknown

number � appears linearly so that it can be easily eliminated leaving two

equations in two unknowns. A further simpli�cation is reached since we can
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easily show symmetry: � = ��. Hence, we are left with just one equation

in one unknown number. That number must be found numerically.

2.6 The hysteresis band

We have solved the system (14, 16 and 17) repeatedly for various values of s,

from the value 1 downward, corresponding to increasing rates of transactions

costs. Figure 1 shows the values of � and � against the value of s (outer

curve).6 The interesting result is that, as s ! 1, the slope of these curves

approaches in�nity. As the rate of transactions costs goes to zero, the spread

that the investor lets survive between the two riskless rates goes to zero at a

slower pace.

FIGURE 1 GOES HERE

In the absence of transactions costs, arbitrage would force � to be pegged

at the value 0. Transactions costs allow wide deviations from the arbitrage

result. We can quantify the rate at which the range of deviations approaches

zero:

6For the time being, we focus on the qualitative features of the solution. We discuss
the choice of parameter values in the next sections.
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Statement 1: As ln(s) approaches zero, the range of �uctuations

of �, over which no transaction takes place, approaches zero like

ln(s)1=3.

Proof: Call z = � = �� the common unknown value of the interest rate

bounds. Eliminate � between (14) and (15) or (16-17), to get:

� ln(s) = z

�
� 1

�

�1 (z)� �1 (�z)
�01 (z) + �

0
1 (�z)

: (18)

The expansion of �1 (z) was provided in (11). The expansion of �
0
1 (z) is:

�01 (z) =
1

2�

1X
n=1

"
2
p
�

�

#n
zn�1

� (n=2)

(n� 1)! : (19)

From these we can get the expansion of the right-hand side of (18). The

result is:7

� ln(s) = 1

6�

"
2
p
�

�

#2
z3; (20)

or:

z =

�
�3
2
�2 ln(s)

�1=3
: (21)

7� (1=2) =� (3=2) = 2:
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Q.E.D.

Cubic rates of convergence for similar limit problems have been found

in di¤erent contexts by Dixit (1991), Fleming et al. (1990) and Svensson

(1991).

Equation (21) shows that, for small transaction costs, only two parame-

ters play a role in the determination of the hysteresis band, viz. � and s.

Mean reversion parameter, �, is not present. For �nite transactions costs,

the band remains very insensitive to the value of �. Figure 1 displays the ap-

proximate values of � and � as given by (21) (dotted line); they are virtually

identical to the exact values over the range of transactions costs shown.

2.7 The expected rate of growth and the expected fre-

quency of transactions

Equation (11) makes it plain that the expected time between two transactions

is of the same order of magnitude, i.e. 1/3, as the barrier position itself. From

the identity (14) and the leading term in the expansion (11) of the function

�1; one can deduce that the limit of the expected rate of growth as transaction

costs are taken to zero is equal to the following number �� :
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�� =

"
2
p
�

�
�(1=2)

#�1
: (22)

Substituting (21) into the �rst terms of (15), the expected duration of a

round trip is approximately equal to:

(�6 ln(s)�2)1=3

���
+
1

�

"
2
p
�

�

#3
�(3=2)

6

�
�3 ln(s)�2

�
: (23)

Finally, the value of the expected growth rate in a neighborhood of s = 1

is given by:

� = �� � 2��
�
1

�

�
3�2
�1=3��1

(� ln(s))2=3 : (24)

As in the case of the boundary positions, these approximate expressions

are extremely accurate over a range of transactions costs from zero to several

percentage points. The assumption of �small�transactions costs allows the

derivation of accurate analytical expressions.
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3 The case of two riskless assets and contin-

uous portfolio holdings

When the two asset holdings x and y are allowed to vary continuously, the

state transition equations are:

dx = sdl � du; (25)

dy = �ydt� dl + sdu; (26)

d� = ���dt+ �dz: (27)

Here u and l are two nondecreasing stochastic processes which increase

only when (respectively) some amount of �xed-rate, or variable-rate asset is

sold. We call � (�) and � (�) the upper and lower trigger values of �, which

depend on the current composition, � � y
x+y
, of the portfolio.

