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Abstract 
 
We present optimality conditions for bilevel optimal control problems where the upper level, to be solved by a 
leader, is a scalar optimal control problem and the lower level, to be solved by several followers, is a 
multiobjective convex optimal control problem. Multiobjective optimal control problems arise in many application 
areas where several conflicting objectives need to be considered. Minimize several objective functionals leads to 
solutions such that none of the objective functional values can be improved further without deteriorating another. 
The set of all such solutions is referred to as efficient (also called Pareto optimal, noninferior, or nondominated) 
set of solutions. The lower level of the semivectorial bilevel optimal control problems can be considered to be 
associated to a ”grande coalition” of a p-player cooperative differential game, every player having its own 
objective and control function. We consider situations in which these p players react as ”followers” to every 
decision imposed by a ”leader” (who acts at the so-called upper level). The best reply correspondence of the 
followers being in general non uniquely determined, the leader cannot predict the followers choice simply on the 
basis of his rational behavior. So, the choice of the best strategy from the leader point of view depends of how the 
followers choose a strategy among his best responses. In this paper, we will consider two (extreme) possibilities: 
(i) the optimistic situation, when for every decison of the leader, the followers will choose a strategy amongst the 
efficient controls which minimizes the (scalar) objective of the leader; in this case the leader will choose a strategy 
which minimizes the best he can obtain amongst all the best responses of the followers: (ii) the pessimistic 
situation, when the followers can choose amongst the efficient controls one which maximizes the (scalar) 
objective of the leader; in this case the leader will choose a strategy which minimizes the worst he could obtain 
amongst all the best responses of the followers. This paper continues the research initiated in [17] where 
existence results for these problems have been obtained.  
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1 Introduction

The aim of this paper is to obtain optimality conditions for the semivectorial bilevel optimal
control problems introduced in [17] where existence results have been established.
Semivectorial bilevel optimal control problems are bilevel problems where the upper level
corresponds to a scalar optimization problem and the lower level to a multiobjective optimal
control problem. Multiobjective optimal control problems arise in many application areas
where several conflicting objectives need to be considered. Minimize several objective func-
tionals leads to solutions such that none of the objective functional values can be improved
further without deteriorating another. The set of all such solutions is referred to as efficient
(also called Pareto optimal, noninferior, or nondominated) set of solutions (see e.g.[38]). The
lower level of the semivectorial bilevel optimal control problems can be considered to be asso-
ciated to a ”grande coalition” of a p-player cooperative differential game, every player having
its own objective and control function. We consider situations in which these p players react
as ”followers” to every decision imposed by a ”leader” (who acts at the so-called upper level).
The best reply correspondence of the followers being in general non uniquely determined, the
leader cannot predict the followers choice simply on the basis of his rational behavior. So,
the choice of the best strategy from the leader point of view depends of how the followers
choose a strategy among his best responses. In this paper, we will consider two (extreme)
possibilities:

(i) the optimistic situation, when for every decison of the leader, the followers will choose a
strategy amongst the efficient controls which minimizes the (scalar) objective of the leader;
in this case the leader will choose a strategy which minimizes the best he can obtain amongst
all the best responses of the followers;

(ii) the pessimistic situation, when the followers can choose amongst the efficient controls
one which maximizes the (scalar) objective of the leader; in this case the leader will choose
a strategy which minimizes the worst he could obtain amongst all the best responses of the
followers.

The semivectorial bilevel control problems which model these two situations, and which will
be described in the next section, include the following problems which have been intensively
studied in the last decades so we will give essentially a few earlier references,

• optimizing a scalar valued function over the efficient set associated to a multiobjective
optimization (mathematical programming) problem; (introduced in [45] and investi-
gated in [8, 9, 10, 11, 12, 13, 25, 26, 27, 33, 36, 37] and [50] for a survey)

• optimizing a scalar valued function over an efficient control set associated to a mul-
tiobjective optimal control problem (introduced and investigated in [15], followed by
[18]);

• semivectorial bilevel static problems (introduced and investigated in [16], followed by
[14, 3, 22, 31, 51, 30], for the optimistic case);

• Stackelberg problems (introduced in [49] and investigated e.g. in [5, 43, 40]);

• Bilevel optimization problems (e.g. [46, 42, 41, 28, 24] and [29] for an extensive bibli-
ography);
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• Stackelberg dynamic problems (introduced in [23, 48] and investigated e.g. in [6, 46,
44, 47] and [5], book with an extensive bibliography).

In this paper, we rewrite the optimistic and pessimistic semivectorial bilevel control problems
as bilevel problems where the lower level is a scalar optimization problem which admits a
unique solution, using scalarization techniques as in [17]. So we are able to give optimality
conditions for the lower level problem in the general case (supposing that the leader’s controls
are bounded) using Pontryagin maximum principle. This theoretically allows to obtain under
suitable conditions the dependence of the optimal control on the leader’s variables. However,
this approach is very difficult to apply because one needs to solve a bilocal problem. That
is why we consider the particular but important case when the followers problem is linear-
quadratic. In this case we show that using a resolvent matrix obtained from data, we can
explicitly solve the bilocal problem and express the optimal control and the state as functions
of leader’s variables, and we show that these dependences are continuously differentiable.
Finally we present optimality conditions for the upper levels of the optimistic and pessimistic
problems .

2 Preliminaries and problem statement

All the assumptions and notations considered in this section and introduced in [17] will be
kept throughout this paper.

For the leader we denote by Jl the scalar objective, by ul the control function, and by
Ul the set of admissible controls. For the followers we denote by Jf = (J1, . . . , Jp) the
vector objective (p-scalar objectives), by uf = (u1, . . . , up) the control function whose values
belong to the set Uf = U1 × · · · × Up ⊆ Rmf = Rm1 × · · · × Rmp . Uf is assumed to be
nonempty, closed, convex, and 0 ∈ Uf . Real numbers t0, T are fixed (t0 < T ) and represent
respectively the initial time and an upper bound of the final time. The set of final time values
T = [t, t̄ ] ⊂]t0, T [, where t ≤ t̄. The final time, denoted t1 ∈ T , may be variable and it is
decided by the leader, hence t1 is fixed in the followers problem. We assume that

Ul ⊂ Lml2 ([t0, T ]) is closed, nonempty and convex. (1)

For each fixed (t1, ul) ∈ T × Ul, the followers have to solve the following parametric multi-
objective control problem, called lower level problem:

(LL)(t1,ul)

{
MIN
(uf ,x)

Jf (t1, ul,uf , x)

subject to (uf , x) verifies (2)-(5)

uf (t) ∈ Uf a.e. on [t0, T ], uf (t) = 0 a.e. on [t1, T ] (2)

ẋ(t) = A(t)x(t) +Bl(t)ul(t) + Bf (t)uf (t) a.e. on [t0, t1] (3)

x(t0) = x0 (4)

x(t1) ∈ F , (5)

where A : [t0, T ]→ Rn×n, Bl : [t0, T ]→ Rn×ml , Bf : [t0, T ]→ Rn×mf are continuous matrix-
valued functions, and the control function uf = (u1, . . . , up) ∈ L

mf
2 ([t0, T ]) = Lm1

2 ([t0, T ]) ×
· · · × Lmp2 ([t0, T ]).
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Lm2 ([t0, T ]) stands for the usual Hilbert space of equivalence classes (two functions are equiv-
alent iff they coincide a.e.) of (Lebesgue) measurable functions u from [t0, T ] to Rm, such
that the function t 7→ uT (t)u(t) is (Lebesgue) integrable over [t0, T ] endowed with the norm

‖u‖2 :=

(∫ T

t0

uT (t)u(t) dt

)1/2

. The target set F ⊂ Rn is assumed to be closed, convex and

nonempty.

The initial state x0 ∈ Rn is specified.

For each u = (t1, ul,uf ) ∈ T × Lml2 ([t0, T ]) × L
mf
2 ([t0, T ]), there exists a unique solution

(in the sense of Carathéodory) xu of the Cauchy problem (3)-(4), and xu ∈ Hn
1 ([t0, t1]).

Hn
1 ([t0, t1]) stands for the Hilbert space of absolutely continuous functions from [t0, t1] to Rn

with derivative in Ln2 ([t0, t1]) endowed with the norm x 7→ ‖x‖ := (‖ẋ‖22 + ‖x‖22)1/2.

The feasible set S(t1, ul) for the problem (LL)(t1,ul) is defined in the following way

S(t1, ul) = {(uf , x) ∈ Lmf2 ([t0, T ])×Hn
1 ([t0, t1])| (uf , x) verifies relations (2)-(5)}. (6)

Thus, problem (LL)(t1,ul)
can be written as

(LL)(t1,ul)
MIN
(uf ,x)∈S(t1,ul)

Jf (t1, ul,uf , x).

Next we give the following standard definitions.

Definition 1. For problem (LL)(t1,ul) the element (ūf , x̄) ∈ S(t1, ul) is said to be

• an efficient (or Pareto) control process if there is no element (uf , x) ∈ S(t1, ul) satis-
fying

∀i ∈ {1, . . . , p} Ji(t1, ul,uf , x) ≤ Ji(t1, ul, ūf , x̄)

and
∃i0 ∈ {1, . . . , p} Ji0(t1, ul,uf , x) < Ji0(t1, ul, ūf , x̄).

• a weakly efficient (or weakly Pareto) control process if there is no element (uf , x) ∈
S(t1, ul) satisfying

∀i ∈ {1, . . . , p} Ji(t1, ul,uf , x) < Ji(t1, ul, ūf , x̄).

• a properly efficient (or properly Pareto) control process (see [34], or [20], [38] for gen-
eralizations) if it is an efficient control process and there exists a real number M > 0
so that for every i ∈ {1, . . . , p} and every (uf , x) ∈ S(t1, ul) with Ji(t1, ul,uf , x) <
Ji(t1, ul, ūf , x̄) at least one k ∈ {1, . . . , p} exists with Jk(t1, ul,uf , x) > Jk(t1, ul, ūf , x̄)
and

Ji(t1, ul, ūf , x̄)− Ji(t1, ul,uf , x)

Jk(t1, ul,uf , x)− Jk(t1, ul, ūf , x̄)
≤M.

In the sequel the symbol σ ∈ {e, we, pe} stands for “efficient” when σ = e, “weakly efficient”
when σ = we and “properly efficient” when σ = pe.