Between transactions, dx = 0 and dy = �ydt so that the portfolio com-
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position, �; satis�es the following time-di¤erential equation:

d� = �� (1� �) dt: (28)

Over the domain of no transactions, therefore, the value function, I (�; �) ;

satis�es the following partial di¤erential equation:8

�� + �� � ��I� +
1

2
�2I�� + �� (1� �) I� = 0: (29)

We solve this partial di¤erential equation by �rst discretizing it over the

values of �. We pick � 2 f�i; i = 0; 1; :::; ng : Then we need to �nd n + 1

functions I (�; �i) ; analogous to the two functions I0 (�) and I1 (�) in the

previous section. At any time t, and for any portfolio composition �i; the

agent drops her holdings to �i�1 whenever � reaches �i�1 � � (�i) ; whereas

she increases the portfolio proportion to �i+1 when � reaches �i � � (�i) :9

Given the existence of proportional transactions costs, the utility impact

of switching may be computed as follows. First, on the way down from �i to

8This P.D.E. is analogous to the pair of Equations (9) above.
9This also means that two agents characterized by the same log-utility function and

the same investment opportunity set, but endowed with a di¤erent initial-portfolio com-
position, will necessary have the same portfolio policy.
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�i�1 :

�i =
y

x+ y
; �i�1 =

y ��y
x+ s�y + y ��y ; (30)

which implies:

�y = (x+ y)
�i � �i�1

�i�1(s� 1) + 1
: (31)

Matching the values of the indirect utility before and after the change in

portfolio composition, we have:

ln (x+ y) + I (�; �i) = ln (x+ s�y + y ��y) + I (�; �i�1) : (32)

From (31):

x+ s�y + y ��y
x+ y

= 1 + (s� 1) �i � �i�1
�i�1(s� 1) + 1

: (33)

Call �i�1 the right-hand side of (33). Since (32) may be rewritten as:
10

I
�
�i�1; �i

�
= ln

�
�i�1

�
+ I

�
�i�1; �i�1

�
; (34)

10Assume �i�1 < 1
1�s ; so that �i�1 > 1:
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we conclude that the transaction-cost related utility loss on the way down is

ln
�
�i�1

�
: Equation (34) is a Value-Matching condition.

The transition on the way up from �i to �i+1 is handled in a similar way.

Let:11

�i = 1 + (s� 1)
�i � �i+1

�i+1(s� 1)� s
; i = 0; :::; n� 1: (35)

The transaction-cost related utility loss on the way up is ln (�i) ; resulting in

a second set of Value-Matching conditions.

Finally, we need to write that the choice of �i�1 and �i is optimal for

each i. Smooth-pasting necessary conditions accomplish that task:

I�
�
�i�1; �i

�
= I�

�
�i�1; �i�1

�
; i = 1; ::; n; (36)

I� (�i; �i) = I� (�i; �i+1) ; i = 0; ::; n� 1: (37)

At � = 0 and � = 1; the P.D.E. (29) is locally an ordinary di¤eren-

tial equation. Hence, the functions I(�; 0) and I(�; 1), already obtained in

Section 1, namely:

11Assume �i > �s
1�s ; so that �i > 1:
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I(�; 1) = I (�(1); 1) +
�� �(1)

�
� � [��1 (��) + �1 (��(1))] ; (38)

I (�; 0) = I (�(0); 0)� � [�1 (�(0))� �1 (�)] ; (39)

serve as boundary conditions at these values of �.

The solution to the system (29, 34 - 39), i.e. the functions I(�; �); �(�)

and �(�); is obtained numerically using a �nite-di¤erence method and con-

sidering two di¤erent scenarios for the portfolio composition: one (Scenario

1) in which we assume no short-selling, i.e. �0 = 0 and �n = 1; and the other

(Scenario 2) in which we allow � to take values outside the [0; 1] range, i.e.

�0 < 0 and �n > 1:

We proceed in three steps. First, for every �i; and for trial functions

�(�) and �(�), we discretize the values of � within the range [�(�i); �(�i)];

therefore obtaining a grid of points in the variables � and �. Then, for each

arbitrary position of the barriers, we compute I(�; �) by solving the system

of simultaneous linear equations given by (29, 34 - 35, and 38 - 39). More

precisely, in Scenario 1 we use Condition (29) at all points strictly inside
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the grid, the Value-Matching conditions corresponding to the upper and the

lower barriers, and Equations (38) and (39) at � = 0 and � = 1. In Scenario

2, for � 2 [0; 1] we use the same conditions as for Scenario 1, while, outside

this range, only Equation (29) and Value-Matching conditions are employed.

Furthermore, at � = �0 and at � = �n; we compute the partial derivative

I� using exclusively the information inside the grid, thus implicitly assuming

as a side condition that the second partial derivative is zero.12 In the last

step, for both scenarios we determine the functions �(�) and �(�) using an

iterative procedure, updating the position of the barriers on the basis of the

violations of the smooth-pasting conditions (36 - 37).

The resulting portfolio-adjustment boundary is shown in Figure 2.

FIGURE 2 GOES HERE

Figure 2 shows the optimal position of the barrier corresponding to both

scenarios. It is worthwhile to mention that, when short-selling is allowed,

and for every values of �0 and �n; the no-arbitrage spread between the in-

terest rates is simply the continuation of the portfolio-adjustment boundary

obtained when � is restricted to be in the [0; 1] range. This result is not a

12In Scenario 2, we have �0 < 0 and �n > 1:
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surprise and is consistent with the myopic behavior of agents exhibiting a

logarithmic utility function. Myopic investors do not look ahead to time at

which they will be constrained to not sell short.

Parameter values were obtained from the empirical literature on mean

reversion in interest rates. Our principal sources is Chan et al. (1992). The

crucial parameters are the degree of mean reversion, � and the volatility, �,

in expected returns. For the case of two riskless assets, we have chosen the

values: � = 1:125%/year and � = 2:6%/year. The value of � implies that

it takes eighty years on average for the interest rate to revert to its long-run

value. This is a very small value of the reversion parameter, which is equal

to half of the value � estimated by Chan et al..

We consider the situation where transaction costs on bank deposits are

levied at the rate of 0.1%, s = 0:999. Figure 2 highlights that the combined

e¤ect of such small transactions costs and �uctuating expected returns is

enough to produce a wide hysteresis e¤ect in the rebalancing of the portfolio.

Speci�cally, a gap of 1.005%/year in interest rates must exist before a decision

is made to switch from one asset to the other.

For both scenarios, numerical experiments indicate that the barrier has

the following property:
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Statement 2: The optimal barrier is a �at straight line whose

middle point is located at the optimal switching point of the binary

policy.

The location of the boundary implies that the �cubic�property (State-

ment 1) applies equally to the width of the hysteresis band in this case and

con�rms the symmetric behavior (around the line � = 0) for the thresholds

functions �(0) and �(1) found in Section 1:

FIGURE 3 GOES HERE

To further illustrate this last point we plot the optimal position of the

barriers as function of the transaction cost parameter s. For the sake of

simplicity, we only show the case in which � is restricted to be between 0 and

1 (Scenario 1). Figure 3 con�rms Statement 2 and shows that, for the same

percentage reduction in the transaction costs 1� s, the size of the hysteresis

bands shrinks at a decreasing pace. For instance, this reduction is 0.0056

when the transaction costs pass from 2% to 1%, while it is only 0.0044 in

case of further halving, i.e. from 1% to 0.5%.
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4 The case of one riskless and one risky, mean-

reverting asset

4.1 Problem formulation and solution

When not only the expected rate of return on one of the two assets follows

a stochastic process but its rate of return is also risky, the state transition

equations are:

dx = sdl � du; (40)

dy = �ydt+ �1ydz1 � dl + sdu; (41)

d� = � ( � �) dt+ �dz: (42)

Here, � is the conditionally expected rate of return on the risky asset, �1 is

the conditional standard deviation of the rate of return on that asset. The

expected rate of return, �, is assumed to be mean reverting. We call the long-

run mean  the center of reversion. The white-noise shock, dz1, a¤ecting the
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rate of return on the asset is assumed independent of the white noise shock,

dz, a¤ecting the expected rate of return.