The set of all σ-control processes associated to problem (LL)(t1,ul) will be denoted by Pσ(t1, ul).
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Finally we consider the following semivectorial bilevel optimal control problems:

(OSVBC)σ min
(t1,ul)∈T ×Ul

min
(uf ,x)∈Pσ(t1,ul)

Jl(t1, ul,uf , x)

called “optimistic semivectorial bilevel control problem”, and

(PSVBC)σ min
(t1,ul)∈T ×Ul

sup
(uf ,x)∈Pσ(t1,ul)

Jl(t1, ul,uf , x)

called “pessimistic semivectorial bilevel control problem”.

Remark 1. Note that the terminal time t1 is fixed for the lower level problem, but it is
a decision variable for the leader. Of course, a particular case can be obtained when the
terminal time t1 is fixed for the leader too, i.e. when T = {t1}.

Remark 2. (LL)(t1,ul) may be also considered as the problem to solve by the “grande coali-
tion” of a p-player cooperative differential game, (see [35] and its extensive references list)
where the functional Ji and the control ui represent the payoff and the control of the player
number i, i ∈ {1, . . . , p}. Then, our optimistic semivectorial bilevel problem corresponds to a
strong Stackelberg problem in which, for any choice of (t1, ul), the leader can force the follow-
ers to choose amongst the σ-control processes one which minimizes the leader payoff. On the
other hand, the pessimistic semivectorial bilevel problem corresponds to a weak Stackelberg
problem in which, for any choice of the leader variables (t1, ul), the followers could choose
amongst the σ-control processes one which is the worst for the leader.

We assume that for all t1 ∈ [t0, T ] and all (ul,uf , x) ∈ Lml2 ([t0, T ])×Lmf2 ([t0, T ])×Hn
1 ([t0, t1]),

we have

Jl(t1, ul,uf , x) =

∫ t1

t0

fl(t, ul(t),uf (t), x(t))dt,

and also, for all i ∈ {1, . . . , p}

Ji(t1, ul,uf , x) = ψi(x(t1)) +

∫ t1

t0

fi(t, ul(t),uf (t), x(t))dt,

where, for all i ∈ {1, . . . , p}, the functions ψi, ψl : Rn → R, fi, fl : [t0, T ]×Rml×Rmf×Rn → R
verify the following preliminary assumptions

(PA)



• ψi, fi, fl are continuously differentiable;
• there exist integrable functions ai, al : [t0, T ]→ R and real numbers bi, bl, ci,

cl, di, dl, such that, for all (t, ul,uf , x) ∈ [t0, T ]× Rml × Rmf × Rn,
fi(t, ul,uf , x) > ai(t) + bix

Tx+ ciu
T
l ul + diuf

Tuf ,
fl(t, ul,uf , x) > al(t) + blx

Tx+ clu
T
l ul + dluf

Tuf ;
• ψi is a convex function;
• for each fixed t ∈ [t0, T ], the function fi(t, ·, ·, ·) is convex on Rml × Rmf × Rn.
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3 The lower level problem

Let t1 ∈ T be fixed, and let Φ : [t0, t1] × [t0, t1] → Rn×n be the matrix valued function
satisfying for each s ∈ [t0, t1],

∀t ∈ [t0, t1]
∂Φ

∂t
(t, s) = A(t)Φ(t, s) (7)

Φ(s, s) = In (8)

where In is the identity matrix.

Since, for each (ul,uf ) ∈ Lml2 ([t0, T ])×Lmf2 ([t0, T ]), the unique solution x(t1,ul,uf ) ∈ Hn
1 ([t0, t1])

of the Cauchy problem (3-4) is given by

∀t ∈ [t0, t1] x(t1,ul,uf )(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, s)(Bl(s)ul(s) + Bf (s)uf (s))ds,

it is clear that the map (ul,uf ) 7→ x(t1,ul,uf ) is affine from Lml2 ([t0, T ]) × L
mf
2 ([t0, T ]) to

Hn
1 ([t0, t1]). Moreover, using Cauchy-Schwarz inequality, we obtain easily that the map

(ul,uf ) 7→ x(t1,ul,uf ) is also continuous from Lml2 ([t0, T ])× Lmf2 ([t0, T ]) to Hn
1 ([t0, t1]).

For each i = 1, . . . , p, consider the functional

(ul,uf ) 7→ J̃i(t1, ul,uf ) := Ji(t1, ul,uf , x(t1,ul,uf )). (9)

Define also
(ul,uf ) 7→ J̃l(t1, ul,uf ) := Jl(t1, ul,uf , x(t1,ul,uf )). (10)

From [17, Lemma 1 and Lemma 2] and the fact that x(t1,·,·) is continuous and affine from

Lml2 ([t0, T ])× Lmf2 ([t0, T ]) to Hn
1 ([t0, t1]), we obtain the following.

Lemma 1. For each i = 1, . . . , p, the functional J̃i(t1, ·, ·) : Lml2 ([t0, T ]) × Lmf2 ([t0, T ]) →
R ∪ {+∞} is well defined, lower semicontinuous and convex.

Also J̃l(t1, ·, ·) : Lml2 ([t0, T ]) × Lmf2 ([t0, T ]) → R ∪ {+∞} is well defined and lower semicon-
tinuous.

For each (t1, ul) ∈ T × Ul (see (1)), denote

Uf (t1, ul) = {uf ∈ L
mf
2 ([t0, T ])| uf (t) ∈ Uf a.e. on [t0, T ], (11)

uf (t) = 0 a.e. on [t1, T ], x(t1,ul,uf )(t1) ∈ F}.

For each (t1, ul) ∈ R × Lml2 ([t0, T ]) \ T × Ul we put Uf (t1, ul) = ∅. Thus Uf is a set valued
function Uf : R× Lml2 ([t0, T ])⇒ L

mf
2 ([t0, T ]).

Recall that
dom (Uf ) := {(t1, ul) ∈ R× Lml2 ([t0, T ])| Uf (t1, ul) 6= ∅},

and
Gr (Uf ) = {(t1, ul,uf ) ∈ R× Lml2 ([t0, T ])× Lmf2 ([t0, T ])| uf ∈ Uf (t1, ul)}.

We will assume in the sequel that

(H) dom (Uf ) = T × Ul.
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Proposition 1. Each of the following is a sufficient condition for (H).

(a) F = Rn.

(b) For each t1 ∈ T , the linear system

ẋ(t) = A(t)x(t) + Bf (t)uf (t), x(t0) = 0, uf (t) ∈ Uf a.e. on [t0, t1]

is controllable, i.e. for any x1 ∈ Rn, there exists uf ∈ L
mf
2 ([t0, t1]) such that uf (t) ∈ Uf

a.e. on [t0, t1], and the corresponding solution verifies x(t1) = x1.

Proof. It is easy to adapt the proof given in [17, Proposition 1], where the initial condition
is x(t0) = x0 (instead of x(t0) = 0 as above).

It can be easily proved that Uf (t1, ul) is a convex subset of L
mf
2 ([t0, T ]). Thus the problem

(LL)(t1,ul) can be rewritten as a p-objective convex optimization problem:

(M)(t1,ul)

{
MIN

uf
(J̃1(t1, ul,uf ), . . . , J̃p(t1, ul,uf ))

subject to uf ∈ Uf (t1, ul).

Definition 2. Let σ ∈ {e, we, pe}. An element uf ∈ L
mf
2 ([t0, T ]) will be called σ-control

of problem (M)(t1,ul) iff (uf , x(t1,ul,uf )) is a σ-control process of problem (LL)(t1,ul). We will
denote Eσ(t1, ul) the set of all σ-controls of the p-objective optimization problem (M)(t1,ul).

Thus, using Lemma 1 and the well known scalarization results from vector optimization (see
e.g.[38]) we obtain the following.

Theorem 1. (see [17]) Let (t1, ul) ∈ T ×Ul and ûf ∈ Uf (t1, ul), where Ul and Uf are given
in (1) and (11) respectively. The control process (ûf , x(t1,ul,ûf )) is weakly (resp. properly)
efficient for problem (LL)(t1,ul) if and only if there exist nonnegative real numbers (resp.
positive real numbers) θ1, . . . , θp with

∑p
i=1 θi = 1 such that ûf is an optimal control for the

classical scalar optimal control problem :

(S)(θ1,...,θp,t1,ul)

 min
uf

p∑
i=1

θiJ̃i(t1, ul,uf )

subject to uf ∈ Uf (t1, ul).

In the sequel we need the following sets

Θσ =


{(θ1, . . . , θp) ∈]0, 1[p|

∑p
i=1 θi = 1} if σ = pe

{(θ1, . . . , θp) ∈ [0, 1]p|
∑p

i=1 θi = 1} if σ = we,
(12)

and the following hypotheses:
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Hσ(t1) :


(∃i ∈ {1, . . . , p})

(
∀(t, v, x) ∈ [t0, t1]× Rml × Rn

)
uf 7→ fi(t, v,uf , x) is strictly convex on Rm if σ = pe

(∀i ∈ {1, . . . , p})
(
∀(t, v, x) ∈ [t0, t1]× Rml × Rn

)
uf 7→ fi(t, v,uf , x) is strictly convex on Rm if σ = we,

and

(Hc)σ :


∀i ∈ {1, . . . , p} : ψi > 0, bi = ci = 0, di > 0,

∑p
j=1 dj > 0 if σ = pe

∀i ∈ {1, . . . , p} : ψi > 0, bi = ci = 0, di > 0 if σ = we,

where bi, ci, di have been introduced in the preliminary assumptions (PA).

Theorem 2. (see [17]) Let σ ∈ {we, pe} and (t1, ul) ∈ T × Ul. Assume that Hσ(t1) holds.
Moreover, suppose that at least one of the following hypotheses holds:

(i) Uf is bounded;

(ii) (Hc)σ.

Then, for each θ = (θ1, . . . , θp) ∈ Θσ, there exists a unique optimal control uf (θ, t1, ul, ·) ∈
Uf (t1, ul) of the scalar problem (S)(θ,t1,ul).

It is obvious that according to Theorem 1, uf (θ, t1, ul, ·) is a σ-control for multiobjective
problem (M)(t1,ul). Moreover, Theorem 1 implies also that for each σ-control uf ∈ Uf (t1, ul)
of the multiobjective problem (M)(t1,ul), there exists θ ∈ Θσ such that uf is the unique
optimal control of the scalar problem (S)(θ,t1,ul).

Thus we can state the following.

Corollary 1. Let (t1, ul) ∈ T × Ul. Under the hypotheses of Theorem 2 we have that the
correspondence θ 7→ uf (θ, t1, ul, ·) is a surjection from Θσ to the set Eσ(t1, ul).