Consistently with the notation used in Section 2, we introduce a change

of state variable:13

�t = �t � ; (43)

and observe that the investor�s frictionless demand for the risky asset at any

given time would be given by:

�t =
�t
�21
=
�t + 

�21
;

or:

�t �


�21
=
�t
�21
; (44)

which means that the frictionless demand schedule is symmetric around the

point
�
� = 0; � = 

�21

�
. The portfolio demand with transactions costs will

inherit the same symmetry property.

13The case of two riskless assets studied in Section 2 is obviously a special case of the
model described here. In fact, under the assumption that  = 0 and �1 = 0; Equations
(40-42) are equivalent to (25-27).
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Using the new state variable, between transactions, the stochastic dif-

ferential equation governing the evolution of the portfolio composition, �,

is:

d� = � (1� �)
�
�+  � ��21

�
dt+ �1� (1� �) dz1: (45)

Over the domain of no transactions, the value function, I (�; �), satis�es

the following partial di¤erential equation:

0 = �� + (�+ ) � � 1
2
�2�21 � ��I� +

1

2
�2I��

+� (1� �)
�
�+  � ��21

�
I� +

1

2
�21�

2 (1� �)2 I��: (46)

The Value-matching and Smooth-pasting boundary conditions remain as

in (34-37). The conditions at � = 0 and � = 1 become now:

I (�; 1) = I (�(1); 1)+
�� �(1)

�
+
�
�� +  � �21=2

�
[��1 (��) + �1 (��(1))] ;

(47)

I (�; 0) = I (�(0); 0)� � [�1 (�(0))� �1 (�)] : (48)
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The optimal policy that solves this system is obtained numerically by the

method outlined in the previous section. The same scenarios seen in Section

2 are analyzed here.

FIGURE 4 GOES HERE

FIGURE 5 GOES HERE

In Figure 4 we plot the position of the barrier assuming that short-selling

is not allowed, while the hysteresis bands resulting from extending the port-

folio holdings outside the 0� 1 range are plotted in Figure 5. As in Section

2, when short-selling is allowed, the no-arbitrage spread between the inter-

est rates is simply the continuation of the portfolio-adjustment boundary

obtained when � is restricted to be in the [0; 1] range, thus con�rming the

myopic behavior of the agent. Obviously, in order to get the corresponding

barriers as function of the expected rate of return on the risky asset, �; it

su¢ ces to add the long-run mean  to the portfolio boundaries �(�) and �(�)

computed above, that is

�(�) = �(�) + ;
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�(�) = �(�) + :

The case of one risky and one riskless asset is calibrated in a manner

similar to Section 2. Our principal source is Jegadeesh (1991). The evi-

dence concerning mean reversion in stock returns is not as conclusive as that

concerning interest rates; nonetheless, we used the same value of the mean

reversion parameter, which was in any case a low one. The parameter values

chosen are: � = 1:125%/year, �1 = 15%/year, � = 2:6%/year  = 15%/year.

Here we use transactions costs of 0.5%, i.e. s = 0:995, consistent with the

evidence provided by Chordia et al. (2001).14 With these values, at � = 0:5;

some wealth is transferred from the risky asset to the riskless as soon as the

expected return on the risky asset falls below -0.77%/year. It must be 2.92%

before the investor wishes to transfer some wealth from riskless to risky asset.

The following statement summarizes the property of the portfolio-adjustment

boundary.15

Statement 3: The optimal barrier is a straight line parallel to the

14Chordia et al. (2001) report e¤ective bid-ask spreads between 50 and 100 basis points
for NYSE stocks.
15This property also holds when transactions costs are levied at the rate 0.1%, implying

s = 0:999, which is the same used to generate the hysteresis band in the case of two riskless
assets. Results are not shown and are available upon request.
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frictionless demand and positioned outside the hysteresis band of

the riskless case constructed around the frictionless demand itself.

From Statement 3, it follows that the cubic property (Statement 1) is

valid again.

FIGURE 6 GOES HERE

As before, to provide evidence of the cubic property we plot the optimal

position of the barrier as function of the transaction cost parameter s. Figure

6 con�rms Statement 3 showing that, as ln(s) approaches zero, the size of

the hysteresis bands converges to zero at a slower pace.

4.2 Holding period

In this section we examine the impact of transaction costs and return pre-

dictability on the frequency of trade. Let b�(�) denote the optimal lower

barrier, i.e. the sequence of lower thresholds � as function of the portfolio

composition �; in the case of one riskless and one risky, mean-reverting asset.

In this case, we can de�ne the next sale time to be

� s = inf ft � 0 : (�t; �t) = b�(�t)g ; (49)
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and the expected time to the next sale starting from the initial position (�; �)

to be

T (a; �) = E [� s j(a0; �0) = (a; �) ] : (50)

Then, the expected holding period solves the following partial di¤erential

equation

���T� +
1

2
�2T�� + �(1� �)(a+  � ��21)T� +

1

2
�21�

2(1� �)2T�� = �1; (51)

with boundaries

T (a(�i); �i) = T (a(�i); �i+1) ; i = 0; 1; ::; n� 1; (52)

T (a(�i); �i) = 0; i = 1; ::; n: (53)

We solved the system (51-53) and computed the expected holding time

from buy to sell, that is from the upper to the lower barrier, in both scenar-

ios. Table 1 below shows the results (expressed in years) corresponding to
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Scenario 1 as function of the initial portfolio composition �.16

TABLE 1 GOES HERE

When short selling is not allowed, the expected holding periods are partic-

ularly prolonged because the likelihood that �t gets stuck at � = 1 for a long

time is very high. In fact, from Equation (42) �t exhibits a positive expected

variation since it is much smaller than its long-run mean. This implies that

the agent will keep increasing her proportion of the risky asset until she does

not have holdings of the riskless security any more. Then, in correspondence

of � = 1; a further buy is not possible, whereas selling takes place only when

�t hits �(1): However, giving the positive drift of �t, the probability that �t

will take long excursions into values higher than �(1) before hitting �(1) is

very high.

On the contrary, the expected time from buy to sell (expressed in years)

corresponding to Scenario 2 (shown in Figure 7) highlights the fact that the

investor buys and sells the risky asset much more frequently.17 This is not

16Just for clari�cation: in Scenario 1, whenever at hits a(0), no trading takes place and
at could well assume values smaller than a(0) (without any change in �). Similarly, when
at hits a(1); nothing happens to the portfolio composition and at could well take values
higher than a(1): In other words, in this scenario there is no lower trading barrier when
� = 0 and no upper barrier for � when � = 1:
17When short selling is allowed, when at hits a(1) a trading activity takes place and �
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surprising because in Scenario 1, at � = 0 and � = 1, only one side trading

takes place, speci�cally only the trading that keeps � inside [0,1]. On the

contrary, in Scenario 2 the agent can increase her holding of the risky asset

much above � = 1. Therefore, starting from the initial position �(1); it is

possible that selling takes place in correspondence of any value of b�(�t),

thus lowering the expected holding time.

FIGURE 7 GOES HERE

We also computed the sensitivity of the expected holding period to the

paramenters � and � controlling the dynamics of the expected return on the

risky asset. Table 2 shows the results corresponding to Scenario 2, assuming

� = 0:5 as initial position.