In the sequel we will keep all the hypotheses of Theorem 2 in addition to the preliminary
assumptions (PA).

4 Equivalent formulations of problems (OSVBC)σ and (PSVBC)σ

Consider, for each (θ, t1, ul) ∈ Θσ×T ×Ul ⊂ Rp×R×Lml2 ([t0, T ]), the function F (θ, t1, ul, ·) :
Uf (t1, ul)→ R defined by

∀uf ∈ Uf (t1, ul) F (θ, t1, ul,uf ) :=

p∑
i=1

θiJ̃i(t1, ul,uf ),

where Uf (t1, ul) and J̃i are given respectively in (11) and (9).
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Note that problem (OSV BC)σ can be written equivalently as an optimistic semivectorial
bilevel optimization problem

(OSV B)σ min
(t1,ul)∈T ×Ul

min
uf∈Eσ(t1,ul)

J̃l(t1, ul,uf ).

According to Theorem 2, for each (θ, t1, ul) ∈ Θσ × T × Ul, there exists a unique minimizer
uf (θ, t1, ul) ∈ Uf (t1, ul) of F (θ, t1, ul, ·) over Uf (t1, ul). According to Corollary 1, for each
(t1, ul) ∈ T × Ul, we have

Eσ(t1, ul) =
⋃
θ∈Θσ

{uf (θ, t1, ul, ·)}. (13)

Then we obviously have the following.

Proposition 2. (see [17] Problem (OSV B)σ is equivalent to the problem

min
(t1,ul)∈T ×Ul

min
θ∈Θσ

J̃l(t1, ul,uf (θ, t1, ul, ·))

Thus, the optimistic semivectorial problem (OSVB)σ, can be rewritten as an optimistic bilevel
optimization problem (also called strong Stackelberg problem)

(OB)σ



min
(t1,ul)∈T ×Ul

min
θ∈Θσ

J̃l(t1, ul,uf (θ, t1, ul, ·))

where uf (θ, t1, ul) is the unique minimizer to the problem

(S)(θ,t1,ul)
: min

uf∈Uf (t1,ul)
F (θ, t1, ul,uf ).

Here the upper and lower level are given by scalar optimization problems and the lower level
admits a unique solution.

In the same way the pessimistic semivectorial problem can be rewritten as a pessimistic
bilevel optimization problem (leading to a so-called weak Stackelberg problem, see [19] where
this terminology was introduced).

Proposition 3. (see [17]) Problem (PSV BC)σ is equivalent to the problem

min
(t1,ul)∈T ×Ul

sup
θ∈Θσ

J̃l(t1, ul,uf (θ, t1, ul, ·))

Finally, we can rewrite that problem as

(PB)σ



min
(t1,ul)∈T ×Ul

sup
θ∈Θσ

J̃l(t1, ul,uf (θ, t1, ul, ·))

where uf (θ, t1, ul) is the unique minimizer of the problem

(S)(θ,t1,ul) : min
uf∈Uf (t1,ul)

F (θ, t1, ul,uf ).
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5 Necessary and Sufficient Conditions for the Scalarized Lower
Level Problem

Let (t1, ul) ∈ T × Ul, and θ = (θ1, . . . , θp) ∈ Θσ be given. The scalarized problem (S)(θ,t1,ul)

can be written as

min
(uf ,x)∈L

mf
2 ([t0,T ])×Hn

1 ([t0,t1])

[
p∑
i=1

θiψi(x(t1)) +

∫ t1

t0

(
p∑
i=1

θifi(t, ul(t),uf (t), x(t))

)
dt

]
s.t.

uf (t) ∈ Uf a.e. on [t0, T ], uf (t) = 0 a.e. on [t1, T ],

ẋ(t) = A(t)x(t) +Bl(t)ul(t) + Bf (t)uf (t) a.e. on [t0, t1]

x(t0) = x0

x(t1) ∈ F .

Let H : [t0, t1] × Rn × Rml × Rmf × R × Rn → R be the Hamilton-Pontryagin function
associated to this control defined by

H(t, ul,uf , x, λ0, λ) = λT
(
A(t)x+Bl(t)ul + Bf (t)uf

)
− λ0

p∑
i=1

θifi(t, ul,uf , x).

Let λ(·) = (λ1(·), . . . , λn(·)) ∈ Wn
1,∞([t0, t1]) be the adjoint function, where Wn

1,∞([t0, t1]) is
the Banach space of absolutely continuous functions from [t0, t1] to Rn having derivative in
the Banach space Ln∞([t0, t1]) of essentially bounded measurable functions (see e.g.[21] for
details).

Since we use L2 controls, and the Pontryagin maximum principle usually uses controls in L∞,
we will consider two particular situations in order to be able to get necessary and sufficient
conditions for problem (S)(θ,t1,ul), as stated below.

5.1 The case when Uf is bounded and Ul ⊂ Lml∞ ([t0, T ]) ∩ Lml2 ([t0, T ])

In this subsection we assume the set Uf is bounded (and closed, convex with non-empty
interior), and the leader’s controls are essentially bounded, i.e. Ul ⊂ Lml∞ ([t0, T ])∩Lml2 ([t0, T ]).
Also, suppose the target set F = {x ∈ Rn|Gx = a}, where the matrix G ∈ Rk×n, and a ∈ Rk
are given. Moreover we assume that rank(G) = k. However the results presented in this
subsection are also valid when F = Rn by taking G = 0, a = 0.

We obtain the following.

Theorem 3. Necessary conditions. Let (uf ∗, x∗) ∈ L
mf
2 ([t0, T ]) × Hn

1 ([t0, t1]) be an op-
timal control process for problem (S)(θ,t1,ul). Then there exist λ(·) ∈ Wn

1,∞([t0, t1]), a

nonnegative real number λ0 and a vector v ∈ Rk with (λ(·), λ0, v) 6= 0 such that
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λ̇T (t) = −λT (t)A(t) + λ0

p∑
i=1

θi
∂fi
∂x

(t, ul(t),uf ∗(t), x∗(t)) , a.e. on [t0, t1] (14)

λT (t1) = −λ0

p∑
i=1

θi
∂ψi
∂x

(x∗(t1)) + vTG , (15)

and, for almost all t ∈ [t0, t1]

H(t, ul(t),uf ∗(t), x∗(t), λ0, λ(t)) = max
vf∈Uf

H(t, ul(t),vf , x∗(t), λ0, λ(t)). (16)

Moreover, if the linearized system

ẋ(t) = A(t)x(t) + Bf (t)uf (t) a.e. on [t0, t1] (17)

x(t0) = 0 (18)

is controllable(i), then we can take above λ0 = 1.

Sufficient conditions. Let (x∗,uf ∗) ∈ Hn
1 ([t0, t1]) × Lmf2 ([t0, T ]) verifying (2-5). If there

exist λ(·) ∈ Wn
1,∞([t0, t1]) and v ∈ Rk such that (14-16) are verified with λ0 = 1, then

(x∗,uf ∗) is an optimal control process for problem (S)(θ,t1,ul).

Proof. Since Uf is bounded, {uf (·) ∈ L
mf
2 ([t0, T ])|uf (t) ∈ Uf} ⊂ L

mf
∞ ([t0, T ]). For the same

reason ul(·) ∈ Lml∞ ([t0, t1]). Thus we have uf ∗ ∈ L
mf
∞ ([t0, T ]), hence x∗ ∈ Wn

1,∞([t0, t1]) and
λ(·) ∈ Wn

1,∞([t0, t1]). Therefor we can apply [39, Theorem 5.19] to obtain the first part
(necessary conditions). Note that [39, Theorem 5.19] is stated for autonomous systems, but
the same proof apply for non-autonomous systems.

For the second part (sufficiency conditions) we can use [39, Theorem 5.22] which also holds
for non autonomous systems with the same proof.

Remark 3. Since Uf is convex and closed and H is concave w.r.t. uf , relation (16) can
equivalently be written as a variational inequality

∀vf ∈ Uf

(
λT (t)Bf (t)−λ0

p∑
i=1

θi
∂fi
∂uf

(t, ul(t),uf ∗(t), x∗(t)
)

(vf−uf ∗(t)) ≤ 0 a.e. on [t0, t1]

Finally, we can conclude the following.

Corollary 2. Let (t1, ul) ∈ Ul, and let θ ∈ Θσ. Assume that the linearized system (17-18)
is controllable. Let uf ∈ L

mf
2 ([t0, T ]). Then uf (·) = uf (θ, t1, ul, ·) (i.e. uf is the unique

optimal control for problem S(θ,t1,ul) presented in Theorem 2) if, and only if, there exists(
x(·), λ(·), v

)
∈ Hn

1 ([t0, t1])×Wn
1,∞([t0, t1])× Rk such that

(i)If A and Bf do not depend on t, it is well known that this system is controllable if, and only if,
rank (Bf , ABf , A

2Bf , . . . , A
n−1Bf ) = n
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uf (t) ∈ Uf a.e. on [t0, T ], uf (t) = 0 a.e. on [t1, T ] (19)

ẋ(t) = A(t)x(t) +Bl(t)ul(t) + Bf (t)uf (t) a.e. on [t0, t1] (20)

x(t0) = x0 (21)

Gx(t1) = a (22)

λ̇T (t) = −λT (t)A(t) +

p∑
i=1

θi
∂fi
∂x

(t, ul(t),uf ∗(t), x∗(t)) a.e. on [t0, t1] (23)

λT (t1) = −
p∑
i=1

θi
∂ψi
∂x

(x∗(t1)) + vTG , (24)

and, for almost all t ∈ [t0, t1],

∀vf ∈ Uf

(
λT (t)Bf (t)−

p∑
i=1

θi
∂fi
∂uf

(t, ul(t),uf ∗(t), x∗(t)
)

(vf − uf ∗(t)) ≤ 0. (25)

5.2 The case Uf = Rmf : the followers problem is linear-quadratic; explicit
expressions of uf (θ, t1, ul, ·) and x(t1,ul,uf (θ,t1,ul,·))

In this subsection we consider the case when Uf = Rmf , Ul is an arbitrary closed, convex
set with non empty interior in Lml2 ([t0, T ]), and the endpoint is free, i.e. the target set
F = Rn. The objectives of the followers are quadratic, i.e. for i = 1, . . . , p, and (t, ul,uf , x) ∈
[t0, T ]× Rn × Rml × Rmf

fi(t, ul,uf , x) = xTQi(t)x+ uf
TRi(t)uf ,

where Qi(·) : [t0, T ] → Rn×n and Ri(·) : [t0, T ] → Rmf×mf are continuous positive semidefi-
nite matrix valued functions.

Also
ψi(x) = xTQfi x,

where Qfi is a symmetric semidefinite positive matrix.

Moreover we make the following assumption

(HLQP )σ :


∀(i, t) ∈ {1, . . . , p} × [t0, T ] Ri(t) > 0 if σ = we

(∃i ∈ {1, . . . , p}) (∀t ∈ [t0, T ]) Ri(t) > 0 if σ = pe.

Note that this particular choice of fi and ψi agrees with all the assumptions (PA).

Let us denote

Q(θ, ·) =

p∑
i=1

θiQi(·); R(θ, ·) =

p∑
i=1

θiRi(·); Qf (θ) =

p∑
i=1

θiQ
f
i .

Thus, the scalarized problem (S)(θ,t1,ul) becomes the linear quadratic problem

11



(LQP)


min

(
x(t1)TQf (θ)x(t1) +

∫ t1

t0

(x(t)TQ(θ, t)x(t) + uf (t)
TR(θ, t)uf (t))dt

)
s.t.

ẋ(t) = A(t)x(t) + Bf (t)uf (t) +Bl(t)ul(t) a.e. on [t0, t1],
x(t0) = x0.

We have the following result which is probably known also for L2 controls, but we will present
a proof for the sake of completeness.

Theorem 4. Let (x∗(·),uf ∗(·)) ∈ Hn
1 ([t0, t1])×Lmf2 ([t0, t1]) verify the differential system and

the initial condition for problem (LQP). Then the control process (x∗(·),uf ∗(·)) is optimal for
problem (LQP) if, and only if, there exists a function λ(·) ∈ Hn

1 ([t0, t1]) such that

λ̇T (t) = −λT (t)A(t)− xT∗ (t)Q(θ, t) a.e. on [t0, t1] (26)

λT (t1) = xT∗ (t1)Qf (θ) (27)

uf ∗(t) = −R−1(θ, t)Bf
T (t)λ(t) a.e. on [t0, t1]. (28)

Proof. Assume that λ(·) ∈ Hn
1 ([t0, t1]) verifies (26-28). Let (x,uf ) ∈ Hn

1 ([t0, t1])×Lmf2 ([t0, t1])
verify the differential system and the initial condition for problem (LQP). We have for almost
all t ∈ [t0, t1]

d

dt

(
λT (t)(x(t)− x∗(t))

)
= λ̇T (t)(x(t)− x∗(t)) + λT (t)(ẋ(t)− ẋ∗(t))

= −(λT (t)A(t) + xT∗ (t)Q(θ, t))(x(t)− x∗(t))

+λT (t)
(
A(t)(x(t)− x∗(t)) + Bf (t)(uf (t)− uf ∗(t))

)
= −xT∗ (t)Q(θ, t)(x(t)− x∗(t))− uf

T
∗ (t)R(θ, t)(uf (t)− uf ∗(t))

With the initial condition for x(·), x∗(·) and final condition for λ(·) we get by integration

xT∗ (t1)Qf (θ)(x(t1)−x∗(t1)) = −
∫ t1

t0

(
xT∗ (t)Q(θ, t)(x(t)−x∗(t))+uf

T
∗ (t)R(θ, t)(uf (t)−uf ∗(t))

)
dt.

(29)

Denote

J(x(·),uf (·)) =
(
x(t1)TQf (θ)x(t1) +

∫ t1

t0

(x(t)TQ(θ, t)x(t) + uf (t)
TR(θ, t)uf (t))dt

)
.

Using the fact that for any symmetric positive semidefinite matrix P , for all vectors v, v∗ we
obviously have

vTPv − vT∗ Pv∗ ≥ 2vT∗ P (v − v∗)

we get

J(x(·),uf (·))− J(x∗(·),uf ∗(·)) ≥ 2
[
xT∗ (t1)Qf (θ)(x(t1)− x∗(t1))

+

∫ t1

t0

(
xT∗ (t)Q(θ, t)(x(t)− x∗(t)) + uf

T
∗ (t)R(θ, t)(uf (t)− uf ∗(t))

)
dt
]
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From (29) the last expression is zero, hence J(x(·), u(·))−J(x∗(·),uf ∗(·)) ≥ 0. Thus (x∗(·),uf ∗(·))
is an optimal control process for problem (SQP).

Conversely, let (x∗(·),uf ∗(·)) ∈ Hn
1 ([t0, t1])×Lmf2 ([t0, t1]) be a solution of (LQP) (which exists

and is unique according to Theorem 2). Let λ(·) ∈ Hn
1 ([t0, t1]) be the solution of the linear

system (26) verifying the final condition (27). For any uf (·) ∈ L
mf
2 ([t0, t1]), denoting by x(·)

the corresponding solution of the differential system and the initial condition for problem
(LQP), we have (using a similar calculus as before)

λT (t1)(x(t1)− x∗(t1)) = −
∫ t1

t0

(
xT∗ (t)Q(θ, t)(x(t)− x∗(t)) + λT (t)Bf (t)(uf (t)− uf ∗(t))

)
dt.

On the other, using the fact that the directional derivative of J at the optimal point (x∗(·),uf ∗(·))
in the direction (x(·),uf (·))− (x∗(·),uf ∗(·)) is positive we have

xT∗ (t1)Qf (θ)(x(t1)−x∗(t1))+

∫ t1

t0

(xT∗ (t)Q(θ, t)(x(t)−x∗(t))+uf
T
∗ (t)R(θ, t)(uf (t)−uf ∗(t)))dt ≥ 0

Finally we obtain ∫ t1

t0

(λT (t)Bf (t)− uf
T
∗ (t)R(θ, t))(uf (t)− uf ∗(t)))dt ≤ 0.

Since uf (·) can be arbitrarily chosen in L
mf
2 ([t0, t1]), we obtain that (28) is satisfied.

Next we will show that, in the linear-quadratic case, it is possible to compute explicitly the
optimal control and state as a function of the parameters θ, t1, ul by means of a 2n × 2n
resolvent matrix of a linear differential system based on data. This fact will allow us to find
explicit optimality conditions for our bilevel problems.

Recall that uf (θ, t1, ul, ·) denotes the unique optimal control of the scalarized problem (S)(θ,t1,ul).
The corresponding unique state and adjoint state (verifying Theorem 4) will be denoted by
x(θ, t1, ul, ·) and λ(θ, t1, ul, ·).

To be more precise, the functions x(θ, t1, ul, ·) and λ(θ, t1, ul, ·) verify the following boundary
linear problem

∂x

∂t
(θ, t1, ul, t) = A(t)x(θ, t1, ul, t)−Bf (t)R

−1(θ, t)Bf (t)
Tλ(θ, t1, ul, t) (30)

+Bl(t)ul(t) a.e. on [t0, t1]

∂λ

∂t
(θ, t1, ul, t) = −A(t)Tλ(θ, t1, ul, t)−Q(θ, t)x(θ, t1, ul, t) a.e. on [t0, t1] (31)

x(θ, t1, ul, t0) = x0 (32)

λ(θ, t1, ul, t1) = Qf (θ)x(θ, t1, ul, t1) (33)

and
uf (θ, t1, ul, t) = −R−1(θ, t)Bf

T (t)λ(θ, t1, ul, t) a.e. on [t0, t1]. (34)

13



Given t1 ∈ T and θ ∈ Θσ, consider the matrix valued function P (θ, t1, ·) : [t0, t1] → Rn×n
which, under our hypotheses about matricesQf (θ), Q(θ, t), R(θ, t), is the unique continuously
differentiable solution (see e.g. [1]) of the Riccati matrix differential equation (RMDE) on
[t0, t1]:

∂P

∂t
(θ, t1, t) = −A(t)TP (θ, t1, t)−P (θ, t1, t)A(t)−Q(θ, t)+P (θ, t1, t)Bf (t)R(θ, t)−1Bf (t)

TP (θ, t1, t)

satisfying the final time condition

P (θ, t1, t1) = Qf (θ). (35)

Moreover, P (θ, t1, t) is a symmetric positive definite matrix for each t.

Following [18] we can express P in terms of a resolvent matrix depending directly on data.
Thus consider for all (θ, t) ∈ Θσ × [t0, t1] the 2n× 2n matrix which defines the linear system
(30, 31)

L(θ, t) =

 A(t) −Bf (t)R
−1(θ, t)Bf

T (t)

−Q(θ, t) −AT (t)


The proof of the following result can be found in [18].

Proposition 4. Let Ψ(θ, ·, ·) be the resolvent (or state transition) matrix associated to the
linear differential system defined by L(θ, t), i.e., for each s ∈ [t0, T ], Ψ(θ, ·, s) satisfies the
Cauchy problem:

∂Ψ

∂t
(θ, t, s) = L(θ, t)Ψ(θ, t, s), t ∈ [t0, T ], Ψ(θ, s, s) = I2n.

Let us divide the matrix Ψ(θ, t, s) into four n× n blocks

Ψ(θ, t, s) =

(
Ψ11(θ, t, s) Ψ12(θ, t, s)
Ψ21(θ, t, s) Ψ22(θ, t, s)

)
.

Then, for all t ∈ [t0, t1], the matrix [Ψ11(θ, t, t1) + Ψ12(θ, t, t1)Qf (θ)] is invertible and

P (θ, t1, t) =
[
Ψ21(θ, t, t1) + Ψ22(θ, t, t1)Qf (θ)

][
Ψ11(θ, t, t1) + Ψ12(θ, t, t1)Qf (θ)

]−1
. (36)

Next, let us denote by ξ(θ, t1, ul, ·) ∈ Hn
1 ([t0, t1]) the unique solution of the following linear

Cauchy problem

∂ξ

∂t
(θ, t1, ul, t) =

(
−A(t)T + P (θ, t1, t)Bf (t)R

−1(θ, t)Bf (t)
)
ξ(θ, t1, ul, t) (37)

−P (θ, t1, t)Bl(t)ul(t) a.e. on [t0, t1]

ξ(θ, t1, ul, t1) = 0. (38)

Lemma 2. For all t ∈ [t0, t1] we have

λ(θ, t1, ul, t) = P (θ, t1, t)x(θ, t1, ul, t) + ξ(θ, t1, ul, t). (39)
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Proof. Computing the derivative
∂

∂t

(
λ(θ, t1, ul, t)−P (θ, t1, t)x(θ, t1, ul, t)−ξ(θ, t1, ul, t)

)
, and

then, using (30-33), (RMDE), (35), (37) and (38), the result follows easily.