TABLE 2 GOES HERE

As expected, the holding period increases as the process becomes less

persistent (high �) and decreases as the variance � of the rate of return in-

creases. Our model generates an expected time from purchase to sell one

increases. On the contrary, when at reaches a(0) the agent invests more in the riskless
security and � decreases.
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order of magnitude smaller than the holding period shown in Constantinides

(1986). More interestingly, our results show that return predictability and

transaction costs are consistent with the empirical evidence that trading fre-

quencies around the world have increased signi�cantly in the last decades.18

4.3 Deviations from the C.A.P.M

We now discuss the equilibrium of an economy with two production tech-

nologies available in in�nitely elastic supply (constant returns to scale). One

is riskless and brings a zero return; the other is risky and brings a mean-

reverting expected return. The economy is populated with identical loga-

rithmic investors, each one of them choosing a portfolio of investments, i.e.

�, in the manner that we have just described. In such an economy, any value

of the variable �; provided that it is between 0 and 1,19 is consistent with the

composition of the aggregate, �market� portfolio.20 This variable changes

over time as the expected return, �, on the risky technology �uctuates. The

18For example, the turnover ratio for US stocks reported by The World Bank increased
from about 0.5% (late 80s�) to about 200% (2010).
19When � = 0 or 1, a corner occurs: only one asset is available to all investors and no

portfolio decision has to be made by any of them.
20This is precisely due to the fact that the two technologies are available in in�nitely

elastic supply.

39



classic Capital Asset Pricing Model would say that:21

�t = �
2
1�t; (54)

which is simply the inverse of the frictionless demand (44), and which is

shown as the straight line on Figure 4.

In an economy with transactions costs, the expected return, �t = �t + ,

is allowed to �uctuate within a wide interval given vertically by the hysteresis

band of Figure 4, without any adjustment in the aggregate portfolio. Any

�uctuation within that band is interpretable as a deviation from the CAPM.

This shows that deviations from the CAPM can be large, even with small

transactions costs, provided expected returns �uctuate randomly.

5 Conclusion

We propose a portfolio choice problem with returns predictability and trans-

actions costs to investigate the size of the no-arbitrage gap between the two

rates to survive and the expected holding period from purchase to sell. We

21Because there is only one risky asset, the portfolio composition, �, and the risk mea-
surement, beta, traditionally used in writing the CAPM, would be equal to each other in
our case example.

40



�nd that hysteresis bands tend to remain large even when the costs that cre-

ated them become small. Moreover, we are able to generate an expected time

from buy to sell consistent with the empirical evidence. These ideas apply

to pricing models so that classic CAPMs are subject to wide hysteresis-band

violations when conditionally expected returns follow a stochastic, mean re-

verting process. Our results also imply that arbitrage models must be drasti-

cally revised to take into account the combined e¤ect of stochastic expected

returns and transactions costs.

The qualitative point made by this paper regarding violations of friction-

less pricing models does not depend on our assumption that investors have

unit risk aversion. Regardless of his degree of risk aversion, a risk averse

investor would always choose hysteretic rebalancing decisions. The unit risk

aversion assumption has only simpli�ed the calculations and has even allowed

us, in the simplest case, to obtain solutions.
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Table 1: The expected holding period under Scenario 1. Case

of one riskless and one risky, mean reverting asset

� 0 0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88 1

a(�) -0.132 -0.129 -0.127 -0.124 -0.122 -0.119 -0.117 -0.114 -0.112 -0.109

a(�) -0.168 -0.166 -0.163 -0.161 -0.158 -0.156 -0.153 -0.151 -0.148 -0.146

Time 27.70 29.36 31.17 33.11 35.19 37.41 39.78 42.31 44.92 47.69

Table 1 shows the expected time from buy to sell (expressed in years)

corresponding to Scenario 1 as function of the initial portfolio composition

�. The parameters are: s = 0:995; �1 = 0:15; � = 0:0125; � = 0:026 and

 = 0:15:
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Table 2: The expected holding period for several values of the