Denote by Ξ(θ, t1, ·, ·) the resolvent matrix associated to (37), i.e. for all (θ, t1, s) ∈ Θσ×T ×
[t0, T ]

∂Ξ

∂t
(θ, t1, t, s) =

(
−A(t)T + P (θ, t1, t)Bf (t)R

−1(θ, t)Bf (t)
)
Ξ(θ, t1, t, s), t ∈ [t0, T ] (40)

Ξ(θ, t1, s, s) = In. (41)

Based on this we are able to solve the boundary problem (30-33) in terms of data.

Corollary 3. For all (θ, t1, ul) ∈ Θσ × T × Lml2 ([t0, T ]), and for all t ∈ [t0, t1] we have x(θ, t1, ul, t)

λ(θ, t1, ul, t)

 = Ψ(θ, t, t0)

 x0

P (θ, t1, t0)x0 + ξ(θ, t1, ul, t0)

+

∫ t

t0

Ψ(θ, t, s)

 Bl(s)ul(s)

0

 ds,

where

ξ(θ, t1, ul, t0) =

∫ t1

t0

Ξ(θ, t1, t0, s)P (θ, t1, s)Bl(s)ul(s)ds.

Remark 4. The right hand side member in the formulas giving x(θ, t1, ul, t) and λ(θ, t1, ul, t)
in Corollary 3 is defined for all (t1, t) ∈]t0, T [×[t0, T ] (and not only for (t1, t) ∈ T × [t0, t1]),
and for all θ belonging to an open convex set Ω with Θσ ⊆ Ω. Indeed, the formulas in
Corollary 3 have a meaning as long as R(θ, t) > 0.

When σ = pe, by (HLQP)pe it is obvious that we can take Ω = Rp++.

When σ = we, the continuous function [t0, T ] × Rmf 3 (t,uf ) 7→ uf
TRi(t)uf attains its

minimum value, say αi, on the compact set [t0, T ] × S, where S is the unit sphere in Rmf ,
i = 1, . . . , p. According to (HLQP)we we have αi > 0 for all i. Then, it is easy to see that we
can take

Ω = {θ ∈ Rp|
p∑
i=1

θiαi > 0}.

We will extend the functions x(·, ·, ·, ·) and λ(·, ·, ·, ·) based on these formulas as continuous
functions from Ω×]t0, T [×Lml2 ([t0, T ])× [t0, T ] to Rn. Moreover, based on (34), we will extend
also the function uf (·, ·, ·, ·) as a continuous function from Ω×]t0, T [×Lml2 ([t0, T ])× [t0, T ] to
Rmf . These extensions are necessary further in order to obtain optimality conditions for the
upper level.

Using the differentiability with respect to parameters of a differential equation and some
straightforward computation we have the following.

Proposition 5. The resolvent Ψ(·, ·, ·) is continuously differentiable on Ω× [t0, T ]× [t0, T ].
We have the following formulas for all (θ, t, s) ∈ Ω× [t0, T ]× [t0, T ] and i = 1, . . . , p.
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∂Ψ

∂θi
(θ, t, s) =

∫ t

s
Ψ(θ, t, τ)

∂L

∂θi
(θ, τ)Ψ(θ, τ, s)dτ, where (42)

∂L

∂θi
(θ, t) =

 0 Bf (t)R
−1(θ, t)Ri(t)R

−1(θ, t)Bf (t)
T

−Qi(t) 0

 (43)

∂Ψ

∂s
(θ, t, s) = −Ψ(θ, t, s)L(θ, s). (44)

By (36) and the previous Proposition we obtain immediately the following.

Proposition 6. The matrix valued function P (·, ·, ·) is continuously differentiable on Ω ×
[t0, T ]× [t0, T ], and verifies the following formulas.

∂P

∂θi
(θ, t1, t) =

[∂Ψ21

∂θi
(θ, t, t1) +

∂Ψ22

∂θi
(θ, t, t1)Qf (θ) + Ψ22(θ, t, t1)Qfi

][
Ψ11(θ, t, t1) + Ψ12(θ, t, t1)Qf (θ)

]−1

ı̈?‘
1

2
−
[
Ψ21(θ, t, t1) + Ψ22(θ, t, t1)Qf (θ)

][
Ψ11(θ, t, t1) + Ψ12(θ, t, t1)Qf (θ)

]−1
(45)

ı̈?‘
1

2

[∂Ψ11

∂θi
(θ, t, t1) +

∂Ψ12

∂θi
(θ, t, t1)Qf (θ) + Ψ12(θ, t, t1)Qfi

][
Ψ11(θ, t, t1) + Ψ12(θ, t, t1)Qf (θ)

]−1

and

∂Ψ

∂θi
(θ, t, s) =


∂Ψ11

∂θi
(θ, t, s)

∂Ψ12

∂θi
(θ, t, s)

∂Ψ21

∂θi
(θ, t, s)

∂Ψ22

∂θi
(θ, t, s)


Using an analog calculus we obtain

∂P

∂t1
(θ, t1, t) =

[∂Ψ21

∂t1
(θ, t, t1) +

∂Ψ22

∂t1
(θ, t, t1)Qf (θ)

][
Ψ11(θ, t, t1) + Ψ12(θ, t, t1)Qf (θ)

]−1

−
[
Ψ21(θ, t, t1) + Ψ22(θ, t, t1)Qf (θ)

][
Ψ11(θ, t, t1) + Ψ12(θ, t, t1)Qf (θ)

]−1
(46)[∂Ψ11

∂t1
(θ, t, t1) +

∂Ψ12

∂t1
(θ, t, t1)Qf (θ)

]̈
ı?‘

1

2

[
Ψ11(θ, t, t1) + Ψ12(θ, t, t1)Qf (θ)

]−1

The computation of
∂Ψij

∂t1
(θ, t, t1) can be obtained using (44)


∂Ψ11

∂t1
(θ, t, t1)

∂Ψ12

∂t1
(θ, t, t1)

ı̈?‘1
2

∂Ψ21

∂t1
(θ, t, t1)

∂Ψ22

∂t1
(θ, t, t1)

 = −


Ψ11(θ, t, t1) Ψ12(θ, t, t1)

ı̈?‘1
2

Ψ21(θ, t, t1) Ψ22(θ, t, t1)

L(θ, t1) (47)
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Proposition 7. The resolvent Ξ(·, ·, ·, ·) is continuously differentiable on Ω× [t0, T ]× [t0, T ],
and, denoting

A(θ, t1, t) := −A(t)T + P (θ, t1, t)Bf (t)R
−1(θ, t)Bf (t), (48)

we have

∂Ξ

∂θi
(θ, t1, t, s) =

∫ t

s
Ξ(θ, t1, t, τ)

∂A
∂θi

(θ, t1, τ)Ξ(θ, t1, τ, s)dτ, (49)

∂Ξ

∂t1
(θ, t1, t, s) =

∫ t

s
Ξ(θ, t1, t, τ)

∂A
∂t1

(θ, t1, τ)Ξ(θ, t1, τ, s)dτ, (50)

∂Ξ

∂s
(θ, t1, t, s) = −Ξ(θ, t1, t, s)A(θ, t1, s). (51)

The computation of the partial derivatives of A(θ, t1, t) can be obtained using (36), Proposition
6, and the obvious formulas

∂

∂θi
R−1(θ, t) = −R−1(θ, t)Ri(t)R

−1(θ, t)

Proposition 8. For all (θ, t1) ∈ Ω×]t0, T [, the maps ul 7→ x(θ, t1, ul, ·), ul 7→ λ(θ, t1, ul, ·),
respectively ul 7→ uf (θ, t1, ul, ·) are affine and continuous from Lml2 ([t0, T ]) to Hn

1 ([t0, t1]),
respectively from Lml2 ([t0, T ]) to L

mf
2 ([t0, T ]). Therefore they are continuously Fréchet differ-

entiable on Lml2 ([t0, T ]) and, for any ul ∈ Lml2 ([t0, t1]), their Fréchet differentials (which are
linear continuous maps from Lml2 ([t0, T ]) to Hn

1 ([t0, t1]), and respectively from Lml2 ([t0, T ]) to
L
mf
2 ([t0, T ])) verify for all h ∈ Lml2 ([t0, T ]), and for all t ∈ [t0, t1]

∂

∂ul
x(θ, t1, ul, t) · h = Ψ12(θ, t, t0)

∫ t1

t0

Ξ(θ, t1, t0, s)P (θ, t1, s)Bl(s)h(s)ds (52)

+

∫ t

t0

Ψ11(θ, t, s)Bl(s)h(s)ds

ı̈?‘
1

2

∂

∂ul
λ(θ, t1, ul, t) · h = Ψ22(θ, t, t0)

∫ t1

t0

Ξ(θ, t1, t0, s)P (θ, t1, s)Bl(s)h(s)ds (53)

ı̈?‘
1

2
+

∫ t

t0

Ψ21(θ, t, s)Bl(s)h(s)ds

∂

∂ul
uf (θ, t1, ul, t) · h = −R−1(θ, t)Bf (t)

T ∂

∂ul
λ(θ, t1, ul, t) · h (54)

Proof. It is easy to see from Corollary 3 and (30-31) that the maps ul 7→ x(θ, t1, ul, ·) and
ul 7→ λ(θ, t1, ul, ·) are affine and continuous from Lml2 ([t0, T ]) to Hn

1 ([t0, t1]), hence (52) and
(53) hold. Then, by (34) we obtain that the map ul 7→ uf (θ, t1, ul, ·) from Lml2 ([t0, T ]) to
L
mf
2 ([t0, T ]) is affine and continuous and we get (54).

Theorem 5. (Regularity of uf (·, ·, ·, ·) and x(·, ·, ·, ·))

1. The functions uf (·, ·, ·, ·) : Ω×]t0, T [×Lml2 ([t0, T ]) × [t0, T ] → Rmf and x(·, ·, ·, ·) :
Ω×]t0, T [×Lml2 ([t0, T ])× [t0, T ]→ Rn are continuous.
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2. The function (θ, t1, ul) 7→ uf (θ, t1, ul, ·) from Ω×]t0, T [×Lml2 ([t0, T ]) to L
mf
2 ([t0, T ]) is

continuous as well as the function (θ, t1, ul) 7→ x(θ, t1, ul, ·) from Ω×]t0, T [×Lml2 ([t0, T ])
to Ln2 ([t0, T ]).

3. For each fixed (θ̄, t̄1, ūl) ∈ Ω×]t0, T [×Lml2 ([t0, T ]),

• The function θ 7→ uf (θ, t̄1, ūl, ·) from Ω to L
mf
2 ([t0, T ]), and the function(ii) θ 7→

x(θ, t̄1, ūl, ·) from Ω to Ln2 ([t0, T ]) are continuously Fréchet differentiable on Ω.

• The function ul 7→ uf (θ̄, t̄1, ul, ·) from Lml2 ([t0, T ]) to L
mf
2 ([t0, T ]), and the func-

tion ul 7→ x(θ̄, t̄1, ul, ·) from Lml2 ([t0, T ]) to Hn
1 ([t0, T ]) are continuously Fréchet

differentiable.

• The functions t1 7→ uf (θ̄, t1, ūl, ·) from ]t0, T [ to L
mf
2 ([t0, T ]) and t1 7→ x(θ̄, t1, ūl, ·)

from ]t0, T [ to Ln2 ([t0, T ]) are a.e. differentiable on ]t0, T [, and for almost all

t1 ∈]t0, T [,
∂uf

∂t1
(θ̄, t̄1, ūl, ·) ∈ L

mf
2 ([t0, T ]) and

∂x

∂t1
(θ̄, t̄1, ūl, ·) ∈ Ln2 ([t0, T ]).

Moreover, for each t1 ∈]t0, T [ such that ūl is continue(iii) at t1, these functions are
differentiable in t1.

4. The functions uf (·, ·, ·, ·), x(·, ·, ·, ·) and their partial derivatives can be explicitly repre-
sented as functions of data (supposing we are able to compute the resolvent matrices Ψ
and Ξ).

Proof. By Corollary 3, Remark 4 and Propositions 5-8, we obtain the points 1 and 4.

To prove the point 2 we will use the fact that, by Corollary 3, we can write

x(θ, t1, ul, t) = α(θ, t1, t) +

∫ T

t0

X(θ, t1, t, s)ul(s)ds,

where
α(θ, t1, t) =

(
Ψ11(θ, t, t0) + Ψ12P (θ, t1, t0)

)
x0

andX(θ, t1, t, s) is described later in relations (61)and (63). Obviously α : Ω×]t0, T [×[t0, T ]→
Rn is a continuous function, and for each s ∈ [t0, T ], X(·, ·, ·, s) is continuous on Ω×]t0, T [×[t0, T ]→
Rn×ml , and, for each (θ, t1, t) ∈ Ω×]t0, T [×[t0, T ], X(θ, t1, t, ·) ∈ Ln×ml2 ([t0, T ]).

We obtain easily that the function (θ, t1) 7→ α(θ, t1, ·) is continuous from Ω×]t0, T [ to
C([t0, T ];Rn), where C([t0, T ];Rn) is the Banach space of continuous functions on [t0, T ] with
values in Rn endowed with the uniform convergence norm.

Since the embedding C([t0, T ];Rn) ⊂ Ln2 ([t0, T ]) is continuous, we obtain that the function
(θ, t1) 7→ α(θ, t1, ·) is continuous from Ω×]t0, T [ to Ln2 ([t0, T ]).

Also, using Lebesgue’s dominated convergence theorem, we obtain easily that the function
(θ, t1, t) 7→ X(θ, t1, t, ·) is continuous from Ω×]t0, T [×[t0, T ] to Ln×ml2 ([t0, T ]). Denoting

y(θ, t1, ul, t) =
∫ T
t0
X(θ, t1, t, s)ul(s)ds, and writing

y(θ′, t′1, u
′
l, t)− y(θ, t1, ul, t) =

(
y(θ′, t′1, u

′
l, t)− y(θ′, t′1, ul, t)

)
+
(
y(θ′, t′1, ul, t)− y(θ, t1, ul, t)

)
,

(ii)Note that the embedding Hn
1 ([t0, T ]) ⊂ Ln2 ([t0, T ]) is continue.

(iii)In the sense that there exists a function ũl continue at t1 and ūl(t) = ũl(t) a.e. on [t0, T ]. Note that
by Lusin’s theorem, we can find measurable sets of arbitrarily small positive measure, and such functions ũl
which are continuous on the complement of those sets.
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we obtain that

|y(θ′, t′1, u
′
l, t)−y(θ, t1, ul, t)| ≤ ‖X(θ′, t′1, t, ·)‖2 ·‖u′l−ul‖2+‖X(θ′, t′1, t, ·)−X(θ, t1, t, ·)‖2 ·‖ul‖2

which finally prove the continuity of the function (θ, t1, ul) 7→ x(θ, t1, ul, ·) from Ω×]t0, T [×Lml2 ([t0, T ])
to Ln2 ([t0, T ]).

With similar arguments we can prove the continuity of the function (θ, t1, ul) 7→ uf (θ, t1, ul, ·)
from Ω×]t0, T [×Lml2 ([t0, T ]) to L

mf
2 ([t0, T ]), and the point 3.

6 Optimality conditions for the upper level, i.e. for problems
(OB)σ and (PB)σ

In this section we will restrain to the case considered in Subsection 5.2. Moreover we will
suppose that Ul is the closed ball

Ul = {ul ∈ Lml2 ([t0, T ]) | ‖ul‖2 ≤ R}, (55)

where R is a strictly positive real.

6.1 The optimistic bilevel problem

We begin with some preliminary results in order to obtain an existence result when Uf is not
assumed to be bounded so we cannot apply the results obtained in [17]. We could adapt the
proof given in [17] but we will give direct proofs for the sake of completeness.

Lemma 3. Let X and Y be arbitrary sets and let J : X × Y → R ∪ {+∞} such that, for
each x ∈ X, the set argmin J(x, ·) is nonempty. Then the problems

min
(x,y)∈X×Y

J(x, y) (56)

and
min
x∈X

min
y∈Y

J(x, y) (57)

are equivalent, i.e. problem (56) is solvable if and only if problem (57) is solvable. In this
case the solution sets coincide as well as the minimal values.

Proof. Let (x̂, ŷ) ∈ X × Y be a solution for problem (56), i.e. (x̂, ŷ) ∈ argmin J(·, ·). Then,
for each x ∈ X, we have obviously J(x̂, ŷ) = min

y∈Y
J(x̂, y) ≤ min

y∈Y
J(x, y), hence J(x̂, ŷ) =

min
x∈X

min
y∈Y

J(x, y), and (x̂, ŷ) is a solution for problem (57).

Conversely, let (x̄, ȳ) be a solution for problem (57). This means that, for all x ∈ X and
y′ ∈ argmin J(x, ·), we have we have J(x̄, ȳ) ≤ J(x, y′) = min

y∈Y
J(x, y), hence for all (x, y) ∈

X × Y , we have J(x̄, ȳ) ≤ J(x, y). Therefore (x̄, ȳ) is a solution for problem (56).

Lemma 4. Let X = X ′ ×X ′′ where X ′ is a compact metric space, X ′′ is a closed bounded
convex set in a reflexive Banach space X ′′, and let Y be a compact metric space. Let J :

19



X × Y → R ∪ {+∞} be a lower semicontinuous function on the topological product space
X ′ × (X ′′, s)× Y , where s denotes the topology on X ′′ induced by the strong topology of X ′′.
Suppose that J(x′, ·, y) is convex for each fixed (x′, y) ∈ X ′ × Y .

Then the hypotheses of Lemma 3 are fulfilled, and argmin J(·, ·, ·) 6= ∅.

Proof. 1. From Banach-Alaoglu-Kakutani theorem, X ′′ is compact for the weak topology
of X ′′ denoted w. Thus X × Y = (X ′ × X ′′) × Y is compact in the topological product
space [X ′ × (X ′′, w)]× Y . Let us show that J is sequentially lower semicontinuous on [X ′ ×
(X ′′, wX′′)]× Y , where wX′′ stands for the topology on X ′′ induced by the weak topology of
X ′′. Indeed, for any real α, let us denote

SLα = {(x′, x′′, y) ∈ X ′ ×X ′′ × Y |J(x′, x′′, y) ≤ α}.

Since J is lower semicontinuous on X ′ × (X ′′, s) × Y we have that SLα is closed in X ′ ×
(X ′′, s)×Y . Consider now a sequence ((x′k, x

′′
k, yk))k in SLα convergent to some (x′, x′′, y) in

X ′× (X ′′, w)×Y . Since (x′′k) converges weakly to x′′, by Mazur’s lemma [32, page 6], there is
a sequence (x̄′′k) converging to x′′ in (X ′′, s) such that, for any k, x̄′′k is a convex combination
of x′′k’s. Then, by the convexity of X ′′ and of J(x′k, ·, yk), we have x̄′′k ∈ X ′′ and

J(x′k, x̄
′′
k, yk) ≤ J(x′k, x

′′
k, yk) ≤ α.

Thus (x′k, x̄
′′
k, yk) ∈ SLα and (x′k, x̄

′′
k, yk) converges to (x′, x′′, y) in X ′ × (X ′′, s) × Y , hence

(x′, x′′, y) ∈ SLα. Therefore SLα is sequentially closed in X ′ × (X ′′, w) × Y , hence J is
sequentially lower semicontinuous on X ′ × (X ′′, w)× Y . Finally, by Weierstrass’ theorem we
obtain that argmin J(·, ·, ·) 6= ∅.

Let now x = (x′, x′′) ∈ X = X ′ × X ′′ be fixed. Since Y is compact and J(x, ·) is lower
semicontinuous on Y , we obtain from Weierstrass’ theorem that argmin J(x, ·) 6= ∅.

Let Ĵl : Ω×]t0, T [×Ul → R ∪ {+∞} be defined by

Ĵl(θ, t1, ul) := J̃l(t1, ul,uf (θ, t1, ul, ·)) = Jl(t1, ul,uf (θ, t1, ul, ·), x(θ, t1, ul, ·)). (58)

Theorem 6. In addition to hypotheses (PA) we suppose that, for each t ∈ [t0, T ], fl(t, ·, ·, ·)
is a convex function.

Moreover we suppose the following hypothesis

(Hf)


there is some α ∈ L∞([t0, T ]) and some real constant β such that,
for almost all t ∈ [t0, T ], and for all (ul,uf , x) ∈ Rml × Rmf × Rn,∣∣∇(ul,uf ,x)fl(t, ul,uf , x)

∣∣ ≤ α(t) + β|(ul,uf , x)|.
(59)

Then problem (OB)we has at least one solution and it is equivalent to the problem

(Pl) min
(θ,t1,ul)∈Θwe×T ×Ul

Ĵl(θ, t1, ul).
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Proof. We will show that all the hypotheses of Lemma 4 are fulfilled (denoting X ′ = T , X ′′ =
Ul, Y = Θwe, X ′′ = Lml2 ([t0, T ]), x′ = t1, x

′′ = ul, y = θ, J(x′, x′′, y) = Ĵl(θ, t1, ul)), and then
the conclusion follows from Lemma 3.