parameters � and �: Case of one riskless and one risky, mean re-

verting asset

� = 0:02 � = 0:026 � = 0:05 � = 0:1 � = 0:15 � = 0:2

� = 0:005 2.114 1.771 1.073 0.653 0.492 0.403

� = 0:0125 2.171 1.773 1.083 0.656 0.493 0.404

� = 0:025 2.281 1.838 1.102 0.661 0.495 0.405

� = 0:05 2.526 1.984 1.141 0.671 0.500 0.408

� = 0:1 3.045 2.307 1.228 0.692 0.510 0.413

� = 0:15 3.484 2.638 1.322 0.715 0.520 0.419

Table 2 shows the expected time from buy to sell (measured in years)

corresponding to Scenario 2, for several values of the parameters � and �

controlling the dynamics of the expected return on the risky asset. The

initial position is assumed to be � = 0:5. The other parameters are s = 0:995;

�1 = 0:15 and  = 0:15.
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Figure 1: The e¤ect of transaction costs
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Figure 1 shows the e¤ect of the transaction cost 1� s on the size of the

hysteresis bands. The mean reversion � is set to 1:125%/year, while the

conditional volatility is 2:6%=year.
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Figure 2: The optimal position of the barrier. Case of two

riskless assets and continuous portfolio holdings
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Figure 2 shows the optimal position of the thresholds functions � and �

corresponding to Scenario 1 and 2. The mean reversion � is set to 1:125%/year,

while the conditional volatility is 2:6%=year. The transaction costs are levied

at the rate of 0.1%, implying s = 0:999:
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Figure 3: The e¤ect of transaction costs on the portfolio-adjustment

boundary. Case of two riskless assets and continuous portfolio hold-

ings
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Figure 3 shows the optimal position of the barrier for di¤erent values

of the transaction cost parameter s: To simplify the analysis we restrict �

between zero and one. The mean reversion � is set to 1:125%/year, while

the conditional volatility is 2:6%=year.
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Figure 4: The optimal position of the barrier under no short-

selling. Case of one riskless and one risky, mean-reverting asset
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Figure 4 shows the optimal position of the thresholds functions � and �

when short-selling is not allowed. The mean reversion � is set to 1:125%/year,

while the conditional volatility is 2:6%=year. The transaction costs are levied

at the rate of 0.5%, implying s = 0:995: Finally, both the conditional volatil-

ity of the risky asset �1 and the risk premium  are set equal to 15%/year.
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Figure 5: The optimal position of the barrier when short-selling

is allowed. Case of one riskless and one risky, mean-reverting asset
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Figure 5 shows the optimal position of the thresholds functions � and �

when short-selling is allowed. The mean reversion � is set to 1:125%/year,

while the conditional volatility is 2:6%=year. The transaction costs are levied

at the rate of 0.5%, implying s = 0:995: Finally, both the conditional volatil-

ity of the risky asset �1 and the risk premium  are set equal to 15%/year.
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Figure 6: The e¤ect of transaction costs on the portfolio-adjustment

boundary. Case of one riskless and one risky, mean-reverting asset

0 0.2 0.4 0.6 0.8 1
0.18

0.17

0.16

0.15

0.14

0.13

0.12

0.11

0.1

0.09

theta

al
ph

a
l a

nd
 a

lp
ha

u

s=0.999
s=0.995
s=0.99
s=0.98

Figure 6 shows the optimal position of the barrier for di¤erent values of

the transaction cost parameter s: No short-selling is allowed. The mean re-

version � is set to 1:125%/year, while the conditional volatility is 2:6%=year.

Finally, both the conditional volatility of the risky asset �1 and the risk

premium  are set equal to 15%/year.
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Figure 7: The expected holding period under Scenario 2. Case

of one riskless and one risky, mean reverting asset
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Figure 7 shows the expected time from buy to sell (expressed in years)

corresponding to Scenario 2 as function of the initial portfolio composition

�: The parameters are: s = 0:995; �1 = 0:15; � = 0:0125; � = 0:026 and

 = 0:15:
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