Ul is (strongly) closed, bounded and convex in Lml2 ([t0, T ]), T and Θwe are compact. For
fixed (t1, θ) ∈ T × Θwe, the function Ĵl(θ, ·, t1) is convex since, for any t ∈ [t0, T ], the
function fl(t, ·, ·, ·) is convex, and ul 7→ uf (θ, t1, ul, ·), ul 7→ x(θ, t1, ul, ·) are affine functions
by Proposition 8.

To finish the proof it is sufficient to show that Ĵl is lower semicontinuous on Θwe × T × Ul,
where Ul is endowed with the topology induced by the strong topology of Lml2 ([t0, T ]). Let
(θk, tk1, u

k
l )k be a sequence in Θwe×T ×Ul which converges (strongly) to an element (θ̄, t̄1, ūl).

Since Θwe × T × Ul is closed we have (θ̄, t̄1, ūl) ∈ Θwe × T × Ul.

We obtain from Lemma 1, Theorem 5 and (58) that, for each fixed t1 ∈ T , the function
Ĵl(·, t1, ·) is lower semicontinuous. On the other hand we have

Ĵl(θ
k, tk1, u

k
l ) = Ĵl(θ

k, t̄1, u
k
l ) + (Ĵl(θ

k, tk1, u
k
l )− Ĵl(θk, t̄1, ukl )),

and the term (Ĵl(θ
k, tk1, u

k
l )− Ĵl(θk, t̄1, ukl )) tends to 0 as k → +∞. Indeed,

Ĵl(θ
k, tk1, u

k
l )− Ĵl(θk, t̄1, ukl ) =

∫ tk1

t0

fl(t, u
k
l (t),uf (θ

k, tk1, u
k
l , t), x(θk, tk1, u

k
l , t))dt−∫ t̄1

t0

fl(t, u
k
l (t),uf (θ

k, t̄1, u
k
l , t), x(θk, t̄1, u

k
l , t))dt, (60)

Since the sequence (ukl ) is bounded in Lml2 ([t0, T ]), by (Hf) and Theorem 5 there is a constant
M > 0, such that, for all k ∈ N and almost all t ∈ [t0, T ],

|fl(t, ukl (t),uf (θ
k, tk1, u

k
l , t), x(θk, tk1, u

k
l , t))| ≤M,

and
|fl(t, ukl (t),uf (θ

k, t̄1, u
k
l , t), x(θk, t̄1, u

k
l , t))| ≤M.

Finally, let us show that both integrals in (60) have the same limit as k → +∞, which is∫ t̄1

t0

fl(t, ūl(t),uf (θ̄, t̄1, ūl, t), x(θ̄, t̄1, ūl, t))dt. To do this it is sufficient to prove that these

convergences hold for a subsequence. Since (ukl ) converges in Lml2 ([t0, T ]), there exists a
subsequence (uk

′
l )k′ , such that (uk

′
l (t))k′ converges to ūl(t) a.e. on [t0, T ]. Then, we can apply

Lebesgue’s dominated convergence theorem to obtain the last claim.

Therefore, using the fact that for each t1 ∈ T the function Ĵl(·, t1, ·) is lower semicontinuous,
we obtain

lim
k→+∞

Ĵl(θ
k, tk1, u

k
l ) = lim

k→+∞
Ĵl(θ

k, t̄1, u
k
l ) ≥ Ĵl(θ̄, t̄1, ūl).

We denote (fl)
′
ul

(·, ·, ·, ·) : [t0, T ] × Rml × Rmf × Rn → Rml , (fl)
′
uf

(·, ·, ·, ·) : [t0, T ] × Rml ×
Rmf ×Rn → Rmf , (fl)

′
x(·, ·, ·, ·) : [t0, T ]×Rml ×Rmf ×Rn → Rn the partial derivatives of fl

with respect to the variables located on the second, third and fourth position respectively.
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Also, let us denote for all (θ, t1, t, s) ∈ Ω×]t0, T [×[t0, T ]× [t0, T ],

X(θ, t1, t, s) =
[
χ[t0,t1](s)Ψ12(θ, t, t0)Ξ(θ, t1, t0, s)P (θ, t1, s) (61)

+χ[t0,t](s)Ψ11(θ, t, s)
]
Bl(s)

Y (θ, t1, t, s) = −R−1(θ, t)Bf (t)
T
[
χ[t0,t1](s)Ψ22(θ, t, t0)Ξ(θ, t1, t0, s)P (θ, t1, s) (62)

ı̈?‘
1

2
+χ[t0,t](s)Ψ21(θ, t, s)

]
Bl(s),

where χ[t0,t] : [t0, T ]→ R is the characteristic function

χ[t0,t](s) =

{
1 if s ∈ [t0, t]
0 otherwise.

(63)

Thus, formulas (52), (54) become

∂

∂ul
x(θ, t1, ul, ·) · h =

∫ T

t0

X(θ, t1, ·, s)h(s)ds (64)

∂

∂ul
uf (θ, t1, ul, ·) · h =

∫ T

t0

Y (θ, t1, ·, s)h(s)ds. (65)

Next result is necessary to ensure the differentiability of Ĵl.

Lemma 5. Suppose that fl satisfies the hypothesis (Hf) given in Theorem 6, in addition
to the hypothesis (PA). Then, for each fixed t1 ∈]t0, T [, the functional Ĵl(·, t1, ·) : Ω ×
Lml2 ([t0, T ])→ R is well defined and continuously Fréchet differentiable. Its partial derivatives
with respect to θi, i = 1, . . . , p are given by

∂Ĵl
∂θi

(θ, t1, ul) =

∫ t1

t0

(fl)
′
uf

(t, ul(t),uf (θ, t1, ul, t), x(θ, t1, ul, t))
T ∂uf

∂θi
(θ, t1, ul, t)dt (66)

+

∫ t1

t0

(fl)
′
x(t, ul(t),uf (θ, t1, ul, t), x(θ, t1, ul, t))

T ∂x

∂θi
(θ, t1, ul, t)dt.

Its partial Fréchet gradient with respect to ul at (θ, t1, ul) is given, for almost all s ∈ [t0, t1],
by(iv)

∇ul Ĵl(θ, t1, ul)(s) = (fl)
′
ul

(s, ul(s),uf (θ, t1, ul, s), x(θ, t1, ul, s)) (67)

+

∫ T

t0

LT (θ, t1, t, s)(fl)
′
uf

(t, ul(t),uf (θ, t1, ul, t), x(θ, t1, ul, t))dt

+

∫ T

t0

XT (θ, t1, t, s)(fl)
′
x(t, ul(t),uf (θ, t1, ul, t), x(θ, t1, ul, t))dt

(iv)We identify the Hilbert space L
ml
2 ([t0, T ]) with its dual according to Riesz-Fréchet theorem, hence

∇ul Ĵl(θ, t1, ul) ∈ L
ml
2 ([t0, T ]) (see e.g. [7, page 38]).

22



Moreover, for each fixed (θ, ul) ∈ Ω × Lml2 ([t0, T ]), the function Ĵl(θ, ·, ul) ∈ H1([t0, T ]), and
for almost all t1 ∈]t0, T [, its derivative is given by

∂Ĵl
∂t1

(θ, t1, ul) = fl(t1, ul(t1),uf (θ, t1, ul, t1), x(θ, t1, ul, t1)) (68)

+

∫ t1

t0

(fl)
′
uf

(t, ul(t),uf (θ, t1, ul, t), x(θ, t1, ul, t))
T ∂uf

∂t1
(θ, t1, ul, t)dt

+

∫ t1

t0

(fl)
′
x(t, ul(t),uf (θ, t1, ul, t), x(θ, t1, ul, t))

T ∂x

∂t1
(θ, t1, ul, t)dt

In particular, at each point t1 such that ul is continuous at t1 (see footnote (iii)), the real
valued function t 7→ Ĵl(θ, t, ul) is differentiable.

Proof. By [4, Example 2, page 20] we have that the functional Jl(t1, ·, ·, ·) : Lml2 ([t0, T ]) ×
L
mf
2 ([t0, T ]) × Hn

1 ([t0, T ]) → R is well defined and is continuously Fréchet differentiable
for each fixed t1 ∈]t0, T [. Moreover, its partial derivatives satisfy for all (t1, ul,uf , x) ∈
]t0, T [×Lml2 ([t0, T ])× Lmf2 ([t0, T ])×Hn

1 ([t0, T ]), the following equations

∂Jl
∂ul

(t1, ul,uf , x) · v =

∫ t1

t0

(fl)
′
ul

(t, ul(t),uf (t), x(t))T v(t)dt ∀v ∈ Lml2 ([t0, T ])

∂Jl
∂uf

(t1, ul,uf , x) · w =

∫ t1

t0

(fl)
′
uf

(t, ul(t),uf (t), x(t))Tw(t)dt ∀w ∈ Lmf2 ([t0, T ])

∂Jl
∂x

(t1, ul,uf , x) · z =

∫ t1

t0

(fl)
′
x(t, ul(t),uf (t), x(t))T z(t)dt ∀z ∈ Hn

1 ([t0, T ]),

Also, for each fixed (ul,uf , x) ∈ Lml2 ([t0, T ]) × Lmf2 ([t0, T ]) × Hn
1 ([t0, T ]) and for almost all

t1 ∈]t0, T ],

∂Jl
∂t1

(t1, ul,uf , x) = fl(t1, ul(t1),uf (t1), x(t1))

Let us identify, using Riesz-Fréchet theorem, the Hilbert spaces Lml2 ([t0, T ]), L
mf
2 ([t0, T ]) and

Ln2 ([t0, T ]) with their duals, and do not identify Hn
1 ([t0, T ]) with its dual Hn

1 ([t0, T ])∗. Based
on the fact that (see [21, pp. 81-82] for details)

Hn
1 ([t0, T ]) ⊂ Ln2 ([t0, T ]) ≡ Ln2 ([t0, T ])∗ ⊂ Hn

1 ([t0, T ])∗

and both embeddings are continuous and dense, and the duality product between Hn
1 ([t0, T ])

and Hn
1 ([t0, T ])∗ coincide with the inner product in Ln2 ([t0, T ]) on Hn

1 ([t0, T ]) × Ln2 ([t0, T ]),
we have that the Fréchet gradients ∇ulJl(t1, ul,uf , x) ∈ Lml2 ([t0, T ]), ∇uf

Jl(t1, ul,uf , x) ∈
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L
mf
2 ([t0, T ]) and ∇xJl(t1, ul,uf , x) ∈ Ln2 ([t0, T ]) are given for almost all t ∈ [t0, T ] by

∇ulJl(t1, ul,uf , x)(t) =


(fl)

′
ul

(t, ul(t),uf (t), x(t)) if t ∈ [t0, t1]

0 if t ∈]t1, T ]

∇uf
Jl(t1, ul,uf , x)(t) =


(fl)

′
uf

(t, ul(t),uf (t), x(t)) if t ∈ [t0, t1]

0 if t ∈]t1, T ]

∇xJl(t1, ul,uf , x)(t) =


(fl)

′
x(t, ul(t),uf (t), x(t)) if t ∈ [t0, t1]

0 if t ∈]t1, T ]

Now, using the chain rule in (58), we obtain immediately (66) and (68), and also

∇ul Ĵl(θ, t1, ul)(t) = (fl)
′
ul

(t, ul(t),uf (θ, t1, ul, t), x(θ, t1, ul, t)) (69)

+

(
∂

∂ul
uf (θ, t1, ul, ·)

)∗
(fl)

′
uf

(t, ul(t),uf (θ, t1, ul, t), x(θ, t1, ul, t))

+

(
∂

∂ul
x(θ, t1, ul, ·)

)∗
(fl)

′
x(t, ul(t),uf (θ, t1, ul, t), x(θ, t1, ul, t)),

and, for almost all t ∈]t1, T ], ∇ul Ĵl(θ, t1, ul)(t) = 0, where M∗ stands for the adjoint operator
of a linear continuous operator M between two Hilbert spaces.

Fix (θ, t1, ul) ∈ Ω×]t0, T [×Lml2 ([t0, T ]). Since the embedding Hn
1 ([t0, T ]) ⊂ Ln2 ([t0, T ]) is con-

tinuous, we can consider the partial Fréchet derivative
∂

∂ul
x(θ, tt, ul, ·) as a linear continuous

operator from Lml2 ([t0, T ]) to Ln2 ([t0, T ]). Denote 〈·, ·〉n the inner product in Ln2 ([t0, T ]). For
all h ∈ Lml2 ([t0, T ]), k ∈ Ln2 ([t0, T ]) we have

〈 ∂
∂ul

x(θ, tt, ul, ·)h, k〉n =

∫ T

t0

kT (t)

(∫ T

t0

X(θ, t1, t, s)h(s)ds

)
dt

=

∫ T

t0

hT (s)

(∫ T

t0

XT (θ, t1, t, s)k(t)dt

)
ds

= 〈h,
(
∂

∂ul
x(θ, tt, ul, ·)

)∗
k〉ml ,

hence

(
∂

∂ul
x(θ, tt, ul, ·)

)∗
· k =

∫ T

t0

XT (θ, t1, t, ·)k(t)dt. (70)

In the same way we get for all k ∈ Lmf2 ([t0, T ]),

(
∂

∂ul
uf (θ, tt, ul, ·)

)∗
· k =

∫ T

t0

Y T (θ, t1, t, ·)k(t)dt. (71)
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Finally (67) follows from (69).

Theorem 7. (First order necessary conditions when the final time is fixed, i.e.
T = {t1}) Suppose that T = {t1}, and fl satisfies hypotheses (PA), (Hf), and fl(t, ·, ·, ·) is
convex for all t ∈ [t0, T ].

Let (θ̄, ūl) ∈ Θwe × Ul solve (OB)we. Then there are nonnegative real numbers µ, l1, . . . , lp
and a real number ν such that

∇ul Ĵl(t1, θ̄, ūl)(t) + µūl(t) = 0 a.e. on [t0, T ], (72)

∂Ĵl
∂θi

(t1, θ̄, ūl)− li + ν = 0, i = 1, . . . , p, (73)

µ(‖ūl‖2 −R) = 0, (74)

liθ̄i = 0 i = 1, . . . , p, (75)

and of course

p∑
i=1

θ̄i = 1. (76)

‖ūl‖2 ≤ R, θ̄i ≥ 0 i = 1, . . . , p. (77)

Remark 5. According to (67), equation (72) is a Fredholm integral equation in the unknown
ūl (linear if fl(t, ·, ·, ·) is quadratic, case which satisfies hypothesis (Hf)), depending on 2p+ 1
parameters (µ and θ̄i). Assuming that we are able to solve this integral equation, (73-76)
represent an nonlinear system with 2p+ 2 equations and 2p+ 2 unknowns µ, ν, θi, li.

A similar remark applies to the next theorem.

Theorem 8. (First order necessary conditions when the final time t1 ∈ T =
[t, t ] ⊂]t0, T [) Suppose that fl satisfies hypotheses (PA), (Hf) and fl(t, ·, ·, ·) is convex for
all t ∈ [t0, T ].

Let (t̄1, θ̄, ūl) ∈ T ×Θwe ×Ul solve (OB)we. Suppose that ūl is continuous at t̄1 (see footnote
(iii)). Then there are nonnegative real numbers µ, l1, . . . , lp, lp+1, lp+2 and a real number ν
such that

∇ul Ĵl(t̄1, θ̄, ūl)(t) + µūl(t) = 0 a.e. on [t0, T ], (78)

∂Ĵl
∂θi

(t̄1, θ̄, ūl)− li + ν = 0, i = 1, . . . , p, (79)

∂Ĵl
∂t1

(t̄1, θ̄, ūl)− lp+1 + lp+2 = 0, (80)

µ(‖ūl‖2 −R) = 0, (81)

liθ̄i = 0 i = 1, . . . , p, (82)

lp+1(t̄1 − t) = 0, (83)

lp+2(t− t̄1) = 0, (84)
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and of course

p∑
i=1

θ̄i = 1. (85)

‖ūl‖2 ≤ R, θ̄i ≥ 0 i = 1, . . . , p. (86)

The proof of Theorems 7 and 8 is a direct application of the generalized Lagrange multiplier
rule under Kurcyusz-Robinson-Zowe regularity condition (see [39, Theorem 5.3]), and is based
on Theorem 6 and on Lemma 5.

6.2 The pessimistic bilevel problem

In this section we assume that fl(t, ·, ·, ·) is quadratic, i.e. for all (t, ul,uf , x) ∈ [t0, T ]×Rml×
Rmf × Rn,

fl(t, ul,uf , x) = uTl Sl(t)ul + uf
TRl(t)uf + xTQl(t)x, (87)

where Sl(·), Rl(·), Ql(·) are continuous symmetric matrix valued functions. Note that this
function satisfies hypotheses (PA) and (Hf).

According to [4, Example 3, page 14] the functional Jl(t1, ·, ·, ·) : Lml2 ([t0, T ])×Lmf2 ([t0, T ])×
Hn

1 ([t0, T ])× is well defined and continuous. Therefore, by Theorem 5, the functional Ĵl(·, ·, ·)
has finite values and is continuous on Θwe × T × Ul.

Moreover, since Θwe is compact, the pessimistic problem (PB)we can be written as

min
(t1,ul)∈T ×Ul

max
θ∈Θwe

Ĵl(θ, t1, ul)

Theorem 9. (First order necessary conditions when the final time is fixed, i.e.
T = {t1}) Suppose that T = {t1}.

Let (θ̄, ūl) ∈ Θwe × Ul solve (PB)we. Then there are nonnegative real numbers µ, l1, . . . , lp
and a real number ν such that

∇ul Ĵl(t1, θ̄, ūl)(t) + µūl(t) = 0 a.e. on [t0, T ], (88)

∂Ĵl
∂θi

(t1, θ̄, ūl) + li + ν = 0, i = 1, . . . , p, (89)

µ(‖ūl‖2 −R) = 0, (90)

liθ̄i = 0 i = 1, . . . , p, (91)

and of course

p∑
i=1

θ̄i = 1. (92)

‖ūl‖2 ≤ R, θ̄i ≥ 0 i = 1, . . . , p. (93)
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Proof. We have that θ̄ is a maximizer of Ĵl(·, t1, ūl) over Θwe. By Karush-Kuhn-Tucker
theorem, since on Θwe the linear independence of gradients of active constraints holds (hence
Mangasarian-Fromowitz regularity condition holds), and based on Lemma 5, we obtain that
there are nonnegative reals l1, . . . , lp, and a real ν such that (89), (91) hold, and of course
(92, 93).

Moreover, ūl is a minimizer of Ĵl(θ̄, t1, ·) over the ball Ul. By the generalized Lagrange
multiplier rule under Kurcyusz-Robinson-Zowe regularity condition (see [39, Theorem 5.3]),
and based on Lemma 5, we obtain (88), (90).

Theorem 10. (First order necessary conditions when the final time t1 ∈ T =
[t, t ] ⊂]t0, T [) Let (t̄1, θ̄, ūl) ∈ T ×Θwe × Ul solve (PB)we. Suppose that ūl is continuous at
t̄1 (see footnote (iii)). Then there are nonnegative real numbers µ, l1, . . . , lp, lp+1, lp+2 and a
real number ν such that

∇ul Ĵl(t̄1, θ̄, ūl)(t) + µūl(t) = 0 a.e. on [t0, T ], (94)

∂Ĵl
∂θi

(t̄1, θ̄, ūl) + li + ν = 0, i = 1, . . . , p, (95)

∂Ĵl
∂t1

(t̄1, θ̄, ūl)− lp+1 + lp+2 = 0, (96)

µ(‖ūl‖2 −R) = 0, (97)

liθ̄i = 0 i = 1, . . . , p, (98)

lp+1(t̄1 − t) = 0, (99)

lp+2(t− t̄1) = 0, (100)

and of course

p∑
i=1

θ̄i = 1. (101)

‖ūl‖2 ≤ R, θ̄i ≥ 0 i = 1, . . . , p. (102)

The proof is identical to the proof of Theorem 9.

Remark 6. A similar comment as in Remark 5 can be done for the last two theorem.
Moreover, in this case the computation of the partial derivatives and gradients in Lemma 5
is simplified since, by (87), we have

(fl)
′
ul

(t, ul,uf , x) = 2uTl Sl(t), (fl)
′
uf

(t, ul,uf , x) = 2uf
TRl(t), (fl)

′
x(t, ul,uf , x) = xTQl(t).
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